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Abstract

We consider supervised learning problems where the feaane embedded in a graph, such as
gene expressions in a gene network. In this context, it iswafiminterest to take into account the
problem structure, and automatically select a subgraph avgmall number of connected compo-
nents. By exploiting prior knowledge, one can indeed imprthe prediction performance and/or
obtain better interpretable results. Regularization araftg functions for selecting features in
graphs have recently been proposed but they raise newtalgdcichallenges. For example, they
typically require solving a combinatorially hard seleatigroblem among all connected subgraphs.

In this paper, we propose computationally feasible stiatetp select a sparse and “well con-
nected” subset of features sitting on a directed acycliplg{®AG). We introduce structured spar-
sity penalties over paths on a DAG called “path coding” pesil Unlike existing regularization
functions, path coding penalties can both model long rantgractions between features in the
graph and be tractable. The penalties and their proximabtqes involve path selection problems,
which we efficiently solve by leveraging network flow optimion. We experimentally show on
synthetic, image, and genomic data that our approach ialdeahnd lead to more connected sub-
graphs than other regularization functions for graphs.

Keywords: Convex and non-convex optimization, network flow optimizat graph sparsity.

1. Introduction

Supervised sparse estimation problems have been the topic of much hdsestatistical machine
learning and signal processing. In high dimensional settings, restosignal or estimating the
weight vector of a classifier is often difficult without a priori knowledddte data. When the so-
lution is known beforehand to be sparse—that is, has only a few narepefficients, regularizing
with a penalty encouraging sparsity has proven to be useful to improvehmtiuality of the pre-
diction and its intepretability. To that effect, non-convex penalties andigralgorithms have been
proposed (sefkaike, 1973 Schwarz 1978 Rissanenl1978 Mallat and Zhang1993 Fan and Lj
2001, Needell and Trop®009. More recently, convex relaxations such as#fx@orm (Tibshirani
1996 Chen et al.1999 and efficient algorithms have been develop@dlforne et al200Q Efron
et al, 2004 Nesteroy 2007 Beck and Teboulle2009 Wright et al, 2009.

x. A preliminary version of this paper was presented during the 4th Irtiene Workshop on Optimization for Machine
Learning (OPT 2011) at the Neural Information Processing SystdRSN\conferenceMairal and Yy 2011).
t. Also in the department of Electrical Engineering & Computer Science.



We consider in this paper supervised learning problems where more irtfomis available
than just sparsity of the solution. More precisely, we assume that the degtur predictors) can
be identified to the vertices of a graph, such as gene expressions ie ag@rork. In this context,
it can be desirable to take into account the graph structure in the regtitarif&apaport et aJ.
2007. In particular, we are interested in automatically identifying a subgraph vétv@onnected
components Jacob et aJ.2009 Huang et al. 2011), groups of genes involved in a disease for
example. There are two equally important reasons for this: either covibedt the solution is
good prior information which might improve the prediction performance, aneoted components
may be easier to interpret than isolated variables.

Formally, let us consider a supervised sparse estimation problem invgiVieatures (or pre-
dictors), and assume that an undirected or directed deapliV, E) is given, wher&/ is a vertex set
identified to{1,...,p}, andE CV xV is an arc (edge) set. Classical empirical risk minimization
problems can be written as

min [L(w) +AQ(w)], 1)

weRP
wherew is a weight vector inRP we wish to estimatel. : RP — R is a convex loss function,
andQ : RP — R is a regularization function. Typical choices farto obtain a sparse solution are
the £o- (cardinality of the support) of;-penalties. In this paper, we are interested in penalties that
also encourage the sparsity pattermofthe set of non-zero coefficients) to form a subgrapksof
with a small number of connected components. We give a simple example ofllacbmaected”
sparsity pattern in Figurgaillustrating this “graph sparsity” regularization effect.

To the best of our knowledge, penalties in the literature promoting conitgatfsparsity pat-
terns in a graph fall into two categories. The first one consists of ragatam functions involving
pairwise interactions terms between vertices linked by an @eher et al.2008 Jacob et aJ.
2009 Chen et al.2011), each term encouraging two neighbors in the graph to be simultaneously
selected. Such penalties usually lead to tractable optimization problems, bot dwdel long
range interactions between variables in the graph, and do not promaetargected components.
Penalties from the second category are more complex, and directly addtegaph selection prob-
lems Huang et al.2011), which are combinatorially hard. As such, they require approximations to
be used in practice. The problem of finding penalties that can both modgtdoge interactions in
the graph while being tractable is therefore acute. The main contributiorr plager is a solution
to this problem when the graph is directed and acyclic.

Of much interest to us are the non-convex and convex penalties reghettiroduced byHuang
et al. (2011 andJacob et al(2009. Given a pre-defined set of (possibly overlapping) grougds
variablesG, these two structured sparsity-inducing regularization functions eageus sparsity
pattern to ben the union of a small number of group¥hese penalties induce a similar regular-
ization effect and are strongly related. In fact, we show in Se@ithat the penalty ofacob et al.
(2009 can be interpreted as a convex relaxation of the non-convex penaftyaofg et al(2011),
even though these two works were independently proposed at the sante Tihese two penal-
ties go beyond classical unstructured sparsity, but they are also mogpdecoand they raise new
challenging combinatorial problems. As suggestedHoyang et al(2011), defining G as the set
of all connected subgraphs &f would lead to well connected solutions. Unfortunately the num-
ber of connected subgraphs is exponential in the graph size and thisappeads to intractable

1. What we call “group of variables” is formally defined as an elemétt@powerset &P},
2. They were presented at the International Conference on Mackamaing, ICML, in 2009.



optimization problems, which are approximately addressedumng et al(2011) with greedy al-
gorithms. Another strategy used Bgcob et al(2009 is to defineG as the pairs of vertices linked
by an arc, which, as a result, encourages neighbors in the graphitoldeaseously selected. This
last formulation is computationally tractable, but does not model long rangaatitens between
features. Another possibility suggestedJacob et al(2009 andHuang et al(2011) consists of
defining G as the set of connected subgraphs up to aksitwever, the number of such subgraphs
is exponential irk, making this approach difficult to use even for small subgraph skze8(4) as
soon as the graph is largp4 10000) and connected enougff.hese observations naturally raise
the questionCan we replace connected subgraphs by another structure which {@hi€nough to
model long-range interactions in the graph, and (ii) leads to computatiofedigible penalties?

When the grapl@ is directed and acyclicwe propose to the above question a solution relying
on two main ideas. First, we use in the penalty framewor8amfob et al(2009 andHuang et al.
(2011) a novel group structuré, which containsall the path$ in G. The second key component
of our strategy is the choice of appropriate costs for each path (thee"mre has to pay to select
a path), which, as we show in the sequel, allow us to leverage network fitimination. We call
the resulting regularization functions “path coding” penalties. They gomyairwise interac-
tions between vertices and model long-range interactions between thiglesiiathe graph. They
encourage sparsity patterns forming subgraphs that can be cowewredrball number of paths,
therefore promoting connectivity of the solution. To illustrate the “path cddingcept for DAGs,
we present an example in Figuté, where a subgraph with two connected components is repre-
sented by two paths. Even though the number of paths in a DAG is exponarttial graph size,
we map thepath selectiorproblems our penalties involve to network flow formulations (&keja
et al, 1993 Bertsekas1998, which can be solved in polynomial time. As shown in Secfipthe
main idea is to build minimum cost flow formulations such that sending a positivergrobtlow
along a path (for minimizing a cost) is equivalent to selecting the path in the ¢aftéxe path
coding penalties. This allows us to efficiently compute the penalties and thgimaicoperators, a
key tool to address regularized problems (Beeh et al. 2012, for a review).

We therefore design in this paper a new link between structured graptitipenn DAGs and
network flow optimization. The development of network flow optimization techesdguas been
very active from the 60’s to the 90's (s€erd and Fulkersgnl956 Goldberg and Tarjanl986
Ahuja et al, 1993 Goldberg 1997 Bertsekas1998. They have attracted a lot of attention during
the last decade in the computer vision community for their ability to solve larde-soanbinatorial
problems typically arising in image segmentation tadBsykov et al, 2001). Concretely, they
provide efficient dedicated tools to solve particular linear programs, thé¢ fao®us one being
probably themaximum flow probleriFord and Fulkersarl956. Thus, by mapping a problem at
hand to a network flow formulation, one can possibly obtain fast algorithmslve she original
problem. Of course, such a mapping does not always exist or canflegltito find. This is made
possible in the context of our path coding penalties thanks to decomposatuligrpes of the path
costs, which we make explicit in SectiGn

3. This issue was confirmed to us in a private communication with Lauaeob) and this was one of our main motiva-
tion for developing new algorithmic tools overcoming this problem.

4. A path is defined as a sequence of vertipgs. .., vg) such that for all i <k, we have(vj,vi;1) €E. This is
in fact the classical definition of walks in a graph. A path is in addition nopesged to contain any repetition of
vertices (sedhuja et al, 1993, but for directed acyclic graphs, walks and paths are the same.
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(a) Sparsity pattern in an undirected graph. (b) Selected paths in a DAG.

Figure 1: Left(a). an undirected graph with 12 nodes. A sparsity pattern forming a sutgvitip
two connected components is represented by gray nodes. [Righthen the graph is a DAG, the
sparsity pattern is covered by two pat2s3,6) and(9,11,12) represented by bold arrows.

We remark that different network flow formulations have also been wesmahtly in other sparse
estimation contextsGehver et al.2008§ Chambolle and Darbqr2009 Hoefling 2010 Mairal
etal, 2011). Cehver et al(2008 combine for example sparsity and Markov random fields for signal
reconstruction tasks. They introduce a non-convex penalty consistpajravise interaction terms
between vertices of a graph, and their approach alternates betweetepsothe optimization of a
Markov random field model by solving a maximum flow probleBoykov et al, 2001), and a sparse
signal estimation step. It has also been show@bgmbolle and Darbof2009 andHoefling(2010
that for the anisotropic total-variation penaltylso called “fused lasso” in statistics, the solution
of problem () could be obtained by solving a sequenc@afametric maximum flow problerfisn
the context of graph sparsity, the total-variation penalty can be usefbtéingpiecewise constant
solutions on a graph (seéhen et al. 2011). Finally, Mairal et al. (2011 have shown that the
structured sparsity-inducing regularization functiordehatton et a(2011) was related to network
flows in a similar way as the total variation penalty. Note that the penaltidacdb et al(2009
andJenatton et al(2011) share the same terminology of “group Lasso with overlapping groups”,
leading to some confusion in the literature. Yet, they are significantly diffeaed are in fact
complementary: given a group structugethe penalty oflacob et al(2009 encourages solutions
whose sparsity pattern isumion of a few groups, whereas the penaltyJJenatton et al(2017)
promotes anntersectionof groups. Whereas it is natural to use the frameworklagob et al.
(2009 to encourage connectivity of a problem solution in a graph (e.g., bysthgg as the pairs
of vertices linked by arc), it is not obvious how to obtain this effect with teagty of Jenatton
et al.(2011). We discuss this question in Appendixin more details.

To summarize the contributions of our paper, we have designed new pé&maitjons along
with an optimization framework to do feature selection in directed acyclic grdphkke existing
ones, our penalties can model long-interactions between variables wiiiedda tractable prob-

5. The anisotropic total-variation penalty for two-dimensional images isma gupairwise terms between adjacent
pixels encouraging the pixel values to be equal. It produces piecewnstant images.

6. By definition, a parametric max-flow problem consists in solving, fergvalue of a parameter, a max-flow problem
on a graph whose arc capacities depend on this parameter.
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lems. We propose unified optimization tools to deal with the non-convex angxeariants of
our penalties based on network flows. Our flow formulations enable ustoith the exponential
number of paths/groups igp, and, as far as we know, are unrelated to other flow formulations
appearing in the sparse estimation literature.

The paper is organized as follows: Sectibpresents preliminary tools, notably a brief intro-
duction to network flows. SectioBformally proposes the path coding penalties and devises opti-
mization techniques for solving the corresponding sparse estimation prokfsoson4 presents
experiments on synthetic, genomic and image data to demonstrate the connbketiefigs of path
penalties over existing ones and the scalability of our approach, and Sectmeludes the paper.

2. Preliminaries

As we show later, our path coding penalties are intimately linked with the contépiv in a graph.
Since this concept is not widely used in the machine learning literature, wilpra brief overview
of this topic in Sectior2.1 The other tool we present in Secti@r? is a proximal gradient method,
which has become on the other hand very popular for solving regulguipetems (se8ach et al.
2012.

2.1 Network Flow Optimization

The concept of flow has been well studied in the computer science communityas led to ef-
ficient dedicated algorithms for solving particular linear programs fdaga et al, 1993 Bert-
sekas1998. Let us consider a directed gra@h= (V,E) with two special nodes andt, respec-
tively dubbedsourceandsink A flow f on the graphG is defined as a non-negative function on
arcs| fu)(uv)ce that satisfies two sets of linear constraints:

* capacity constraints the value of the flowf,, on an arq(u,v) in E should satisfy the con-
straintly, < fuy < &y, Wherel,, andd,y are respectively called lower and upper capacities;

 conservation constraints the sum of incoming flow at a vertex is equal to the sum of outgo-
ing flow except for the sourceand the sink;

We denote in this paper the set of flows on a gr&phy #. For illustration purposes, we give
two simple examples of flows in Figur&s and 2b. More generally, it is possible to show that
with appropriate graph transformations, this basic flow definition can haméiet several variants
which we have omitted for simplicity. When desired, it is indeed possible to deéweral source
and sink nodes, define capacity constraints on the amount of flow goioggtmvertices, and/or
have several arcs with different capacities between two verticeg\taga et al, 1993.

Some network flow problems have attracted a lot of attention because of ttleiramge of ap-
plications, for example in engineering, physics, transportation or telecomatioms (seéAhuja
et al, 1993. In particular, themaximum flow problensonsists of computing how much flow
can be sent from the source to the sink through the network while respehgncapacity con-
straints Ford and Fulkersgri956. In other words, it consists of finding a flofvin # maximizing
Yuevi(su)ce fsu. Another more general problémwhich is of interest to us, is th@inimum cost
flow problem in addition to capacities, there exists some nonnegative cgsits R for every arc

7. A maximum flow problem is in fact a particular instance of a minimum cost firoblem on a network with unit
costs on the aros, u) in E, and zero costs elsewhere.
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(a) A flow in a DAG. (b) A flow in a directed graph with a cycle.

o oy
] D=0 ¢ [ D—(—O
1 g

(c) (s,t)-path flow in a DAG. (d) A cycle flow in a directed graph.

Figure 2: Two examples of flows in a graghy): the flow on the DAG can be interpreted as two units
of flow sent fromstot along the pathss, 1,3,4,t) and(s, 2,3,4,t). (b): the flow can be interpreted
as two units of flow sent fromtot on the same paths as in Figies plus a unit of flow circulating
along the cycld1,3,2,1). (c): example of(s,t)-path flow along the patls, 2,3,4,t). (d): example

of cycle flow along(1,3,2,1).

(u,v) in E. The minimum cost flow problem consists of finding a fléwn & minimizing the linear
costy (yv ek Cuvfuv. Both the maximum flow and minimum cost flow problem are linear programs,
and one could therefore solve them using generic linear programming &gls,interior points
methods (se8oyd and Vandenbergh2004 Nocedal and Wright2006. However, dedicated al-
gorithms exploiting the special structure of network flows have proven tadmh more efficient.

It has indeed been shown that minimum cost flow problems could be solvadmngly polynomial
time—that is, an exact solution can be obtained in a finite number of steps whactyisomial

in V| and|E| (seeAhuja et al, 1993 Goldberg and Tarjgrnl989. More importantly these dedi-
cated algorithms are empirically efficient and can often handle large-stdilems Goldberg and
Tarjan 1986 Goldberg 1997 Boykov et al, 2001).

Among linear programs, flow problems have a few distinctive features.nidst striking one
is the “physical” interpretation of a flow as quantities circulating in the netwdrkis intuition
can be formalized through tHeow decomposition theore(seeAhuja et al, 1993 Theorem 3.5).
This theorem says that every flow vector can always be decomposealsoto of(s,t)-path flows
(units of flow sent fronstot along a path) and cycle flows (units of flow circulating along a cycle
in the graph). We give examples (d,t)-path and cycle flow respectively in Figur@s and 2d,
and simple examples of flows in Figurds and2b along with their decompositions is,t)-path
and cycle flows. Built upon the interpretation of flows as quantities circulatirihpe network,
efficient algorithms have been developed, e.g., the classigginenting pattalgorithm of Ford
and Fulkersor{1956 for solving maximum flow problems. Another specificity of flow problems
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compared to generic linear programs is the locality of constraints, each raf ahéy involving

neighbors of a vertex in the graph. This locality is also exploited to designitlgs (Goldberg and
Tarjan 1986 Goldberg 1997). Finally, minimum cost flow problems have a remarkahtegrality

property. a minimum cost flow problem where all capacity constraints are integersecahown to
have an integral solution (sééuja et al, 1993 Theorem 9.10).

Later in our paper, we will map path selection problems to network flows bioiixg the
flow decomposition theorem. In a nutshell, this apparently simple theorem hateeesting con-
sequence, which is that minimum cost flow problems can be seen from tvixakspt viewpoints.
One is either looking for the valug,, of a flow on every arcu,v) of a graph minimizing the cost
¥ (uv)ck Cuvfuy; Or one should decide how much flow should circulate on eysmy-path and cy-
cle flow to minimize the same co$tWe will define flow problems such that selecting a path in
the context of our path coding penalties is equivalent to sending somelfiogy a corresponding
(s,t)-path. Interestingly, we will also exploit thetegrality propertyto develop tools that work both
with non-convex and convex penalties, respectively involving discredecantinuous optimization
problems. We will also consider variants of minimum cost flow problems withlm&ar convex
costs, which will be discussed later. The concept of flow will directly émab to deal with a simple
class of optimization problems involving our path coding penalties. To deal watbigm (L), we
need additional tools, which we now present.

2.2 Proximal Gradient Methods

Proximal gradient methods are iterative schemes designed to minimize objecti®ons of the
same form asl(), when the functiorL is convex and differentiable with a Lipschitz continuous
gradient. More precisely they can be seen as an extension of gradsed-bechniques when the
objective function to minimize has a nonsmooth part.

The simplest version of this class of methods linearizes at each iterationnitieoful. around
a current estimat®, and this estimate is updated as the (unique by strong convexity) solution of:

min [L(W) + OL(R) " (w— %)+ 2w — w3+ Aow) |, )
we ——

linear approximation ot non-smooth part

guadratic term

which is assumed to be easier to solve than the original proklgnT e quadratic term keeps the
update in a neighborhood whekeis close to its linear approximation, apd> 0 is a parameter
which is an upper bound on the Lipschitz constantdhf When Q is convex, this scheme is
known to converge to the solution of problefr) &nd admits variants with optimal convergence rates
among first-order method#\ésteroy 2007 Beck and Teboulle2009. WhenQ is non-convex,
the guarantees are weak (finding the global optimum is out of reach}t isutasy to show that
these updates can be seen as a majorization-minimiZgtiocedure (seklunter and Lange2004)
iteratively decreasing the value of the objective functidfright et al, 2009. WhenQ is the/;-
or {p-penalty, the corresponding optimization schen®afe respectively known as iterative soft-
and hard-thresholdingd>@ubechies et gl2004 Blumensath and Davie2009.
Another insight about these methods can be obtained by rewriting sbkepr@) as:

(1. 1 - 2 A

min [ZHW— BDL(W) —wH2+ pQ(w)] ,

weRP

8. Note that when the graphis a DAG, cycle flows do not exist.
9. Majorization-minimization techniques can also be seen as generalizatiivs algorithms Dempster et al1977).
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and whenh = 0, the solution amounts to a classical gradient step- W — (1/p)0L(W). Thus,
proximal gradient methods can be interpreted as a generalization of mfradiscent algorithms
when dealing with a nonsmooth term. They are, however, only interesting problem 2) can be
efficiently solved. Formally, we wish to be able to computepleximal operatordefined as:

Definition 1 (Proximal Operator.)
The proximal operator associated with a regularization tev@, which we denote by Prgy, is the
function that maps a vectar € RP to the unique (by strong convexity) solution of

1 ,
min, QHU—WHz‘H\Q(W) - (3)

Computing efficiently this operator has been shown to be possible for maiajtipsQ (seeBach
et al, 2012. We will show in the sequel that it is also possible for our path codinglpesa

3. Sparse Estimation in Graphs with Path Coding Penalties

We now present our path coding penalties, which exploit the structueedigpframeworks ofacob

et al. (2009 andHuang et al(2011) originally defined for any group structurg. Because we
choose a group structug, with an exponential number of groups (one for every path in the graph),
challenging combinatorial problems are raised, and the optimization techmicpgnted byacob

et al.(2009 or Huang et al(201]) can not be used. We introduce flow definitions of our path coding
penalties, leading to efficient optimization tools to solve probl&pagd compute the penalties.

3.1 Path Coding Penalties

The so called “block coding” penalty éfuang et al(2011) can be written for a vectaw in RP and
any group structur& as

bg(w) £ min{ z Ng s-t. Supgw) C J g}, (4)

IEG L ey ges

where theng’s are non-negative weights, afdis a subset of groups (of features) whose union
covers the support af. When the weightgq are well chosen, this non-convex penalty encourages
solutions whose set of non-zero coefficients is in the union of a small nuoflggoups, in other
words the cardinality of should be small. We remark thidtiang et al(2011) originally introduce
this regularization function under a more general information-theoretid pbwiew whered is

a code length (seBarron et al, 1998 Cover and Thoma2006 and the weights)q represent the
number of bits encoding the fact that a grayjs selected® One motivation behind this approach
is that when the predefined groups are semantically meaningful, the selefcaidew groups might
be more interpretable than the selection of isolated variables. This formulatemds non-convex
group sparsity regularization by allowing any group structure to be cerexdid However, a major
drawback is that computing this non-convex penéliyfw) for a general group structui@ is diffi-
cult. Equation 4) is indeed an instance of a set cover problem, which is NP-hardd@esen et aJ.
2001, and appropriate approximations, e.g., greedy algorithms, have to énusectice.

10. Note thaHuang et al(2011) do not directly use the functiah; as a regularization function. The “coding complex-
ity” they introduce for a vectow counts the number of bits to code the supportvofvhich is achieved by s, but
also use arig-penalty to count the number of bits encoding the values of the non-peffiaients inw.



As often when dealing with non-convex penalties, one could either try te stitectly the
corresponding non-convex problems, or look for a convex relaxafisnve empirically observe in
Section4, having both non-convex and convex variants of a penalty can be ificagh asset. One
variant can indeed outperform the other one in some situations, while beightér way around in
some other cases. It is therefore interesting to look for a convex releatip;. We denote by

the vectornglgeg in ]R‘f‘, and byN the binary matrix in{0, 1}P*5| whose columns are indexed by
the groupgy in G, such that the entri{;q is equal to one when the indgxs in the groupg, and
zero otherwise. Equationrt)( can be rewritten as a boolean linear program, a form which will be
more convenient in the rest of the paper:

; T
W)= min X S.t. Nx > Suppgw) ¢, 5
dgtw) = min_{n > Supew) | )
where, with an abuse of notation, Sypp is here a vector if0,1}P such that itsj-th entry is one
if j is in the support ofv and 0 otherwise. Let us also denote|iy the vector inR? obtained by
replacing the entries off by their absolute value. We can now consider a convex relaxati¢g of

Wg(w) £ min {nTx s.t. Nx > ]w|}, (6)
xeR‘f
where not only the optimization problem above is a linear program, but in addjtias a convex
function (in fact it can be shown to be a norm). Such a relaxation is cldssidacorresponds to
the same mechanism relating the to the/1-penalty (replacing Sugp/) by |w|). The next lemma
tells us that we have in fact obtained a variant of the penalty introducdddmnb et al(2009.

Lemma 1 (Relation between)s and the penalty ofJacob et al.(2009.)
Suppose that any pattern if0,1}P can be represented by a union of groupsgn Then, the
functiony defined in §) is equal to the penalty afacob et al(2009 with /,-norms.

Note thatJacob et al(2009 have introduced their penalty from a different perspective and the
link between 6) and their work is not obvious at first sight. In addition, their penalty inesla
sum of/>-norms, which needs to be replacedfynorms for the lemma to hold. Henagg is a
“variant” of the penalty oflJacob et al(2009. We omit this detail here for simplicity but give all
details, as well as the proof of this lemma in Appendix*

Now thatd ; andyi; have been introduced, we are interested in automatically selecting a small
number of connected subgraphs from a directed acyclic g@agh(V,E). We have already dis-
cussed in Sectiofi group structureg;, and introduceds, the set of paths in G As a result, the
path coding penaltie;, andyg, encourage solutions which are sparse while forming a subgraph
that can be covered by a small number of paths. As we show in this seci®ichtiice leads to
tractable formulations when the weiglntg for every pathg in G, are appropriately chosen.

11. Note that at the same time as @f0zinski and Bacf2012 have studied a larger class of non-convex combinatorial
penalties and their corresponding convex relaxations, obtaining in dartecsimilar result as Lemmh

12. Interestingly, this solution is reminiscent of some work on kernel austfor graphs (in a nutshell, a kernel for graphs
can be seen as a similarity measure between two graphs). For exaregigbtitaph kernetonsists of enumerating
all possible subgraphs from two graphs, and counting how many theyihaommon. As shown b@artner et al.
(2003, computing this kernel is NP-hard but a solution to this problem is to conaidiksinstead ofsubgraphs
leading to kernels which could be computed in polynomial time k&shima et al.2004 Mahe et al, 2005. These
works have in common with our approach the replacement of an eatioreof subgraphs by an enumeration of
paths (paths and walks in a DAG are the same), transforming some Iidiffioblems into tractable ones. Despite
this similarity, these works and our approach are, to the best of ourledge, unrelated.



We will show in the sequel that a natural choice is to define fog &l G,

Ng £ y+1gl, )

whereyis a new parameter encouraging connectivity of the solution whégeascourages sparsity.
Itis indeed possible to show that whe# 0, the functions 5, andy, respectively become thg-
and the/;-penalties, therefore encouraging sparsity but not connectivity. ©attrer hand, when
is large and the terng| is negligible ¢ ,(w) simply “counts” how many paths are required to cover
the support ofv, thereby encouraging connectivity regardless of the sparsity of

In fact, the choice?) is a particular case of a more general class of weiggtsvhich our
algorithmic tools can handle. Let us enrich the original directed acyclichg@&bpy introducing a
source nods and a sink node Formally, we define a new gragsi = (V/,E’) as

V' £V Uu{st},
E'2EU{(sVv):veV}u{(ut):ueV}.

In plain words, the grapl&’ (which is a DAG) contains the grapB and two nodes,t that are
linked to every vertex o6. Let us also assume that some cag{sn R are defined for all arcau, v)
in E’. Then, for a patly = (uy, Uy, ..., ) in Gp, we define the weighiq as

k—1

n éc + Cuy; +Cyt = Cuv, (8)
g Su (Zl U+1) Ukt (uy)%sg,t) uv

where the notatioffs, g,t) stands for the patfs,u;,up, ..., ux,t) in G'. This decomposition of the
weightsng as a sum of costs ofs,t)-paths ofG’' (namely the pathgs, g,t) with g in Gp) is a key
component for using the algorithmic tools we will present next. The corgiruof the graphG’
is illustrated in FigureSaand3b for two cost configurations. We remark that the simple choice of
weights () corresponds to the choic8)(with the costxg, =y for all uin V andcy, = 1 otherwise
(see Figure3a). Being able to design particular cosig, and go beyond the simple choicé) (
can be useful whenever one has additional knowledge about thie gtrajgture. For example, we
experimentally exploit this property in Sectidn? to privilege or penalize pathgin Gp starting
from a particular vertex. This is illustrated in Figuse where the cost on the afs,1) is much
smaller than on the args, 2), (s,3), (s,4), therefore encouraging paths starting from vertex 1.
Another interpretation connecting the path-coding penalties with coding lergthrandom
walks can be drawn using information theoretic arguments derived ftoamg et al(2011). We
find these connections interesting, but for simplicity only present them ireAgigC. After having
defined the path coding penalties, we address in the next sections thargllagorithmic issues:
(i) how to compute the penaltigls;, and Y/, given a vectomw in RP? (i) how to optimize the
objective function defined inlf? (iii) in the convex case (whe@ = yi5,) can we obtain practical
optimality guarantees via a duality gap? All of these questions will be answenegl network flow
and convex optimization and/or algorithmic tools on graphs.

3.2 Computing the Penaltiesh;, and Y, with Network Flow Optimization

We now proceed to map the problend§ &nd @) to network flow formulations. Before precisely
stating these mappings, let us sketch the main ideas. The first key compehéatt,is obvious
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(a) GraphG’ with arcs costs and a pagfin bold red. (b) GraphG' with different arcs costs and a pagh

Figure 3: Left(a). G’ is obtained by adding a soursend sinkt to a DAG with four nodes. The
cost configuration is such that the weightssatisfyng = y+ |g|. For example, fog = (4,2,3), the
sum of costs alongs, g,t) is ng = y+ 3. Right(b): same grapl&’ as(a) but with different costs.
The weightng associated to the path= (1,2) is the sum of costs along, 1, 2,t)—that is,ng = 4.

only in hindsight, is to transform the optimization problem¥ énd @) over the paths irG into
optimization problems oves, t)-path flowsn G'. We recall that thés, t)-path flows are defined as
flow vectors carrying the same positive value on every arc of a path batsandt. It intuitively
corresponds to sending frogio t a positive amount of flow along a path, an interpretation we have
presented in Figurg from Section2.1. The main tool we extensively use is tfi@w decomposition
theorem(see Sectior2.1). As a consequence, there exists two equivalent viewpoints for sadving
minimum cost flow problem on a DAG. One should be either looking for the vijpef a flow on
every ardu, V) of the graph, or one should decide how much flow should be sent oy @/erpath.

We assume that a cost configuration],v)ce’ is available and that the weightg are defined
according to Equation8j. We denote byF the set of flows orG'’. The second key component of
our approach is the fact that the cost of a flbim 7 sending one unit froratot along a patiy in G,
defined as§ (yv)cer fuvCuv = 3 (uv)e(sgr) Cuv IS €xactlyng, according to EquatiorBf. This enables
us to reformulate our optimization problen®® @nd @) on paths inG as optimization problems
on (s,t)-path flows inG’, which in turn are equivalent to minimum cost flow problems and can be
solved in polynomial time. Note that this equivalence does not hold when veedyale flows (see
Figure2d), and this is the reason why we have assu@ed be acyclic.

We can now formally state the mapping betweigs) and g, and network flow formula-
tions. We introduce constraints and/or costs on the amount of flow goingghra vertex|
inV={1,...,p}, which we denote byg;(f) = Yuev(ujee’ fuj- It is easy to show that a vertex
with a capacity/cost can be equivalently replaced in the network by two &srtiibked by an arc
that carries the capacity/cogtlfuja et al, 1993. Thus, minimum cost flow solvers can handle such
constraints. The main propositions are presented below, and the preafiven in AppendiD:
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Proposition 1 (Computing ¢,.)
Letw be inRP. Consider the network ‘Glefined in Sectio. 1 with costscuy] (uv)ce/, and defingg
asin @). Then,

bg, (W) = fei;]{ Z fuCuv S.t. §(f) > 1, Vje Supmw)}, 9)

(uv)eE’

where ¥ is the set of flows on‘GThis is a minimum cost flow problem with some lower-capacity
constraint3®, which can be computed in strongly polynomial titfie.

Given the definition of the penalty; in Eq. (5), computingd ;, seems challenging for two reasons:
(i) Eq. (5) is (for a general group structug) an NP-hard boolean linear program with| variables;

(ii) the size ofGy is exponential in the graph size. Interestingly, Propositi¢gils us that these two
difficulties can be overcome whep= G, and that the non-convex penadiy;, can be computed in
polynomial time by solving the convex optimization problem defined in Bq.The key component
to obtain the mapping of, to a network flow problem is the decomposability property of the
weightsng defined in §). This allows us to identify the cost of sending one unit of flowairfrom s

tot along a pathy to the cost of selecting the pagfin the context of the path coding penady; .

We now show that the same methodology applies to the convex panalty

Proposition 2 (Computing W, .)
Letw be inRP. Consider the network ‘Glefined in Sectio.1with costscuy](uv)ce’» and defingg
asin @). Then,

lngp(W) = fEi;g{ fucu S.t. §(F) > |wj|, Vj € {1,...,p}}, (20)

(u,v)eE’

where ¥ is the set of flows on’GThis is a minimum cost flow problem with some lower-capacity
constraints which can be computed in strongly polynomial time.

From the similarity between Equation8) (@and (L0), it is easy to see thalig, and¢ s, are closely
related, one being a convex relaxation of the other as formally shown to8ecl The main
consequence of Propositi@ns that the network flow mapping we obtain allows us to solve in poly-
nomial time the convex optimization problem of E§),(which originally involved an exponential
number of variables. We have thus shown here ¢hgtandy;, can be computed in polynomial
time and will discuss in SectioBi4 practical algorithms to do it in practice. Before that, we address
the problem of optimizing probleni).

3.3 Solving Regularized Problems Using Proximal Gradient Methods

To solve the regularized probleri)( we make use of proximal gradient methods, which we have
presented in SectioR.2. The main requirement to use these techniques ispfgrandyg,, to
compute the proximal operators given in Definitibn We now show that this operator can be
mapped to network flow formulations and be efficiently computed:

13. We recall thas; () denotes the amount of flow going through a verfex V = {1,..., p}.
14. See the definition of “strongly polynomial time” in Secti®r.
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Proposition 3 (Computing the Proximal Operator of ¢ ¢,.)
Letu be inRP. Consider the network ‘Glefined in Sectiofi. 1with costs[cyy](u,v)ce/, and defingg
asin 8). Let us define

P1
f* € argmin fucw+ S = max(uf(1-sj(f)),0) } : (11)
fefF {(u,\;eE’ lez J

where is the set of flows on'GThis is a minimum cost flow problem, with piecewise linear costs,
which can be computed in strongly polynomial time. Denotingvb$ Proxy,, [u], we have for all
jinV ={1,..., p} thatwj = u; if s¢(f*) >0 andO otherwise.

Note that even though the formulatio8) is non-convex whei® is the functiond,, its global

optimum can be found by solving the convex problem described in Equdtidn As before, the
key component to establish the mapping to a network flow problem is the deesability property
of the weightsng. More details are provided in the proofs of Appendix Note also that any
minimum cost flow problem with convex piecewise linear costs can be eqoilalecast as a
classical minimum cost flow problem with linear costs (déwija et al, 1993, and therefore the
above problem can be solved in strongly polynomial time. We now present sheslalts forp,:

Proposition 4 (Computing the Proximal Operator of Yg,.)
Letu be inRP. Consider the network ‘Glefined in Sectiofi. 1with costs[cyy] (v e/, and defineg
asin 8). Let us define

P 1
f*eargmin{ ; fuvCuv+ lemax<|Uj|—Sj(f)70)2}7 (12)
(u,v)eE’ =

feF

where ¥ is the set of flows on’GThis is a minimum cost flow problem, with piecewise quadratic
costs, which can be computed in polynomial time. Denoting’b$ Proxwgp [u], we have for all j

inV={1,..., p}, wj = sign(uj) min(|u;|,s;(f*)).

The proof of this proposition is presented in AppendixWe remark that we are dealing in Propo-
sition4 with a minimum cost flow problem with quadratic costs, which is slightly more compticate
to solve than if the costs were linear. Such problems with quadratic costsdeedie solved in
weakly (instead of strongly) polynomial time (se®chbaum 2007—that is, a time polynomial

in |V|, |E| and lod ||u||»/€) to obtain are-accurate solution of probleni®), wheree can possibly

be set to the machine precisibh.We have therefore shown that the computations 8f, Wg,,
ProX,, and Proy,, can be done in polynomial time. More importantly, we now discuss practical
algorithms, which have empirically shown to be efficient and scalable in vacontexts Goldberg
1997 Ahuja et al, 2003.

3.4 Practical Algorithms for Solving the Network Flow Problems

The minimum cost flow problems involved in the computationggf, Ys, and Proy,, can be
solved with a worst-case complexity &f((|V|log|V|)(|E|+ [V|log|V|)) operations (seéhuja

15. Note that it as been shown blairal et al.(2011) that the proximal operator associated to the penalfeoftton et al.
(2011 with the ¢w»-norm can also be obtained by solving a quadratic minimum cost flow probttowever, their
guadratic minimum cost flow problem is easier to solve than ours since heaaduced to a parametric maximum
flow problem, for which strongly polynomial time algorithms exist.
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et al, 1993. However, this analysis corresponds to the worst-case possible aadhfiigécal com-
plexity of network flow solvers is often much betté&dykov et al, 2001). Instead of a strongly
polynomial algorithm, we have chosen to implement the scaling push-relabeitlatg (Goldberg
1997 because of its empirical efficiency despite its weakly polynomial worst-camplexity. It
requires transforming the capacities and costs of the minimum cost flow prebigo integers
with an appropriate scaling and rounding procedure, and denotiiythg (integer) value of the
maximum cost in the network its worst-case complexit®{$V|?|E|log(C|V|)). This algorithm is
appealing because of its empirical efficiency when the right heuristicesae Goldberg 1997).
We choose€ to be as large as possible (using 64 bits integers) not to lose numericaiqneeven
though choosin@ according to the desired statistical precision and the robustness of timalo
gradient algorithms would be more appropriate. It has indeed been shoemtly bySchmidt et al.
(2011 that proximal gradient methods (in the context of convex optimization)arest to inexact
computations of the proximal operator, as long as the precision of theseutatiops iteratively
increases with an appropriate rate.

Computing the proximal operator Pigx [u] requires dealing with piecewise quadratic arc
costs. A classical strategy consists of approximating the convex cagidng using piecewise lin-
ear functions (seAhuja et al, 1993 Chapter 14) with segments of unit lengths. As before, a scaling
procedure allows an approximation up to an arbitrary precision. Thergasig to show (se&huja
et al, 1993 Bertsekas1998 that an arc with a piecewise linear cost can be equivalently replaced
by several arcs, one for each segment, with appropriate linear colstapacities. Such explicit arc
duplication is of course cumbersome in practice since the number of arcsrietiverk becomes
unbounded. Nevertheless, some algorithms have the ability to implicitly handke allestional
arcs and keep a polynomial complexity. We have chosen in our experimsimgar strategy using
a modification of the scaling push-relabel algorithm proposedlinyja et al.(2003. We now dis-
cuss algorithms to compute the dual normigf,, which is an important quantity to obtain a duality
gap and optimality guarantees.

3.5 Computing the Dual-Norm of g,

The dual normp? . of the normy,, is defined for any vectocin RP aqu*gp(K) = maxy, (W)SleK
(seeBoyd and Vandenbergh@004). This is a key quantity which has different theoretical and
practical values. It can be useful for monitoring the convergence@fimal methods through
duality gaps, and/or for implementing active set methods that are adaptery tange-scale very
sparse problems (sé&ach et al. 2012, as shown in Sectiof.6. We now show that|J*gp can be
computed by solving a sequence of shortest-path proble@s in

Proposition 5 (Computing the Dual Norm ljJ*gp.)

Letk be inRP. Consider the network ‘Glefined in Sectiofi. 1with costs[Cyy] (v e/, and defineg
asin@). Fort >0, and all jin{1,...,p}, we define an additional cost for the vertex j to be
—|K;|/1. We then define for every path gdjp, the length{(g) to be the sum of the costs along the
correspondings,t)-path from G. Then,

Wg,(K) = min {T s.t. minl¢(g) > O},

TeR, 9€Gp

and qJ*gp(K) is the smallest factor such that the shorte$s,t)-path on G has nonnegative length.
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The proof is given in AppendiX>. We note that the above quantity(g) satisfiesl:(g) = ng—
|Kgll1/T, for everyt > 0 andk in RP. We present a simple way for computit}%p in Algorithm 1,
which is proven in Propositiofi to be correct and to converge in polynomial time.

Algorithm 1 Computation of the Dual Norrqu*gp.

input kK € RP such thak # 0.

: Choose any path € Gp such thakg # 0;

;O —o0;

: while d <0do
T+ %;
g+« arg mir}]egp I(h); (shortest path problem in a directed acyclic graph);
0 < l+(9);

end while

: Return: 1= L|J*gp(|<) (value of the dual norm).

Proposition 6 (Correctness and Complexity of Algorithm1.)
For k in RP, the algorithml computesp*gp(K) in at most @ p?) operations.

The proof is also presented in Appendix We note that this worst-case complexity bound might
be loose. We have indeed observed in our experiments that the empincpledty is close to
linear in p. To concretely illustrate why computing the dual norm can be useful, we giogv
optimality conditions for probleml) involving l]J*gp. The following lemma can immediately be
derived from Bach et al,2012 Proposition 1.2):

Lemma 2 (Optimality Conditions for Problem (1) with Q = yg.)
A vectorw be inRRP is optimal for problem ) with Q = 5 if and only if

W (OL(w)) <A and —OL(w)"'w = Ag(w).

The next section presents an active-set type of algorithmBaek et al. 2012 Chapter 6) building
upon these optimality conditions and adapted to our peajty

3.6 Active Set Methods for Solving Problem ) when Q = Wg,

As experimentally shown later in Sectign proximal gradient methods allows us to efficiently
solve medium-large/scale problems €< 100000). Solving larger scale problems can, however,
be more difficult. Algorithm2 is an active-set strategy which can overcome this issue when the
solution is very sparse. It consists of solving a sequence of smaller ¢estarfi Equation) on
subgraphsz = (V,E), with V C V andE C E, which we callactive graphs It is based on the
computation of the dual—norrup*gp which we have observed can empirically be obtained in a time

linear or close to linear ip. Given such a subgrap, we denote b)ép the set of paths is. The
subproblems the active set strategy involve are the following:

min {L(w) + Az (W) s.t.wj=0 forallj ¢V} (13)

WERP
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The key observations are that (i) whéris small, subproblemi@) is easy to solve; (ii) after solv-
ing (13), one can check optimality conditions for probleiy ¢sing Lemma, and updaté& accord-
ingly. Algorithm 2 presents the full algorithm, and the next proposition ensures that it isatorr

Algorithm 2 Active-set Algorithm for Solving Equatiorif with Q = Yg, .

1: Initialization w < 0; G <+ (0,0) (active graph);
2: loop
3:  Updatew by solving subproblemi(3) (using the current value of as a warm start);

g+« arg mir‘bfgp ITN(g) (shortest path problem in a directed acyclic graph);
V<«+Vug E+ EU{(uv)€E:ueg andve g} (update of the active graph);
10: endif

11: end loop

12: Return: w* <— w, solution of EquationX).

4:  Computert + qJ*gp(DL(W)) (using Algorithm1);
5. if t<Athen

6: exit the loop;

7. else

8:

9:

Proposition 7 (Correctness of Algorithm?2.)
Algorithm2 solves Equationl) whenQ = Yg, .

The proof is presented in Appendix It mainly relies on Lemma&, which require computing the
quantitqu*gp(DL(w)). More precisely, it can be shown that whenis a solution of a subprob-

lem (13) for a subgraplG, whenevenp*gp(DL(w)) < A, it is also a solution of the original large
problem (). Note that variants of Algorithn2 can be considered: one can approximately solve
subproblems(3), select more than a single pagho update the subgray. For simplicity, we do
not discuss these possibilities here.

With the optimization tools we have introduced, we now present variousiexgets, illustrat-
ing how the different penalties and algorithms behave in practice.

4. Experiments and Applications

We now present experiments on synthetic, genomic and image data. Outhafgganave been im-
plemented in C++ with a Matlab interface, they will be made available in the opgeeseoftware
package SPAMS, originally accompanyikigiral et al.(2010.'® The proximal gradient algorithms
we have implemented are the FISTA algorithnBafick and Teboull¢2009 for convex regulariza-
tion functions and ISTA for non-convex ones. When available, we usdative duality gap as

a stopping criterion and typically stop the optimization when the relative dualityiggamaller
than 10°4. In our experiments, we often need to solve Equatinfgr several values of the pa-
rameter\, typically chosen on a logarithmic grid. We proceed with a continuation strafiegywe
solve the problem for the largest value\gfivhose solution is usually O whaeris large enough; then

we decrease the value ®f and use the previously obtained solution as initialization. This strategy

16. http:/iwww.di.ens.friwillow/SPAMS/
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acts as a warm restart, allowing us to quickly follow the regularization patheoptboblem. For
non-convex problems, it provides us with a good initialization for a giveiThe algorithm ISTA
with the non-convex penalty, is indeed only guaranteed to iteratively decrease the value of the
objective function. As often the case with non-convex problems, the quilitye optimization is
subject to a good initialization, and this strategy has proven to be importantaim good results.

All other implementation details are provided in each experimental section.

4.1 Synthetic Experiments

In this first experiment, we study our penaltées, andys, in a controlled setting. Since generating
synthetic graphs that reflect similar properties as real life networks isuiffive have considered
three “real” graphs of different sizes, which are part of th# TOMACS graph partitioning and
graph clustering challengé:

* the graphazz was compiled byGleiser and Dano(003 and represents a community net-
work of jazz musicians. It contains= 198 vertices anth= 2742 edges;

* the grapremail was compiled byGuimes et al.(2003 and represents e-mail exchanges in a
university. It containg = 1133 vertices anth= 5451 edges;

* the graphPGP was compiled byBoguha et al.(2004) and represents information interchange
among users in a computer network. It contgins 10680 vertices anth= 24316 edges.

We choose an arbitrary topological ordering for all of these graptisntothe arcs according to

this ordering, and obtain DAGS. We generate structured sparse linear models with measurements
corrupted by noise according to different strategies presented indbelsand compare the ability

of different regularization functions to recover the noiseless model.eNtoecisely, we consider

a design matrixX in R™P with less observations than predictors% | p/2]), and whose entries

are i.i.d. samples from a normal distributiég(0,1). For simplicity, we preprocess each column

of X by removing its mean component and normalize it to have dgAitorm. Then, we generate
sparse vectorg/g with k non-zero entries, according to different strategies which are deskcirib

the sequel. We synthesize an observation vectetXwg + € in R", where the entries afare i.i.d.
draws from a normal distributiofA{ (O, MO), with different noise levels:

« high SNR: we choose& = 0.2 corresponding to a signal noise ratio (SNR)f about 26. We
note that foro < 0.1 almost all penalties almost perfectly recover the true sparsity pattern;

* medium SNR: for o = 0.4, the SNR is about 6;
* low SNR: for 0 = 0.8, the SNR is about.6.

Choosing a good criterion for comparing different penalties is difficult, anonclusion drawn
from an experiment is usually only valid for a given criterion. For examie present later an
image denoising experiment in Sectidr?, where non-convex penalties outperform convex ones
according to one performance measure, while being the other way afouadother one. In the
case of sparse linear models, one can be interested in pattern recakiatyis-if one obtains an

17. http:/lwww.cc.gatech.edu/dimacs10/archive/clusterin g.shtml .

18. A topological ordering< of vertices in a directed graph is such that if there is an arc from vertexvertexv,
thenu < v. A directed graph is acyclic is and only if it possesses a topologicaliogléseeAhuja et al, 1993.

19. The signal noise ratio (SNR) is defined &wol|3/|/€[|3.
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estimatev using one penalty, are the signsioin {—1,0, 1} P consistent with those afg regardless
of the magnitude of the coefficients? One could consider instead the raldference info-norm
between¥ andwo, or the mean square error in terms of predictipdi — Xw||3. Another question
we shall ask is: Once a penalty produces an estifvathould one refit the model using ordinary
least square (OLS)? refit using a ridge regression model (at thefdoaving an extra parameter)?
In this section, we choose the relative mean square error as a critenmusa OLS to refit the
models. Whereas OLS does not change the results obtained with the mexqenaltied’ we
consider here, it changes significantly the ones obtained with the comesx dn practice, OLS
counters the “shrinkage” effect inherent to these penalties, and eailyirimproves the results
quality for low noise regimes (high SNR), but deteriorates it for high nagemes (low SNR).

For simplicity, we also assume (in this experiment only) that an oracle givéiseusptimal
regularization paramet@r, and therefore the conclusions we draw from the experiment are only the
existence or not of good solutions on the regularization path for evergliye A more exhaustive
comparison would require testing all combinations (with OLS, without OLS, witB-@idge) and
all criteria, with internal cross-validation to select the regularization paemnerhis would require
a much heavier computational setting, which we have chosen not to implemeigt @xpleriment.
After obtaining the matrix, we propose several strategies to generate “true” maoagls

* in the scenaridlat we randomly seledt entries without exploiting the graph structure;

* the scenarigyraph consists of randomly selecting 5 entries, and iteratively selecting new
vertices that are connected @to at least one previously selected vertex. This produces
fairly connected sparsity patterns, but does not exploit arc directions;

* the scenarigath is similar tograph, but we iteratively add new vertices following single
paths inG. It exploits arc directions and produces sparsity patterns that canvbeecoby a
small number of paths, which is the sort of patterns that our path-codimajtj®s encourage.

The number of non-zero entries\wy is chosen to b& = |0.1p| for the different graphs, resulting
in a fairly sparse vector. The values of the non-zero entries are mgamosen in{—1,+1}. We
consider the formulationlj whereL is the square loss:(w) = 3|y — Xw||2 andQ is one of the
following penalties:

« the classicalp- and/i-penalties;
« the penaltyp of Jacob et al(2009 where the groupg are pairs of vertices linked by an arc;
» our path-coding penaltieisg, or Y, with the weightsg defined in 7).

* the penalty ofHuang et al.(2011), and their strategy to encourage sparsity pattern with a
small number of connected components. We use their implementation of thg gtgedthm
StructOMP™. This algorithm uses a strategy dubbed “block-coding” to approximatedy de
with this penalty (sed¢iuang et al.2011), and has an additional parameter, which we also
denote by, to control the trade-off between sparsity and connectivity.

For every penalty except the last one related to the algorithm StructOMf@gtlarization parame-
ter A is chosen among the valuéé®2wherei is an integer. We always start by a high valueif@nd
decrease its value, following the regularization path. For the pendltieandy, , the parametey

20. With the non-convex penalties we consider, the estitétés orthogonal to the residug— XW.
21. http://ranger.uta.edu/ ~huang/R_StructuredSparsity.htm
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is simply chosen i{1/4,1/2,1,2,4}. Since the algorithm StructOMP is greedy and iteratively in-
creases the model complexity, we record every solution obtained on thi@niegtion path during
one pass of the algorithm. Based on information-theoretic arguntdués)g et al(2011) propose

a default value for their parametervhich is calibrated to be 1 in their formulation. Since changing
this parameter value empirically improves the results quality, we try the véllyes1/2,1,.2 4}

for a fair comparison with our penaltigs;, andyg, .

We report the results for the three graphs, three scenarii for gengra,, three noise levels
and the five penalties in Figu We report on these graphs the ratio between the prediction
mean square error and the best achievable error if the sparsity patiergiven by an oracle. In
other words, denoting bw°@€ the OLS estimate if an oracle gives us the sparsity pattern, we
report the valug|Xw — Xwp||3/||Xw°"a¢®_ Xw||3. The best achievable value for this criterion is
therefore 1, which is represented by a dotted line on all graphs. Wedeage the experiment 20
times, randomizing every step, including the way the veuwtglis generated to obtain error bars
representing one standard deviation.

We make pairwise comparisons and statistically assess our conclusionsrositizaes or when
needed paired one-sided T-tests with a 1% significance level. The coonsaaie the following:

* convex vs non-convexdp vs (1 and ¢, vs Yg,): For high SNR, non-convex penalties do
significantly better than convex ones, whereas it is the other way aroundwWcSNR.The
differences highly significant for the grapbsail andPGP. For medium SNR, conclusions
are mixed, either the difference between a convex penalty and its nemxcoounterpart are
not significant or one is better than another.

* unstructured vs path-coding (o vs ¢, and /1 vs Yg,): In the structured scenarigraph
and path, the structured penaltieg, and Y/, respectively do better thafy and /. In the
unstructuredflat scenario,fp and ¢1 should be preferredMore precisely, for the scenarii
graph andpath, ¢, andyg, respectively outperfornip and/; with statistically significant
differences, except when: (i) for high SNR, bdth, and/, achieve perfect recovery; (i) with
the smallest grapfazz, the p-values obtained to discriminatgg, vs ¢, are slightly above
our 1% significance level. In thiéat scenario/o and¢ g, give similar results, whereagg,
performs slightly worse thaéy in general even though they are very close.

« Jacob et al.(2009 vs path-coding (5 with pairs vs Yg,): in the scenarigath, g, out-
performsyg (pairs). It is generally also the case in the scenagiaph. The differences are
always significant in the low SNR regime and with the largest graph.

* Huang et al.(201]) vs path-coding (StructOMP vsb s, ,Wg,): For the scenarigath, either
¢, (for high SNR) ong, (for low SNR) outperform StructOMA2 For the scenariagraph,
the best results are shared between StructOMP and our penalties for higimadium SNR,
and our penalties do better for low SNMore precisely in the scenargpaph: (i) there is no
significant difference for high SNR betwegg, and StructOMP; (ii) for medium SNR, Struc-
tOMP does slightly better with the gratGP and similarly asp; for the two other graphs;
(iii) for low SNR, our penalties do better than StructOMP with the two largegttggramail
andPGP and similarly with the smallest gragdwez.

22. Note that the scenarpath is specifically tailored to our path coding penalties.
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To conclude this experiment, we have shown that our penalties offer aetiting alternative to
StructOMP and the penalty dfacob et al(2009, especially when the “true” sparsity pattern is
exactly a union of a few path in the graph. We have also identified differ@aé and size regimes,
where a penalty should be preferred to another. Our experiment alas shat having both a non-
convex and convex variant of a penalty can be interesting. In low SbhifRex penalties are indeed
better behaved than non-convex ones, whereas it is the other waydasten the SNR is high.

graph: jazz, high SNR graph: email, high SNR graph: PGP, high SNR

lstructOMP

flat graph path 0 flat graph path flat graph path
graph: jazz, medium SNR graph: email, medium SNR graph: PGP, medium SNR

o _ P N W M O O

flat graph path 0 flat graph path flat graph path
graph: jazz, low SNR graph: email, low SNR graph: PGP, low SNR

graph flat graph path

flat graph path

Figure 4: Every bar represents the ratio between the mean squarestimuaite and the oracle mean
square error estimate (see main text for an explicit formula and the fultiexpetal setting). The
error bars represent one standard deviation. Each row cor@spora specific noise level, and
every column to a different graph. For a specific noise level and specéph, the results for three
scenarii flat, graph andpath are reported. Each group of six bars represents the results obtained
with six penalties, from left to rightéo, £1, Y (with G being the pairs of vertices linked by an arc),
¢g,, Wg, and the method StructOMP. A legend is presented in the top right figure.
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4.2 Image Denoising

State-of-the-art image restoration techniques are often based on engdetization of small image
patches, for instance X0 pixels Elad and Aharoj2006 Dabov et al.2007 Mairal et al, 2009.
We consider here the task of denoising natural images corrupted by whitgs{an noise, using an
approach introduced bylad and Aharorf2006. It consists of the following steps:

1. extract all overlapping patch(e;é)i:lwm from a noisy image;

2. compute a sparse approximation of every individual pgich

Tl i i
min | Z[ly' — Xw'[|5 +AQ(W 14
min [ Sy~ xw! [+ AQw)] (14)
where the matrixX = [x*,...,xP] in ]R’Vp is a predefined “dictionary”AQ is a sparsity-
inducing regularization and the teidw!' is the clean estimate of the noisy paich

3. since the patches overlap, each pixel admits several estimates. Tétepasbnsists of aver-
aging the estimates of each pixel to reconstruct the full image.

Whereaslad and Aharorf2006 learn an overcomplete basis set to obtain a “good” madrix
in the step2 above, we choose a simpler approach and use an orthogonal disosgte trans-
form (DCT) dictionaryX (Ahmed et al. 1974 for which there exists a natural directed acyclic
graph structure. Such dictionary is classically used in the image procdissiature (sedlad and
Aharon 2006; We present such a dictionary in Figuidor 8 x 8 image patche€ DCT elements
can be organized on a two-dimensional grid and ordered by horizamdaVertical frequencies.
We use the DAG structure presented in Fighi@onnecting neighbors on the grid, going from low
to high frequencies. Note that since the diction&rys orthogonal, the non-convex problems we
address here are solved exactly. The experiment is intended to attdrdskowing questions:

(A) Interms of optimization, is our approach efficient for this experimeBg@ause the number
of problems to solve is large (several millions), the task is difficult.

(B) Do we get better results by using the graph structure than with clas&eahd/,-penalties?
(C) How does the method compare with the state of the art?

Since the dictionarX in R"™P is orthogonal, it can be shown that Equatidd)(is equivalent to

min [Ty - wi[B +ra(w)).
and therefore the solution admits a closed favih2 Prox,q (X Ty'), which we know how to com-
pute wherQ is thelo, {1, 5, or Y, penalties. Fofp and/y, the solution is indeed respectively ob-
tained by hard and soft-thresholding, and we have introduced some t&#stion3 to compute the
proximal operators o g, andy;,. We considee x eimage patches, witae {6,8,10,12, 14, 16},
and a parametex on a logarithmic scale with steg’8. We also exploit the variant of our penalties
presented in SectioBthat allows choosing the costs on the arcs of the gfapMWe choose here a

23. Note that an overcomplete DCT dictionary is already used as a basgltiad and Aharor§20086.
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Figure 5. Orthogonal DCT dictionary with= 8 x 8 image patches. The dictionary elements are
organized by horizontal and vertical frequencies.

small cost on the ar(s, 1) of the graphG’, and a large one for every afts, j), for j in {2,..., p},
such that all paths selected by our approach are encouraged toystiagt\mriable 1 (equivalently
the dictionary element® with the lowest frequencies). We use a dataset of 12 classical hidityqua
images (uncompressed and free of artifact). We optimize the pararatase on the first 3 im-
ages, keeping the 9 last images as a test set and report denoisingoasiatiel. Even though
this dataset is relatively small, it is relatively standard in the image processirajuite, making the
comparison easy with competitive approactes.

We start by answering questi¢A): we have observed that the time of computation depends on

several factors, including the problem size and the sparsity of the soltiiersparser, the faster).

In the settingo =10 ande=28 we were able to denoise approximately 4000 patches per second
usingég,, and 1800 in the setting=50 ande= 14 with our laptop 1.2Ghz CPU (core i3 330UM).
The penaltylg, requires solving quadratic minimum cost flow problems, and was slower to use
in practice: The numbers 4000 and 1800 above respectively becomed7088. Our approach
with ¢ 5, proves therefore here to be fairly efficient for our task, allowing usrezgss an image
with about 250000 patches in between one and three minutes.

Moving now to questiorfB), the best performance among the penaltigg;, ¢ 5, andyg, was
obtained bypg,. This difference is statistically significant: We measure for instance arageer
improvement of B8+ 0.21 dB over{y for o > 20. For this denoising task, it is indeed typical
to have non-convex penalties outperforming convex onesN&erl, 201Q Section 1.6.5, for a
benchmark betweefy and/¢1-penalties), and this is why the original methodedéd and Aharon
(2006 uses thep-penalty. Interestingly, this superiority of non-convex penalties in thi®idery
scheme based on overlapping patches is usually only observed afteethgiag stef3. When one
considers the quality of the denoising of individual patches without gigga—that is, after stef,
opposite conclusions are usually drawn (see alyimal, 201Q Section 1.6.5). We therefore report

24. This dataset can be found for exampl&jairal et al.(2009.
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o \5\10\15\20\25\50\100\
Our approach

lo 37.04| 33.15| 31.03| 29.59| 28.48| 25.26 | 22.44
01 36.42| 32.28| 30.06| 28.59| 27.51| 24.48 | 21.96
bg, 37.01| 33.22| 31.21| 29.82| 28.77| 25.73| 22.97
Yg, 36.32| 32.17| 29.99| 28.54| 27.49| 24.54| 22.12

State of the art approaches
Portilla et al, 2003(GSM) 36.96| 33.19| 31.17| 29.78| 28.74 | 25.67 | 22.96
Elad and Aharon2006(K-SVD) | 37.11| 33.28 | 31.22| 29.81| 28.72| 25.29| 22.02
Dabov et al.2007(BM3D) 37.24| 33.60| 31.68| 30.36| 29.36| 26.11| 23.11
Mairal et al, 2009(LSSC) 37.29| 33.64| 31.70| 30.36| 29.33| 26.20| 23.20

Table 1: Denoising results on the 9 test images. The numbers represenetage PSNR in dB
(higher is betterf® Pixel values are scaled between 0 and 255 arfthe standard deviation of
the noise) is between 5 and 100. The top part of the table presents tits cdshe denoising

scheme we have presented with different penalties. The bottom pagnfsdke results obtained
with various state-of-the-art denoising methods (see main text for mordsjleBest results are in
bold for both parts of the table.

mean-square error results for individual patches without averagifiglte 2 whene = 10. As
expected, the penalty, turns out to be the best at this stage of the algorithm.

We also present the performance of state-of-the-art image denoigingaghes in Tablé to
address questiofC). We have chosen to include in the comparison several methods that ftave su
cessively been considered as the state of the art in the past: the GebsalarMixture (GSM)
method ofPortilla et al. (2003, the K-SVD algorithm ofElad and Aharon(2006, the BM3D
method ofDabov et al(2007) and the sparse coding approach\vdiral et al.(2009 (LSSC). We
of course do not claim to do better than the most recent approacbBesof et al(2007) or Mairal
et al.(2009 which in addition to sparsity exploit non-local self similarities in imadggsddes et a).
20095. However, given the fact that we use a simple orthogonal DCT dictyoianlike Elad and
Aharon (2006 who learn overcomplete dictionaries adapted to the image), our appraaeti bn
the penaltyd g, performs relatively well. We indeed obtain similar resultstdad and Aharon
(2006 andPortilla et al.(2003 which were the state of the art for image denoising a few years ago,
and show that structured parsimony could be a promising tool in image pioges

4.3 Breast Cancer Data

One of our goal was to develop algorithmic tools improving the approadaaib et al(2009. It
is therefore natural to try one of the dataset they used to obtain an empuitglarison. On the
one hand, we have developed tools to enrich the group structure tharthttypp; could handle,
and thus we expect better results. On the other hand, the graph in thigvepies undirected and
we need to use heuristics to transform it into a DAG.

25. One possible explanation of the bad results obtained by convex pediéethe averaging step could possibly be
due to the shrinkage effect of these penalties. It seems that the giwirskaelpful for individual patches, but hurts
after the averaging process.
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[0 [ 5 ] 10 | 15 [ 20 | 25 | 50 | 100 |
lo | 3.60] 10.00] 16.65] 23.22] 29.58] 57.97] 95.79
(1 | 2.68] 7.65 | 13.42] 19.22| 25.23| 52.38] 87.90
¢g, | 3.26| 8.36 | 13.62| 18.83| 23.99| 47.66 84.74
Wg, | 2.66| 7.27 | 12.29] 17.35| 22.65| 45.04| 76.85

Table 2: Denoising results for individual 2010 image patches on the 9 test images. The numbers
represent mean-squared error for the image patches (lower the bB#styesults are in bold.

We use in this task the breast cancer datasefamf De Vijver et al.(2002. It consists of
gene expression data from 8141 genen#1295 breast cancer tumors and the goal is to classify
metastatic samples versus non-metastatic. Followaupb et al(2009, we use the gene network
compiled byChuang et al(2007), obtained by concatenating several known biological networks. As
argued bylacob et al(2009, taking into account the graph structure into the regularization has two
objectives: (i) possibly improving the prediction performance by usingtaiyerior; (ii) identifying
connected subgraphs of genes that might be involved in the metastaticfitiendisease, leading
to more interpretable results than the selection of isolated genes. Even thiagittion is our
ultimate goal in this task, interpretation is equally important since it is necessamaatice to
design drug targets. In their papégcob et al(2009 did succeed in the sense that their penalty
was able to extract more connected patterns thaiitnegularization, even though they could not
statistically assess significant improvements in terms of prediction. Follodogb et al(2009),
we also assume that connectivity of the solution is an asset for interpretabitieyquestions we
address here are the following:

(A) Despite the heuristics described below to transform the graph into a DAG,aloeapproach
lead to well connected solutions in the original (undirected) graph? Dopaunalties lead to
better connected solutions than other penalties?

(B) Do our penalties lead to better classification performance thecob et al (2009 and other
classical unstructured and structured regularization functions? Is tlaglgistructure useful
to improve the prediction? Does sparsity help prediction?

(C) How efficient is our approach for this taskhe problem here is of medium/large scale but
should be solved a large number of times (several thousands of timesijsbaxfahe internal
cross validation procedure.

The graph of genes, which we denote®y, contains 42587 edges, andJob et al(2009, we
keep thep=7910 genes which are presentGg. In order to obtain interpretable results and select
connected components &, Jacob et al(2009 have used their structured sparsity penalty
where the groupg; are all pairs of genes linked by an arc. Our approach requires a b&Gye

will show in the sequel that we nevertheless obtain good results aftastieally transformingGg

into a DAG. To do so, we first treddg as directed by choosing randomly directions on the arcs,
and second remove some arcs along cycles in the graph. It results in ac@#@&@ining 33303
arcs, which we denote bg. This pre-processing step is of course questionable since our penalties
are originally not designed to deal with the gra@h. We of course do not claim to be able to
individually interpret each path selected by our method, but, as we shdeest not prevent our
penaltiesh g, andyg, to achieve their ultimate goal—that is connectivity in the original grégh
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We consider the formulatiorl) whereL is a weighted logistic regression loss:

n

L(w) = Zl El log(1-+eY"'X),

where they’s are labels in{—1,+1}, thex;’s are gene expression vectorsi®. The weightn;

is the number of positive samples, whereas the number of negative ones. This model does not
include an intercept, but the gene expressions are centered. Therizgion functions which are
included in the comparison are the following:

* our path-coding penaltigls;, andy g, with the weights)g defined in )
the squared,-penalty (ridge logistic regression);

the/1-norm (sparse logistic regression);

the elastic-net penalty @ou and Hasti€2005, which has the formv — |[w||1+ (1/2)[|w||3,
wherepis an additional parameter;

the penaltyy; of Jacob et al(2009 where the groupg are pairs of vertices linked by an arc;

a variant of the penalty; of Jacob et al(2009 whose form is given in Equatiori) of
AppendixB, where the/>-norm is used in place of th&,-norm;

the penalty ; of Jenatton et a{2011) given in AppendixA where the groups are all pairs of
vertices linked by an arc;

the penalty(; of Jenatton et a(2011) using the group structure adapted to DAGs described
in AppendixA. This penalty was empirically problematic to use directly. The number of
groups each variable belongs to significantly varies from a variable tthanagesulting in
overpenalization for some variables and underpenalization for somes offtecope with this
issue, we have tried different weighting strategies to choose the wejgfds every group in

the penalty (similarly as those describedJgnatton et al. 20),1but we have been unable to
obtain sparse solutions in this setting (typically the penalty selects here mora tiamsand
variables). A heuristic which has proven to be much better is to add a weighsehalty

to {; to correct the over/under-penalization issue. Denoting for a varipbie{1,..., p}

by d; the number of groups the variabjebelongs to—in other wordd; = Ygegigaj 1 we
add the tern{?zl(max( dk —dj)|w;j] to the penaltyg.

The parameteh in Eq. (1) is chosen on a logarithmic scale with stegé*2 The elastic-net pa-
rametery is chosen in{1,10,100}. The parametey for the penaltiesh, and Y, is chosen
in {2,4,8,16}. We proceed by randomly sampling 20% of the data as a test set, keeping 80%
for training, selecting the parameteérgl, y using internal 5-fold cross validation on the training set,
and we measure the average balanced error rate between the two olagisedest set. We have
repeated this experiment 20 times and we report the averaged resultsar®.Tab

We start by answering questi¢A). We remark that our penaltigs;, andys, succeed in select-
ing very few connected components@g, on average .B for Y5, and 16 for ¢ 5, while providing
sparse solutions. This significantly improves the connectivity of the solutibtened using the
approach oflacob et al(2009 or Jenatton et ak2011). To claim better interpretable results, one
has of course to trust the original graph. Jscob et al(2009, we assume that connectivity @y is
a good prior information. We also study the effect of the preprocessipoge have used to obtain
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a directed acyclic grap& from Go. We report in the row 5 -random” in Table3 the results we
obtain when randomizing the pre-processing step between every exp&imen (providing us a
different graphG for every run). We observe that the outcof@eloes not significantly change the
sparsity and connectivity i®g of the sparsity patterns our penalty select.

As far as the prediction performance is concerned, our pengjfyseems to be the only one
that is able to produce sparse and connected solutions while providing ar sis@lage error rate
as thel;-penalty. The non-convex penalpy;, produces a very sparse solution which is connected
as well, but with an approximately 6% higher classification error rate. Noté#tause of the high
variability of this performance measure, clearly assessing the statisticicgigoe of the observed
difference is difficult. As it was previously observedJgcob et al(2009, the data is very noisy and
the number of samples is small, resulting in high variability. Jasob et al(2009, we have been
unable to test the statistical significance rigorously—that is, without assundegendence of the
different experimental runs. We can therefore not clearly answer the first part of quegBynThe
second part of the question is however more clear: neither sparsitthengraph structure seem to
help prediction in this experiment. We have for example tried to use the same@yéypoit where
we randomly permute thp predictors (genes) at every run, making the graph structure irrelevan
the data. We report in Tableat the row 5 -permute” the average classification error rate, which
is not significantly different than without permutation.

Our conclusions about the use of structured sparse estimation for thisreagierefore mixed.
On the one hand, we are able to select a well connected sparsity patielmiswpood for the inter-
pretability of the results (assuming the original graph should be trustedjh&®ather hand, none
of the tested method was shown to statistically do better in prediction than simpleeglgariza-
tion.® Another question we would like to investigate is the stability properties of thetedlspar-
sity patterns, which is often an issue with features selection methbeisghausen andiiimann
2010. By introducing strong prior knowledge in the regularization, structwealrse estimation
seems to provide more stable solutions tiianFor instance, 5 genes are selectedbyn more
than half of the experimental runs, whereas this number is 10 and 14 fpettzdties oflacob et al.
(2009, and 33 fonyg,. Whereas we believe that stability is important, it is however hard to claim
direct benefits of having a “stable” penalty without further study. Byoemaging connectivity of
the solution, variables that are highly connected in the graph tend to be riteneselected, im-
proving stability of the solution, but not necessarily the interpretability in tiseabe of biological
prior knowledge that prefers connectivity.

In terms of computational efficiency of our implementation, computing one préxiperator
of Yg, for the selected parameters was relatively fast, approximatélyy €econds on a.2GHz
laptop cpu (Intel core i3 330UM), but tends to be significantly slower winensolution is less
sparse, for instance with small values far Since solving an instance of problem) (tequires
computing about 500 proximal operators to obtain a reasonably predig®mspour method was
fast enough to conduct this experiment in a reasonable amount of time.

27. Pairwise T-tests would suggest that our penalties do significantly beitef; or the approach afacob et al(2009.
However, a T-test requires independence of the experimentalwhith) would be a wrong assumption here.

28. This is due in part to the fact that statistical testing is difficult here,usecaf few samples and a lot of noise in this
dataset.
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| test error (%)| sparsity| connected components

I 310+6.1 7910 58
01 36.0+6.5 326 30.9
2+ 10 315+6.7 9296 3552
Jacob et al(2009-/., 359+6.8 68.4 132
Jacob et al(2009-/¢, 36.0+7.2 585 111
Jenatton et al2017) (pairs) 345+5.2 334 288
Jenatton et al201]) (DAG)+weighted/, 356+7.0 54.6 284
bg, 36.0+6.8 10.2 16
WYg, 30.2+6.8 69.9 13
Yg,-permute 332+7.6 1432 17
Yg,-random 316+6.0 785 14

Table 3: Experimental results on the breast cancer datésete Vijver et al, 2002 for different
penalties. Column “test error”: average balanced classification ext®on the test set in percents
with standard deviations; the results are averaged over 20 runs andrdmegqiers are selected for
each run by internal 5-fold cross validation (see main text for detailduro“sparsity”: average
number of selected genes. Column “connected components”: avenafpenof selected connected
components irG.

5. Conclusion

Our paper proposes a new form of structured penalty for superigaeding problems where pre-
dicting features are sitting on a DAG, and where one wishes to automaticakly aedmall number
of connected subgraphs of the DAG. The computational feasibility of thms &f penalty is estab-
lished by making a new link between supervised path selection problems amatkéows. Our
penalties admit non-convex and convex variants, which can be used wighgaithe network flow
optimization framework. These penalties are flexible in the sense that thepotnl the connec-
tivity of a problem solution, whether one wishes to encourage large or soralected components,
and are able to model long-range interactions between variables.

Some of our conclusions show that being able to provide both non-camgesonvex variants of
the penalties is valuable. In various contexts, we have been able to finticsissahere convexity
was helpful, and others where the non-convex approach would leaetter Isolutions than the
convex one. Our experiments show that when connectivity of a sparstgrp is a good prior
knowledge our approach is fast and effective for solving diffepeatliction problems.

Interestingly, our penalties seem to empirically perform well on more gkgeaphs than
DAGs, when heuristically removing cycles, and we would like in the future thdinvay to better
handle them. We also would like to make further connections with image segmenéatioriques,
which exploit different but related optimization techniques Begkov et al, 2001, Couprie et al.
2011), and kernel methods, where other type of feature problems in DAGs (8ach 2008.%°

29. The hierachical kernel learning (HKL) problemRdch(2008 involves features organized in a DAG. However, the
purpose of the regularization in HKL is not to induce connectivity of asipapattern, but to select a feature if and
only if all its ancestors in the DAG are selected as well. This is a type of spaisitlar to the sparsity regularization
for trees ofZhao et al(2009.
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Appendix A. The Penalty of Jenatton et al.(2011) for DAGs

The penalty oflenatton et al(2011) requires a pre-defined set of possibly overlapping gragps
and is defined as follows:

Lg(w) = 3 ngllwgllv, (15)
geg

where the vectowy in R!9 records the coefficients of indexed byg in G, the scalars)g are
positive weights, and typically equals 2 oro. This penalty can be interpreted as thenorm of
the vectoring||wy||v]ge g, therefore inducing sparsity at the group level. It extends the Groepd.a
penalty [Turlach et al, 2005 Yuan and Lin 2006 by allowing the groups to overlap.

Whereas the penalty; of Jacob et al(2009 encourages solutions whose set of non-zero
coefficients is ainionof a few groups, the penal§; promotes solutions whose sparsity pattern is
in theintersectiornf some selected groups. This subtlety makes these two lines of work sigtiifica
different. It is for example unnatural to use the pendlgyto encourage connectivity in a graph.
When the groups are defined as the pairs of vertices linked by an ardnddsd not clear that
sparsity patterns defined as the intersection of such groups would leagktbc@nnected subgraph.
As shown experimentally in Sectighthis setting indeed performs poorly for this task.

However, when the graph is a DAG, there exists an appropriate grétiqgsg when the spar-
sity pattern of the solution is expected to be a single connected compotleanfG Let us indeed
define the groups to be the sets of ancestors, and sets of descendentsy vertex? The cor-
responding penalty; encourages sparsity patterns which are intersections of groupsvirich
can be shown to be exactly the connected subgraphs of the®DA6is penalty is tractable since
the number of groups is linear in the number of vertices, but as soon apatsityg pattern of the
solution is not connex (contains more than one connected component) nialideuto recover it,
making it useful to seek for a more flexible approach. For this grouptsteig, the penalty(s;
also suffers from other practical issues concerning the overpetiatizaf variables belonging to
many different groups. These issues are empirically discussed in Séaioooncrete examples.

30. The set of descendents of a verten a DAG are defined as all verticesuch that there exists a path franto v.
Similarly the set of ancestors contains all vertices such that there is arpath fo u.

31. This setting was suggested to us by Francis Bach, Rodolphe JemattGuilaume Obozinski in a private discussion.
Note that we have assumed here for simplicity that the DAG is connectedis;thas a single connected component.
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Appendix B. Links BetweenHuang et al. (2011) and Jacob et al.(2009

Similarly as the penalty op ; of Huang et al(2011), the penalty oflacob et al(2009 encourages
the sparsity pattern of a solution to be the union of a small number of predefinapsg. Unlike
the functiond g, it is convex (it can be shown to be a norm), and is defined as follows:

W;(w) 2  min { > ngll&h st.w= 3 & and Vge G, Supp&’) C g}, (16)

(EeRPeg | o<y 9y

where||.||y typically denotes thé>-norm @ =2) or £,-norm (@ =0).>? In this equation, the vectav

is decomposed into a sum of latent vectdtsone for every groug in G, with the constraint that
the support o€9 is itself in g. The objective function is a Group-Lasso penalygn and Lin
200§ Turlach et al. 2005 as presented in Equationd) which encourages the vectdt$ to be
zero. As a consequence, the suppomva$ contained in the union of a few grougsorresponding

to non-zero vectorg?, which is exactly the desired regularization effect. We now give a prbof o
Lemmal relating this penalty to the convex relaxationdaf given in Equation ) whenv = .

Proof. We start by showing thap’g is equal to the penalty; defined in Equation6) on Rﬁ’r. We

consider a vectow in }R_‘i and introduce for all groupgin G appropriate variable&’ in RP. The
linear program defining)g can be equivalently rewritten

Yg(w)= min <n'x st Y &=w, Nx> % &andvge G, Suppe®) C g,
xRS geg 9€G
(EgERp)geg

where we use the assumption that for all veetdn RY, there exist vector&’ such thafy 4 ; £° =
w. Let us consider an optimal pgx, (§%)gc ). For all indicesj in {1,..., p}, the constrainNx >
Ygeg &9 leads to the following inequality

> %+ > x-§=0

92]xg>E] g2]xg<&}

IJ*ZO 17<0

wherexgy denotes the entry of corresponding to the group and two new quantitieflsj+ andt; are
defined. For alfyin G, we define a new vect@® such that for every paif, j) in G x {1,...,p}:
1 ifj¢g g 20,
2. if j € gandxg > &, then&? £ xg;
3. if j € gandxg < &9, theng? 2 &9 — (xg— &)

N
b
T

Note that if there existg andg such thakg < &9, thent; is nonzero and the quantitj/Tj‘ is well
defined. Simple verifications show that for all indigeis {1,..., p}, we havey - Xg — E’jg = TJ-+ +
T, = Sgj% — &} and thereforg o ;€9 = 5o ;€% = w. The pair(x, (§9)gc) is therefore also

32. Note that in factJacob et al(2009 do only consider the case=2 in their paper.
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optimal. In addition, for all groupgin G and indexj in {1,..., p}, itis easy to show thactg—i/jg >0
and that we have at optimality si@‘f) =sign(w;) = 1 for any nonzerd?. Therefore, the condition
189l < xg is satisfied, which is stronger than the original constriint> 5 o ; €°. Moreover, it

is easy to show thaf"?|., is necessary equal iq at optimality (otherwise, one could decrease the
value ofxg to decrease the value of the objective function). We can now rewgjitev) as

Wg(w) = {( min 3 ngll&% st. Y &=w, andvge G, SuprE?) Sg},

IeRP)geq g€ <G

and we have shown thai’g =g on Rﬁ. By noticing that in Equationd) a sqution(Eg)geg nec-
essary satisfies sigﬁj’) = sign(w;) for every groupg and indexj such tha‘(?fjJ = 0, we can extend
the proof fromR” to RP. u

Appendix C. Interpretation of the Weights ng with Coding Lengths

Huang et al(2011) have given an interpretation of the penajty defined in Equation4) in terms
of coding length. We use similar arguments to interpret the path-coding pepgltfrom an
information-theoretic point of view. For appropriate weights the quantityd;, (w) for a vec-
tor w in RP can be seen as a coding length for the sparsity pattem-efhat is, the following
Kraft-MacMillan inequality (se€over and Thoma2006 MacKay, 2003 is satisfied:

2 %69 < 1. (17)
se{0,1}P

It is indeed well known in the information theory literature that there exists arpinniquely de-
codeable code ove0,1}P with code lengthp g, (S) for every pattersin {0,1}P if and only if the
above inequality is satisfied (s€@ver and Thoma006. We now show that a particular choice
for the weighta)g leads to an interesting interpretation.

Let us consider the grap® with source and sink verticesandt defined in Sectiors. We
assume that a probability matrix transitioiu, v) for all (u,v) in E" is given. With such matrix
transition, it is easy to obtain a coding length for the set of pgths

Lemma 3 (Coding Length for Paths.)
Let cly for a path g= (v1,...,W) in Gp be defined as

k-1
cly £ —log, T(s,v1) — ( leog2 n(vi,vi+1)> — log, Ti(Vi, t).
i=

Then c} is a coding length org,.

Proof. We observe that for every patin, ..., w) in G, corresponds a unique walk of lendtf| of
the form(s,vs,...,Vh,t,t,...,t), and vice versa. Denoting by(s,t) the probability that a Markov
chain associated to the probability transition matrigtarting at the vertex is at the vertex at
timet, it is easy to show that
Y 2% = V(s t) =1,
gcGp
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and therefore glis a coding length ory),. [ |

the term—log, 1(s,v1) represents the number of bits used to indicate that agathrts with the
vertex vy, whereas the bits corresponding to the termisg, T(vi,Vi+1) indicate that the vertex
following v is vi+1. The bits corresponding to last termlog, 11(Vi, t) indicate the end of the path.
To define the weightgg, we now define the following costs:

s | 1-log,m(u,v) ifu=s
W { —log,m(u,v) otherwise.

The weightng therefore satisfiegg = 3 (yv)ce Cuv = Clg + 1, and as shown biuang et al(2011),
this is a sufficient condition fad g, (w) to be a coding length fof0, 1}P.

We have therefore shown that (i) the different terms composing the wejghtm be interpreted
as the number of bits used to encode the paths in the graph; (ii) it is possibée farabability
transition matrices (or random walks) on the graph to design the wejghts

Appendix D. Proofs of the Propositions
D.1 Proofs of Propositionsl and 2

Proof. We start by proving Propositioch Let us consider the alternative definitiondof, given in
Equation ). This is an optimization over all paths @, or equivalently alls,t)-paths inG’ (since
these two sets are in bijection). We associate to a vecior{0,1}P a flow f on G/, obtained by
sending one unit of flow on evefg,t)-pathg satisfyingx? = 1 (x¢ denotes the entry of associated
to the group/patly). Each of thesés, t)-path flow has a cosfy and the total cost of is exactlyn " x.

We also observe that within this network flow framework, the constigit> Supgw) in
Equation b), is equivalent to saying that for ajlin {1,..., p}, the amount of flow going through
the vertex]j (denoted bys;(f)) is greater than one W/j # 0. We have therefore shown thigg, (w)
is the minimum cost achievable by a fldnsuch that the constraisf(f) > 1 is satisfied for alfj in
Supgw) and such that can be decomposed into bingyt)-path flows.

To conclude the proof of Propositidn we show that there exists an optimal flow which admits
a decomposition into binargs,t)-path flows. We notice that all arc capacities in Equati®nafe
integers. A classical resulAfuja et al, 1993 Theorem 9.10) says that there exists an optimal
integer minimum-cost flow (a flow whose values on arcs are integers). Weealby f such a so-
lution. Then, the flow decomposition theoreBeftsekas1998 Proposition 1.1) tells us thdtcan
be decomposed int,t)-path flows, but it also says thatffis integer, therf can be decomposed
into integer(s, t)-path flows3* We conclude the proof by noticing that sending more than one unit
of flow on a path is not optimal (one can reduce the cost by sending oelyioith of flow, while
keeping the capacity constraints satisfied), and therefore there exisist ia lecomposition of
into binary(s,t)-path flows. The quantity presented in Equatiehig therefore equal td g, (w).

The proof of Propositio builds upon the definition afi; given in Equation) and is similar
to the one of Propositioh. [ |

33. To be more precise, this theorem tells us that a flow vector can bendesed betwee(s,t)-path flows and cycle
flows (units of flow sent along a cycle in the graph). However, we aadirtghere with acyclic graphs. This point is
one of the difficulties to extend our framework to graphs with cycles.
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D.2 Proof of Proposition3

Proof. Using the definition of the proximal operator in Equatid® &nd the definition ofp; in
Equation b), there exists a patter®in {0,1}P such that the solution* of the proximal problem
satisfies for allj, wj = uj if jis in S andwj = 0 otherwise. We therefore rewrite Equatids), (
using the result of Propositiah

. 1 2 ,
Se{OT}IFQfGT { 5 %Suj +(u,\;eE’ fucw s.t.sj(f) >1,Vje S}.
WhenSiis fixed, minimizing the above expression is a minimum cost flow problem with integer
capacity constraints. Thus, there exists an integer flow solution, andmnwevithout loss of gen-
erality constrainf to be integer, and replace the constraig)isf) > 1 by sj(f) > 0. After this
modification, forf is fixed, minimizing with respect t& gives us the following closed form: for

all jin{1,...,p}, §=1if sj(f) > 0 and 0 otherwise. With this choice f& we have in addi-
tion zj¢suf = zlemax(ujz(l— Sj(f)),O), and denoting byfin the set of integer flows, we can
equivalently rewrite the optimization problem

b1
min fuvCuv+ maX(U2(1—8j<f)),0)}.
f € Fint {(U,\;GE/ ]Zl 2 J

It is easy to transform this minimum cost flow problem with piecewise linear ¢ostsclassical
minimum cost flow problem (seBertsekas1998 Exercise 1.19) with integral constraints. There-
fore, it is possible to remove the constrainE 7 and replace it byf € F without changing the
optimal value of the cost function, leading to the formulation proposed in tifoué 1). [ |

D.3 Proof of Proposition4

Proof. Without loss of generality, let us suppose thas in R .34
According to Propositio2, we can write the proximal problem as

. 1P 2 .
min 5 ) (Uj—wj)°+ fuCuw S.t.si(f)>w;,Vje{1,..., .
weRﬁ,fef{ZJZl< J i) (u,\;eE’ uvtuv i(f) >wj,Vje p}}

Whenf is fixed, minimizing with respect tw yields for all j, wj = min(uj,s;j(f*)). Plugging this
closed form in the above equation yields the desired formulation. |

D.4 Proof of Proposition5

Proof. We recall that according to Lemniawe have for allw in R¥:

Wg, (W) = min {r]Tx s.t. NXZW}.

xeR!9

34. Letus denote by* £ Proxpgp [u]. Itis indeed easy to see that the signs of the entrieg"aire necessary the same
as those ofi, and flipping the signs of some entrieswfesults in flipping the signs of the corresponding entries
inw*.
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This is a linear program, whose dual (9¢ecedal and Wright200§ gives us another definition
for Yg, on RE’F. Since strong duality holds here, we have

Wg, (W) = max{WTK st.N'k< r]}.
KeRP
It is easy to show that one can extend this definitioiR@rsuch that we have
T [[Kgll2
W)=maxqw K s.t. max——-<17. 18
ey (w) = max{ a2 < 18)

wherekg denotes the vector of sizg| containing the entries &f corresponding to the indices in the
groupg. Note that a similar formula appears ratob et a).2009 Lemma 2), when thé,-norm is
used in place of thé.,. We now define for a vectorin RP,

A g1
Pk (K) £ max .
gp( ) geGp Mg

Itis easy to see that it is a norm, and by Equatib)(this is in fact the dual norm of the nonrg, .
We can now rewrite it as

) - [IKgll2 }
K)=minqT s.t. max——<T,,
V5, (K) reR+{ 9cGp Ng
. K
= min {r st madrel —ng < O},
TeR, 9€Gp
=min<T s.t. minl >0
min {x st mink(g) > 0}
where we have identified the groupsdi to their correspondings, t)-paths inG'. |

D.5 Proof of Proposition6

Proof.

Correctness:

We start by showing that when the algorithm converges, it returns thhreat@olution. We re-
mark that the choice of in the algorithm ensures that there always exists a gfoip Gp such
thatl;(h) = 0 and therefore we always had< 0. Therefore, when the algorithm convergs,
is equal to zero. Moreover, the functi@: T — minncg, It (h) is non-increasing with since the
functionst — I;(h) are themselves non-increasing fortaih Gy. Itis also easy to show that there
exists a unique such thai(t) = 0, which is the desired solution. We conclude by noticing that at
convergence, we hav&(t) =5 =0.

Convergence and complexity:

We now show that the algorithm converges and give a worst-case cdtgglekich is not neces-
sarily tight). We denote by, gk anddy the respective values afg andd at the iteratiork of the
algorithm. The definition ofy, 1 implies that

1 1
(@0 = 0= (@) ka2 (5~ ).

&<0
—0k>0
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Moreover,

1 1
Ok+1 =l 1 (Gr1) = Iy (Gr1) + Hng“Hl(T? a T—«—l>

Sincely, (gkt1) > O (& is the length of the shortest path), we can show that

K
6k+1 Z 6k(1_ || gk+1||1)‘
1Kgill2

Sincedy1 < 0, we remark that necessarilgg, ., /1 < ||Kg|/1, and we have two possibilities

1. either||Kg,,, ||1 = ||Kg,|l1 @nddx,1 = 0, meaning that the algorithm has converged.

2. either||Kg,,, |1 < ||Kg/1 @and it is easy to show that is implies thgy,,, < ng,.

Sincenn = y+ |h|, we obtain thany, is strictly decreasing witt before the convergence of the
algorithm. Since it can have at mgsdifferent values, the algorithm converges in at mp#era-
tions. Updating the patg in the algorithm can be done by solving a shortest path problem in the
graphG’, which can be done i®(p) operations since the graph is acyclikh{ja et al, 1993, and

the total worst-case complexity &(p?), which concludes the proof. |

D.6 Proof of Proposition7

Proof. We denote by the quantityk = OL(w), and respectively big andW the vectors recording
the entries ok andw that are inv.

Convergence of the algorithm:

Convergence of the algorithm is easy to show and consists of obserair ihstrictly increasing.
After solving subproblemi(3), we have from the optimality conditions of Lemmehatlp*ép(k) <A.
By definition of the dual-norm given in PropositiGnand using the same notation we have that for
allgin ép, [»(g) > 0. We now denote by the quantityt = lIJ*gp(K), if T < A, the algorithm stops.
If not, we have that for aly in Gp, l+(g) > 0 (sincet > A andl,(g) > 0 for all g in Gp). The step
g« arg mirbegp I:(g) then selects a grougsuch that(g) = 0 (which is easy to check given the
definition of l]J’sz in Propositions. Therefore, the selected paghis not in G, and the size ofs
strictly increases, leading to convergence of the algorithm.

Correctness:

We want to show that when the algorithm stops, it returns the correct sulficst, if we haves =

G, it is trivially correct. If it stops withG # G, we have thalpgp(K) < A, and according to

Lemma2, we only need to check thatk'w = A, (w). We remark that we haviy, (w) <
)\ljJép(W) =—k'W=—-«k"w< lp*gp(K)lpgp (w),where the first inequality is easy to show when ob-
serving thatg, C Gp, and the last inequality is the generalizedi¢ter inequality for a norm and its
dual-norm. SinCQJ*gp(K)lIJgp (W) <Agg,(w) we have in fact equality, and we conclude the prabf.
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