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We consider score tests of the null hypothesis H0 : � = 1

2
against the alternative hypothesis H1 : 0 � � < 1

2
,

based upon counts multinomially distributed with parameters n and �(�; �)1�m = �1�mT (�)m�m , where T (�)

is a transition matrix with T (0) = I, the identity matrix, and T (1
2
) = 1

T�, 1 = (1; : : : ; 1). This type of

testing problem arises in human genetics when testing the null hypothesis of no linkage between a marker

and a disease susceptibility gene, using identity by descent data from families with a�ected members. In

important cases in this genetic context, the score test is independent of the nuisance parameter � and is

based on a widely used test statistic in linkage analysis. The proof of this result involves embedding the

states of the multinomial distribution into a continuous time Markov chain with in�nitesimal generator Q.

The second largest eigenvalue of Q and its multiplicity are key in determining the form of the score statistic.

We relate Q to the adjacency matrix of a quotient graph, in order to derive its eigenvalues and eigenvectors.

1 Introduction

This paper concerns a rather unusual class of score tests which arises naturally in human genetics.
However, their essence can be described quite e�ciently without any of the genetic background,
and we now do so. Let � = (�1; : : : ; �m) and � = (�1; : : : ; �m) be two multinomial distributions,
viewed as points in a simplex, and let fT (�) : 0 � � � 1

2g be a one-parameter family of transition
matrices such that T (0) = I , the identity matrix, and T (12) = 1T�, where 1 = (1; : : : ; 1). These
objects allow us to de�ne the curve C�(�) of distributions �(�; �) = �T (�), 0 � � � 1

2 , connecting
� = �(0; �) to � = �(12 ; �). Our interest is a score test for the null hypothesis H0 : � =

1
2 against

the alternative H1 : 0 � � < 1
2 , that is, for testing H0 : � = � against alternatives along the

curve C�(�), based upon counts N = (N1; : : : ; Nm) multinomially distributed with parameters
n =

P
iNi and �(�; �). The associated log-likelihood is l(�; �) =

P
iNi ln(�i(�; �)), and the score

test in question should be based on l0(12 ; �) =
P

iNi�
0
i(
1
2 ; �)=�i, where

0 denotes di�erentiation in �.
It turns out in our problem that l0(12 ; �) � 0, and so we consider the second derivative, obtaining
l00(12 ; �) =

P
iNi�

00
i (

1
2 ; �)=�i =

P
iNi(

P
j �juji)=�i, where U = (uij) = T 00(12). Now, we would

normally need to deal with the nuisance parameter � in this score test. This study was motivated by
the observation that in some important cases in our genetic context, U has rank 1, that is, uij = aibj,
for suitable vectors (ai) and (bi). In such cases, l00(12 ; �) = (

P
j aj�j)(

P
i biNi=�i), and the score
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test is independent of the nuisance parameter � and based on a widely used statistic in linkage
analysis. This fact is not only convenient in applications, but also suggests that the test might
enjoy some measure of model robustness, that is, perform well against a broad class of alternatives.
The test has also been described as "model-free". We thought it would be of interest to learn just
how far this property extended, and if possible, to understand its origins. In Section 2 we present
the genetic problem which motivated our study, the linkage analysis of disease susceptibility genes
using identity by descent (IBD) data from sibships. This involves describing how IBD patterns
in pedigrees may be summarized by inheritance vectors which correspond to the vertices of a
hypercube. The inheritance vectors along a chromosome are embeddable in a continuous-time
random walk on the vertices of the hypercube, with time parameter the genetic distance along
the chromosome. For our purpose, the inheritance vectors may be partitioned into so-called IBD
con�gurations, which are orbits of groups acting on the set of inheritance vectors. In Section 3,
we derive the semi-group property for the IBD con�guration transition matrix T (�) and present
a spectral decomposition of T (�) in terms of the eigenvalues and eigenvectors of its in�nitesimal
generator Q. The second largest eigenvalue of Q and its multiplicity are key in determining the
form of the score statistic. In order to derive the eigenvalues and eigenvectors of the in�nitesimal
generator, we relate it to the adjacency matrix of a quotient graph. Finally, in Section 4, we derive
score statistics for testing linkage in sibships and illustrate the results with sib-pairs and sib-trios
in Section 5. Remarkably, the score test for a�ected only sibships doesn't depend on the nuisance
parameter � and is based on a well-known statistic in linkage analysis, Spairs (cf. Kruglyak et al.
[10], Whittemore and Halpern [16]).

2 Testing linkage using identity by descent data

Genetic mapping is based upon the phenomenon of crossing-over which is the exchange of corre-
sponding DNA between chromosomes from the same pair during gamete (egg/sperm) formation.
The human genome is distributed along 23 pairs of chromosomes, 22 autosomal pairs and the sex
chromosome pair (XX for females and XY for males). Each pair consists of a paternally inherited
chromosome and a maternally inherited chromosome. As a result of crossovers, chromosomes passed
from parent to o�spring are mosaics of the two parental chromosomes (see Figure 1). In general, the
DNA variants (alleles) passed from parent to o�spring at two nearby chromosomal locations (loci)
have the same grand-parental origin (e.g. at both loci, the maternally inherited alleles are from
the maternal grandfather). This is sometimes called co-segregation, as segregation is the process
leading to the choice of one of a parent's two variants (maternal or paternal) at any given locus
for transmission to a child. Exceptions to co-segregation occur for loci on the same chromosome
due to crossovers; then, the variants passed on to the child have di�erent grand-parental origins
at the two loci and the chromosome is said to be recombinant (e.g. for the maternally inherited
chromosome, the variant from the maternal grandfather was inherited at one locus and that from
the maternal grandmother was inherited at the other locus). The frequency with which this occurs
is the recombination fraction between the two loci, conventionally denoted by �. This fraction is a
monotonic function of the physical distance between the loci; it is 0 when they are essentially one
locus, and reaches a maximum of 1

2 when the loci are widely separated on the same chromosome or
on di�erent chromosomes. In general, two loci are said to be linked if their recombination fraction
is less than 1

2 , and unlinked if it is 1
2 . Thus, unlinked loci may be widely separated on the same

chromosome, or on di�erent chromosomes. Loci are said to be tightly linked if the recombination
fraction � is close to 0, e.g. � < 0:05 (see Ott [11] for an introduction to linkage analysis).
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Figure 1: Segregation products for a sibship of size 2 and a single chromosome pair. Male and
female individuals are represented by squares and circles, respectively, and colored symbols indicate
a�ectedness by the disease under study. The paternal and maternal chromosome pairs are labeled
by (1; 2) and (3; 4), respectively. The inheritance vectors and IBD con�gurations of the sib-pair are
indicated on the left.

When mapping disease susceptibility (DS) genes, we are interested in testing whether genetic mark-
ers with known location are linked or not to DS genes, i.e. in testing a null hypothesis of the form
H0 : � = 1

2 , where � is the recombination fraction between a genetic marker and a putative DS
gene. This could be done by studying the co-segregation of variants of the DS genes with those of
other mapped genes or markers. (By now, there are scores of well-mapped markers along each hu-
man, mouse and many other chromosomes.) Frequent co-segregation of a DS locus with a mapped
marker would imply a small recombination fraction between the two loci, and hence an accurate
placement of the DS locus. However, for most diseases of interest, we do not in general know, and
are unable to determine the alleles present at the DS loci prior to their being mapped. Indeed, much
of the interest in mapping DS loci is to determine the variants segregating in populations. Thus a
direct approach to mapping DS loci is generally not available. Many ingenious methods have been
developed by geneticists to circumvent this problem, and this paper concerns one such which stud-
ies marker identity by descent in sibships with a�ected members. DNA at the same locus on two
chromosomes from the same pair is said to be identical by descent (IBD) if it originated from the
same ancestral chromosome. This is by contrast to identity by state, where the same DNA variant
in two individuals may have entered the family under study through di�erent ancestors and hence
may not be IBD. Linkage analysis methods based on IBD data seek to exploit associations between
the sharing of DNA identical by descent at loci linked to DS loci and disease status in families with
a�ected individuals. At loci unlinked to DS loci, IBD sharing is independent of disease status. For
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Figure 2: 4-dimensional hypercube whose vertices correspond to the 16 possible inheritance vectors
for a sib-pair and whose edges represent permissible transitions. The arrows indicate the transitions
for the segregation products represented in Figure 1.

example, for sibships, this approach builds on the simple notion that if susceptibility to the disease
under study has a genetic component, then the disease status (a�ected or not) of the sibs should
be associated with their IBD status (identical or not) at the DS loci (see Tables 3 and 4 in [4] for
a simple example of this association in sib-pairs). We expect it to work because full sibs get all
their genes from the same source, their parents, but only to the extent that disease susceptibility
is a�ected by genes rather than say, a shared environment, or other \random" factors. Determin-
ing IBD status at or near a DS locus is usually feasible, where determining the gene variant is
not, because we can readily determine IBD status at so-called marker loci, one of which may be
tightly linked to the DS locus (see Kruglyak et al. [10] for a treatment of incomplete IBD data).
This approach will thus be successful if (and only if) (a) there is a noticeable association between
disease status of the sibs and their IBD status at a DS locus, and (b) this association is strong
enough to remain detectable when IBD status at an (unknown) DS locus is replaced by observed
IBD status at a marker locus. Recombination between a DS locus and a marker locus will atten-
uate the association between disease and IBD status [4]. If we have a dense enough set of marker
loci, problem (b) would appear to be solved, but in truth, there is always a trade-o� between the
magnitude of the association in (a) and the density of the marker set necessary for its detection.
These issues were addressed in a recent paper by E.A. Thompson [14], who refers to the two compo-
nents (a) and (b) as the speci�city of the DS locus and the scale of the genetic distance, respectively.

The IBD pattern within a pedigree may be summarized at any point of the genome by the inheri-
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tance vector. Consider a sibship of k � 2 sibs and suppose we wish to identify the parental origin of
the DNA inherited by each sib at a particular autosomal locus, L say (for loci on sex chromosomes,
males and females need to be treated di�erently). Arbitrarily label the paternal chromosomes
containing the locus of interest by (1; 2), and similarly label the maternal chromosomes by (3; 4).
The inheritance vector of the sibship at the locus L is the 2k-vector x = (x1; x2; : : : ; x2k�1; x2k),
indicating the outcome of each of the 2k segregations giving rise to the sibship. More precisely, for
i = 1; : : : ; k, x2i�1 is the label of the paternal chromosome from which sib i inherited DNA at L,
1 or 2, and x2i is the label of the maternal chromosome from which sib i inherited DNA at L, 3 or
4 (see Figure 1). Denote by X the set of all 22k inheritance vectors.

Consider now two loci L1 and L2 separated by a recombination fraction �, and denote the in-
heritance vectors at the two loci by x and y, respectively. If these two inheritance vectors di�er
at a particular entry, this indicates the occurrence of a recombination between L1 and L2 in the
corresponding segregation. Since the chance of a recombination between the two loci is the recom-
bination fraction and recombination events are independent across segregations, then the transition
matrix R(�) between inheritance vectors at loci separated by a recombination fraction � has entries

rxy(�) = ��(x;y)(1� �)2k��(x;y); (1)

where �(x; y) is the number of coordinates at which the inheritance vectors x and y di�er, i.e.
the number of recombination events between the two loci. The matrix R(�) may be expressed as
the Kronecker power of 2 � 2 transition matrices corresponding to transitions in each of the 2k
coordinates

R(�) =

"
1� � �

� 1� �

#
2k
: (2)

Note that we are assuming equal male and female recombination fractions, otherwise, we would
have a transition matrix for paternal segregations and a transition matrix for maternal segregations.

The notion of inheritance vector may be extended to any type of pedigree and the transition ma-
trix R(�) has the same form. For one segregation, the recombination process is embeddable in
a continuous-time random walk on f0; 1g, where 0 and 1 denote respectively the transmission of
paternal and maternal DNA to one's child. Jointly, the recombination processes are i.i.d. and
hence embeddable in a continuous-time random walk on the vertices of the hypercube f0; 1g2k (cf.
Donnelly [3], Proposition 1 and Figures 1 and 2). The random walk model for the recombination
process is widely used and is referred to in the genetics literature as the no interference model.

For the purpose of linkage analysis of disease genes, certain inheritance vectors are equivalent to
each other, in that they have the same probability of arising at DS genes in pedigrees with given
phenotypes and genealogies. Although not needed for an understanding of this paper, a discussion
of these probabilities and the genetic model under which they are calculated may be found in [4].
For a�ected only sibships, and without distinguishing between sharing of maternal and paternal
DNA, Ethier and Hodge [5] show how the 22k inheritance vectors may be grouped into a much
smaller number of equivalence classes which we call identity by descent (IBD) con�gurations. Two
inheritance vectors belong to the same IBD con�guration if one may be obtained from the other
by applying any combination of the following four operations: (i) interchange the paternal labels 1
and 2, (ii) interchange the maternal labels 3 and 4, (iii) interchange the parental origin of the DNA

5



by interchanging 1 and 3 and 2 and 4, and (iv) permute the sibs. For example, for sib-pairs, one
usually considers three IBD con�gurations, corresponding to the number of chromosomes sharing
DNA IBD at the locus, instead of the 16 inheritance vectors.

Table 1: Sib-pair IBD con�gurations.

Number IBD Representative inheritance vector

0 (1,3,2,4)
1 paternal (1,3,1,4)
1 maternal (1,3,2,3)

2 (1,3,1,3)

For a pedigree with given genealogy and phenotype, the conditional probability vector of IBD
con�gurations at a markerM linked to a DS locus D at recombination fraction � is given by

�(�; �)1�m = �1�mT (�)m�m;

where � is the conditional probability vector of IBD con�gurations at the DS locus (possibly one of
several unlinked DS loci), m is the number of IBD con�gurations, and T (�) is the transition matrix
between IBD con�gurations � apart. In general, � depends on unknown and numerous genetic
parameters such as penetrances and genotype frequencies. Under the null hypothesis of no linkage,
the IBD distribution at the marker is

� = �
�1
2
; �
�
=

1

22k
�jC1j; : : : ; jCmj�;

where jCij is the number of inheritance vectors in Ci, the i-th IBD con�guration.

Thus, the IBD probabilities at the marker have two separate components: one component involving
the recombination fraction � between the marker and the DS locus (scale), the other depending
on the mode of inheritance of the disease (speci�city). Our score test in the recombination frac-
tion � focuses on the scale component, and seems to achieve some robustness with respect to the
speci�city (�). Examples of the transition matrix T (�) are given in Section 5 for sib-pairs and sib-
trios. Figure 4 p. 15 is a barycentric representation of curves C�(�) for the sib-pair transition matrix.

Suppose we collect n pedigrees with a given genealogy and phenotype, and wish to test the null
hypothesis of no linkage between a genetic marker and a DS locus. Denote by Ni the number
of pedigrees with IBD con�guration i = 1; : : : ; m at the genetic marker. Under certain sampling
assumptions (manuscript in preparation), (N1; : : : ; Nm) have a Multinomial(n; �(�; �)) distribution.
There is no uniformly most powerful test of H0 : � = 1

2 , however, the score test is locally most
powerful. Although this set-up applies to any type of pedigree, the IBD con�gurations and hence
T (�) are di�erent depending on the genealogy and phenotype of the pedigree. Thus, di�erent
pedigrees will yield di�erent score statistics for testing linkage. Remarkably, for a�ected only
sibships, the score statistic doesn't involve the nuisance parameter � and reduces to a widely
used statistic in linkage analysis, Spairs, which is obtained by forming all possible pairs of sibs
and averaging the proportion of chromosomes on which they share DNA IBD at the marker (cf.
Kruglyak et al. [10], Whittemore and Halpern [16]). This result is a corollary to Theorem 2 in
Section 4:
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Corollary 1 For a�ected sib-k-tuples, using the IBD con�gurations of Ethier and Hodge, the score
test of H0 : � =

1
2 is based on Spairs, regardless of the model for disease susceptibility, i.e. regardless

of �. For one a�ected sib-k-tuple

Spairs =

P
i<j Sij

k(k � 1)
;

where Sij is the number of chromosomes on which the ij-th sib-pair shares DNA IBD. Under the
null hypothesis of no linkage, the Sij's are pairwise independent Binomial(2; 12) random variables,
and thus

E0 [Spairs] =
1

2
; Var0 [Spairs] =

1

4k(k � 1)
:

For a collection of a�ected sib-k-tuples, Spairs is summed over all sibships.

Thus, for a�ected only sibships, Spairs is locally most powerful (in �) and may be calculated easily
by considering each sib-pair one at a time and without the need for assigning sibships to IBD
con�gurations. This �nding extends the work of Knapp et al. [9] to sibships of any size and to
general genetic models with multiple unlinked DS loci and no population genetic assumptions such
as random mating and Hardy-Weinberg equilibrium. Unfortunately, this simple property does not
hold with all types of sibships. Below, we will consider examples where it fails.

The remainder of this paper will be concerned with the proof of this result, and with deriving score
statistics for general sibships, with any number of a�ected and una�ected sibs, and distinguishing
the parental origin of the DNA. In general, the form of the score statistic is based on properties of
the transition matrix T (�), which in turn are determined by the genealogy and the choice of IBD
con�gurations. Thus, we will �rst describe how inheritance patterns may be summarized by IBD
con�gurations which are orbits of groups acting on the set of inheritance vectors.

3 Transition matrix for sibship IBD con�gurations

3.1 Sibship IBD con�gurations

Let a = (1; 3); b = (1; 4); c = (2; 3), and d = (2; 4) denote all four possible segregation outcomes
at a particular locus for a given sib. Then, we may think of the set of inheritance vectors X as
the set of mappings x : f1; : : : ; kg ! fa; b; c; dg. In this setting, the IBD con�gurations are orbits
of groups acting on X , where the groups are determined by the type of operations allowed within
IBD con�gurations (cf. Fraleigh [6] Section 3.2 for an introduction to group action). Let

� = (ac)(bd) interchange labels 1 and 2 of paternal chromosomes,
� = (ab)(cd) interchange labels 3 and 4 of maternal chromosomes,
 = (bc) interchange parental origin of DNA.

The group of permutations of the square generated by �; � and  is actually the dihedral group, D4

(� and  are su�cient to generate D4), and the group generated by � and � is the Klein four-group,
C2 � C2. The IBD con�gurations of Ethier and Hodge [5] for a�ected only sibships are the orbits
of the direct product Sk � D4, of the symmetric group Sk on k letters and the dihedral group of
the square D4, acting on X . In some situations (e.g. parental imprinting, when disease suscep-
tibility is di�erent for maternally and paternally inherited disease alleles), it may be appropriate
to distinguish between sharing of maternal and paternal DNA and exclude the group operation .
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Figure 3: Permutations �, � and  of the vertices of the square.

For example, for a sib-pair, it may be appropriate to distinguish between the two inheritance vec-
tors (1; 3; 1; 4) and (1; 3; 2; 3); for (1; 3; 1; 4) the sibs share DNA IBD on the paternal chromosome,
whereas for (1; 3; 2; 3) the sibs share DNA IBD on the maternal chromosome. For sibships with
both a�ected and una�ected individuals, similar con�gurations may be de�ned, but the sibs are per-
muted only among a�ecteds or una�ecteds. The di�erent types of group action are listed in Table 2.

For a group H acting on the set X , let m denote the number of orbits and Ci denote the i-th orbit.
In general, we may use the P�olya theory of counting (cf. van Lint and Wilson [15], deBruijn [2])
to �nd the number of orbits of groups acting on mappings, and hence determine the number of
IBD con�gurations of each type (see Appendix A). Ethier and Hodge derived the number of IBD
con�gurations of a�ected sib-k-tuples as well as the number of inheritance vectors in each IBD
con�guration without reference to the group Sk � D4. Instead, they based their calculations on
labels for the equivalence classes which are triples of integers (cf. p.264,265 in Ethier and Hodge
[5] and Appendix A).

Table 2: Sibship IBD con�gurations

# a�ected, # una�ected Distinguish maternal Group H
from paternal sharing

k; 0 NO Sk �D4

YES Sk � (C2 � C2)
h; k � h NO (Sh � Sk�h)�D4

YES (Sh � Sk�h)� (C2 � C2)

In the next section, we will derive properties of transition matrices between IBD con�gurations for
the four groups just described.
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3.2 Properties of transition matrix

The transition matrix T (�) between IBD con�gurations at loci separated by a recombination frac-
tion � is the m�m matrix with entries

tij(�) =
1

jCij
X
x2Ci

X
y2Cj

rxy(�) =
1

jCij
X
x2Ci

X
y2Cj

��(x;y)(1� �)2k��(x;y):

However, given any two inheritance vectors in Ci, the probability of a transition to Cj is the same,
that is, X

y2Cj
rxy(�) =

X
y2Cj

r~xy(�) for any x; ~x 2 Ci: (3)

This result follows by observing that if ~ denotes the operation applied to x to obtain ~x, then
�(~x; y) = �(~~x; ~y) = �(x; ~y), and ~y 2 Cj . Consequently,

tij(�) =
X
y2Cj

��(x;y)(1� �)2k��(x;y); where x is any x 2 Ci (4)

=
jCj j
jCij

X
x2Ci

��(x;y)(1� �)2k��(x;y); where y is any y 2 Cj :

The next two propositions relate the transition matrix T (�) to the adjacency matrix of a quotient
graph, whose eigenvalues are key in determining the form of the score statistic (see Appendix B for
proofs).

Proposition 1 Let �1 � �2 = �1(1� �2) + �2(1� �1). Then T (�) satis�es the semi-group property

T (�1 � �2) = T (�1)T (�2):

Thus, T (�) may be written as
T (�) = ed(�)Q;

where d(�) = �1
2 ln(1� 2�) is the inverse of the Haldane map function and Q is the in�nitesimal

generator.
Q = T 0(0) = B � 2kI;

where B is the m�m matrix with entries

bij =
X
y2Cj

I(�(x; y) = 1); for any x 2 Ci;

and I( ) denotes the indicator function. T has stationary distribution

� = (�1; : : : ; �m) =
1

22k
�jC1j; : : : ; jCmj�

and T is reversible, i.e.
�itij(�) = �jtji(�):
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See Ott [11] for an introduction to map functions. Note that if we have three ordered loci and �1
and �2 are the recombination fractions between the �rst and second and second and third locus,
respectively, then �1 � �2 is the recombination fraction between the �rst and third locus, under
the assumption that recombination events in disjoint intervals are independent, i.e. no crossover
interference. Also, note that we didn't need to assume no crossover interference to derive the semi-
group property. If however we assume no crossover interference, then the inheritance vectors along
a chromosome form a continuous time Markov chain with time parameter the genetic distance along
a chromosome. From equation (3) and condition (15) p. 63 in Rosenblatt [12], it follows that the
IBD con�gurations also form a continuous time Markov chain.

In order to compute score statistics, we need derivatives of the transition matrix at � = 1
2 . These

may be computed by di�erentiating equation (4), but we gain more knowledge on the form of the
score statistic by using the following spectral decomposition of T (�).

Proposition 2 The transition matrix T (�) may be written as

T (�) =
X
h

e�hd(�) Ph =
X
h

(1� 2�)��h=2 Ph; (5)

where the �h are the m real eigenvalues of the in�nitesimal generator Q, and the Ph are projection
matrices satisfying P 2

h = Ph = P �h ; PhPl = 0, h 6= l, and
P

h Ph = I. P �h is the adjoint of Ph with
respect to the inner product < x; y >�=

P
i �ixiyi. In particular, the �rst two derivatives of the

transition matrix with respect to � are

T 0(�) =
X
h

�h(1� 2�)�(�h+2)=2Ph; (6)

and

T 00(�) =
X
h

�h(�h + 2)(1� 2�)�(�h+4)=2Ph: (7)

The ij-th entry of Ph is �jvihvjh, where vih is the i-th entry of the right eigenvector of Q corre-
sponding to �h and with unit norm with respect to the inner product <;>�.

Thus, eigenvalues of Q and their multiplicity give us information regarding the derivatives of the
transition matrix T and hence the form of the score statistic. In particular, powers of � in T (�)
are determined by the eigenvalues of Q, and the �rst non-zero derivative of T (�) at � = 1

2 and its
rank are determined by the second largest eigenvalue of Q and its multiplicity. We will relate Q to
the adjacency matrix of a quotient graph in order to derive its eigenvalues. Consider the graph X
with vertex set the set of all inheritance vectors of length 2k and adjacency matrix A(X ) = A with
(x; y)-entry

axy =

(
1; if �(x; y) = 1;

0; otherwise:

X is the graph de�ned by the �rst associates in the Hamming scheme H(2k; 2) (cf. Chapter 30 in
van Lint and Wilson [15]). Consider any of the four groups H described in Table 2. The matrix B,
de�ned in Proposition 1, is the adjacency matrix of the quotient graph X =H , which is the multi-
digraph with the orbits of H as its vertices and with bij arcs going from Ci to Cj . Recall that
Q = B � 2kI , consequently, we may work with B to derive the eigenvalues of Q. The following
theorem relies on general facts concerning eigenvectors and eigenvalues of adjacency matrices of
quotient graphs, as well as speci�c facts regarding the behavior of eigenvectors of A on the orbits
of H (see Appendix C for proof).
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Theorem 1 Eigenvalues of in�nitesimal generator Q.
The largest eigenvalue of Q is 0, with multiplicity one, and the second largest eigenvalue of Q is
�4, with multiplicity depending on the group H de�ning the IBD con�gurations.

(a) Sk �D4: �4 has multiplicity one;

(b) Sk � (C2 � C2): �4 has multiplicity two;

and for k � 3

(c) (Sh � Sk�h)�D4: �4 has multiplicity two if h = 1 or h = k� 1, and three if 2 � h � k � 2;

(d) (Sh�Sk�h)�(C2�C2): �4 has multiplicity four if h = 1 or h = k�1, and six if 2 � h � k�2.

Furthermore, all other eigenvalues of Q belong to the set
n
�2i(2ki ) : i = 3; : : : ; 2k

o
, where the

subscript
�2k
i

�
is the largest possible multiplicity of the eigenvalue �2i. Thus, from equations (6)

and (7)

T 0
�1
2

�
= 0 (8)

and

U = T 00
�1
2

�
= 8P�4; (9)

where P�4 is the projection matrix for the second largest eigenvalue, �4, with rank the multiplicity
of �4. In general, the ij-th entry of P�4 is �j

P
vivj where the v's are right eigenvectors of Q with

unit norm with respect to the inner product <;>� and the sum is over all such eigenvectors.

Note that we may also show that T 0(12) = 0 by simple algebra.

4 Linkage score test

Suppose we have data on n sibships of a given type (e.g. a�ected sib-k-tuples with orbits of
Sk � D4), in the form of multinomial counts Ni, i = 1; : : : ; m, for the number of sibships with
IBD con�guration i at a markerM. We wish to test the null hypothesis of no linkage between the
marker M and a DS locus D, which could be one of several unlinked DS loci, that is, we wish to
test

H0 : � =
1

2
(no linkage) versus H1 : 0 � � <

1

2
(linkage);

where � denotes the recombination fraction between M and D.

The log-likelihood of the IBD data, conditional on the phenotypes, is

l(�; �) =
X
i

Ni ln(�i(�; �));

where
�(�; �)1�m = �1�mT (�)m�m:
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The score test is based on the �rst non-zero derivative in the Taylor series expansion of the log-
likelihood about � = 1

2 . In our problem, the �rst derivative vanishes, so we turn to the second
derivative of the log-likelihood with respect to �, which yields a test that maximizes the second
derivative of the power function at the null. We �nd the score statistic to be

S =
@2l(�; �)

@�2

�����
�= 1

2

=
mX
i=1

Ni

@2�i(�;�)
@�2

�i(�; �)

������
�= 1

2

=
mX
i=1

Ni

Pm
j=1 �juji

�i
;

where U = T 00(12) = 8P�4 = (8�j
P
vivj), the v's are right eigenvectors of Q corresponding to the

eigenvalue �4, with unit norm with respect to the inner product <;>�, and the sum in U is over
all such eigenvectors. We will see next that for a�ected sib-k-tuples with the orbits of Sk �D4, the
second largest eigenvalue has multiplicity one and as a result the score statistic is independent of
the nuisance parameter �.

4.1 A�ected sib-k-tuples, orbits of Sk �D4

A very widely used statistic in linkage analysis is Spairs (cf. Kruglyak et al. [10], SP of Whittemore
and Halpern [16], and PAIRS and WP of Suarez and Van Eerdewegh [13]). For a sibship of size k,
Spairs is obtained by forming all possible pairs of sibs and averaging the proportions of chromosomes
on which they share DNA IBD, that is,

Spairs =

P
i<j Sij

k(k � 1)
;

where Sij is the number of chromosomes on which the ij-th sib-pair shares DNA IBD. The corollary
in Section 2 results from the following theorem:

Theorem 2 A�ected sib-k-tuple score statistic.
For a�ected sib-k-tuples, without distinguishing between sharing of maternal and paternal DNA, the
linkage score test is the same as the test based on Spairs. The contribution of n a�ected sib-k-tuples
to the overall score statistic is

S =
24k�7

k(k � 1)

� mX
j=1

uj1�j
�� mX

i=1

ui1Ni

�
= 22k�2

� mX
j=1

uj1�j
��
2Spairs � n

�
: (10)

The proof of Theorem 2 may be found in Appendix D, and relies on Theorem 1 and the following
identity. For a sibship with inheritance vector x

Spairs =

P4
i=1 ai(x)(ai(x)� 1)

2k(k � 1)

=
a1(x)2 + a2(x)2 + a3(x)2 + a4(x)2 � 2k

2k(k� 1)
;

(11)

where ai(x) is the number of i labels in the inheritance vector x of the sibship, i = 1; 2; 3; 4, and
a1(x) + a2(x) + a3(x) + a4(x) = 2k.

Without loss of generality, we let the �rst IBD con�guration be the one for which all sibs inherited
the same maternal and paternal DNA, i.e. with representative inheritance vector (1; 3; 1; 3; : : : ; 1; 3)
and label (0; 0; 0) in the notation of Ethier and Hodge [5]. The entries of the �rst column of U are

12



easily computed, as seen in the proof.

Thus, for a�ected sib-k-tuples and without distinguishing between sharing of maternal and paternal
DNA, the score test is independent of the nuisance parameter � (i.e. doesn't depend on the genetic
model) and may be calculated easily by considering each sib-pair one at a time and without the need
for assigning sibships to IBD con�gurations. On the other hand, the score statistic for combining
IBD data from sibships of di�erent sizes involves weights which do depend on the genetic model
(
Pm

i=1 ui1�i = expected value of
Pm

i=1 ui1Ni=n when � = 0, i.e. \right on top" of the gene), but
require the computation of only the �rst column of the matrix of second derivatives. As we will see
next, it is not always the case that the score test for a particular type of sibship is independent of
the genetic model.

4.2 A�ected sib-k-tuples, orbits of Sk � (C2 � C2)

For a�ected sib-k-tuples and distinguishing between sharing of maternal and paternal DNA, the
second largest eigenvalue of the in�nitesimal generator Q, �4, has multiplicity two (cf. Theorem
1). Hence, the second derivative of the transition matrix at � = 1

2 has rank 2 and entries

uij = 8�j(vivj + ~vi~vj);

where v = (v1; : : : ; vm)
T and ~v = (~v1; : : : ; ~vm)

T are the eigenvectors of Q corresponding to the
second largest eigenvalue and with unit norm with respect to the inner product < :; : >�. These
eigenvectors are based on Ve and Vo, respectively (see Appendix C). The score statistic is given by

S =
mX
i=1

Ni

Pm
j=1 �j8�i(vivj + ~vi~vj)

�i

= 8
� mX
j=1

�jvj
�� mX

i=1

Nivi
�
+ 8

� mX
j=1

�j~vj
�� mX

i=1

Ni~vi
�
:

Thus, in general, the score test depends on the parameters of the genetic model �. In some
situations however (e.g. no imprinting, that is same maternal and paternal contribution to disease
susceptibility), this score statistic reduces to Spairs.

4.3 Discordant sib-k-tuples

For sibships of size at least 3, with both a�ected and una�ected individuals (orbits of (Sh�Sk�h)�
D4 or of (Sh � Sk�h)� (C2� C2)), the second largest eigenvalue of the in�nitesimal generator has
multiplicity at least two (cf. Theorem 1). Hence, in general, the score statistic depends on the

genetic model and is a sum of terms of the form
�Pm

j=1 �jvj
�
(
Pm

i=1 Nivi), where vi is one of the

eigenvectors of Q corresponding to � = �4.

In the next section, we will consider the examples of sib-pairs and sib-trios, and present the tran-
sition matrix T (�), the in�nitesimal generator Q and the score statistic for these sibship types.
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5 Examples

5.1 Sib-pairs, orbits of S2 �D4

For sib-pairs with either 0, 1 or 2 a�ected individuals, and without distinguishing between sharing of
maternal and paternal DNA, there are three distinct IBD con�gurations, labeled 0, 1, 2, according
to the number of chromosomes sharing DNA IBD at the locus of interest. The transition matrix is

T (�) =

2
64  2 2 � � 2

 �  2 + � 2  � 
� 2 2 �  2

3
75 ;

where  = �2 + (1� �)2 and � = 1�  . The in�nitesimal generator is

Q =

2
64 �4 4 0

2 �4 2
0 4 �4

3
75 :

Q has eigenvalues � = 0, �4 and �8. The left and right eigenvectors of Q corresponding to � = �4
are ( 1

2
p
2
; 0;� 1

2
p
2
) and (

p
2; 0;�p2), respectively (right eigenvector has unit norm with respect to

the inner product < :; : >�). Hence

U = 8P�4 = 8

2
64

p
2
0

�p2

3
75� 1

2
p
2
; 0;� 1

2
p
2

�
=

2
64 4 0 �4

0 0 0
�4 0 4

3
75 :

If we let Ni denote the number of a�ected sib-pairs sharing DNA IBD on i chromosomes at the
marker, i = 0; 1; 2, then the score statistic for a�ected sib-pairs is

16(�2 � �0)(N2 �N0):

Similarly for discordant and una�ected sib-pairs. Note that N2�N0 may be rewritten in the more
common form N2 +

1
2N1, known as the \mean IBD" statistic (cf. Knapp et al. [9]).

5.2 Sib-pairs, orbits of S2 � (C2 �C2)

For sib-pairs with any number of a�ecteds and distinguishing between sharing of maternal and
paternal DNA, there are four distinct IBD con�gurations, conveniently labeled by the pair (i; j),
i; j = 0; 1, where i and j denote the number of paternally and maternally inherited chromosomes
sharing DNA IBD, respectively. The transition matrix is

T (�) =

2
6664
 2  �  � � 2

 �  2 � 2  � 
 � � 2  2  � 
� 2  �  �  2

3
7775

and the in�nitesimal generator is

Q =

2
6664
�4 2 2 0
2 �4 0 2
2 0 �4 2
0 2 2 �4

3
7775 :
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rho_2-rho_0

1 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1

(0, 0, 1) (1, 0, 0)

(0, 1, 0)

(1/4,1/2,1/4)

Figure 4: S2 �D4 - Barycentric representation of curves C�(�), 0 � � � 1
2 , for � on boundaries of

simplex.

Q has eigenvalues � = 0, �4, �4 and �8. The two right eigenvectors corresponding to � = �4 are
(
p
2; 0; 0;�p2) and (0;

p
2;�p2; 0), hence

U = 8P�4 = 8

2
6664

p
2
0
0

�p2

3
7775
�

1

2
p
2
; 0; 0;� 1

2
p
2

�
+ 8

2
6664

0p
2

�p2
0

3
7775
�
0;

1

2
p
2
;� 1

2
p
2
; 0

�

=

2
6664

4 0 0 �4
0 0 0 0
0 0 0 0
�4 0 0 4

3
7775+

2
6664
0 0 0 0
0 4 �4 0
0 �4 4 0
0 0 0 0

3
7775 :

Let Nij denote the number of a�ected sib-pairs sharing DNA IBD on i paternal and j maternal
chromosome at the marker, i; j = 0; 1. The score statistic is given by

16(�11 � �00)(N11�N00) + 16(�10 � �01)(N10�N01);

and in general depends on the parameters of the model for disease susceptibility. Similarly for
discordant and una�ected sib-pairs. When �10 = �01, the score test is based on N11�N00, that is,
N2 �N0 in the more usual notation.

5.3 A�ected sib-trios, orbits of S3 �D4

For a�ected sib-trios (ASTs), there are four IBD con�gurations with representative inheritance
vectors and labels (de�ned as in Ethier and Hodge [5]) listed in Table 3.
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Table 3: IBD con�gurations for a�ected sib-trios

IBD Con�guration i Representative inheritance vector Label jCij
1 (1,3,1,3,1,3) (0,0,0) 4
2 (1,3,1,3,1,4) (0,0,1) 24
3 (1,3,1,4,2,3) (0,1,1) 24
4 (1,3,1,3,2,4) (1,1,1) 12

The transition matrix T (�) is given by2
664

(1� 3� + 3�2)2 6���(1� 3� + 3�2) 6�2��2 3�2��2

���(1� 3� + 3�2) 1� 4� + 10�2 � 12�3 + 6�4 2���(1 � � + �2) ���(1� � + �2)
�2��2 2���(1� � + �2) 1� 4� + 10�2 � 12�3 + 6�4 ���(2� 5� + 5�2)
�2��2 2���(1� � + �2) 2���(2� 5� + 5�2) 1� 6� + 17�2 � 22�3 + 11�4

3
775 ;

and the in�nitesimal generator is

Q =

2
6664
�6 6 0 0
1 �4 2 1
0 2 �4 2
0 2 4 �6

3
7775 :

Q has eigenvalues � = 0;�4;�8;�8, and the left and right eigenvectors corresponding to � = �4
are 1

16

q
2
3(3; 6;�6;�3) and

q
2
3(3; 1;�1;�1), respectively. Hence

U = 8P�4 = 8

r
2

3

2
6664

3
1
�1
�1

3
7775 1

16

r
2

3
[3; 6;�6;�3] =

2
6664

3 6 �6 �3
1 2 �2 �1
�1 �2 2 1
�1 �2 2 1

3
7775 :

Let Ni denote the number of ASTs with IBD con�guration i at the marker, i = 1; 2; 3; 4. Then,
the score statistic for testing linkage is

S =
16

3
(3�1 + �2 � �3 � �4)(3N1+N2 �N3 �N4):

5.4 Discordant sib-trios, orbits of (S1 � S2)�D4

For discordant sib-trios, where the �rst sib is the \odd" sib (i.e. the only a�ected sib or the only
una�ected sib), there are seven IBD con�gurations with representative inheritance vectors listed in
Table 4.

The in�nitesimal generator is

Q =

2
66666666664

�6 4 0 0 0 2 0
1 �5 1 1 1 1 0
0 2 �6 2 2 0 0
0 2 2 �6 2 0 0
0 1 1 1 �5 1 1
1 2 0 0 2 �6 1
0 0 0 0 4 2 �6

3
77777777775
:
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Table 4: IBD con�gurations for discordant sib-trios

IBD Con�guration i Representative inheritance vector jCij
1 (1,3,1,3,1,3) 4
2 (1,3,1,3,1,4) 16
3 (1,3,1,3,2,4) 8
4 (1,3,1,4,2,3) 8
5 (1,3,1,4,2,4) 16
6 (1,3,1,4,1,4) 8
7 (1,3,2,4,2,4) 4

Q has eigenvalues � = 0;�4;�4;�8;�8;�8;�8, and the two right eigenvectors corresponding to

� = �4 are v =
q

2
3(�1;�1;�1;�1; 1; 1; 3) and ~v = 1p

3
(4; 1;�2;�2;�1; 2; 0), respectively. Hence

U = 8P�4 =

2
66666666664

3 4 �2 �2 �4 2 �1
1 2 0 0 �2 0 �1
�1 0 2 2 0 �2 �1
�1 0 2 2 0 �2 �1
�1 �2 0 0 2 0 1
1 0 �2 �2 0 2 1
�1 �4 �2 �2 4 2 3

3
77777777775
:

Denote the i-th column of U by ui, then u1 + u7 = �u3 = �u4 = u6 and u1 � u7 = u2 = �u5. Let
Ni denote the number of DSTs with IBD con�guration i at the marker, i = 1; : : : ; 7. Then, the
score statistic for testing linkage is

S = 8
� 7X
j=1

�jvj
�� 7X

i=1

Nivi
�
+ 8

� 7X
j=1

�j~vj
�� 7X

i=1

Ni~vi
�

=
8

3

�
2(��1 � �2 � �3 � �4 + �5 + �6 + 3�7)

(�N1 �N2 �N3 �N4 +N5 +N6 + 3N7)

+ (4�1 + �2 � 2�3 � 2�4 � �5 + 2�6)

(4N1 +N2 � 2N3 � 2N4 �N5 + 2N6)
�
:

6 Discussion

In this paper, we have derived score statistics for testing the null hypothesis of no linkage between
a marker and a disease gene using identity by descent (IBD) data from sibships. We de�ned
IBD con�gurations to be the orbits of groups acting on the set of inheritance vectors and proved
that the change in IBD con�gurations along a chromosome was embeddable in a continuous time
Markov chain, without the assumption of no crossover interference. In our genetic context, the i-th
derivative, i = 0; : : : ; 2k, of the IBD con�guration transition matrix T (�) is given by

T (i)(�) =
X
h

�i�1Y
j=0

(�h + 2j)
	
(1� 2�)�(�h+2i)=2Ph;
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where the �h and Ph are the eigenvalues and projection matrices of the in�nitesimal generator Q
, respectively (cf. Proposition 2). By relating Q to the adjacency matrix of a quotient graph, we
derived properties of its eigenvalues and eigenvectors. In general, the second largest eigenvalue of
Q and its multiplicity determine the form of the score statistic. If the second largest eigenvalue of
Q is �2i, the score statistic is based on the i-th derivative of the log-likelihood. For a�ected only
sibships, the second largest eigenvalue �4 has multiplicity one, and as a result, the score test is
based on the second derivative of the log-likelihood and is independent of the genetic model (i.e.
of the nuisance parameter �). Furthermore, the score statistic reduces to a well-known statistic in
linkage analysis, Spairs.

A recent study of Davis and Weeks [1] on sib-pairs found Spairs to perform well for a variety of
genetic models. However, the performance of Spairs for larger sibships still needs to be studied.
When combining IBD data from di�erent types of sibships, the weights depend on the genetic
model through the IBD probabilities � and the robustness of the test to misspeci�cations of the
genetic model remains to be addressed.

It would be useful to derive score tests of linkage for IBD data from other types of small pedigrees
(e.g. 1 cousin and 2 sibs). Donnelly [3] considered relative pairs, such as cousin-pairs, grand-
parent/grandchild and uncle/nephew pairs, and partitioned the inheritance vectors into a much
smaller number of orbits. Note that these orbits are not necessarily the usual IBD con�gurations
corresponding to sharing DNA IBD on 0 or 1 chromosome, and the transition matrix for these
usual con�gurations doesn't always satisfy the semi-group property.

The problem of testing linkage using IBD data is part of a general type of testing problems in
which we wish to test whether a Markov chain has reached its stationary distribution. The second
largest eigenvalue of the in�nitesimal generator not only determines the rate of convergence to the
stationary distribution, but also plays an important role in hypothesis testing, as illustrated by this
study.
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A P�olya theory of counting

Let A and B be �nite sets, jAj = n, and let G and H be �nite groups, G acting on A and H on B.
By Theorem 35.3 in van Lint and Wilson [15], the number of orbits of G �H acting on BA, the
set of mappings from A to B, is given by

1

jH j
X
�2H

ZG(m1(�); : : : ; mn(�));

where
mi(�) :=

X
jji
jzj(�); i = 1; : : : ; n;

zj(�) := number of cycles of � having length j; j = 1; : : : ; jBj:
For a group G acting on a set of n elements, the cycle index ZG is a polynomial in n letters,
X1; : : : ; Xn, de�ned by

ZG(X1; : : : ; Xn) :=
1

jGj
X
�2G

X
z1(�)
1 : : :Xzn(�)

n :

The cycle index for the symmetric group on n letters is

ZSn(X1; : : : ; Xn) =
X

(1k1 :::nkn )

1

1k1 : : :nknk1! : : :kn!
Xk1
1 : : :Xkn

n ;

where (1k1 : : :nkn) denotes a partition of n with ki parts of size i, i = 1; : : : ; n. ZSn(X1; : : : ; Xn) is

also the coe�cient of zn in the expansion of exp
�P1

i=1
zi

i Xi

�
(deBruijn [2] p.147); this is the formula

which is most appropriate for our problem. In our problem, we wish to determine the number of
orbits of G�H acting on the set of mappings fa; b; c; dgf1;:::;kg (i.e. the set of inheritance vectors),
where H = D4 or C2 � C2 and G = Sk or Sh � Sk�h. Table 5 lists for each permutation in D4 the
number of cycles of length j, j = 1; 2; 3; 4. The mi's are calculated using Table 5, and the fact that
for � 2 D4 and i � 0

m4(�) = m4i+4(�);

m1(�) = m4i+1(�) = m4i+3(�);

m2(�) = m4i+2(�):

When H = C2 � C2, only the �rst and third rows of Table 7 are used. When G = Sh � Sk�h, we
note that the cycle index polynomial of the direct product of two groups is simply the product of
the cycle indices of the two groups and Table 7 may be used again.

The number of IBD con�gurations for the four groups are listed below.

Sk �D4 :

m =

8>><
>>:
(k + 1)(k + 3)(k+ 5)=48; k odd;

(k + 2)(k2 + 7k + 18)=48; k even and k=2 odd;

(k + 4)(k2 + 5k + 12)=48; k even and k=2 even:

which agrees with equation (5) of Ethier and Hodge [5].
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Table 5: Cycles of D4. zj(�) denotes the number of cycles of � having length j. The elements of
D4 are listed according to the notation of Fraleigh p. 70.

Permutation � z1(�) z2(�) z3(�) z4(�)

� 4 0 0 0
�1 = (cadb) 0 0 0 1
�2 = (ad)(bc) 0 2 0 0
�3 = (bdac) 0 0 0 1
�1 = (ab)(cd) 0 2 0 0
�2 = (ac)(bd) 0 2 0 0
�1 = (bc) 2 1 0 0
�2 = (ad) 2 1 0 0

Table 6: mi(�) for � 2 D4.

Permutation � m4i+1(�) m4i+2(�) m4i+4(�)
= m4i+3(�)

� 4 4 4
�1; �3 0 0 4
�2; �1; �2 0 4 4
�1; �2 2 4 4

Sk � (C2 � C2) :

m =

(
(k + 3)(k + 2)(k+ 1)=24; k odd;

(k + 2)(k2 + 4k + 12)=24; k even:

(Sh � Sk�h)�D4 :

m =
1

8

" 
h+ 3

3

! 
k � h+ 3

3

!
+ 2I(4jh)I(4jk� h)

+
3

4
I(2jh)I(2jk� h)(h+ 2)(k� h+ 2)

+
1

8

�
I(2jh) + (h+ 1)(h+ 3)

��
I(2jk� h) + (k � h+ 1)(k� h + 3)

�#
:

(Sh � Sk�h)� (C2 � C2) :

m =
1

4

" 
h+ 3

3

! 
k � h + 3

3

!
+ 3I(2jh)I(2jk� h)

(h+ 2)(k� h+ 2)

4

#
:

For any inheritance vector x, let pat denote the less frequent of the paternal labels 1 and 2, and
similarly let mat denote the less frequent of the maternal labels 3 and 4. Ethier and Hodge [5]
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Table 7: ZSk (m1(�); : : : ; mk(�)) for � 2 D4. I( ) is the indicator function.

Permutation � exp(
P1

i=1mi(�)
zi

i ) ZSk (m1(�); : : : ; mk(�))

� (1� z)�4 �k+3
3

�
�1; �3 (1� z4)�1 I(4jk)

�2; �1; �2 (1� z2)�2 I(2jk)(k+ 2)=2

�1; �2 (1� z)�2(1� z2)�1 1
4

�
I(2jk) + (k + 1)(k+ 3)

�

de�ne the label of the particular inheritance vector x to be the triple (l1; l2; l3) where

l1 = j(pat;mat)j; l2 = min(jpatj; jmatj); l3 = max(jpatj; jmatj):

For example, if x = (1; 3; 1; 4; 2; 3), the less frequent of the paternal labels is 2, thus pat = 2 and
jpatj = 1. Similarly, mat = 4 and jmatj = 1. (mat; pat) = (2; 4) and the number of sibs with pair
of labels (2; 4) is 0. Thus l1 = 0, l2 = 1, and l3 = 1. In ambiguous cases such as j1j = j2j = k=2
or j3j = j4j = k=2 , Ethier and Hodge suggest making a choice that results in l1 � l2=2. Then the
triple satis�es

0 � l1 � l2 � l3 � k=2; and l1 � l2=2 if l3 = k=2:

We can modify the labeling of Ethier and Hodge for the orbits of Sk � (C2 � C2) and let

l1 = j(pat;mat)j; l2 = jpatj; l3 = jmatj:

B Transition matrix for sibship IBD con�gurations

B.1 Proof of Proposition 1

Let �� = 1� �. We �rst prove the semi-group property for the transition matrix R(�) of inheritance
vectors. Let � = �(x; y), then

rxy(�1 � �2) = (�1 � �2)�(1� (�1 � �2))2k��
= (�1 ��2 + ��1�2)

�(�1�2 + ��1 ��2)
2k��

=
�X
i=0

2k��X
j=0

 
�

i

! 
2k ��

j

!
�
i+j
1

��1
2k�(i+j)

�
��i+j
2

��2
2k�(��i+j)

:

Also, X
z

rxz(�1)rzy(�2) =
X
z

�
�(x;z)
1

��1
2k��(x;z)

�
�(y;z)
2

��2
2k��(y;z)

:

Now, for i = 0; : : : ;�, j = 0; : : : ; 2k ��, divide the set of all 22k inheritance vectors into groups
of
��
i

��2k��
j

�
inheritance vectors z such that z di�ers from x at i of the � positions at which x
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and y di�er, and z di�ers from x at j of the 2k � � positions at which x and y agree. Then,
�(x; z) = i+ j, �(y; z) = (�� i) + j, and

X
z

�
�(x;z)
1

��1
2k��(x;z)

�
�(y;z)
2

��2
2k��(y;z)

=
�X
i=0

2k��X
j=0

 
�

i

! 
2k ��

j

!
�i+j1

��1
2k�(i+j)

���i+j2
��2
2k�(��i+j)

:

Therefore,
rxy(�1 � �2) =

X
z

rxz(�1)rzy(�2):

Consider now the transition matrix for IBD con�gurations. From equation (4)

tij(�1 � �2) =
X
y2Cj

rxy(�1 � �2) where x is any x 2 Ci

=
X
y2Cj

X
z

rxz(�1)rzy(�2) =
X
y2Cj

X
l

X
z2Cl

rxz(�1)rzy(�2)

=
X
l

X
z2Cl

rxz(�1)
X
y2Cj

rzy(�2)

=
X
l

tlj(�2)
X
z2Cl

rxz(�1)

=
X
l

til(�1)tlj(�2):

Hence, T (�) satis�es the semi-group property T (�1 � �2) = T (�1)T (�2). Now T (�) is di�erentiable
and for � 6= 1

2

T (� + h(1� 2�))� T (�)

h(1� 2�)
=

T (� � h)� T (�)
h(1� 2�)

=

�
T (�)

1� 2�

��
T (h)� I

h

�
=

�
T (h)� I

h

��
T (�)

1� 2�

�
:

Thus T 0(�), the matrix of �rst derivatives of the transition probabilities, is given by

T 0(�) = lim
h!0

T (� + h)� T (�)

h
= lim

h!0

T (� + h(1� 2�))� T (�)
h(1� 2�)

;

that is,

T 0(�) =
T (�)

1� 2�
T 0(0) = T 0(0)

T (�)

1� 2�
;

and hence
T (�) = ed(�)Q;

where d(�) = �1
2 ln(1 � 2�) is the inverse of the Haldane map function and Q = T 0(0) is the

in�nitesimal generator. Q has entries

qij =
X
y2Cj

(�2k I(�(x; y) = 0) + I(�(x; y) = 1)) =
X
y2Cj

I(�(x; y) = 1))� 2k�i;j ;

where x is any inheritance vector in Ci. Q may be written as Q = B � 2kI where B is the matrix
with entries

bij =
X
y2Cj

I(�(x; y) = 1); for any x 2 Ci:
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T (�) satis�es
jCijtij(�) = jCj jtji(�);

hence, the stationary distribution of T is

� = (�1; : : : ; �m) =
1

22k
�jC1j; : : : ; jCmj�;

since X
i

�itij(�) =
X
i

�j tji(�) = �j :

B.2 Proof of Proposition 2

Q satis�es the reversibility condition �iqij = �jqji, hence Q is self-adjoint with respect to the real
inner product < x; y >�=

P
i �ixiyi on <m. Hence, from the Principal Axis Theorem (Jacob [8],

p.288), Q has an orthonormal basis of eigenvectors with only real eigenvalues, �h, h = 1; : : : ; m
(not necessarily distinct). Denote the h-th (column) eigenvector by vh and its i-th entry by vih.
Then, < vh;vl >�=

P
i �ivihvil = �hl. Since Q is reversible, the row vector wh with i-th entry

whi = �ivih is the left eigenvector of Q corresponding to the h-th eigenvalue. Hence Q may be
written as

Q =
X
h

�hPh;

where
(Ph)ij = vihwhj = �jvihvjh;

i.e.
Ph = vhwh:

The projection matrices satisfy P 2
h = Ph = P �h ; PhPl = 0, h 6= l, and

P
h Ph = I , where P �h is the

adjoint of Ph with respect to <;>�. It follows that

T (�) =
X
h

e�hd(�) Ph =
X
h

(1� 2�)��h=2 Ph:

C Adjacency matrix of quotient graph X =H

Consider the graph X with vertex set the set of all inheritance vectors of length 2k and adjacency
matrix A(X ) = A with (x; y)-entry

axy =

(
1; if �(x; y) = 1;

0; otherwise:

To describe the eigenvectors ofA it is convenient to code the inheritance vectors x = (x1; x2; : : : ; x2k)
as in a 22k factorial experiment, where x2i�1 = 1 when factor 2i � 1 is absent and 2 when it is
present, and x2i = 3 when factor 2i is absent and 4 when it is present. The eigenvectors of A have
the following patterns.
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Proposition 3 Eigenvectors and eigenvalues of adjacency matrix A.
The eigenvector corresponding to the eigenvalue � = 2k is the grand mean term V0 = (1; 1; : : : ; 1)T .
The eigenvectors corresponding to the eigenvalue � = 2k�2 are the 2k main e�ect terms, V1; V2; : : : ; V2k,
where

V2i�1(x) = I(x2i�1 = 2)� I(x2i�1 = 1);

V2i(x) = I(x2i = 4)� I(x2i = 3):

The eigenvectors corresponding to the eigenvalue � = 2k� 4 are the
�2k
2

�
2-factor interactions, Vij,

1 � i < j � 2k, where
Vij(x) = Vi(x)Vj(x):

In general, the eigenvectors corresponding to the eigenvalue � = 2(k � i), i = 0; : : : ; 2k, are the�2k
i

�
i-factor interactions, Vj1;j2 ;::: ;ji, 1 � j1 < j2 < : : : < ji � 2k, where

Vj1;j2;::: ;ji(x) = Vj1(x)Vj2(x) : : :Vji(x):

Let H denote the matrix with rows the 22k eigenvectors of A described above. Then, H is an
Hadamard matrix, i.e. its entries are 1 and -1 and HHT = 22kI.

Proof. (Partial) We need not distinguish the parental origin of the DNA, hence, for simplicity
denote 1's and 3's by 0's and 2's and 4's by 1's. Then

Vi(x) = I(xi = 1)� I(xi = 0) = 2 I(xi = 1)� 1:

� = 2k: The rows of A sum to 2k hence � = 2k is an eigenvalue of A with eigenvector V0.

� = 2k � 2: X
y

axyVi(y) =
X
y

I(�(x; y) = 1)(2 I(yi = 1)� 1)

= 2
X
y

I(�(x; y) = 1; yi = 1)� 2k

= 2
�
I(xi = 1)(2k� 1) + I(xi = 0)

�
� 2k

= 2
�
(2k� 2) I(xi = 1) + 1

�
� 2k

= (2k � 2)(2 I(xi = 1)� 1) = (2k � 2)Vi(x):

Hence � = 2k � 2 is an eigenvalue of A with eigenvectors Vi, i = 1; : : : ; 2k. It is easy to show that
< Vi; Vj >= 22k�ij .
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� = 2k � 4:X
y

axyVi(y)Vj(y) =
X
y

I(�(x; y) = 1)(2 I(yi = 1)� 1)(2 I(yj = 1)� 1)

=
X
y

I(�(x; y) = 1)
�
4 I(yi = 1; yj = 1)� 2 I(yi = 1)� 2 I(yj = 1) + 1

�

= 4
�
I(xi = 1; xj = 1)(2k� 2) + I(xi = 1; xj = 0) + I(xi = 0; xj = 1)

�
� 2

�
I(xi = 1)(2k� 1) + I(xi = 0)

�
� 2

�
I(xj = 1)(2k� 1) + I(xj = 0)

�
+ 2k

= 4I(xi = 1; xj = 1)(2k� 2)

+ 4
�
I(xi = 1)� I(xi = 1; xj = 1)

�
+ 4

�
I(xj = 1)� I(xi = 1; xj = 1)

�
� 2

�
(2k � 2)I(xi = 1) + 1

�
� 2

�
(2k� 2)I(xj = 1) + 1

�
+ 2k

= (2k � 4)
�
4I(xi = 1; xj = 1)� 2I(xi = 1)� 2I(xj = 1) + 1

�
= (2k � 4)Vi(x)Vj(x):

Hence � = 2k � 4 is an eigenvalue of A with eigenvectors Vij .

In order to prove Theorem 1, we rely on the following general facts concerning quotient graphs (cf.
Godsil [7], Chapter 5). Consider a group H acting on the vertices of X , as described in Table 2.
Then, by the same argument as that leading to equation (3), the orbits of H , Ci, i = 1; : : : ; m,
form an equitable partition of the vertex set of X . The matrix B de�ned in Proposition 1 is the
adjacency matrix of the quotient graph X =H , which is the multi-digraph with the orbits of H as
its vertices and with bij arcs going from Ci to Cj . Let C denote the characteristic matrix of the
partition (Ci); C is a 22k �m matrix, with ij-th entry 1 or 0 according as the i-th vertex of X is
contained in the orbit Cj or not.

Fact 1 (based on Lemma 2.2 in Godsil [7])
The eigenvalues of B are a subset of the eigenvalues of A.

Fact 2 (based on Lemma 2.2 in Godsil [7])
If v is an eigenvector of B, then Cv is an eigenvector of A which is constant over the orbits of H,
with entry vi on Ci.

Fact 3 If V is an eigenvector of A which is constant over the orbits of H, with V (x) = vi 8 x 2 Ci,
then the vector v, with i-th entry vi, is an eigenvector of B.

Proof. For any x 2 Ci
�vi = �V (x) =

X
y

axyV (y) =
X
j

vj
X
y2Cj

axy =
X
j

vjbij :

The proof of Theorem 1 also relies on the following speci�c properties of the eigenvectors of A on
the orbits of H .
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C.1 Quotient graph X=(Sk �D4)

Fact 4 The 2k eigenvectors of A corresponding to the eigenvalue 2k � 2 sum to 0 over the orbits
of Sk �D4, i.e. 8 i = 1; : : : ; 2k, and any orbit CX

x2C
Vi(x) = 0:

Proof. Let � 2 Sk denote the identity permutation and as before let � = (ac)(bd) denote the
permutation ofD4 which corresponds to interchanging the paternal labels 1 and 2. Let ~x = (�; �)(x)
denote the inheritance vector obtained from x by interchanging the paternal labels. Then, for
1 � i � k

V2i�1(x) = (I(x2i�1 = 2)� I(x2i�1 = 1))

= (I(~x2i�1 = 1)� I(~x2i�1 = 2)) = �V2i�1(~x);
and since applying (�; �) to the elements of C results in a permutation of the inheritance vectors in
C, then X

x2C
V2i�1(x) = �

X
x2C

V2i�1(~x) = �
X
x2C

V2i�1(x):

Consequently, X
x2C

V2i�1(x) = 0:

The proof for V2i is similar, but uses the permutation � instead of �.

Fact 5 The k2 eigenvectors of A corresponding to the eigenvalue 2k � 4 and involving \odd" and
\even" factors sum to 0 over the orbits of Sk �D4, i.e. 8 i; j = 1; : : : ; k, and any orbit CX

x2C
V2i�1(x)V2j(x) = 0:

Proof. Here again, let ~x = (�; �)(x). Then

V2i�1(x)V2j(x) = (�V2i�1(~x))V2j(~x);
and X

x2C
V2i�1(x)V2j(x) = �

X
x2C

V2i�1(~x)V2j(~x) = �
X
x2C

V2i�1(x)V2j(x):

Hence X
x2C

V2i�1(x)V2j(x) = 0:

Fact 6 Let
V (x) =

X
(i;j)

fV2i�1;2j�1(x) + V2i;2j(x)g ;

where the sum is over all
�k
2

�
unordered pairs (i; j) of distinct integers ranging from 1 to k. Then

V is an eigenvector of A corresponding to the eigenvalue 2k � 4. Furthermore, V is constant over
the orbits of Sk �D4, i.e. for any orbit C

V (x) = V (~x) whenever x; ~x 2 C:
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Proof. Members of the same orbit are obtained by a combination of any of the following three
operations: a permutation � 2 Sk of the sibs, and permutations � and  of the pairs of labels of all
sibs simultaneously. We will consider a particular con�guration C and the e�ect of each operation
separately on x 2 C.

~x = (�; �)(x), where � is the identity in Sk and � = (ac)(bd): For each pair (i; j)

V2i�1(~x)V2j�1(~x) + V2i(~x)V2j(~x) = (�V2i�1(x))(�V2j�1(x)) + V2i(x)V2j(x);

hence V (~x) = V (x).

~x = (�; )(x), where � is the identity in Sk and  = (bc): For each 1 � i � k

I(~x2i�1 = 1) = I(~x2i�1 = 1; ~x2i = 3) + I(~x2i�1 = 1; ~x2i = 4)

= I(x2i�1 = 1; x2i = 3) + I(x2i�1 = 2; x2i = 3)

= I(x2i = 3);

and similarly
I(~x2i�1 = 2) = I(x2i = 4):

Hence, for 1 � i � k

V2i�1(~x) = V2i(x); (12)

and consequently V (x) = V (~x).

~x = (�; �)(x) 2 C, where � 2 Sk and � is the identity in D4: For 1 � i � k, ~x2i�1 = x2��1(i)�1 and
~x2i = x2��1(i), thus

V (~x) =
X
(i;j)

n
V2��1(i)�1(x)V2��1(j)�1(x) + V2��1(i)(x)V2��1(j)(x)

o

=
X
(i;j)

fV2i�1(x)V2j�1(x) + V2i(x)V2j(x)g = V (x):

In particular, for k > 1

V (1; 3; 1; 3; : : : ; 1; 3) =
X
(i;j)

(�1)(�1) + (�1)(�1) = 2

 
k

2

!
= k(k � 1) 6= 0:

Hence, since V is a linear combination of eigenvectors of A which is non-zero, then V is an eigen-
vector of A corresponding to the eigenvalue 2k � 4. Furthermore, V is constant on the orbits of
Sk �D4.

Fact 7 The k(k � 1) 2-factor eigenvectors fV2i�1;2j�1; V2i;2j : i < jg have the same sums over the
orbits of Sk �D4, i.e. for any orbit C and 1 � i1 < j1 � k, 1 � i2 < j2 � kX

x2C
V2i2�1;2j2�1(x) =

X
x2C

V2i1�1;2j1�1(x) =
X
x2C

V2i1;2j1(x) =
X
x2C

V2i2;2j2(x):
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Proof. Let x 2 C, then ~x = (�; )(x) 2 C, and by equation (12) for each 1 � i < j � kX
x2C

V2i�1(x)V2j�1(x) =
X
x2C

V2i(~x)V2j(~x) =
X
x2C

V2i(x)V2j(x):

Also, consider any permutation � 2 Sk, then ~x = (�; �)(x) 2 C andX
x2C

V2i(x)V2j(x) =
X
x2C

V2i(~x)V2j(~x) =
X
x2C

V2��1(i)(x)V2��1(j)(x):

Similarly for V2i�1;2j�1.

Proposition 4 Eigenvalues of adjacency matrix B of quotient graph X =(Sk �D4).
2k and 2k�4 are eigenvalues of B with multiplicity one. All other eigenvalues of B are strictly less

than 2k � 4 and belong to the set

�
2(k� i)(2ki )

: i = 3; : : : ; 2k

�
, where

�2k
i

�
is the largest possible

multiplicity of the eigenvalue 2(k � i). The eigenvector v corresponding to 2k � 4 may be obtained
from

V (x) =
X
(i;j)

fV2i�1;2j�1(x) + V2i;2j(x)g ;

by letting
vi = V (x) where x is any x 2 Ci:

Proof.

From Proposition 3 and Fact 1 the eigenvalues of B belong to the set

�
2(k � i)(2ki ) : i = 0; : : : ; 2k

�
.

� = 2k: The rows of B sum to 2k, hence 2k is an eigenvalue of B with corresponding eigenvector
1 = (1; 1; : : : ; 1)T .

� = 2k�2: From Fact 4, eigenvectors of A corresponding to the eigenvalue 2k�2 sum to 0 over the
orbits of Sk �D4, hence no eigenvector of A can be constant and non-zero over the orbits. Hence,
from Fact 2, 2k � 2 is not an eigenvalue of B.

� = 2k � 4: We have shown with Fact 6 that V is an eigenvector of A, corresponding to the
eigenvalue 2k�4, which is constant over the orbits. Hence, by Fact 3, V yields an eigenvector of B.
It remains to show that B has no other eigenvector, that is, V is the only eigenvector of A which
is constant over the orbits. The orthogonal complement of V in the eigenspace of A for � = 2k� 4
is spanned by the following 2k2 � k vectors

W2i�1;2j = V2i�1;2j � < V2i�1;2j; V >

jV j2 V

= V2i�1;2j; 1 � i; j � k;

W2i�1;2j�1 = V2i�1;2j�1 � < V2i�1;2j�1; V >

jV j2 V

= V2i�1;2j�1 � 1

k(k � 1)
V; 1 � i < j � k;

W2i;2j = V2i;2j � < V2i;2j; V >

jV j2 V = V2i;2j � 1

k(k � 1)
V; 1 � i < j � k:
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By Fact 5, for any orbit C X
x2C

W2i�1;2j(x) = 0:

Also, by Fact 7

X
x2C

W2i�1;2j�1(x) =
X
x2C

V2i�1;2j�1(x)� 1

k(k � 1)

X
(i;j)

X
x2C
fV2i�1;2j�1(x) + V2i;2j(x)g = 0;

and similarly X
x2C

W2i;2j(x) = 0:

Hence, no eigenvector in the orthogonal complement of V in the eigenspace of A for � = 2k � 4 is
constant over the orbits of Sk � D4. Consequently, by Fact 2, 2k � 4 is an eigenvalue of B with
multiplicity 1.

C.2 Quotient graph X=(Sk � (C2 � C2))

Facts 4 and 5 also apply to the orbits of Sk � (C2�C2). Facts 6 and 7 may be modi�ed as follows.

Fact 8 Let
Vo(x) =

X
(i;j)

V2i�1;2j�1(x)

and
Ve(x) =

X
(i;j)

V2i;2j(x);

where the sums are over all
�k
2

�
unordered pairs (i; j) of distinct integers ranging from 1 to k. Then

Ve and Vo are two eigenvectors of A corresponding to the eigenvalue 2k � 4. Furthermore, Ve and
Vo are constant over the orbits of Sk � (C2 � C2).

Fact 9 The k(k � 1)=2 2-factor eigenvectors fV2i�1;2j�1 : i < jg have the same sums over the
orbits of Sk � (C2 � C2), i.e. for any orbit C and 1 � i1 < j1 � k, 1 � i2 < j2 � kX

x2C
V2i1�1;2j1�1(x) =

X
x2C

V2i2�1;2j2�1(x):

Similarly for the k(k � 1)=2 2-factor eigenvectors fV2i;2j : i < jg.

Proposition 5 Eigenvalues of adjacency matrix B of quotient graph X =(Sk � (C2 � C2)).
2k and 2k � 4 are eigenvalues of B with multiplicities one and two, respectively. All other eigen-

values of B are strictly less than 2k � 4 and belong to the set

�
2(k � i)(2ki ) : i = 3; : : : ; 2k

�
. The

eigenvectors corresponding to 2k � 4 may be obtained from Ve and Vo.

Proof.

From Proposition 3 and Fact 1 the eigenvalues of B belong to the set

�
2(k � i)(2ki ) : i = 0; : : : ; 2k

�
.
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� = 2k: The rows of B sum to 2k, hence 2k is an eigenvalue of B with corresponding eigenvector
1 = (1; 1; : : : ; 1)T .

� = 2k�2: From Fact 4, eigenvectors of A corresponding to the eigenvalue 2k�2 sum to 0 over the
orbits of Sk � (C2 � C2), hence no eigenvector of A can be constant and non-zero over the orbits.
Hence, from Fact 2, 2k � 2 is not an eigenvalue of B.

� = 2k � 4: From Fact 8, Vo and Ve are eigenvectors of A, corresponding to the eigenvalue 2k� 4,
which are constant over the orbits. Hence, by Fact 3, Ve and Vo yield two eigenvectors of B. It
remains to show that B has only two eigenvectors, that is, Ve and Vo are the only eigenvectors of A
which are constant over the orbits. The orthogonal complement of SpanfVo; Veg in the eigenspace
of A for � = 2k � 4 is spanned by the following 2k2 � k vectors

W2i�1;2j = V2i�1;2j � < V2i�1;2j; Ve >
jVej2 Ve � < V2i�1;2j; Vo >

jVoj2 Vo

= V2i�1;2j; 1 � i; j � k;

W2i�1;2j�1 = V2i�1;2j�1 � < V2i�1;2j�1; Ve >
jVej2 Ve � < V2i�1;2j�1; Vo >

jVoj2 Vo

= V2i�1;2j�1 � 2

k(k � 1)
Vo; 1 � i < j � k;

W2i;2j = V2i;2j � < V2i;2j; Ve >

jVej2 Ve � < V2i;2j; Vo >

jVoj2 Vo

= V2i;2j � 2

k(k � 1)
Ve; 1 � i < j � k:

By Fact 5, for any orbit C X
x2C

W2i�1;2j(x) = 0:

Also, by Fact 9

X
x2C

W2i�1;2j�1(x) =
X
x2C

V2i�1;2j�1(x)� 2

k(k � 1)

X
(i;j)

X
x2C

V2i�1;2j�1(x) = 0;

and similarly X
x2C

W2i;2j(x) = 0:

Hence, no eigenvector in the orthogonal complement of SpanfVo; Veg in the eigenspace of A for
� = 2k � 4 is constant over the orbits of Sk � (C2 � C2). Consequently, by Fact 2, 2k � 4 is an
eigenvalue of B with multiplicity 2.

C.3 Quotient graph X=((Sh � Sk�h)�D4)

Facts 4 and 5 also apply to the orbits of X =((Sh � Sk�h) � D4). The proof for sibships with
both a�ected and una�ected sibs is similar to that for a�ected only sibships, but involves new
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combinations of eigenvectors. Without loss of generality, order the sibs such that the �rst h are
a�ected and the last k � h una�ected. For k � 3, de�ne

V a(x) =
X

1�i<j�h
fV2i�1;2j�1(x) + V2i;2j(x)g ; h � 2;

V u(x) =
X

h+1�i<j�k
fV2i�1;2j�1(x) + V2i;2j(x)g ; h � k � 2;

V au(x) =
X

1�i�h; h+1�j�k
fV2i�1;2j�1(x) + V2i;2j(x)g :

Facts 6 and 7 are then modi�ed as follows.

Fact 10 For k � 3, V a (h � 2), V u (h � k � 2) and V au are eigenvectors of A corresponding to
the eigenvalue 2k � 4. Furthermore, these are constant over the orbits of X =((Sh � Sk�h)�D4).

Fact 11 For any orbit C of X =((Sh � Sk�h)�D4) and 1 � i1 < j1 � h, 1 � i2 < j2 � hX
x2C

V2i1�1;2j1�1(x) =
X
x2C

V2i2�1;2j2�1(x) =
X
x2C

V2i2;2j2(x) =
X
x2C

V2i1;2j1(x):

Similarly for h+ 1 � i1 < j1 � k, h+ 1 � i2 < j2 � k, and 1 � i1; i2 � h, h+ 1 � j1; j2 � k.

Proposition 6 Eigenvalues of adjacency matrix B of quotient graph X =((Sh � Sk�h)�D4).
2k is an eigenvalue of B with multiplicity one. 2k� 4 is an eigenvalue of B with multiplicity three
if 2 � h � k � 2 and two otherwise. All other eigenvalues of B are strictly less than 2k � 4 and

belong to the set

�
2(k� i)(2ki )

: i = 3; : : : ; 2k

�
. The eigenvectors corresponding to 2k � 4 may be

obtained from V a, V u and V au.

Proof.

From Proposition 3 and Fact 1 the eigenvalues of B belong to the set

�
2(k � i)(2ki ) : i = 0; : : : ; 2k

�
.

We give the proof for � = 2k � 4; for the other eigenvalues, the proof is as for Propositions 4 and
5. From Fact 10, V a (h � 2), V u (h � k � 2), V au are eigenvectors of A, corresponding to the
eigenvalue 2k � 4, which are constant over the orbits. Hence, by Fact 3, they yield eigenvectors
of B. It remains to show that these are the only eigenvectors of B, that is, V a, V u and V au

are the only eigenvectors of A which are constant over the orbits. The orthogonal complement of
SpanfV a; V u; V aug in the eigenspace of A for � = 2k � 4 is spanned by the 2k2 � k vectors Wi;j ,
1 � i; j � 2k, i 6= j, de�ned as follows

Wi;j = Vi;j � < Vi;j; V
a >

jV aj2 V a � < Vi;j ; V
u >

jV uj2 V u � < Vi;j; V
au >

jV auj2 V au:
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W2i�1;2j = V2i�1;2j; i; j = 1; : : : ; k;

W2i�1;2j�1 = V2i�1;2j�1 � 1

h(h � 1)
V a; 1 � i < j � h;

= V2i�1;2j�1 � 1

(k � h)(k � h� 1)
V u; h + 1 � i < j � k;

= V2i�1;2j�1 � 1

2h(k � h)
V au; 1 � i � h; h+ 1 � j � k;

W2i;2j = V2i;2j � 1

h(h� 1)
V a; 1 � i < j � h;

= V2i;2j � 1

(k � h)(k� h� 1)
V u; h+ 1 � i < j � k;

= V2i;2j � 1

2h(k � h)
V au; 1 � i � h; h+ 1 � j � k:

By Fact 5, for any orbit C X
x2C

W2i�1;2j(x) = 0:

Also, by Fact 11 X
x2C

W2i�1;2j�1(x) = 0;

and X
x2C

W2i;2j(x) = 0:

Hence, no eigenvector in the orthogonal complement of SpanfV a; V u; V aug in the eigenspace of A
for � = 2k� 4 is constant over the orbits of X =((Sh�Sk�h)�D4). Consequently, by Fact 2, 2k� 4
is an eigenvalue of B with multiplicity three if 2 � h � k � 2 and two otherwise.

C.4 Quotient graph X=((Sh � Sk�h)� (C2 � C2))

For (Sh�Sk�h)� (C2�C2) we again separate \even" and \odd" eigenvectors and consider six new
combinations of eigenvectors:

V a
e (x) =

X
1�i<j�h

V2i;2j(x); h � 2;

V a
o (x) =

X
1�i<j�h

V2i�1;2j�1(x); h � 2;

V u
e (x) =

X
h+1�i<j�k

V2i;2j(x); h � k � 2;

V u
o (x) =

X
h+1�i<j�k

V2i�1;2j�1(x); h � k � 2;

V au
e (x) =

X
1�i�h; h+1�j�k

V2i;2j(x);

V au
o (x) =

X
1�i�h; h+1�j�k

V2i�1;2j�1(x):
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Facts 6 and 7 may then be suitably modi�ed.

D Score statistic - Proof of Theorem 2

From Theorem 1, �4 is an eigenvalue of the in�nitesimal generator Q with multiplicity 1. Hence,
the second derivative of the transition matrix at � = 1

2 has rank 1 and entries

uij = 8�jvivj ;

where v = (v1; : : : ; vm)
T is the right eigenvector of Q with unit norm with respect to the inner

product < :; : >�. The score statistic is given by

S =
mX
i=1

Ni

Pm
j=1 �j8�ivivj

�i

= 8
� mX
j=1

�jvj
�� mX

i=1

Nivi
�
:

It is convenient to express the score statistic in terms of the �rst column of U , 8�1v1v. Without
loss of generality, we let the �rst IBD con�guration be the one for which all sibs inherited the
same maternal and paternal DNA, i.e. with representative inheritance vector (1; 3; 1; 3; : : : ; 1; 3)
and label (0; 0; 0) in the notation of Ethier and Hodge.

S =
8

8(8�1v
2
1)�1

� mX
j=1

�juj1
�� mX

i=1

Niui1
�

=
22k

u11jC1j
� mX
j=1

�juj1
�� mX

i=1

Niui1
�
:

By di�erentiating equation (4) we �nd that

uij = 24�2k
X
y2Cj

�
(�(x; y)� k)2 � k=2

�
; where x is any inheritance vector in Ci:
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Thus, the contribution of an a�ected sib-k-tuple with inheritance vector x 2 Ci to the score statistic
is based on

ui1 = 24�2k
X
y2C1

�
(�(x; y)� k)2 � k=2

�

= 24�2k
�
(a2(x) + a4(x)� k)2 + (a2(x) + a3(x)� k)2

+ (a1(x) + a4(x)� k)2 + (a1(x) + a3(x)� k)2 � 2k
�

= 24�2k
�
2(a1(x)

2 + a2(x)
2 + a3(x)

2 + a4(x)
2)

+ 2(a2(x)a4(x) + a2(x)a3(x) + a1(x)a4(x) + a1(x)a3(x))

� 2k(2a1(x) + 2a2(x) + 2a3(x) + 2a4(x)) + 4k2 � 2k
�

= 25�2k
�
a1(x)

2 + a2(x)
2 + a3(x)

2 + a4(x)
2

+ (a1(x) + a2(x))(a3(x) + a4(x))� 4k2 + 2k2 � k
�

= 25�2k
�
a1(x)

2 + a2(x)
2 + a3(x)

2 + a4(x)
2 + k2 � 2k2 � k

�
= 25�2k

�
a1(x)

2 + a2(x)
2 + a3(x)

2 + a4(x)
2 � k(k + 1)

�
:

Hence, from equation (11) p. 12

ui1 = 25�2kk(k � 1)
�
2Spairs � 1

�
:

Since u11 = 25�2kk(k � 1) and jC1j = 4, then

S = 22k�2
� mX
j=1

�juj1
��
2Spairs � n

�
;

where Spairs is summed over all sibships with k a�ected sibs.
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