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For nearly a century, investigators in the social sciences
have used regression models to deduce cause-and-effect
relationships from patterns of association. Path models and
automated search procedures are more recent developments. In my
view, this enterprise has not been successful. The models tend
to neglect the difficulties in establishing causal relations, and
the mathematical complexities tend to obscure rather than clarify
the assumptions on which the analysis is based.

Formal statistical inference is, by its nature, conditional.
If maintained hypotheses A, B, C, ... hold, then H can be tested
against the data. However, if A, B, C, ... remain in doubt, so
must inferences about H. Careful scrutiny of maintained
hypotheses should therefore be a critical part of empirical
work-- a principle honored more often in the breach than the
observance.

This paper focuses on modeling techniques that seem to
convert association into causation. The object is to clarify the
differences among the various uses of regression, as well as the
source of the difficulty in making causal inferences by modeling.
The discussion will proceed mainly by examples, ranging from
(Yule 1899) to (Spirtes, Glymour, and Scheines 1992).



1. Outline

Many treatments of regression seem to take for granted that
the investigator knows the relevant variables, their causal
order, and the functional form of the relationships among them;
measurements of the independent variables are assumed to be
without error. Indeed, Gauss developed and used regression in
physical science contexts where these conditions hold, at least
to a very good approximation. 1 Today, the textbook theorems
that justify regression are proved on the basis of such
assumptions.

In the social sciences, the situation seems quite different.
Regression is used to discover relationships or to disentangle
cause and effect. However, investigators have only vague ideas
as to the relevant variables and their causal order; functional
forms are chosen on the basis of convenience or familiarity;
serious problems of measurement are often encountered.

Regression may offer useful ways of summarizing the data and
making predictions. Investigators may be able to use summaries
and predictions to draw substantive conclusions. However, I see
no cases in which regression equations, let alone the more
complex methods, have succeeded as engines for discovering causal
relationships. Of course, there may be success stories that I
have not found; nor does a track record of failure necessarily
project into the future.

One of the first applications of regression techniques to
social science is (Yule 1899). Recent examples will be found in
(Spirtes, Glymour, and Scheines 1992), to be cited here as SGS.
(The SGS theory is summarized in Glymour 1993, cited as CG.) SGS
have attracted considerable attention in the philosophy of
science, because they have developed computerized algorithms that
search for path models. With their algorithms, SGS claim to make
rigorous inferences of causation from association. This is a
bold claim, which does not survive examination.

1 Gauss was fitting orbits to astronomical observations,
with least squares to estimate the elements of the orbits (Gauss
1809). (Stigler 1986, 145-46) awards priority to (Legendre 1805).
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The balance of this paper is organized as follows.
Section 2 discusses Yule’s work. Sections 3 and 4 explain the
critical idea of "exogeneity." Section 5 describes a
contemporary regression model. Sections 6-10 review SGS and
reanalyze some of their examples. Sections 11-12 canvass some
mathematical issues. Possible responses to my critique will be
found in section 13. There is a brief review of the literature
in section 14, and conclusions are presented in section 15. For
ease of reference, standard formulas for regression are given in
an appendix. I have tried to make most of the paper accessible
to non-statistical readers, particularly if they will permit the
occasional undefined technical term; sections 11 and 12 are more
specialized.
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2. Yule’s regression model for pauperism

One of the first regression models in social science was
developed by Yule-- "An Investigation into the Causes of
Changes in Pauperism in England, Chiefly During the Last Two
Intercensal Decades." 2 In late 19th century England, poor
people could be supported either inside the poor house or
outside. Did provision of support outside the poor house
increase the number of poor people?

To address this issue, Yule used data from the censuses of
1871, 1881, and 1891. (In England, the census is taken in years
that end with 1.) He considered the periods 1871-81 and 1881-91,
relating changes in the number of paupers to changes in the
"outrelief ratio," that is, the ratio between the number of
paupers supported outside the poor house and inside. He used
regression to control for two confounders-- changes in the
population and its age structure.

His equation can be written as follows:

(1) ∆Paup = a + b × ∆Out + c × ∆Pop + d × ∆Old + error.

Here, ∆ stands for percentage difference, Paup for the number of
paupers, Out for the outrelief ratio, Pop for population size,
and Old for the proportion of people aged 65 and over.

Yule’s unit of analysis was the "union," which seems to have
been a small geographical area like a county. 3 He had four
kinds of areas: rural, mixed, urban, metropolitan. He used
"Ordinary Least Squares" (OLS) to estimate the coefficients from
the data, with a "50 cm. Gravet" slide rule to do the arithmetic.

To be more specific, Yule estimated a separate equation for
each time period (1871-81 and 1881-91) and each kind of area.
There were 2 time periods and 4 kinds of areas, thus , 2 × 4 = 8
equations. Within a time period, all areas of the same kind--
for instance, all rural unions-- are governed by one equation.
(By coincidence, there are 4 coefficients in each equation, and 4
kinds of areas.)

2 See (Yule 1899), (Stigler 1986, 345-58), and (Desrosières
1993).

3 There were about 600 such areas in England. A poor-law
union "consisted of two more parishes combined for administrative
purposes." (Stigler 1986, 346).
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Yule was looking for the "Hooke’s Law of Poverty." Nature
ran an experiment, with lots of variation over time and
geography, and Yule analyzed the results. Regression was needed
to control for the confounding effects of change in population
and age structure. The equations were held to show that, other
things being equal, changes in the outrelief ratio create
corresponding changes in the number of paupers. Indeed, if you
increase the outrelief ratio by 1 percentage point but hold the
other factors constant, you will increase the number of paupers
by b percent, b being the coefficient of outrelief in equation
(1). More qualitatively, if b is positive, welfare creates
paupers.

For a moment, I turn from Yule to methodology. A regression
equation like (1) is usually written as

(2) Y = Xβ + ε.

In this equation, the vector Y represents the dependent variable,
like pauperism; the matrix X represents the explanatory (or
"independent") variables, like the outrelief ratio, population,
and age structure. These are observable. The vector β
represents parameters, which are not observable but may be
estimated from the data: parameters are "social constants,"
which characterize the process that generated the data. In Yule’s
equation, β has four components-- the parameters a, b, c, d in
equation (1). The error or "disturbance" term ε is also
unobservable, and represents the impact of chance factors
unrelated to X. Statistical inferences are often based on
"stochastic assumptions" about ε, e.g., ε is independent of X,
its components are independent and identically distributed with
mean 0. For details, see the appendix below.

Three possible uses for regression equations are as follows:

(i) to summarize data, or
(ii) to predict values of the dependent variable, or
(iii) to predict the results of interventions.

Yule could certainly have summarized his data by saying that
for a given time period and unions of a specific type, with
certain values of the explanatory variables, the change in
pauperism was about so much and so much. In other words, he
could have used his equations to estimate the average value of Y,
given the values of X. This use of regression may run into
technical problems if there are outliers, or nonlinearities in
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the regression surface. However, at least in principle, there do
seem to be technical fixes for such problems. Furthermore,
stochastic assumptions about the disturbance term play almost no
role. Therefore, like most statisticians, I believe that
regression can be quite helpful in summarizing large data sets.

For prediction, there is a ceteris paribus assumption: the
system will remain stable. Prediction is already more
complicated than description. On the other hand, if you make a
series of predictions and test them against data, it may be
possible to show that the system is stable, or sufficiently
stable for regression to be quite helpful. 4 Again, any
particular use of regression to make predictions may go off the
rails, but there do not seem to be essential difficulties of
principle involved.

Causal inference is different, because a change in the
system is contemplated: for example, there will be an
intervention. Descriptive statistics tell you about the
correlations that happen to hold in the data; causal models claim
to tell you what will happen to Y if you change X. Indeed,
regression is often used to make counter-factual inferences about
the past: what would Y have been if X had been different? This
use of regression to make causal inferences is the most
intriguing-- and the most problematic. Difficulties are created
by omitted variables, incorrect functional form, etc. Of course,
if the results of causal modeling were with any frequency checked
against the results of interventions, the balance of argument
might be very different. 5

For description and prediction, the numerical values of the
individual coefficients fade into the background: it is the
whole linear combination on the right hand side of the equation
that matters. For causal inference, it is the individual
coefficients that do the trick. In equation (1), for example, it
is b that should tell you what happens to pauperism when the
outrelief ratio is manipulated.

4 (Meehl 1954) provides some well-known examples.
Predictive validity is best demonstrated by making real ex ante
forecasts in several different contexts (Ehrenberg and Bound
1993).

5 Also see (Manski 1993).
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At this remove, the flaws in Yule’s argument may be
apparent. For example, there seem to be some important variables
missing from the equation, including variables that measure
economic activity. Here is Yule’s comment on the last-named
factor:

A good deal of time and labour was spent in making trial of
this idea, but the results proved unsatisfactory, and
finally the measure was abandoned altogether. [p. 253]

Yule seems to have used the rate of population growth-- ∆Pop in
equation (1)-- as a proxy for economic activity, although that
creates ambiguity. Other things being equal, population growth
will by itself add to the number of paupers; in its role as
proxy, however, population growth should reduce pauperism.

The equations for metropolitan unions are shown below, for
1871-81 and 1881-91: 6

(1871-81) ∆Paup = 13.19 + 0.755 × ∆Out - 0.322 × ∆Pop
- 0.022 × ∆Old + residual.

(1881-91) ∆Paup = 1.36 + 0.324 × ∆Out - 0.369 × ∆Pop
+ 1.37 × ∆Old + residual.

For example, one metropolitan union is Westminster. Over
the period 1871-81, the percentage changes in Out, Pop and Old
are -73, -9, and 5, respectively. The percentage change in Paup
predicted from the regression equation is

13.19 + 0.755×(-73) - 0.322×(-9) - 0.022×5 = -39.

The actual percentage change in Paup is -48. The "residual" is

residual = actual - predicted = -48 - (-39) = -9.

6 These, and the other 6 equations, are reported in Yule’s
Table C, p. 259. His Table XIX gives data for metropolitan
unions, in the form of "percentage ratios" for 1871-81 rather
than differences, apparently to avoid negative numbers. The
equations were fitted to data; the numerical coefficients in the
displays are estimates for the corresponding parameters in (1);
the residuals are observable, but are only approximations to
unobservable disturbance terms.
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The coefficients in the regression equation are estimated so as
to minimize the size of the residuals. (Technically, it is the
sum of the squares that is minimized-- hence the term "least
squares.") The linear combination of explanatory variables on
the right side of the equation has therefore been optimized; but
there is no guarantee that individual coefficients will make much
sense.

There are some noticeable inconsistencies in Yule’s
coefficients, over time and across the various kinds of
geography. Nor are the signs of the coefficients entirely
reasonable. These inconsistencies may not by themselves be
fatal, but certainly raise the question of whether the equations
hold true for any well-defined population of times and places.
If the coefficients do not have a life of their own-- outside
Yule’s particular data set-- they cannot be used to answer
questions of the form, "What would happen if you change the
outrelief ratio?" The coefficients may be useful for descriptive
purposes, but not for causal inference or even prediction.

Moreover, there are familiar difficulties of interpretation.
At best, Yule showed that changes in pauperism and the outrelief
ratio were associated, even after adjusting for changes in the
population and its age structure. The direction of the causal
arrow, however, is by no means clear. Yule’s theory is that
outrelief is the cause, and pauperism the effect. That is a
reasonable view. However, the opposite idea seems equally
tenable-- a union that is flooded with paupers may not be able to
build poor houses fast enough, and resorts to outrelief. If so,
pauperism causes outrelief. Also, Governor Pete Wilson’s theory
may have some plausibility for 19th century England if not 20th
century California: unions that provide generous outrelief
attract paupers from elsewhere. 7

7 According to (Stigler 1986, 356-7), Pigou criticized Yule
for ignoring "the non-quantitative facts of the situation.... It
is well known that, during recent years, those unions in which
out-relief has been restricted have, on the whole, enjoyed a
general administration much superior to that of other unions."

Stigler responds that "Pigou’s ad hoc speculation ... could
not, of course, be disproved from the data Yule used." In
effect, this allows Yule to defend himself by pleading ignorance.
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Yule must have been aware of these problems. After
allocating the changes in pauperism to their various causes
(including the residual), he withdraws all causal claims with one
deft sentence:

Strictly, for "due to" read "associated with." [footnote 25,
p. 270]

Yule’s paper is quite modern in spirit, with two exceptions: he
did not rely on statistical significance, and he did not use a
graph. Figure 1 brings him up to date.

Figure 1. Yule’s model for pauperism. The figure represents
equation (1) in graphical form. The asterisks denote a high
degree of statistical significance.

Out∆

******

Pop

Paup∆

∆ Old∆

Notes: To determine the asterisks, I recomputed Yule’s regression for the
metropolitan unions over the period 1871-81, using data in his Table XIX. I
replicated his coefficients, as shown in the display, although roundoff error is
quite large:

∆Paup = 12.884 + 0.752× ∆Out - 0.311× ∆Pop + 0.056× ∆Old + residual.
10.367 0.135 0.067 0.223

1.24 5.57 -4.65 0.25

Under the coefficients are standard errors (SEs) and t -statistics. The SE
indicates the likely size of the difference between an estimated coefficient and
its true value. The t -statistic is the ratio of an estimate to its SE.
Generally, a t -statistic above 2 or 3 in absolute value indicates that the
corresponding parameter is unlikely to be truly 0. The parameters are features
of the model, and the SEs are computed on the basis of the stochastic assumptions
in the model; for details, see the appendix. (Of course, Yule’s model is open to
serious question.) In Figure 1, the explanatory variables are correlated; such
correlations are often signaled by curved, double-headed arrows; error terms are
not shown either .
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3. Regression estimates and conditional expectations

In the regression model (2), Y is the dependent variable,
like pauperism; X represents the explanatory variables, like the
outrelief ratio, population, and age structure. If all goes
well, the regression equation will estimate the "conditional
expectation" of Y given X = x, that is, the average value of Y
corresponding to given values for the explanatory variables.

To clarify the definitions, consider two procedures:

Procedure #1 . Select subjects with X = x; look at the
average of their Y’s.

Procedure #2 . Intervene and set X = x for some subjects;
look at the average of their Y’s.

These procedures are quite different. The first involves the
data set as you find it. The second involves an intervention.

Regression does seem to let you move from selection to
intervention; that is why the technique is so popular. However,
regression approximates the selection procedure, rather than
intervention. Nor does the statistical analysis prove that the
two procedures give the same results: how could it? Instead,
causal inferences are made by assuming that selection tells you
what would happen if you were to intervene.

The phrase " X is exogenous" is often taken to mean that
selecting on X will produce the same results as intervening to
set the value of X-- the basic assumption in many analyses.
Exogeneity also has weaker meanings, to be taken up later. The
ambiguity is unfortunate, because analysts may assume exogeneity
in a weak sense, and proceed as if they had established something
more. It is only exogeneity in the strong sense defined above
that enables you to predict the results of interventions from
non-experimental data.

The distinction between selection and intervention is
acknowledged even by the modelers:

Formally speaking, probabilistic analysis is indeed
sensitive only to covariations, so it can never distinguish
genuine causal dependencies from spurious correlations....
(Pearl 1988, 396)
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Such admissions-- like Yule’s footnote 25-- are fatal to the
enterprise. Of course, Pearl does not give up. For instance, he
goes on to say that experiments just provide the opportunity to
observe yet more correlations, a move he attributes to (Simon
1980).

Figure 2 is Pearl’s. On the left, it seems that X and Z
cause Y; manipulating X or Z will change Y. However, if only we
had measured the variables U and V, we might have seen that they
were the joint causes of X, Y and Z, as in the right hand panel.
If so, manipulating X and Z will not change Y at all. No amount
of statistical analysis on the observables-- on X, Y and Z-- can
tell us which panel expresses the right theory. Indeed, matters
can be arranged so that both theories lead to the same joint
distribution for the observables.

Figure 2. After Judea Pearl (1988, 397). Causation cannot be
inferred from association by using causal models.

X Z

(b)(a)

X Z

Y Y

U V

Notes: In panel (a), X and Z are assumed to be independent. In
panel (b), U and V are assumed to be independent; it may be shown
in consequence that X and Z are independent. Also see (Duncan
1975, 113-27).
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4. Two ideas of conditional probabilities

The distinction between the two ideas of conditioning--
selecting subjects with X = x, or intervening to set X = x--
seems fundamental. A concrete example may help, and conditional
probabilities are easier to deal with than conditional
expectations.

Many studies have demonstrated an association between
cervical cancer and exposure to two sexually transmitted
diseases-- herpes and chlamydia. Suppose we had data as shown in
Table 1. The incidence rate of cervical cancer is 200 per
100,000 for women exposed to herpes and chlamydia (top left); 116
per 100,000 for women exposed to herpes but not chlamydia; and
130 per 100,000 for those exposed to herpes, the two exposure
categories for chlamydia being combined. Other cells may be read
in a similar way.

Table 1. Rate of cervical cancer cases per 100,000 women,
by exposure to chlamydia and herpes. Data are hypothetical.

Chlamydia
Marginal

Yes No

Yes 200 116 130

Herpes

No 180 80 87

Marginal 190 90 100
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With sample data, there is a role for technical statistics
in estimation and testing-- for instance to see if the rates
within a row are constant across columns. However, the real
question is not association but causation. Does herpes cause
cervical cancer? what about chlamydia? Biotechnology might find
a way to eliminate Herpes simplex as well as Chlamydia
trachomatis . That would be a great relief, but would it reduce
the incidence rate of cervical cancer?

To consider the issue of causality more directly, suppose
that we actually know the rates for the population of interest,
as shown in Table 1. Statistical testing must now fade into the
background. The overall incidence rate is 100 cervical cancers
per 100,000 women (Table 1, bottom right); among women exposed
neither to herpes nor to chlamydia, the rate is lower-- 80 per
100,000. If cervical cancer is caused by herpes and chlamydia,
eliminating the microorganisms responsible for those diseases
should reduce the incidence rate of cervical cancer from 100 to
80 per 100,000. On the other hand, if the relationship is not
causal, eliminating those microorganisms will have little effect
on the incidence rate of the cancer.

To be more explicit, 80/100,000 has been found by selecting
women who are exposed to neither herpes nor chlamydia, and
computing the incidence rate of cervical cancer for that group:
one interpretation of conditional probability. If we intervene
and eliminate the two diseases, we want to know the rate after
the intervention: that is another interpretation. The two
interpretations are different, because the underlying procedures
are different. Statistical analysis of the numbers in the table,
however refined or complex, cannot prove that a hypothetical
intervention will give the same results as selection. This may
seem obvious, even banal; but if you grant the point, the causal
modeling game is largely over.

What is the situation for Table 1? The story is far from
certain. Current epidemiological opinion favors the idea that
cervical cancer is caused by certain strains of human papilloma
virus (HPV); herpes and chlamydia have no etiologic role, but
serve only as markers for exposure to HPV. If that opinion is
correct, wiping out herpes and chlamydia will have no impact on
rates of cervical cancer.
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Due in part to the rarity of cervical cancer, cohort studies
do not seem to be available. (The numbers in Table 1, although
hypothetical, are not unreasonable.) My point is even stronger
for the real studies of the association between cervical cancer
and herpes or chlamydia. Problems created by incomplete data
cannot simplify the task of inferring causation from
association. 8

5. Another regression example

Rindfuss et al. (1980) propose a model to explain the
process by which a woman decides how much education to get, and
when to have her first child. The model illustrates many
features of contemporary technique. 9 Before we take up the
model, let the authors say what they were trying to do:

The interplay between education and fertility has a
significant influence on the roles women occupy, when in
their life cycle they occupy these roles, and the length of
time spent in these roles.... This paper explores the
theoretical linkages between education and fertility.... It
is found that the reciprocal relationship between education
and age at first birth is dominated by the effect from
education to age at first birth with only a trivial effect
in the other direction. [Abstract]

No factor has a greater impact on the roles women occupy
than maternity. Whether a woman becomes a mother, the age
at which she does so, and the timing and number of
subsequent births set the conditions under which other roles
are assumed.... Education is another prime factor
conditioning female roles. [p. 431, footnote omitted]

8 For a discussion of the epidemiology, see (Cairns 1978,
Peto and zur Hausen 1986, Sherman et al. 1991, Hakama et al.
1993).

9 I use this example because it is discussed by SGS pp.
139-40; also see CG pp. 14-15.
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The overall relationship between education and fertility has
its roots at some unspecified point in adolescence, or
perhaps even earlier. At this point aspirations for
educational attainment as a goal in itself and for adult
roles that have implications for educational attainment
first emerge. The desire for education as a measure of
status and ability in academic work may encourage women to
select occupational goals that require a high level of
educational attainment. Conversely, particular occupational
or role aspirations may set standards of education that must
be achieved. The obverse is true for those with either low
educational or occupational goals. Also, occupational and
educational aspirations are affected by a number of prior
factors, such as mother’s education, father’s education,
family income, intellectual ability, prior educational
experience, race, and number of siblings. [p. 432, citations
omitted]

The model used by Rindfuss et al. (1980) is shown in
Figure 3. The diagram corresponds to two linear equations in two
unknowns, ED and AGE (variables are defined in Table 2):

(3) ED = a × AGE + A,

(4) AGE = a ′ × ED + A ′ .

According to the model, a women chooses her educational level and
age at first birth as if by solving these two equations for the
two unknowns.
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Figure 3. The model in diagram form (Rindfuss et al. 1980; SGS
p. 140; CG p. 15). Variables are defined in Table 2 below.
Explanatory variables (DADSOCC, RACE, etc.) are correlated; error
terms are not shown in the diagram.

AGE

ED

DADSOCC

RACE

NOSIB

FARM

REGN

ADOLF

YCIG

FEC

REL

The coefficients a and a ′ are "social constants," to be
estimated from the data. The terms A and A ′ take background
factors into account:

(5) A = A0 + b × DADSOCC +c1 × RACE + ... + c7 × YCIG
+ random error drawn from a box,

(6) A ′ = A0 ′ + b ′ × FEC + c1 ′ × RACE + ... + c7 ′ × YCIG
+ another random error drawn from a box.

Again, the parameters A0, b, c1, ... are social constants to be
estimated from the data. The random errors are assumed to have
mean 0, to be statistically independent from woman to woman, and
to be identically distributed. Correlations across equations (5)
and (6) are permitted.
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Equations (3-6) are not quite regression equations, due to
the simultaneity of (3) and (4); fitting by OLS (ordinary least
squares) would create "simultaneity bias." Thus, Rindfuss et al.
use an estimation procedure called "two-stage least squares." 10

FEC does not come into equation (5), nor DADSOCC into equation
(6). Graphically, there is no arrow from DADSOCC to AGE in
Figure 3; likewise, there is no arrow from FEC to ED. These
behavioral assumptions are critical to the statistical
enterprise. Without them, or some similar assumptions, two-stage
least squares could not be used. Technically, the system would
not be "identifiable" (section 11.4).

The main empirical finding: The estimated coefficient of
AGE in the first equation is not "statistically significant,"
i.e., the coefficient a in (3) could be zero. The sort of woman
who drops out of school to have a child would drop out anyway.

Table 2. Variables in the model (Rindfuss et al. 1980).

The endogenous variables

ED Respondent’s education
(Years of schooling completed at first marriage)

AGE Respondent’s age at first birth

The exogenous variables

DADSOCC Respondent’s father’s occupation
RACE Race of respondent (Black=1, other=0)
NOSIB Respondent’s number of siblings
FARM Farm background (coded 1 if respondent grew up

on a farm, else 0)
REGN Region where respondent grew up (South=1, other=0)
ADOLF Broken family (coded 0 if both parents present at

age 14, else 1)
REL Religion (Catholic=1, other=0)
YCIG Smoking (coded 1 if respondent smoked before age 16,

else coded 0)
FEC Fecundability (coded 1 if respondent had a

miscarriage before first birth; else coded 0)

Notes: The data are from a probability sample of 1,766 women 35-44 years of age
residing in the continental United States; the sample was restricted to ever-
married women with at least one child. DADSOCC was measured on Duncan’s scale,
combining information on education and income; missing values were imputed at the
overall mean. SGS (p. 139) give the wrong definitions for NOSIB and ADOLF.

10 See, e.g., (Maddala 1992); for discussion, see (Daggett
and Freedman 1985).
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If looked at coldly, the argument may seem implausible. A
critique can be given along the following lines.

(i) Statistical assumptions . Just why are the errors independent
and identically distributed across the women? Independence may
be reasonable, but heterogeneity is more plausible then
homogeneity.

(ii) The assumption of constant coefficients . Rindfuss et al.
are assuming that the same parameters apply to all women alike,
from poor blacks in the cities of the Northeast to rich whites in
the suburbs of the West. Why?

(iii) Omitted variables. Surely, important variables have been
omitted from the model, including two that were identified by
Rindfuss et al. themselves-- aspirations and ability. Malthus
thought that wealth was an important factor. Social class
matters, and DADSOCC measures only one of its aspects. 11

(iv) What about the "no arrow" assumptions, from DADSOCC to AGE
and FEC to ED?

(v) Are FEC and DADSOCC exogenous?

(vi) Are the equations "structural"?

Questions (iv-vi) will be discussed in the next section, as will
the idea of "structural" equations.

11 The solution to the "omitted variable" problem may seem
easy-- just throw some more variables into the model. The
difficulties are explored in (Clogg and Haritou 1994). Also see
(Freedman 1983).
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5.1 A thought experiment

Figure 4. A simpler version of the model.

AGE

EDDADSOCC

FEC

***

A simpler version of the model restricts attention to a more
homogenous group of women, where the only relevant background
factors are DADSOCC and FEC. To make causal inferences from the
data using the model, we need to believe that the arrows are as
shown in Figure 4, that DADSOCC and FEC are exogenous, and that
the equations are "structural." The following thought experiment
may help to define the last term, and the empirical commitments
behind the words. 12

The gedanken experiment involves two groups of women. In
both groups, fathers are randomized to jobs, and some of the
daughters are chosen at random to have a miscarriage before their
first child. (The statistical terminology of randomization is
dry; the gedanken experimentalist intervenes, for instance, to
make the fathers do one job rather than another: professors are
caused to work as plumbers, and taxi drivers are installed as
hospital anesthetists.)

Group I. Daughters are randomized to the various levels of
ED, and AGE is observed as the response. (The gedanken
experimentalist strikes again, forcing some women stay in
school longer than they wish, while preventing others from
continuing their education.)

Group II . Daughters are randomized to the various levels of
AGE, and ED is observed as the response. (More gedanken
intervention is needed.)

12 Also see (Pearl 1994ab).
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The statistical model can now be translated. For the women in
Group I, AGE should not depend on DADSOCC-- the "no arrow"
assumption; however, AGE should depend linearly on ED. For the
women in Group II, ED should not depend on FEC-- the other "no
arrow" assumption; however, ED should depend linearly on DADSOCC.
Rindfuss et al.’s discovery is that ED would not depend on AGE.

There is one final assumption: the equations and parameters
that describe the responses of the women in the experiment must
also describe the natural situation. That is what "structural"
means. For instance, a woman who freely chooses her educational
level and her time to bear children does so by using the same
equations as a woman made to give birth at a certain age. In
short, with respect to the matters at issue, life in Des Moines
proceeds more or less along the same lines as life in the Gulag.

The thought experiment provides the intellectual foundation
for the model, by articulating the background assumptions. These
assumptions have not been subjected-- cannot be subjected-- to
direct empirical proof. Nor can assumptions be validated by
appealing to thought experiments that are almost unthinkable. Do
the modelers have some other method in reserve? If the
assumptions remain unvalidated, what is the logical status of
their implications?
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5.2 Exogeneity

Identifying the exogenous variables is a major problem. For
example, you can obtain results quite different from those of
Rindfuss et al., by using variables other than DADSOCC and FEC as
"instruments." 13

Rindfuss et al. respond that estimates made by

instrumental variables... require strong theoretical
assumptions... and can give quite different results when
alternative assumptions are made... it is usually difficult
to argue that behavioral variables are truly exogenous and
that they affect only one of the endogenous variables but
not the other. (Rindfuss et al. 1984, 981-82).

In short, results can depend quite strongly on assumptions of
exogeneity, and there is no good way to justify one set of
assumptions rather than another. Also see (Bartels 1991), who
comments on the impact of exogeneity assumptions, and the
difficulty of verification.

6. Automated searches for causality

SGS (Spirtes, Glymour, and Scheines 1992) have computerized
algorithms that search for path models. Using the algorithms,
SGS claim to make rigorous inferences of causation from
association. Their theory is summarized in (Glymour 1993), cited
as CG. For present purposes, a "path model" is a recursive
system of regression equations, in which the dependent variables

13 See (Hofferth and Moore 1979, Moore and Hofferth 1980).
An "instrument" is an exogenous variable, used as part of the
two-stage least squares estimation procedure. Some investigators
may draw a terminological distinction: an "instrument" is
exogenous, but does not appear as an explanatory variable in the
equation being estimated. For purposes of estimation, exogenous
variables are assumed to be independent of error terms; this does
not suffice for causal inference (section 11). Even the
independence assumption is not to be made lightly (Clogg and
Haritou 1994).
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from some equations are used as explanatory variables in later
equations. 14

The basic idea in path models is this: putative causes
combine with parameters and random errors by multiplication and
addition in order to produce their effects. I have discussed
such models elsewhere, and do not believe they offer much help in
deducing causation from association, because there is little
evidence to support the basic assumptions (Freedman 1987). To
pursue the discussion here, a slightly more explicit definition
of the models may be in order.

Definition . A "path model" starts with variables at "level
0," which are exogenous in the minimal sense that they are not
explained within the model. Variables "at level 1" are built up
as linear combinations of level 0 variables, plus independent
random errors. More generally, variables "at level k" are built
up as linear combinations of variables at previous levels; again,
there are additive, independent random errors. Variables at
level 1, level 2, ... are "endogenous," in the sense that they
are explained within the system. The path model may be presented
as a "path diagram," like Figure 1, or Figure 5 below. Nodes
represent variables in the model; if there are arrows from X,
Y,... to Z, then X, Y,... are explanatory variables in the
regression equation for Z. Nodes are often called "vertices,"
and the diagrams are referred to as "graphs" or "causal
graphs." 15

14 The model used by Rindfuss et al. would not fall into
this category, if ED and AGE really influenced each other. The
SGS framework excludes reciprocal causation, by assumption; so do
path models, as I define them. However, some authors extend the
definition of path models to include simultaneous equation models
for reciprocal causation.

15 SGS seem to make the strong -- and quite unusual--
assumption that exogenous variables are independent of each
other. That may be part of the reason why their algorithms
estimate such peculiar models in Figures 5 and 6 below. There is
another, even more esoteric, point. To estimate an equation, its
error term need only be assumed independent of the explanatory
variables. If so, error terms from different equations may be
correlated; then standard procedures for computing the
correlations among the variables will not apply (Freedman 1987,
112-14; Seneta 1987, 199). SGS seem to interpret correlated
errors as indicating the presence of "latent variables." Such
variables will be mentioned in notes to Figures 5 and 6, below.
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The path model may represent mere association-- conditional
dependence and independence relations. Or the model may
represent causation. I will take that up later. For now,
however, either interpretation suffices. Suppose the graph is
"sparse"-- each equation in the model involves relatively few
variables. Suppose too there are no troublesome algebraic
identities among the regression coefficients; in SGS terminology,
the distribution is "faithful" to its graph (SGS p. 35; CG p. 9;
and see section 11.2 below). You have a sample-- many
independent realizations of variables X, Y, Z ,.... You are
willing to assume the distribution conforms to a path model, but
do not know which model. You do not even know which variables
are at level 0, which are at level 1, and so forth.

SGS claim their algorithms are likely to find the underlying
path model, or a rather similar model, and in short order. Their
most convincing evidence is based on simulation experiments,
where the computer generates data from a path model and the SGS
algorithms try to infer the model from the data (SGS pp. 145ff,
152ff, 250ff, 320ff, 332ff); in these experiments, the algorithms
do very well. Roughly speaking, the SGS algorithms are variants
of "best subsets" regression, the search being over graphs rather
than subsets. The data come into the SGS algorithms only through
the covariance structure. The rest of the apparatus-- the
diagrams, the Markov property, faithfulness, etc.-- consists of
assumptions.

SGS seem to assert that their algorithms determine
causality, as a matter of mathematics. Such assertions are not
defensible. In the SGS formalism, causation is obtained not by
mathematical proof but by mathematical assumption. If you assume
that the arrows in the underlying path diagram represent causes,
then the arrows found by the algorithms represent causes. If you
assume that the underlying arrows represent mere associations,
then the arrows found by the algorithms represent associations.
Causation has to do with empirical reality, not with mathematical
proofs based on axioms. The issue is not one of theorems, but of
the connection between theorems and reality.
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The SGS algorithms, like many earlier statistical procedures
(factor analysis, LISREL, etc.), proceed by analyzing the
correlation matrix of a set of variables. I will call such
methods "correlational." Sections 7-10 consider applications of
the SGS algorithms to real examples. Sections 11-12 try to
explain the key ideas in the SGS formalism, and indicate by
mathematical example some of the intrinsic limitations. Before
proceeding, however, I discuss the SGS statement of assumptions.

6.1 The SGS statement of assumptions

SGS discuss the role of assumptions in their theory several
times (pp. 53-69, pp. 75-81, pp. 324-5, p. 351). However, the
clearest statement can be found when SGS are trying to discredit
the evidence that smoking causes lung cancer:

effects **** cannot be predicted from **** sample
conditional probabilities. [p. 302]

Readers may consult the original for context, to see whether the
omitted material affects the meaning. The advantage of the quote
is clarity. If the statement is generally applicable, then SGS--
like Yule and Pearl before them-- have disavowed the ability to
infer causation from association.
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7. The SGS examples

SGS share my pessimistic views about regression. They
claim, however, that their algorithms will succeed where
regression has failed:

In the absence of very strong prior causal knowledge,
multiple regression should not be used to select the
variables that influence an outcome or criterion variable in
data from uncontrolled studies. So far as we can tell, the
popular automatic regression search procedures [like
stepwise regression] should not be used at all in contexts
where causal inferences are at stake. Such contexts require
improved versions of algorithms like those described here to
select those variables whose influence on an outcome can be
reliably estimated by regression. In applications, the
power of the specification searches against reasonable
alternative explanations of the data is easy to determine by
simulation.... [p. 257]

At first reading, SGS seems to be filled with real examples
showing the successful application of their algorithms. That is
an illusion. Many of the examples are based on simulation, and I
set those aside. 16 The real examples are mostly to be found on
pp. 132-52 and 243-256. 17

16 Simulations tell us how well the SGS algorithms do if
the underlying statistical assumptions hold good; the assumptions
are built into the computer code that generates the simulated
data. When applying statistical algorithms to real data, a
critical question is whether those assumptions hold. The
simulations do not address such questions.

17 The parallel material in CG is on pp. 13-16 and 21-23.
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The main examples given in SGS are path models. But these
cannot withstand scrutiny-- section 5 above, sections 8-9 below.
One exception is the stratification model of Blau and Duncan
(1964). SGS (pp. 142-5) and CG (pp. 21-22) seem to be quite
critical of this model; their current position is almost
diametrically opposite to the one in (Glymour et al. 1987, 33-9).
Like SGS, I do not believe that the Blau-Duncan regressions are a
satisfactory causal model. On the other hand, as descriptions of
the data, the equations can tell us something important about our
society (Freedman 1987, 122, 220). The discussion in SGS adds
little to our understanding either of the model or of
stratification.

SGS appear to use the health effects of smoking as a running
example to illustrate their theory. 18 Again, there is an
illusion. The causal diagrams are all hypotheticals, no contact
is made with data, and no substantive conclusions are drawn. If
the diagrams were proposed as real descriptions of causal
mechanisms, they would be open to devastating criticism.

What about the substantive question: does smoking cause
lung cancer, heart disease, and many other illnesses? SGS appear
not to believe the epidemiological evidence. When they actually
get down to arguing their case, they use a rather old-fashioned
method-- a literature review with arguments in ordinary English
(pp. 291-302). Causal models and search algorithms have
disappeared.

I approve of the method if not the implementation: the
summary is wrong in some places and tendentious in others.
However, the review does show the complexity of the issues. To
make judgments about causation, you need to consider death
certificate data, necropsy data, case control and cohort studies,
twin studies, dose response curves, as well as animal experiments
and human experiments. The force of the epidemiological
evidence-- and the SGS critique-- depends on the complex
interplay among these various studies and data sets.

18 See, e.g., SGS p. 18 and pp. 216-37; also see CG pp. 19-
20 and 30-31.
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In the end, SGS and CG do not really make bottom-line
judgments on the health effects of smoking, at least so far as I
can see. Their principal conclusion is methodological: nobody
understood the issues.

Neither side understood what uncontrolled studies could and
could not determine about causal relations and the effects
of interventions. The statisticians pretended to an
understanding of causality and correlation they did not
have; the epidemiologists resorted to informal and often
irrelevant criteria, appeals to plausibility, and in the
worst case to ad hominem .... While the statisticians didn’t
get the connections between causality and probability right,
the .... ’epidemiological criteria for causality’ were an
intellectual disgrace, and the level of argument ... was
sometimes more worthy of literary critics than scientists.
[pp. 301-2]

Part of a sentence in SGS (p. 4) does seem to grant one of the
major claims made by the epidemiologists, "smoking does cause
lung cancer." But that only complicates the puzzle. If you
don’t believe the evidence, why accept the claim?

Despite SGS, the epidemiologists did have a good
understanding of the issues, and made a strong case against
smoking. The arguments were imperfect, and some reasonable
doubts may remain. But the data, taken all in all, are
compelling. The epidemiological literature on smoking is far
stronger than anything I have seen in the social sciences. For a
survey of the evidence, see (Cornfield et al. 1959); this paper
is still worth reading. More recent data are reviewed in
(International Agency for Research on Cancer 1986).

SGS elected not to use their analytical machinery on the
smoking data-- a remarkable omission. When applied to the
examples that SGS actually chose, the algorithms produce one
small disaster after another, as will now be seen. In sum, SGS
claim to have developed techniques for generating causal models;
but they do not have any success stories.

27



8. Using the SGS search procedure

The SGS search procedures are embodied in a computer program
called TETRAD. Version 2.1 of this program was kindly provided
by Richard Scheines and Peter Spirtes. The BUILD module is the
part of TETRAD used to discover path models with no latent
variables. I ran BUILD on two examples-- Rindfuss et al. and
AFQT (to be discussed in section 9).

8.1 Rindfuss et al.

To explain AGE (age at first birth) in the Rindfuss et al.
example, the SGS algorithms select the variables shown in
Table 3. Regression estimates for the coefficients, based on
summary data in SGS, are reported in the first three columns of
the table. The coefficients for ADOLF (the indicator for women
from broken homes) and YCIG (an indicator for smoking by age 16)
have positive signs. That is paradoxical: women from broken
homes and women who smoke should be having children earlier, not
later. 19 The signs should be negative, not positive. SGS do
not comment on this issue.

Rindfuss et al. (1980) give standard deviations and
correlations for their data; SGS (p. 139) used these statistics
to compute a covariance matrix, but reversed some of the signs.
The last three columns of Table 3 report regression estimates
computed from the correct covariances. The problem with YCIG
disappears, but the sign for ADOLF stays positive. Anyone can
make a mistake entering data; ignoring paradoxical signs in a
causal model is quite another matter.

19 Smoking, broken homes, and early childbearing seem to be
correlates of social disadvantage, and indicators of personality
traits. DADSOCC and RACE are quite imperfect controls for family
background; therefore, YCIG and ADOLF are likely to pick up
effects of background, as well as effects of omitted personality
variables. See note (iv) to Table 3. This sort of bias is
discussed in section 12.2 below. Also see Clogg and Haritou
(1994).
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Table 3. The SGS model for age at first birth, computed using
the SGS covariance matrix or the Rindfuss et al. covariance
matrix. (Intercepts are not reported; OLS estimates.)

SGS covariance Rindfuss et al. covariance

R2 = 0.27 R 2 = 0.24

Estimate SE t Estimate SE t

RACE -1.66 .30 -5.50 -1.66 .30 -5.46
REGN -0.56 .19 -3.01 -0.63 .19 -3.35
ADOLF 1.89 .22 8.60 2.01 .22 8.98
YCIG 2.14 .25 8.63 -0.89 .25 -3.53
FEC 2.72 .28 9.70 2.77 .28 9.72
ED 0.67 .04 18.00 0.60 .04 15.72

Notes: (i) The first column in Table 3 shows parameter estimates. The second
shows standard errors, or SEs, which indicate the likely size of the differences
between the estimates and the true parameter values. The t -statistics in the
third column are the ratios of estimates to SEs. Generally, a t -statistic above
2 or 3 in absolute value indicates that the corresponding parameter is unlikely
to be truly 0. For details, see the appendix.

(ii) The parameters are features of the model, and the SEs are computed using the
model. If you do not believe in the existence of the parameters apart from the
data, or do not accept the statistical assumptions in the model, the SEs and t -
statistics are likely to be meaningless. In any case, performing multiple
tests-- as in a search algorithm-- complicates the interpretation of the t -
statistics (Freedman 1983; CG p.45).

(iii) R 2 is generally interpretable as a descriptive statistic, whether or not
the assumptions of the model hold true. An R 2 of 0.27 indicates that about 27%
of the variance in AGE has been explained; that isn’t much, and models in the
social science literature often have even less explanatory power. For a critical
discussion of R 2, see (Freedman and Lane 1981, 78-81).

(iv) According to current epidemiological opinion, smoking does have some
biological effect, delaying conception by several weeks. However, the women who
choose to smoke are different from the non-smokers, and have their first child
almost a year earlier. This effect remains even after controlling for the
measured background factors in the regression: the coefficient of YCIG is -0.89
years.

SGS report only a graphical version of their model. They
say,

Given the prior information that ED and AGE are not causes
of the other variables, the PC algorithm (using the .05
significance level for tests) directly finds the model [in
Figure 5(a)] where connections among the regressors are not
pictured. (SGS p. 139; CG p.15)
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However, connections among regressors can be of interest.
Although TETRAD is supposed to discover the causal ordering of
explanatory variables, it produces the very strange model shown
in Figure 5(b). For example, the model says that race and
religion cause region of residence. Comments on the sociology
may be out of place, but consider the statistics. The equation
is

(7) REGN = a + b × RACE + c × REL + ε.

REGN is a dummy variable, coded 1 for respondents who grew up in
the South, 0 for others; RACE is 1 for black respondents and 0
for others; REL is 1 for Catholics, 0 for others; ε is normally
distributed. In consequence, this equation forces impossible
values on REGN: the left hand side is 0 or 1, the right hand
side varies from - ∞ to + ∞. Now R2 is only 0.16, so ε contributes
most of the variance: equation (7) can hardly be defended as an
approximation. Having dummy variables in the middle of path
diagrams is a blunder. (FARM creates a similar problem; so does
NOSIB, although less extreme.) In short, the SGS algorithms have
produced a model that fails the most basic test-- internal
consistency.
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Figure 5. The left hand panel shows the model reported by SGS.
The right hand panel also shows connections among the regressors,
as determined by the SGS search program TETRAD.

(a) (b)
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Notes: BUILD indicates that latent variables are present, i.e., errors are
correlated across equations. BUILD asks whether it should assume "causal
sufficiency"; without this assumption (SGS p. 45; CG p. 4), the program output is
uninformative. Therefore, I told BUILD to make the assumption; I believe that is
what SGS did for the Rindfuss example. Also see (Spirtes et al. 1993, 13-15). I
told BUILD that ED and AGE could not cause the remaining variables, following
(SGS p. 139). However, SGS actually made the stronger assumption that (i) FEC,
ED and AGE could not cause YCIG, and (ii) FEC, ED, AGE and YCIG could not cause
the remaining variables. With the assumption of causal sufficiency, BUILD seems
to use the PC algorithm; without the assumption, the FCI algorithm comes into
play. Much of this information comes from Richard Scheines (personal
communication). Data are from (Rindfuss et al. 1980), not SGS; with the SGS
covariance matrix, FARM causes REGN and YCIG causes ADOLF.
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9. The Armed Forces Qualification Test

SGS discuss an example based on the Armed Forces
Qualification Test (AFQT). 20 The AFQT is a linear combination
with fixed weights of scores on certain subtests. Some of these
subtests, as well as subtests that are not part of the AFQT, are
listed in Table 4. The problem is to decide which subtests go
into the AFQT and which do not.

Table 4. Subtests analyzed by SGS.
Some go into the AFQT and some do not.

1. Numerical Operations NO
2. Word Knowledge WK
3. Arithmetical Reasoning AR
4. Mathematical Knowledge MK
5. Electronics Information EI
6. Mechanical Comprehension MC
7. General Science GS

The problem may be stated more algebraically, as follows:

(8) AFQT score = a1 × NO + a2 × WK + ... + a7 × GS
+ b1 × UN1 + ... + bn × UNn,

where UN1,..., UN n are unobservable. Some of the a’s are zero,
and the challenge is to figure out which ones.

We have data on 6,224 subjects, summarized as a covariance
matrix. SGS say:

a linear multiple regression of AFQT on the other seven
variables gives significant regression coefficients to all
seven and thus fails to distinguish the tests that are in
fact linear components of AFQT... Given the prior
information that AFQT is not a cause of any of the other
variables, the PC algorithm in TETRAD II correctly picks out
{AR, NO, WK} as the only ... variables that can be
components of AFQT.... (SGS pp. 243-4, also see CG p. 16)

20 SGS p. 243, also see CG p. 16. Institutional background
on the AFQT will be found in section 12.5.

32



Table 5. Regression of AFQT on all
the observable subtests.

Estimate SE t

NO 0.24 .022 10.8
WK 1.17 .029 40.5
AR 1.03 .028 36.4
MK -0.24 .028 -8.7
EI -0.03 .024 -1.3
MC 0.03 .024 1.3
GS -0.13 .029 -4.6

Note: Variables were centered at
their means.

To test the claims about regression, I ran AFQT on all the
observable subtests. As Table 5 shows, EI and MC are related to
AFQT only at the chance level. Moreover, MK and GS have negative
coefficients, but psychometric practice frowns on subtests that
are negatively related to overall test scores. It is a natural
conjecture that NO, WK and AR go into AFQT while the other four
subtests do not. Contrary to the claims of SGS, the AFQT can be
handled by ordinary statistical methods.

The AFQT problem is in some ways quite easy. By
definition, the "causes" or subtests combine linearly with the
parameters to produce the AFQT as an "effect." Joint normality
of test scores seems to follow from the procedures used to
construct the tests: consequently, scores on any one subtest can
be presented as a linear combination of other subtest scores,
with additive random errors. Thus, critical issues in most
empirical studies have disappeared. 21

21 On the other hand, unobserved variables may create
serious problems (section 12.4).
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9.1 TETRAD

According to SGS, given the prior information that AFQT does
not cause the other variables, TETRAD correctly picks out AR, NO,
and WK as the components of the AFQT. 22 Without that prior
information, however, TETRAD declares AFQT to be the cause of
these subtests, rather than the effect . With the prior
information, TETRAD produces the strange results shown in
Figure 6. 23 Now, for instance, the subtest NO may "cause" the
overall test score AFQT, but it can hardly cause the other
subtests AR or MK. Furthermore, there is a cycle in the figure:

MC→ AR → WK→ GS → MC.

In principle, such cycles were excluded by prior assumption, as
well they might be. Subtests should not cause themselves, even
indirectly. To sum up:

(i) ordinary least squares techniques pick out NO, AR, and
WK for the probable components of the AFQT, just as TETRAD
does;

(ii) TETRAD produces the curious model in Figure 6.

22 SGS p. 243, also see CG p. 16.

23 The program output is given in (Spirtes et al. 1993, 10-
11).

34



Figure 6. AFQT and its subtests arranged in causal order by the
SGS search program TETRAD.

GS

WK

AR

EIAFQT MK

MCNO

Notes. I believe SGS used BUILD, with the assumption of causal
sufficiency, on pp. 243-44 for the AFQT example. Also see
(Spirtes et al. 1993, 8-11). The program indicates there are
latent variables, i.e., correlations in the errors.
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10. Foreign investment and political oppression

As noted in section 7, SGS are quite pessimistic about
typical social-science applications of regression. While I agree
with the bottom line, their specific objections seem misplaced.
One example is enough to make the point. Timberlake and Williams
(1984) offer a regression model to explain political exclusion
(PO) in terms of foreign investment (FI), energy development (EN)
and civil liberties (CV). High values of PO correspond to
authoritarian regimes that exclude most citizens from political
participation; high values of CV indicate few civil liberties.
Data come from 72 countries. Correlations among the Timberlake-
Williams variables are shown in Table 6.

Table 6. The Timberlake and Williams data.
Correlation matrix for political oppression (PO),
foreign investment (FI), energy development (EN),
and civil liberties (CV). Source: SGS p. 249.

PO FI EN CV

PO 1.000 -.175 -.480 .868
FI -.175 1.000 .330 -.391
EN -.480 .330 1.000 -.430
CV .868 -.391 -.430 1.000

The equation proposed by Timberlake and Williams is

(9) PO = a + b × FI + c × EN + d × CV + error.

Empirical results are shown in the first three columns of
Table 7. The estimated coefficient of FI is significantly
positive, and is interpreted as measuring the effect of foreign
investment on political exclusion (Timberlake and Williams 1984,
143).
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Table 7. The Timberlake and Williams model. Political
exclusion (PO) is regressed on foreign investment (FI),
energy development (EN), and civil liberties (CV).
The first three columns show results for the observed
correlation matrix (Table 6). The last three columns
show what happens when r(PO,FI) is set to 0.

R2 = .81 R 2 = .93

Estimate SE t Estimate SE t

FI .23 .059 3.9 .44 .036 12
EN -.18 .060 -2.9 -.22 .037 -6
CV .88 .061 14.4 .95 .038 25

Note: The coefficients reported by SGS on p. 249 are not
standardized and therefore do not match the correlation
matrix. Coefficients in Table 7 are standardized, that is,
computed from variables standardized to have mean 0 and
variance 1.

SGS discuss this example (pp. 248-50), suggesting that
Timberlake and Williams have confused cause and effect. The
alternative causal sequence is not spelled out. Presumably, the
idea is that dictators ’cause’ foreign investment in the sense
that investors think dictatorial regimes offer greater stability,
etc.

The main step in the SGS statistical argument comes down to
this: the correlation of -.175 between political exclusion and
foreign investment is at the chance level. The calculation rides
on two assumptions: (i) the 72 countries in the data set are a
random sample from some much larger set of countries, and (ii)
the variables follow a multivariate normal distribution. These
time-honored but madcap assumptions are not stated explicitly by
SGS, let alone justified. (Of course, the assumptions behind the
statistics in Timberlake-Williams might seem equally antic.)
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However, for the sake of argument, let us grant SGS their
assumptions. On that basis, the standard error for the

correlation in question is about I change the1/ 72 ≈ .12.

suspect correlation coefficient from its observed value of -.175
to the new value of 0, a difference of about 1.5 SEs. I then
recompute the model (last three columns in Table 7). The results
are even better for Timberlake and Williams: the estimated
coefficients are bigger and more significant; the signs stay the
same; and R 2 moves closer to 1. 24

I will not defend the model any further. Measurement
problems are extreme, and the list of omitted variables very
long. SGS may well be right, that cause and effect have been
confused. But the demonstration is peculiar. The correlation
matrix cannot show that FI, EN and CV cause PO-- the fatal flaw
in the Timberlake-Williams model. (Of course, Timberlake and
Williams are not alone in this respect.) Nor can the matrix show
that FI, EN and CV do not cause PO-- the corresponding flaw in
SGS. Indeed, it is trivial to construct four variables labelled
FI, EN, CV and PO, such that FI, EN and CV do cause PO; but
sample correlation matrices will look rather like the one in
Table 6. This only sharpens the basic question. What do any of
these calculations tell us about the world outside the computer?

24 The new matrix is still positive definite, so it is a
legitimate correlation matrix. Section 12.1 discusses the
connection between the Timberlake-Williams model and the
faithfulness assumption. Also see (Cartwright 1989, 79-84).
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11. Some mathematical issues

Sections 11 and 12 address by mathematical example two
questions:

(i) To what extent can correlational methods recover an
underlying path diagram?

(ii) When can the arrows in the diagram be interpreted as
indicating causation, rather than conditional independence
and dependence?

The examples will indicate how SGS use the "faithfulness"
assumption to help them answer such questions. Issues of
identifiability and consistency will be discussed, and
methodological contributions in SGS will be delineated. Sections
11 and 12 are more technical than previous material; readers can
skip to section 13 without losing the thread of the argument.

The focus is on linear models. Suppose you have a
covariance matrix that describes certain variables. Assume these
variables are jointly normal, with mean 0; that avoids all
questions of linearity, etc., and all problems created by having
only finite amounts of data. However, the statistical procedures
I am considering-- like the SGS algorithms-- will operate on that
covariance matrix, and on nothing else. Such procedures may be
called "correlational."

Path models were defined in section 6. Briefly, you start
with variables at level 0; variables at level k are linear
combinations of variables at lower levels, plus independent
random errors. In a path diagram, nodes represent variables.
There is an arrow from X to Y if X is used as an explanatory
variable in the equation for Y.

Exogeneity is a critical concept. As indicated before, the
term is used in at least three senses. The weakest definition is
purely mechanical: exogenous variables are not explained within
the model, but are supplied to the model. Variables at level 0
in a path model are exogenous in this minimal sense. A more
restrictive definition: exogenous variables are statistically
independent of the error terms in the equations. The third idea
is the one that is relevant to causal inference: X is exogenous
if selecting subjects with X = x gives the same results as
intervening to set X = x.
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There are tests for exogeneity in the literature, as well as
model specification tests. However, these have limited relevance
to causal inference. For example, (Hausman 1978) assumes that
certain variables are known a priori to be exogenous, and then
tests whether other variables are exogenous; he interprets
exogeneity as orthogonality to disturbance terms. He also has a
test that detects correlation between errors from equations in a
path model. White (1980 and 1982) focuses on similar issues--
for instance, testing whether the variables have a jointly normal
distribution.

Another reference in the econometric literature is (Engle,
Hendry, and Richard 1983). These authors distinguish several
kinds of exogeneity; "strict" exogeneity means independence of
variables and error terms, but only "super" exogeneity permits
estimating the effects of interventions. Examples are given to
illustrate the definitions (Engle, Hendry, and Richard 1983,
287-94). There is further discussion in (Leamer 1985).
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11.1 The basic statistical problem

Suppose you have n random variables with a jointly normal
distribution; all the variables have mean 0, and you know the
covariance matrix, which is positive definite. You wish to
present this covariance matrix as a path model. In a sense,
nothing is easier. Simply order the variables, arbitrarily, as
X1, X2, ..., Xn. By successively applying regression, we can
find coefficients aij and error terms ε i , such that X 1, ε2, ...,
εn are all independent with mean 0, and equation (10) holds.

(10)

X2 a21 X1 ε2
X3 a31 X1 a32 X2 ε3

.

.

.

Xn an1 X1 ... an, n 1 Xn 1 εn

Then X1 is presented as exogenous and the "cause" of X2; next, X1
and X2 "cause" X3; and so forth. In short, there are many ways
to present a covariance matrix as a path diagram; few if any will
be relevant for causal inference. 25

25 For the construction in (10), simply choose a21 so
E{ X2 X1} = a21X1; choose a31 and a32 so E{ X3 X1, X2} = a31X1 + a32X2;
and so forth. For details, see the appendix below.

Since the ordering of the variables in (10) is arbitrary,
fitting such equations or drawing path diagrams cannot determine
which variables are causes and which are effects. In particular,
X1 may be exogenous in the sense that it is statistically
independent of disturbance terms; that by itself does not suffice
to estimate the results of manipulating X1, since we cannot tell
whether X1 is a cause or an effect.
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11.2 The faithfulness assumption

How can you single out one path diagram from the many that
correspond to a given covariance matrix? At this point, SGS seem
to use the "faithfulness" assumption; this assumption is also
used to handle confounding, as discussed in section 12.1 below.
Basically, a covariance matrix is faithful to a diagram provided
conditional dependencies and independencies are determined by the
presence or absence of arrows in the diagram, rather than
specific numerical values of parameters.

Figure 7. If two path diagrams have the same covariance matrix,
correlational methods cannot tell them apart; the faithfulness
assumption is made to rule out such problems. The lower case
letters on the arrows denote "path coefficients," that is,
standardized regression coefficients.

c d
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c ’d

Z

b

Z

’
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X
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X

W

Y
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By way of example, Figure 7 shows two path diagrams. On the
left, X causes W through the intervening variables Y and Z; on
the right, the flow of causality is reversed. 26 The lower case
letters on the arrows stand for "path coefficients," that is,
standardized regression coefficients. How could SGS distinguish
between the two theories in the figure? Their idea seems to be
as follows:

In the left hand diagram, Y and Z are conditionally
independent given X; on the right, however, Y and Z are
conditionally dependent given X.

Another contrast:

In the left hand diagram, Y and Z are conditionally
dependent given W; on the right, however, Y and Z are
conditionally independent given W.

Therefore, the pattern of conditional dependence and independence
identifies the diagram. (In both diagrams, X and W are
conditionally independent given Y and Z.)

This idea works for many path diagrams, but fails for
others. Indeed, the path coefficients can be chosen so the
pattern of conditional dependence and independence is the same in
the two diagrams. Even worse, both diagrams can give rise to the
same covariance matrix-- so correlational methods cannot tell
which is right. SGS make the "faithfulness assumption" in order
to rule out such indeterminacies. (The workings of the
assumption will be explained below.)

However, that only moves the difficulty to another place.
Faithfulness is hardly an empirical fact; it is an assumption
about unobservables, made to rule out situations that cannot be
handled by correlational methods. The SGS analytical program can
now be stated rather simply. If the arrows in a path diagram
represent causation not association, and if the path diagram can
be estimated from data, then SGS can indeed infer causation from
association.

26 In this section, I use "cause" in its ordinary (perhaps
undefinable) sense. However, the technical point -- about the
possibility of estimating path diagrams from covariance matrices
-- still holds if the arrows are interpreted as merely
representing association. "Causation" is then colorful shorthand
(perhaps too colorful) for a certain kind of covariation.
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The balance of section 11.2 provides technical backup;
readers can skip to section 11.3. The left hand panel in
Figure 7 is described by

(11) Y = aX + δ1, Z = bX + δ2, W = cY + dZ + δ3.

In this equation, X, δ1, δ2, δ3 are independent and normal, with
mean 0; X, Y, Z, W all have variance 1. The covariance matrix of
X, Y, Z, W can be computed from the four parameters a, b, c, d as
shown in (12).

X Y Z W

X 1 a b ac +bd
(12) Y a 1 ab c +abd

Z b ab 1 d+abc
W ac+bd c +abd d +abc 1

It is a little theorem, which follows by a tedious
calculation from (48) in the appendix below, that

(13) cov( X,W| Y,Z ) = 0.

This is an example of a conditional independence relation forced
by a graph; (13) holds whatever the path coefficients in Figure 7
may be.

The diagram on the left in Figure 7 is reversible provided

(14) cov( Y, Z| W) = 0.

By (48) below, equation (14) is equivalent to

(15) cov( Y, Z) = cov( Y, W) × cov( Z, W).

By (12), this means

(16) ab = ( c + abd)( d + abc ).

Rearranging (16) gives the quadratic equation

(17) cd ( ab) 2 (1 c 2 d 2) ab cd 0.
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One solution to (17) is

(18) ab 1 c 2 d 2 (1 c 2 d 2) 2 4c 2d 2

2cd
.

I chose a, c, d more or less at random, getting .1925, .2873
and .1245, respectively. 27 I computed b from (18), getting
.2063. This choice forces the conditional independence relation
(14), and violates the faithfulness assumption: conditional
independence comes from the parameter values, not the presence or
absence of arrows.

Given the values for the four parameters a, b, c, d , the
covariance matrix (12) can be evaluated as

(19)















1.0000 0.1925 0.2063 0.0810

0.1925 1.0000 0.0397 0.2922

0.2063 0.0397 1.0000 0.1359

0.0810 0.2922 0.1359 1.0000

The path coefficients in the right hand panel of Figure 7
are easily computed from (19):

the path coefficient from W to Y is c ′ = cov( Y,W) = .2922;
the path coefficient from W to Z is d ′ = cov( Z,W) = .1359;
the path coefficients from Y and Z to X are obtained by
multiple regression, as a ′ = .1846 and b ′ = .1990.

With these choices, faithfulness does not hold, and (19) can be
represented by either diagram in Figure 7. (For details on
multiple regression, see the appendix.) In effect, the
faithfulness assumption precludes certain algebraic identities
among the parameters, like (16). Since parameters are not
observable, the faithfulness assumption is not subject to direct
empirical tests based on finite amounts of data.

27 There was a bit of luck here, because some values for a,
c, d will not produce correlation matrices.
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11.3 Complete graphs

Even if the covariance matrix is faithful to a graph,
however, problems of indeterminacy remain-- particularly if the
graph is "complete" in the sense that every pair of vertices is
joined by an arrow. Figure 8 illustrates this indeterminacy.
The same covariance matrix (20) for the variables X, Y, Z is
represented either by the diagram in panel (a) or the one in
panel (b), where the flow of "causality" is reversed.

X Y Z

(20) X 1 .46 .50
Y .46 1 .42
Z .50 .42 1

Figure 8. Graphs (a) and (b) have the same covariance matrix.
Both are complete: there is an arrow from every variable to
every other variable. The numbers on the arrows are path
coefficients, that is, standardized regression coefficients.

Y

X Z

(a) (b)

ZX

.25

.50 .37

.42.33 .30

Y

For a second example of indeterminacy when the graph is
complete, consider four variables X, Y, Z, W with covariance
matrix Σ given by

(21) Σ















1 3/4 3/4 3/4

3/4 1 3/4 3/4

3/4 3/4 1 3/4

3/4 3/4 3/4 1
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Figure 9. Two complete path diagrams, and a factor analysis
model, all having the same covariance matrix.

(a)

W

X X

Y Z Y Z

(c)

U

Y Z WX

(b)

W

Figure 9 shows two complete path diagrams, both of which are
compatible with the given covariance matrix. In the left hand
panel, X is exogenous, and "causes" Y; then X and Y "cause" Z;
finally X, Y, Z "cause" W. In panel (b), the flow of "causality"
is reversed. The equations corresponding to the left hand panel
are given as (22); panel (b) is described in (23).

(22)

Y 3
4

X δ1

Z 3
7

X 3
7

Y δ2

W 3
10

X 3
10

Y 3
10

Z δ3

(23)

Z 3
4

W ε1

Y 3
7

Z 3
7

W ε2

X 3
10

Y 3
10

Z 3
10

W ε3
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The covariance matrix Σ is also compatible with the factor
analysis model (24), where the unobservable exogenous variable U
causes all four observables (right hand panel of Figure 9).

(24) X U ζ1, Y U ζ2, Z U ζ3, W U ζ4

In each system of equations (22-23-24), the error terms are
assumed to be independent and normally distributed with mean 0;
error terms are independent of the exogenous variable. As a
technical matter, the covariance matrix (20) is faithfully
represented by both graphs in Figure 8. Likewise, the covariance
matrix (21) is faithful to Figure 9(a) and to 9(b). Proofs may
be based on (48) below.

To sum up, if a covariance matrix is faithful to a complete
graph (with all pairs of vertices joined by arrows), it is
faithful to many such graphs. Then correlational methods cannot
tell the causes from the effects. SGS techniques work best when
the graph is sparse, that is, relatively few pairs of vertices
are joined by arrows (section 6).
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11.4 Identifiability and consistency

The focus continues to be on linear models. In statistical
terminology, models are "identifiable" when they make different
predictions about observables. For example, suppose you have two
models for your data. If, for all data sets,

P(data|model 1) = P(data|model 2),

there is an obvious problem-- the data cannot distinguish between
the models. If a path model is complete, or the faithfulness
assumption is not imposed, then the graph underlying a covariance
matrix is not identifiable; that is the message of sections
11.1-3. By way of illustration, the models in Figure 7 are
identifiable only if faithfulness holds.

However, even if we assume that a covariance matrix is
faithful to a graph that is not complete, there may be several
such graphs (SGS p. 89). For example, the following three graphs
can generate the same covariance matrix:

X → Y → Z X ← Y → Z X ← Y ← Z

Thus, SGS do not seem to have succeeded in defining a class of
graphs and covariance matrices for which identifiability holds
(SGS p. 194).

In statistical terminology, estimators are "consistent"
provided that, as the sample gets larger and larger, these
estimators come closer and closer to the population parameters.
If the parameters are not identifiable, however, consistency is
problematic.

SGS seem to claim that their algorithms will find all the
path diagrams compatible with a given covariance matrix.
However, the theorems suggest that the algorithms will at best
find one such graph. SGS also seem to claim that their
algorithms are consistent. However, without an identifiability
theory for linear models, they cannot really be talking about
consistency.

Statisticians do have the weaker notion of "Fisher
consistency," named after R. A. Fisher: when applied to data for
the whole population, an estimator should reproduce the
population parameters exactly. Theorems like 5.1 in SGS (p. 405)
seem to demonstrate the analog of Fisher consistency, rather than
anything stronger. Such theorems show that, given the population
covariance matrix, the algorithms will produce one graph
consistent with that matrix.

49



11.5 Methodological contributions

There is a connection between the theory of "Directed
Acyclic Graphs" (DAGs) and conditional independence of random
variables. (See Darroch et al. 1980, Kiiveri and Speed 1982,
Speed and Kiiveri 1986; Pearl 1986, Pearl 1988, Verma and Pearl
1990, Geiger 1990, Pearl and Verma 1991.) Much of this work is
reviewed in SGS and CG. However, the mathematics of nonlinear
causal diagrams seems to be irrelevant to the big question: how
do we infer causation from association?

Most the applications in SGS are linear, i.e., based on path
models. The "nonlinear causal diagrams" turn out to be
multinomial models for categorical data; examples are on pp. 147-
51. The issues about causation are quite similar to those for
linear models, although the technical details are different. The
real applications in CG all seem to involve linear models.

This section will focus on path models. To describe the
novelty in the SGS approach to estimation, suppose you have data
from a path model, and wish to estimate the model. Consider two
cases:

Case I . You know the classification of variables as to level:
that is, you know which variables are at level 0, which are at
level 1, and so forth.

Case II . You do not know the classification of variables as to
level.

In Case I, SGS have little to tell us about estimation (as
to confounding, see section 12.1). Some of their algorithms seem
to be equivalent to regression, others may be less efficient. In
Case II, SGS try to estimate the classification of variables as
well as the path coefficients. That is the methodological
contribution. To estimate the classification, SGS must impose
the faithfulness assumption (section 11.2). It is disappointing
that SGS do not pin down the sense in which their algorithms are
successful (section 11.4).
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12. More examples, and some theory

Section 12.1 explains how the faithfulness assumption and
conditional independence are supposed to eliminate confounding.
Section 12.2 discusses omitted variables. Sections 12.3-5
revisit two examples from a more mathematical perspective; the
idea is to show the limits of correlational methods.

12.1 Faithfulness, conditional independence, and confounding

The problems created by unobservable variables are well
known. As indicated above, SGS handle such problems by imposing
the faithfulness assumption. More specifically, the assumption
is used to rule out confounding. If confounding can be
eliminated, the goal is in sight -- association may soon be
converted into causation. This section, which is based on work
by Jamie Robins (personal communication), examines the logic in
more detail. Also see (Pearl and Verma 1991).

With some models, exact conditional independence forces a
choice:

either there is no confounding by unmeasured common causes,

or the faithfulness assumption is violated.

Near-independence is not good enough; associations may then be
entirely spurious. Thus, causal inferences made by the SGS
technique need exact conditional independence as well as the
faithfulness assumption.

This use of the faithfulness assumption has some theoretical
interest. However, in order to base empirical work on such
mathematical ideas, it would seem necessary to resolve the
following questions, which SGS have not addressed:

Can the basic models be validated?

Can exact conditional independence be demonstrated?

Given exact independence, why is exact cancellation of
confounded effects overwhelmingly less likely than the total
absence of such effects?
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As a practical matter, exact independence seems quite
unusual. However, the theory is worth understanding, and an
example will make the position clearer. Figure 10 shows a
relatively simple diagram where faithfulness and conditional
independence would eliminate confounding. The arrows denote
causation, not mere association. Variables X, Y, Z are
observable; U is unobservable. Such unobservables are also
called "confounders" or "unmeasured common causes." The joint
distribution is normal, and variables are standardized to have
mean 0 and variance 1.

Figure 10. The faithfulness assumption, conditional
independence, and confounding. Variables X, Y, Z are observable;
U is unobservable. Arrows represent causation, not just
association. The lower-case letters on the arrows denote path
coefficients. If a path coefficient vanishes, the corresponding
arrow must be deleted.

b

f

e

a

Z

d

X Y

U

U X Y Z

U 1
(25) X d 1

Y e de 1
Z f +ad+be a+bde+fd b +ade+fe 1
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The covariance matrix for all 4 variables is shown
in (25). 28 Of course, only the covariance matrix (26) of the
observables ( X,Y,Z ) can be estimated from the data. In
particular, de is determined from the observables, as cov( X, Y).

X Y Z

X 1
(26) Y de 1

Z a+bde+fd b +ade+fe 1

It may help to review the idea of faithfulness, in the
context of our example. Faithfulness is an assumption about
unobservables; more specifically, it is a constraint on the
relationship between the full covariance matrix (25) and the
graph in Figure 10. The assumption amounts to this:
independence relationships (conditional and unconditional) are
determined by the presence or absence of arrows in the diagram,
not specific parameter values.

In particular, if the covariance matrix (25) is faithful to
the diagram in Figure 10, you cannot set any of the path
coefficients to 0, except by deleting the corresponding arrow.
An arrow from X to Z, say, entails that X has some causal effect
on Z, no matter how small that effect may turn out to be.

I return to more conventional issues. In our example, the
parameter of interest is b, the causal effect of Y on Z. Due to
the unmeasured confounder U, a regression of Z on X and Y
produces a biased estimate of b. By a slightly tedious
calculation, the coefficient of Y in the regression equation is

(27) b + fe (1- d2)/(1- d2e2).

(For details on multiple regression, see the appendix.) The bias
in the regression estimate is the second term in (27). From a
slightly different perspective, cov( Y,Z ) in (26) measures the
total association between Y and Z. Part of this association is
real: b measures the causal effect of Y on Z. Alas, part of the
association is spurious: ade + fe represents the effects of the
confounder U.

28 Covariance matrices are symmetric; only the lower
triangular part is shown. Entries are assumed to be positive but
less than 1. The matrix is assumed to be positive definite.
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The goal is to separate the real part of the association
from the spurious part. The familiar obstacle: we have only
(26), not (25). And (26) does not suffice to separate
b + ade + fe into its components. But, SGS might say, suppose
that X and Z are conditionally independent given Y:

(28) cov( X,Z | Y) = 0.

By (48) below, this means

(29) cov( X,Z ) = cov( X,Y ) × cov( Y,Z ).

A bit of algebra based on (25) shows that (29) is equivalent to

(30) a(1 - d2e2) + df = de2f .

Although de is known and 0 < de < 1, there are many possible
ways to solve equation (30). At this point, SGS would invoke the
faithfulness assumption, concluding that

(31) a = 0 and f = 0.

The implication: we have to remove the arrow from X to Z, as
well as the arrow from U to Z.

Confounding has now been eliminated. On this basis,
cov( Y,Z ) = b; the whole of the association is real, and
regression produces an unbiased estimate for the causal effect of
Y on Z. At last, association has been converted into causation.
Of course, quite a lot of causality was built into Figure 10 from
the beginning-- by assumption.

Those were the implications of exact conditional
independence. On the other hand, suppose we have approximate
conditional independence: cov( X,Z | Y) = .00001. Now the
faithfulness assumption has no force. Given the covariances in
(26), we can match them by suitable choice of the other
parameters, even if a = b = 0. 29

29 This matching assumes, for instance, that any two of the
variables have positive covariance given the third. To avoid
violating the faithfulness assumption, if you set a and b to 0,
erase the corresponding arrows; if that is distasteful, set a and
b to small but positive values. The SGS logic would apply to a
wide variety of diagrams; however, an arrow from Y to X, no
matter how small the coefficient, spoils the show.
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With approximate conditional independence, observed
associations can be entirely spurious. Thus, even in the realm
of mathematics, faithfulness and conditional independence
preclude confounding only when the independence is exact. To
make the contrast sharper, let us assume faithfulness.

If cov( X,Z | Y) = 0, then the association between Y and Z is
purely causal; the effects of the unmeasured common cause U
do not confound the relationship between Y and Z.

If cov( X,Z | Y) = .00001, then confounding by unmeasured
common causes may account for all of the observed
association between Y and Z.

Apparently, converting association into causation is still quite
a dicey affair.

A similar problem must be considered when estimating path
models from data (section 11). Exact conditional independence,
together with the faithfulness assumption, often permits us to
identify the path diagram from the covariance matrix. However,
approximate conditional independence is not enough: then, the
covariance matrix will be faithful to a variety of complete
graphs.

A final example is the Timberlake-Williams model (section 10
above). This models explains political exclusion (PO) in terms
of foreign investment (FI), energy development (EN) and civil
liberties (CV); the sample correlation matrix was shown in
Table 6. Consider three scenarios for the "true" correlation
matrix ρ.

(i) Suppose ρ happens to equal the sample correlation
matrix. Then, faithfulness obtains.

(ii) Suppose the true correlation ρ(PO,FI) between foreign
investment and political exclusion happens to vanish
exactly. Then, the Timberlake-Williams model violates the
faithfulness condition; presumably, that is SGS’s real
complaint.

(iii) If ρ(PO,FI) = .00001, faithfulness is restored.
According to the SGS criteria, Timberlake and Williams are
back in business.

Within the framework of path models, scenario (ii) cannot be
rejected at conventional significance levels; neither can (iii);
and (i) represents our best estimate, subject to large
uncertainties. SGS seize on hypothesis (ii), the only one that
legitimates their critique. They are balking at shadows.
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It may be possible to strengthen the faithfulness
assumption, to rule out near-cancellation of confounded effects.
However, developing such a theory will run into technical
difficulties. In particular, stronger assumptions are likely to
reduce the stock of path models that can be identified, because
fewer covariance matrices would then be faithful to their graphs.

12.2 Omitted variables

The problem of omitted variables was raised by Cliff Clogg
at the Notre Dame conference, and this section paraphrases one of
his points. There is a response variable Y, with explanatory
variables X and Z; these may be construed as vectors. Suppose
the data are generated according to the "true" model (32T).

(32 T) Y Xβ Z γ ε (32 R) Y XβR δ

The parameter vectors β and γ are unknown, and to be
estimated from data by regression; it is β that is of primary
interest. Subjects are assumed to be independent and identically
distributed; ( X, Z) and the error term ε are independent and
jointly normal; all variables have expected value 0. Consider
too the "restricted" model (32R), where βR is defined so that
E{ Y| X} = XβR. The constituents of (32R) may be computed from the
true model. 30

In principle, the variables X, Y and Z are all observable; X
and Z may be correlated. However, investigators who do not know
that Z is relevant may fit the restricted model R rather than the
true model T. If so, the estimate of β can be quite biased. In
the vernacular, βR includes the effect of X on Y through Z. The
covariance matrix of ( X, Y) cannot distinguish between the two

30 Indeed, βR = β + α where α is obtained by the regression
of Zγ on X. In other terms, Zγ = Xα + η, where η is normal with
mean 0, independent of X. Then δ = ε + η. It may be seen that α
depends linearly on γ .
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models, because the matrix can be generated by either model.
Therefore, no statistical procedure based on that matrix can tell
you whether the restricted model is right or wrong. 31

12.3 On the direction of causality

This section uses "cause" in its ordinary (perhaps
undefinable) meaning, not as shorthand for certain kinds of
covariation. I return to Judea Pearl’s example, shown in
Figure 2(a). Given the covariance matrix for X, Y and Z, the SGS
algorithm will produce the graph shown in panel (a). If you tell
the algorithm that omitted variables are a possibility, it will
tell you that Y cannot cause X or Z.

In the example, X, Y and Z are the only observables, and
their covariance matrix is faithful to the graph in Figure 2(a).
I claim that such information cannot by itself determine the
direction of the causal flow. To substantiate this claim, I now
construct two theories. In both, the observables X, Y and Z will
have the same covariance matrix, faithful to the graph in
Figure 2(a). However, the direction of the causal flow will be
different in the two theories.

Theory #1

I first generate X, Z, U as independent N(0,1) variables; U
is an unobservable error term. (If you want to intervene and
change X or Z, now is your moment.) Then

(33) Y = X + Z + U.

According to theory #1, X and Z cause Y, as suggested by
Figure 2(a).

31 See (Clogg and Haritou 1994), who make the following
very interesting point. Adding variables that are correlated
with ε can also bias the estimate of β; this "included variable"
bias can be just as troublesome as the more familiar "omitted
variable" bias: the latter problem cannot be solved by throwing
variables into the model. The SGS treatment of omitted variables
was discussed in section 12.1 above.
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Theory #2

I first generate Y as N(0,3). (If you want to intervene and
change Y, now is your moment.) After a suitable pause, so that
time’s arrow will delineate the flow of causality, I generate the
errors V1, V2 and V3 as independent N(0,1/3) variables, and then
produce X, Z and U according to

(34)

X 1
3

Y V1 V2

Z 1
3

Y V2 V3

U 1
3

Y V3 V1

In this theory, Y causes X and Z.

As far as the observables are concerned-- namely, the joint
distribution of X, Y and Z-- theories #1 and #2 agree.
Furthermore, the joint distribution is faithful to the graph in
Figure 2(a). But the direction of causality is determined
neither by the data nor by the mathematics. With correlational
methods, causality follows from the assumptions about the
unobservables.

12.3 The AFQT problem

SGS seem to claim that, as a demonstrable mathematical fact,
their procedures will find the right answers:

Assuming the right variables have been measured, there is a
straightforward solution to these problems: apply the PC,
FCI, or other reliable algorithm, and appropriate theorems
from the preceding chapters, to determine which X variables
influence the outcome Y, which do not, and for which the
question cannot be answered.... then estimate the
dependencies by whatever methods seem appropriate and apply
the results of the previous chapter to obtain predictions of
the effect of manipulating the X variables. No extra theory
is required. We will give a number of illustrations....
(SGS p. 242)
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The first example given by SGS to illustrate this claim is
AFQT (section 9 above). To demonstrate that SGS are exaggerating
more than a little, I pose a sharp mathematical question with the
essential features of the AFQT problem. Then, I show the
question to be undecidable by correlational methods. (Of course,
when applied to the real example, both SGS and ordinary least
squares made the right guess.)

To set up the question, assume that X and Y are random
variables; X is a vector, Y is scalar.

(35) Y is a linear combination of X’s, with fixed weights.

(36) The observables are Y and V1,..., V7.

Some V’s are X’s, some V’s are ringers. (A "ringer" is a
variable that does not enter into the linear combination for Y.)
There are also unobservables, including the X’s that are not V’s.
Assume too that

(37) The full joint distribution is multivariate normal, with
mean 0.

You are given the covariance matrix for the observables, but
not the full covariance matrix. The problem is to say which of
the V’s are X’s and which are ringers. I claim this problem is
not solvable, because I can produce two different theories
leading to different classifications of the V’s, but having the
same joint distribution for the observables.

Theory #1

I use the covariance matrix for the 7 observable subtests
V1 = NO,... V7 = GS together with the 3 unobservable subtests,
CS, AS and PC. (The subtests are listed in Table 8, section 12.5
below). The full distribution is defined to be jointly normal,
and all variables have mean 0. Let Y = .5 × NO + AR + WK + PC,
where NO, AR and WK are observable but PC is unobservable. In
this theory, V1, V2, V3 are X’s, the remaining V’s are ringers.
This theory happens to have been more or less correct, prior to
1989: see equation (42) in section 12.5.
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Theory #2

Again, I use the covariance matrix for the 7 observable
subtests V1 = NO,... V7 = GS together with the other 3
unobservable subtests CS, AS, PC. I create an auxiliary variable
U, which is independent of the 10 subtests and has small
variance. The distribution of these 11 variables is defined to
be jointly normal, and all variables have mean 0. There are
three additional unobservables, defined as follows:

(38) T1 = .25(AR + NO) + .5PC + U,

(39) T2 = .25(WK + NO) + .5PC + U,

(40) T3 = .75(AR + WK) - 2 U.

Let

(41) Y = T1 + T2 + T3.

In theory #2, T1, T2, T3 are the unobservables; all the V’s are
ringers. The auxiliary variables U, CS, AS, PC serve only to
define the joint distribution.

Theory #1 and theory #2 provide the same joint distribution
for the observables. Therefore, no statistical procedure based
on the joint distribution-- like the SGS algorithms or any other
correlational methods-- can adjudicate between the two theories.

This section and the previous one demonstrate the obvious:
you cannot infer cause and effect relationships by doing
arithmetic on a correlation matrix, because association is not
causation. The mathematical development in SGS avoids such
problems only by imposing more or less arbitrary conditions (like
faithfulness) on unobservable variables, as discussed in sections
11.2 and 12.1.

In the present section, neither theory #1 nor theory #2 fits
into the SGS framework: Y is a deterministic function of the
explanatory variables, with no stochastic error term; see (35).
Furthermore, if U and PC are treated as variables rather than
error terms in (38-39-40), the joint distribution in theory #2
is, presumably, unfaithful to its causal graph. Similar comments
apply to the previous section.
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12.5 Institutional background on the AFQT

The "Armed Services Vocational Aptitude Battery" (ASVAB) has
ten subtests, including the seven listed in Table 4, section 9
above. All ten are shown in Table 8.

Table 8. The ten subtests in ASVAB.
The first seven were analyzed by SGS.

1. Numerical Operations NO
2. Word Knowledge WK
3. Arithmetical Reasoning AR
4. Mathematical Knowledge MK
5. Electronics Information EI
6. Mechanical Comprehension MC
7. General Science GS
8. Coding Speed CS
9. Auto & Shop Information AS
10. Paragraph Comprehension PC

Notes: ASVAB Form 17, July 1990.

Until January, 1989 the AFQT was computed as follows:

(42) AFQT = .5 × NO + AR + WK + PC.

After that date, NO was replaced by MK; a "verbal" score VE was
defined as VE = WK + PC; and terms were standardized to have mean
0 and variance 1 on some calibration data-- the "NORC 1985
sample." AFQT was redefined as

(43) AFQT = MKZ + ARZ + 2 × VEZ,

where the subscript Z denotes standardization. Throughout the
period, raw scores were by Congressional requirement converted to
percentiles based on the NORC sample. One hopes the data used by
SGS come from 1988 or before, since they pick up formula (42)
rather than (43); section 9 above. 32

32 SGS appear to be considering raw scores, and I follow
suit. The material in this section was reported by Larry Hanser,
personal communication; he refers to (Welsh et al. 1990, esp.
Table 3 on p. 5), and (Eitelberg 1988, esp. p. 73).
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13. Responses

Formal statistical inference is, by its nature, conditional.
If assumptions A, B, C, ... hold, then H can be tested against
the data. However, if A, B, C, ... remain in doubt, so must
inferences about H. Indeed, the statistical calculations may
prove to be quite misleading.

Many assumptions are made but only a few are tested. Those
made without testing are called "maintained hypotheses." They
are usually statistical and often rather technical -- linearity,
independence, exogeneity, etc. Careful scrutiny of such
assumptions would therefore seem to be a critical part of
empirical work.

In the social sciences, however, statistical assumptions are
rarely made explicit, let alone validated. Questions provoke
reactions that cover the gamut from indignation to obscurantism.
We know all that. Nothing is perfect. Linearity has to be a
good first approximation. The assumptions are reasonable. The
assumptions don’t matter. The assumptions are conservative. You
can’t prove the assumptions are wrong. The biases will cancel.
We can model the biases. We’re only doing what everybody else
does. Now we use more sophisticated techniques. What would you
do? The decision-maker has to be better off with us than without
us. We all have mental models, not using a model is still a
model.

With the SGS approach, responses are more subtle but no more
empirical. Proponents often seem to take a Bayesian stance:
faithfulness is justified on the grounds that the exceptional
cases have measure 0, and must therefore be viewed as negligible
a priori . 33 However, the SGS approach is frequentist not
Bayesian; the simulations, being done on finite-state computers,
must concentrate in a set of measure 0; and the SGS class of
models has measure 0 within larger classes of models. Indeed,
from my perspective, the whole class of path models seems rather
unlikely-- given the intensity of the research effort and the
paucity of convincing examples. The assumptions that diagrams
are sparse and faithful stretch credibility even further.

33 The "measure" here is the uniform distribution in
Euclidean space, e.g., length, area, volume.... Mathematicians
call the uniform distribution "Lebesgue measure," in honor of
Henri Lebesgue (1875-1941) who developed its mathematical
foundations. The SGS argument (p. 95) seems to be a variation on
Laplace’s "principle of insufficient reason" (Stigler 1986, 127).
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Attempts have also be made to justify the faithfulness
assumption by appeals to continuity. If a covariance matrix is
unfaithful, small changes to parameter values make it faithful.
However, the same argument can be turned against correlational
methods. For example, if a covariance matrix is faithful to an
incomplete graph, small changes to hidden parameters make the
graph complete and vitiate the SGS search procedures.
Section 12.1 points to another kind of instability in the SGS
framework. The continuity defense (like the Bayesian argument)
reflects an aesthetic judgment about modeling styles. Taste is
no substitute for empirical verification.

The SGS criteria for causality may also be defended as
follows-- it is unlikely that anything could produce the
patterns of intercorrelation identified by SGS, other than
causation; thus, correlational methods shift the burden of
argument. Figures 5 and 6 should dispose of this idea. In real
examples, the patterns identified by the SGS search algorithms
can hardly represent cause-and-effect relationships. The burden
would seem to be on the modelers: how can they recommend an
algorithm that gives such results?

Proponents of modeling can also be heard to argue that all
of us make assumptions about unobservables. However, what is
unobservable with one design may become observable with another.
And some investigators still deal with unobservables the hard
way-- by doing the right studies. For example, take Fisher’s
"constitutional hypothesis:" there may be a genetic factor that
predisposes you to smoke and to get lung cancer, heart disease,
etc. 34 This putative genetic factor is the unobservable common
cause for smoking and illness.

The epidemiologists did not deal with the constitutional
hypothesis by introducing special assumptions. Instead, they
studied the matter empirically, using data from twin studies.
For a recent report on the Swedish twin registry, see (Floderus
et al. 1988). On the Finnish twin registry, see (Kaprio and
Koskenvuo 1989). Data on the Danish twin registry are
fragmentary. There are forthcoming data on the U.S. twin
registry, which are quite strong (Dorit Carmelli, personal
communication). The numbers on lung cancer are suggestive, but
still small-- this is a rare disease, even among smokers. The
data on heart disease and total mortality, however, make the
constitutional hypothesis untenable.

34 See SGS pp. 298-9, CG p. 32.
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13.1 A comment from Judea Pearl

Judea Pearl writes that

Correlation-based model-searching schemes produce causal
inferences with only limited guarantees. Yet such schemes
have potential, if conducted under conditions that screen
out accidental independencies while maintaining structural
independencies-- for example, longitudinal studies under
slightly varying conditions. This assumes, of course, that
under such varying conditions the parameters of the model
will be perturbed, while its structure remains stable.
Maintaining such delicate balance under changing conditions
may be hard in real-life studies. However, considering the
alternative of resorting to controlled, randomized
experiments, such longitudinal studies are still an exciting
opportunity.

Additionally, any investigator who is searching for a causal
model knowing that the parameters might be tied together by
some hidden equation, like (17) [section 11.2], is wasting
time (and public funds). Such a model, even if correct, is
bound to be useless, because without the assumption of
autonomy (i.e., that each parameter can be perturbed without
altering the others), the model cannot predict the effect of
interventions or other changes.... [personal communication]

Also see (Pearl 1993; Pearl and Wermuth 1993).
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14. Other literature

There is an extensive literature on the evaluation of
models, going back at least to the Keynes-Tinbergen exchange
(Keynes 1939 and 1940, Tinbergen 1940). Also see (Liu 1960) and
(Lucas 1976). For more recent discussions, with other citations
to the literature, see (Freedman 1987 and 1991). Many authors
have tried to explain the basis for inferring causation by using
regression. See, for example, (Pratt and Schlaifer 1984 and
1988), or (Holland 1986 and 1988). Of enthusiastic views on
social-science modeling, there is no shortage; see, for instance,
(Smelser and Gerstein 1986) or (Bartels and Brady 1993). For a
recent discussion of causal modeling, see (Cox and Wermuth 1993).

15. Conclusions

SGS have not succeeded in clarifying the circumstances under
which causal inferences can be drawn from observed associations,
nor have they invented a reliable engine for performing this
feat. Their algorithms have some technical interest, but will
make causal inferences only when causation is assumed in the
first place. To be more explicit: If we assume that the arrows
in a path diagram represent causation rather than association,
and we also assume that the path diagram can be estimated from
data, then indeed SGS can infer causation from association. The
faithfulness assumption and exact conditional independence will
together eliminate certain kinds of confounding. Even so,
causality is assumed into the picture at the beginning, not
proved in at the end. As Nancy Cartwright says, "No causes in,
no causes out." 35

The larger problem remains. Can quantitative social
scientists infer causality by applying statistical technology to
correlation matrices? That is not a mathematical question,
because the answer turns on the way the world is put together.
As I read the record, correlational methods have not delivered
the goods. We need to work on measurement, design, theory.
Fancier statistics are not likely to help much.

35 (Cartwright 1989, Chapters 2 and 3). Also see (Pearl
and Verma 1991).
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Appendix: Regression and conditioning

For ease of reference, this appendix presents the usual
formulas for computing regressions, and conditional covariances.
I begin with regression. Suppose ξ and η are random variables; ξ
may be a row vector. We seek the column vector β of regression
coefficients for η on ξ. Let C = E{ ξ ′ ξ} and D = E{ ξ ′ η}; the
prime denotes matrix transposition. Assume C is positive
definite. Then

(44) β = C-1 D.

Now η = ξβ + u, where u is automatically orthogonal to ξ. The
mean square of u may be computed as follows:

(45) E( u2) = E( η2) - β ′ Cβ.

If ξ and η have mean 0, then C = cov( ξ) and D = cov( ξ, η); also,
E( u) = 0. Likewise, if some component of ξ is a non-zero
constant, E( u) = 0. If now the variables are jointly normal, u
is independent of ξ.

I turn to estimation. Recall equation (2), repeated here
for ease of reference.

(2) Y = Xβ + ε.

In this equation, X is the "design matrix," representing the
explanatory variables. There is one row for each unit in the
study, and one column for each variable; the entry in the i th row
and j th column represents the j th variable, as observed on the
i th unit in the study; X may include a column of 1’s, if there is
to be an intercept in the equation. Y is a column vector
representing the dependent variable, whose i th component
represents the value of Y for the i th unit in the study. ε is
also a column vector, with one component for each unit in the
study, representing the impact on Y of chance factors unrelated
to X. Typically, there will be many fewer parameters than data
points, so β has relatively few components.

The ordinary least squares estimator for β is denoted by a
hat, and may be computed as

^(46) β = ( X ′ X) -1 X ′ Y.
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^The covariance matrix for β, conditional on the design matrix,
is computed as

^(47) cov( β| X) = ( X ′ X) -1 var( ε i | X).

Of course, (46) is related to (44); this is seen by defining
( ξ, η) as a row chosen at random from ( X,Y ).

The "predicted values" and "residuals" are defined as
^ ^ ^follows: Y = Xβ and e = Y - Y. The residuals are automatically

orthogonal to X. The residual sum of squares, minimized by the
choice of β, is RSS = e 2 = ∑i ei

2. Then var( ε i | X) in (47) may be
estimated as RSS/( n- p), where n is the number of data points and
p is the number of explanatory variables. Variances will be
found along the diagonal of the covariance matrix, and the
standard error is computed as the square root of the variance.
In deriving these formulas, it is assumed that given X, the
components of ε are conditionally independent and identically
distributed, with mean 0.

Suppose the model has an intercept. Then R 2 may be defined
^as R2 = var{ Y}/var{ Y}, where, e.g.,

var { Y} 1
n

n

i 1
( Yi Y) 2 and Y 1

n

n

i 1
Yi .

If all variables have mean 0, then R 2 may be computed as
^ ^β ′ X ′ Xβ/(n×var{Y}).

The usual formula for computing conditional covariances may
be presented as follows. Let n > 2. Suppose X1, X2, ..., Xn are
jointly normal. We seek the conditional covariance of X1 and X2
given X3, X4,..., Xn. Let Σ be the covariance matrix of X3, X4,
..., Xn. Let κ1 be the covariance of X1 with X3, X4, ..., Xn; let
κ2 be the covariance of X2 with X3, X4, ..., Xn. We view κ1 and
κ2 as n-2 × 1 column vectors. The conditional covariance is
given by

(48) cov( X1, X2| X3,..., Xn) = cov( X1, X2) - κ1 ′ Σ-1 κ2.

The prime denotes matrix transposition. Details on the material
in this appendix may be found in standard texts, for instance,
(Rao 1973).
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