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Abstract

It is well known (Singh 1981) that the bootstrap distribution of the
median has the correct limiting distribution. In this note we prove the
existence of the next term in the Edgeworth expansion if the bootstrap
sample size is m = o (n).
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1 Introduction

It is well known (Singh 1981) that the bootstrap distribution of the normalized
median for a bootstrap sample of size n has the same limiting distribution as the
normalized median in a non-bootstrap setting. However, the error is of order

O

�p
log logn

n1=4

�
.

Recent literature (Bickel, G�otze & van Zwet 1997, Politis & Romano 1994)
suggests using bootstrap samples of size m where m!1 and m

n
! 0 in cases

of bootstrap failure. Here, by bootstrap failure we mean that the bootstrap
does not have the correct limiting distribution (section 6 of Bickel & Freedman
1981, Bickel & Ren 1995, Bickel et al. 1997).

For the bootstrapped median, although bootstrap samples of size n have the
correct limiting distribution, the next term in an Edgeworth expansion does not
exist. Using bootstrap samples of size m as above recti�es the problem. We
consider bootstrap samples taken with replacement. For simplicity we refer to
n-bootstrap or m-bootstrap as bootstrap samples of sizes n and m, respectively.

The problem with the n-bootstrap is the following: the leading term in the
expansion for the non-bootstrapped median depends on the population density
evaluated at the population median, and therefore higher-order terms in the
expansion depend on the derivatives of the density. When sampling from F̂n,
the empirical distribution function, neither the density nor its derivatives exist.

When taking bootstrap samples of size m as above the next term in the expan-
sion does exist, in spite resampling from a discrete distribution. The reason is
that relative to bootstrap samples of size m, the `jumps' in F̂n are very small.
This has the same e�ect as sampling from a smooth distribution which results
in one more term in the Edgeworth expansion. The m-bootstrap expansion
agrees with the expansion of the normalized median in the non-bootstrap set-
ting (Reiss 1976).

1.1 Expansion in the non-bootstrap setting

Assume X1; : : : ; Xn are iid from a distribution F , and let � = F�1 �1
2

�
denote

the median of the distribution. Assume f = F 0 exists and is positive and
continuous in a neighborhood of �. Let �̂n be the sample median. It is well
known (for example Sering 1980) that

p
n
�
�̂n � �

� L)N(0; �2

�) ; where �� =
1

2f(�)
: (1)

2



Assume n is odd so that the median is a sample quantile. If we assume further
that f has two bounded derivatives then Reiss (1976) shows that

P

 p
n(�̂n � �)

��
� t

!
= �(t) +

1p
n

f 0(�)
4f2(�)

�(t)t2 +O

�
1

n

�
;

or

P
�p

n(�̂n � �) � t
�
= �(2tf(�)) +

1p
n
f 0(�)t2� (2tf(�)) + O

�
1

n

�
: (2)

In the equations above � and � denote the cdf and the density of the standard
normal distribution, respectively. Assuming more than two derivatives on f

results in more terms in the expansion (Reiss 1976).

A few papers discuss the expansion for the studentized median, i.e. an expansion

for P
�p

n(�̂n��)
�̂�

� t
�
, where �̂� is an estimator of ��. Hall & Martin (1991)

and Hall (1992) on p. 321 consider the bootstrap estimate of ��. Here the error
term is O

�
1

n3=4

�
. Hall & Sheather (1988) consider the Siddiqui-Bloch-Gastwirth

estimator of the variance. This estimator is based on the width of a window
which includes 2h + 1 ordered observations: h observations smaller than the
median and h larger. If h = o (n), then the expansion takes the form

P

 p
n(�̂n � �)

�̂�
� t

!
= �(t) +

1p
n
p1(t)�(t) +

1

h
p2(t)�(t)

+

�
h

n

�
2

p3(t)�(t) + o

�
1

h
+
h2

n2

�
:

Falk & Janas (1992) establish an expansion when the kernel density estimator
at � is used as the variance estimator.

2 Bootstrapping the median

Let X�
1
; : : : ; X�

m be a bootstrap sample from F̂n. Let �̂�m be the median of
the bootstrap sample. Singh (1981) showed that if F has a bounded second
derivative in a neighborhood of � and f(�) > 0 then

P�
�
2f(�)

p
n(�̂�n � �̂n) � t

�
= �(t) + O

�p
log logn

n1=4

�
:

Singh considered bootstrap samples of size n.

The Edgeworth expansion for the median in the non-bootstrap setting depends
on the smoothness of F at �, and therefore there is a problem with such an
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expansion in the bootstrap setting. A comparison between the bootstrap dis-
tribution of the median and the smoothed bootstrap distribution of the median
(Falk & Reiss 1989, Babu & Rao 1993, DeAngelis, Hall & Young 1993) indicates
that the smoothed bootstrap gives a better error rate than Singh's (1981) error
rate for the ordinary bootstrap.

Nevertheless, for bootstrap samples of size m = o (n) from the empirical dis-
tribution function, the bootstrap distribution of the median has the correct
expansion as the following theorem shows.

Theorem 1 : Assume f has two bounded derivatives and f(�) > 0. Then for

bootstrap samples of size m where m!1 and m
n
! 0:

P�
�p

m(�̂�m � �̂n) � t
�

= �(2tf(�)) +
1p
m
� (2tf(�)) f 0(�)t2

+ Op

�r
m

n
+

1

m

�
:

Proof : For simplicity assume that m is odd and therefore the median of a
bootstrap sample is the kth ordered statistic, where k = m+1

2 . Conditional on

F̂n,

m �X�
t �

mX
i=1

1 (X�
i � t)

has the Binomial distribution with parameters m and ��t , where

��t = P� (X�
i � t) =

1

n

nX
i=1

1 (Xi � t) : (3)

The event
n
�̂�m � t

o
is equivalent to the event

�
m �X�

t > m�1
2

	
. Note that m�1

2

is a lattice point of m �X�
t . De�ne tm = �̂n +

tp
m
. Then

P�
�p

m(�̂�m � �̂n) � t
�

= P�
�
m �X�

tm
>

m� 1

2

�

= 1� P�
 p

m( �X�
tm
� ��tm)p

��tm(1� ��tm)
�

m�1
2 �m��tmp

m��tm (1� ��tm)

!
:

The point at the right-hand-side of the last probability statement is a lattice
point. Let Y be distributed according to the binomial distribution with param-

eters m and �, and let F (t) = P

�p
m( �Y��)p
�(1��)

� t

�
. Denote by F# the polygonal
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approximation of F (p. 540 of Feller 1966). Then for t which is a midpoint

between two lattice points of
p
m( �Y��)p
�(1��)

,

F#(t) = �(t)� 1� 2�

6
p
m�(1 � �)

(H2�) (t) + o

�
1p
m

�
;

where H2(t) = t2 � 1 is the second Hermite polynomial.

Let P�# be the polygonal approximation of P�. It follows from the de�nition of
a polygonal approximation (Feller 1966) that

P�
�p

m(�̂�m � �̂n) � t
�

= 1� P�#

 p
m( �X�

tm
� ��tm)p

��tm(1� ��tm)
�

m�1
2 �m��tm + 1

2p
m��tm (1� ��tm)

!

= 1� �

 
m
2 �m��tmp

m��tm(1� ��tm)

!
(4)

+
1� 2��tm

6
p
m��tm(1 � ��tm)

(H2�)

 
m
2 �m��tmp

m��tm(1� ��tm)

!

+ o

�
1p
m

�
:

Note that Feller's (1966) result is for �xed � while here �tm is random. However,
his result holds uniformly for all � in a neighborhood of 1

2 which is our case (see
equation 5).

Recall that tm = �̂n +
tp
m

and de�ne Wn(t) =
p
n
�
1
n

Pn

i=1 1 (Xi � t) � F (t)
�
.

Using (3) and a Taylor expansion of F around �:

��tm =
1

n

nX
i=1

1 (Xi � tm) =
1

n

nX
i=1

1 (Xi � �) +

�
F (tm)� 1

2

�

+
1p
n
[Wn(tm)�Wn(�)]

=
1

2
+

 
1

n

nX
i=1

1 (Xi � �) � 1

2

!
+

�
�̂n � � +

tp
m

�
f(�)

+
1

2

�
�̂n � � +

tp
m

�
2

f 0(�) +
1p
n
[Wn(tm)�Wn(�)]

+Op

�
1

m3=2

�
:

From Theorem 1 (p. 542) of Shorack & Wellner (1986) it follows that

jWn(tm) �Wn(�)j � sup
s

jWn(s) �Wn(�)j = O

 s
log
p
mp

m

!
;
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where the sup is taken over all s such that

js � �j �
�����̂n � � +

tp
m

���� ;
and therefore,

��tm =
1

2
+�m; (5)

where

�m =
tp
m
f(�) +

1

2

t2

m
f 0(�) +

 
1

n

nX
i=1

1 (Xi � �) � 1

2

!
+
�
�̂n � �

�
f(�)

+ Op

 
1

n
+

1

m3=2
+

s
log
p
m

n
p
m

!
:

Let g(x) = 1�2xp
x(1�x) . The Taylor expansion of g(x) around 1

2 is

g

�
1

2
+ �

�
= �4�+ o (�3) : (6)

The argument inside � and H2� in (4) has the form
p
m

2
g

�
1

2
+ �m

�
= �2pm�m + o

�p
m�3

m

�

= �2tf(�) � 1p
m
t2f 0(�) � 2

p
m

 
1

n

nX
i=1

1 (Xi � �) � 1

2

!

� 2
p
m
�
�̂n � �

�
f(�) (7)

+ Op

 p
m

n
+

1

m
+

rp
m log

p
m

n

!

= �2tf(�) � 1p
m
t2f 0(�) + Op

�r
m

n
+

1

m

�
: (8)

Combining (4), (5) and (8) gives

P�
�p

m(�̂�m � �̂n) � t
�

= �

�
2tf(�) +

1p
m
t2f 0(�) +Op

�r
m

n
+

1

m

��

+ Op

�
1

m

�

= �(2tf(�)) +
t2p
m
f 0(�)�(2tf(�))

+ Op

�r
m

n
+

1

m

�
:
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This completes the proof.

Aside from the error term, which is worse, the expansion is the same as Reiss's
expansion (equation 2).

Comments:

1. Note the error term of order
p

m
n
which illustrates the problem of using

a bootstrap sample size m = n.

2. Using (7) instead of (8) in the last step of the proof gives

P�
�p

m(�̂�m � �̂n) � t
�

= �(2tf(�)) +
t2p
m
f 0(�)�(2tf(�))

+ 2
p
m�(2tf(�))

 
1

n

nX
i=1

1 (Xi � �) � 1

2

!

+ 2
p
m�(2tf(�))

�
�̂n � �

�
f(�)

+Op

 
1

m
+

rp
m log

p
m

n

!
:

The two error terms are working in di�erent directions: one gets smaller
as m increases while the other gets smaller as m decreases. The optimal
m is the one which makes the two error terms be of the same order and

is almost n2=5. For such an order of m the error term is
p
logn

n2=5
which

is larger than 1p
n
, but is smaller than 1

n1=3
. Note that the expansion

depends on the unknown median and the unknown density. However, by
using extrapolation (Bickel & Yahav 1988, Sakov 1998) it is possible to
get the bootstrap distribution correct to an order of (almost) 1

n2=5
. This

rate is very satisfactory if we notice that, indirectly, we need to estimate
the density at the median.

3 Summary

Using the m-bootstrap with m ! 1 and m
n
! 0 is suggested in situations

where the bootstrap fails to estimate the limiting distribution correctly. Here
we give an example of a statistic for which the bootstrap does obtain the correct
limiting distribution for a bootstrap sample of size n, but not the next term in
an Edgeworth expansion. However, using bootstrap samples of smaller size gives
the correct expansion.
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A point which will be addressed in more details in a forthcoming paper by
Bickel and Sakov is that using the m-bootstrap has an advantage in terms of
execution time. Naive calculation of a median requires sorting the data. Sorting
a sample of size m << n is much faster than sorting a sample of size n. For
more complicated statistics the saving in time using the m-bootstrap can be
more impressive and essential.
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