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Abstract

This paper develops test statistics based on scores for the specification
of regression in nonparametric and semiparametric contexts. We study
how different types of test statistics focus power on different directions
of departure from the null hypothesis. We consider index models as ba-
sic examples, and utilize sieves for nonparametric approximation. We ex-
amine various goodness-of-fit statistics, including Cramer-von Mises and
Kolmogorov-Smirnov forms. For a “box-style” sieve approximation, we es-
tablish limiting distributions of these statistics. We develop a bootstrap
resampling method for estimating critical values for the test statistics, and
illustrate their performance with a Monte Carlo simulation.

1. Introduction

The practice of statistical testing plays several roles in empirical research. These
roles range from the careful assessment of the evidence against specific scien-
tific hypotheses to the judgement of whether an estimated model displays decent
goodness-of-fit to the empirical data. The careful analysis of size and power in
statistical theory is often obscured by the presentation of a battery of test results
in support of a basic model or a view about the behavioral processes that generate
the empirical data. An essential part of the assessment of the results of statistical



testing is an understanding of what kinds of departures from the basic model have
been checked.

In this paper we develop some general theory for score tests in semiparametric
and nonparametric contexts. The approach of score testing is based on the specific
delineation of alternative hypotheses, and permits a cohesive discussion of testing
for departures in specific directions as well as the combination of tests in multiple
directions. Our focus is on approximation of large spaces of alternatives by sieves,
or the set analogue of series expansions of functions. This facilitates the orderly
consideration of increasing ranges of alternative directions. While our main re-
sults encompass many familiar tests, our view is that the approach will provide
structure to the understanding of exactly how ‘nonparametric’ approximation of
alternatives is being achieved in a practical testing context.

The literature on testing with nonparametric alternatives is reasonably large
and growing rapidly. Hart (1997) provides an excellent overview of the statistical
literature in the context of analyzing (one-dimensional) regression structure. Work
more closely in line with our focus on score testing include Choi, Hall and Schick
(1996) and Fan (1996). Yatchew (1998) provides coverage of the econometric
literature on testing with nonparametric alternatives; also see Ait Sahalia, Bickel
and Stoker (1998) for references. Our focus on alternative directions is reasonably
close in spirit to the testing of conditional moment restrictions in econometric
models; see Bierens (1990), Lewbel (1995), Bierens and Ploberger (1997) and
Chen and Fan (1998), among others.

We start with a short description of index models and the specific testing
problem we consider. In Section 3 we describe a heuristic construction of score
tests of a semiparametric hypothesis against a one-dimensional alternative, and
then we present ways to put score tests together against composite alternatives.
The sieve method and its importance to the testing problem is presented in Section
4. The index model is revisited in Section 5 and particular tests are suggested.
Section 6 gives (for index models) the asymptotics of the score process. Section
7.1 contains the main results for inference in index models under the hypothesis
and contiguous alternatives, while 7.2 shows how bootstrap critical values can
be used to implement the tests. Section 8 deals with consistency under fixed
alternatives. Section 9 gives simulations that show the importance of alternative
directions and testing power. Section 10 contains some concluding remarks, and
various proofs are given in the Appendix.



2. The Framework and Some Examples

We consider a situation where a data sample of size n is drawn on the random
variable
X=W)Y)~PecP

where W = (U,V) is a d,, = d, +d, vector (U € R%™, V € R%) and Y is a scalar.

Our primary focus is on regression structure, so we take
P = {all probability measures P on R%*! : Fp |X|* < oo} .

where the second absolute moment condition assures the existence of conditional
expectations. We are interested in testing whether the population distribution P
lies in a proper subset Py C P, namely

H:PePp.

While we retain this general framework for our analysis, some examples help
to add some concreteness to the kinds of applications we discuss in detail. We
begin with

Example 2.1 (Dimension Reduction in Regression). For P € Py, we have
that
Ep (Y|IW) = Ep (Y|U)

Therefore, the test amounts to a test of whether the variablesV have significant
impacts on the mean of Y.

Example 2.2 (Dimension Reduction with Parameters). For P € Py, we
have that
Ep (YIW) = Ep (Y]I(0))

where
fcOCR, I(0)=1(W,0) :R™ xR’ — R"

A familiar special case of this is the index model, where k = 1 and I (0) is a
weighted linear combination of the predictors:



This type of model is a direct generalization of a linear regression model, with
its practical appeal derived from its parsimonious representation of multivariate
effects. 'This model also arises as the exploratory method of one-dimensional
projection pursuit, and as a generalization of GLIM models.

A second category of examples focus on the distribution of Y around its condi-
tional mean. These cases focus on the departure of Y from its conditional mean:
write Y as its mean plus departure from mean as

Y=FEY|W)+e-0(W).
Some important practical examples are

Example 2.3 (Pure Heteroskedasticity). ¢ is distributed independently of
Ww.

Example 2.4 (Pure Homoskedasticity). ¢ is distributed independently of W
and o (W) = 1.

Example 2.5 (Normal Heteroskedasticity). ¢ ~ N (0,1).

These examples cover traditional issues of mean and variance modeling in re-
gression analysis. The first category of examples (2.1 and 2.2) involve questions
on the appropriate way to specify a regression function to capture empirical rela-
tionships, in particular, whether certain predictor variables can be omitted from
the analysis or whether the impacts of several predictor variables can be ade-
quately captured by an index. The second category of examples (2.3, 2.4 and 2.5)
involve questions of how to specify the spread of the response around its condi-
tional mean. This is the central issue in some empirical applications, such as the
study of volatility of prices of financial securities, where variance estimates are a
central ingredient for pricing options or other derivatives. Alternatively, variance
estimates are needed for efficient weighting of data for the estimation of mean
regression functions. These and many other examples are discussed in Bickel,
Klaassen, Ritov and Wellner (1993) and Stoker (1991) among many others.

The question of interest to us is, given an observed sample X,...,X,,, how
can one test H : P € Py?



3. Some Testing Heuristics

3.1. Simple Null Hypothesis

Suppose that X7,..., X, is a (i.i.d) random sample from the probability P € Q,
where P < p, p = 0P/0u. Suppose that Q@ ={F,: 0 € R} is a regular (one-
dimensional) submodel of probabilities. Consider testing the hypothesis

H:P=F
against
K :P=2PF, where 0 > 0.
Denote .
L P)=lnp, bLi(R) = 8—790

where ¢, € Ly (Fy), Eo (41 (-, Fy)) = 0. Score test statistics refer to measures of
the size of the ‘scores’ ¢, (-, Py) computed from the sample. The familiar scoring
test of Rao (1947) is the sample analogue of the mean of the scores, with

1
n

231 (X, Py) = N <O7 ||€1||g)

i=1
with an asymptotic test based on the critical value

lea ||£1||0 5
where ||h||2 = [ h%dP,. Note that this test is consistent if and only if

Ey (61 (X, Ry)) # 0 for 6 > 0;

namely if a nonzero # implies a positive mean score.

3.2. Composite Null Hypothesis

The case of a simple null hypothesis is indeed the simplest type of testing situation;
the model under the null is specified by setting # = 0 and the alternatives (within
Q) are associated with nonzero values 6 > 0. If the null set Py is composite, then
the question arises as to how to formulate and compute scores that depend on
P € Py, or {1 (-, P). In particular, one needs two ingredients:
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(i) A “consistent” estimate P, of P.

(ii) The tangent space 7.70 (Ry), Py € Po. 7.70 (Py) is the linear closure (in Ly (P))
of the set of all score functions of regular one-dimensional submodels in P,
through F.

The space 7.30 (Py) captures the directions of variation from P, that are con-
sistent with the null hypothesis of interest. Therefore, the effective direction of
interest for the alternative Q is given by efficient score function

G B) =0 (B —TI (m Po (P0)>

where I denotes the projection operator in Lg (Fp).
A natural score test statistic is then

13 o a
—ni;él (X, )

with asymptotic tests based on the critical value

A

Cl_aI (Pn)1/2
where ,
I[(P)=Ep <£’; (x,P,) >

is the variance of the efficient score. This statistic is analyzed by Choi, Hall and
Schick (1996).

For concreteness, we examine how these concepts arise in traditional tests of
parametric models. Suppose that the general family is defined as

P={Pup:neR’, 0 R}

so that the general log-density takes the form ¢ = ¢ (n,0).
The restricted family Py is associated with the null hypothesis

H:0=0

so that
Po={Po: Py = Piyyo),m € R¥}.
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The score vector of an alternative direction is

ol (7707 0)

51 = 80

and the tangent space associated with the null hypothesis is

ot (770; O)

> (By) = Li
Py (Py) inear Span { o,

1<y < p} :
Therefore, the efficient score is

L 0l 0) & 9t (no,0)
Sl 2]

where the a;’s are projection (least squares) weights; namely {a; (10, 0) } minimize
p

b= [aj (10,0) %ﬁojﬂ)]

Jj=1 0

If 7} is a consistent estimator of n under H, then the Neyman C () test statistic

is formed Lo
= — E 07 (X5, m,
\/ﬁizl 1( 77 0)

For instance, 7 can be taken as 7, the maximum likelihood estimator (MLE) of
n under H. In that case

T= \/_261 Xl,’l]H,O)

since ny solves the likelihood equations:

Lol
:Za X'L?/’?H7O)'
=1

15

In fact, under additional smoothness conditions on ¢(-,7,#), essentially any es-
timate 1 with 7 = ny + o, (n*1/4) (under P, 0)) may be substituted into ;.
Essentially any efficient estimator 7 may be substituted into ¢;.
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3.3. Composite Alternatives

We now discuss how to put score tests of one-dimensional alternatives together for
testing composite alternatives. Consider the situation where the null hypothesis
is simple:

Py ={F}

and let
Q :{Pg 10 € R}

denote a regular model through Fy. Clearly, the score /; = hg depends on the Q
direction. A composite alternative P is the union of several such Q’s. The relevant

set of (alternative) scores is the tangent space 7.7 (Pp) defined as the linear closure
of all the associated scores hg.

One way of combining the score tests associated with different one-dimensional
submodels is classical. Consider the situation of a finite number of submodels
(directions), with individual scores denoted hy, ..., h,. Begin by assuming that
the scores are mutually orthogonal under Py, i.e. (ha, hy)q = 6ap for a,b=1,...,p.
In this case it is easy to verify that

k

szg_;(%ghj (Xi)>2 - X

under H, as would be expected.

When the scores from different submodels are correlated, then their covariance
structure can be diagonalized in the standard way to produce an analogous test
statistic. That is, suppose that

(s Fs)ol* = o

and X is nonsingular, then the natural test statistic is

2

where &' = (hq, ..., hy).



These formulae arise naturally in the parametric case as follows. If
7) = {Pg 10 € Rp}
then the tangent space P (Py) is the linear closure of {0¢/06; : j =1,...,p}, and

the test statistic is
ol (X; "
T=-— I_
n lz_: 00 1 [ ]

i=1 i=1

where 7 is the information matrix.

Score tests of this familiar form fall under the rubric of Lagrange multiplier
tests in econometrics, which refer to tests that examine departures making use only
of estimates of the statistical model under the null hypothesis. In contrast, Wald
tests or likelihood ratio tests are based on comparing estimates of the model under
alternatives with those of the model estimated under the null. In the parametric
context, to first order, both Wald and likelihood ratio tests are equivalent to score
based tests.

It is important to note that 7" is just one way of combining the different test
directions. There is nothing magic in the Mahalanobis distance or the likelihood
ratio test. The appropriate weighted average should be such that the directions
of interest would get more weight than the other directions, so that the test will
have power in those directions.

This approach applies equally well to the situation where the alternative hy-

pothesis contains an infinite number of directions, or where 7.3 (Py) has infinite
basis. In particular, suppose that the tangent space is the linear closure of the set
of directions

{h,:v € R}

and p is a measure on R? with dense support. Two forms of statistics arise in
analogy to the finite dimensional case, namely the weighted squared average score

n= (=350 0] ) 3.1)

and the maximum average score

(3.2)

T, = sup |—
7



Some familiar statistics from density estimation, as well as classical nonparametric
goodness-of-fit tests, fall into this category of score tests.

Example 3.1 (Goodness-of-Fit Statistics). Consider testing the null hypoth-
esis that a distribution on R is Py against “all” alternatives, namely where
P (Po) ={h € Ly (R) : By [h ()] = 0}
If we consider the family of directions
hy()=1(<7)-F(); 7€R
where Iy is the cumulative distribution function of Py, then the following two sta-

tistics arise in association with those above. Associated with (3.1) is the familiar
Cramer-Von Mises goodness-of-fit statistic

T.=n [ (F.() = B () dFy (7)

where F,, is the empirical distribution function, and the weighting measure is
p = Fy. Corresponding to (3.2) is the familiar Kolmogorov-Smirnov goodness-of-
fit test statistic

T, = sup [V (B (7) = Fo (7))
This approach is also known as the union-intersection test (UIT).

It is easy to extend these ideas to situations where the alternative directions
depend on the size of the sample and each alternative approximates departure
in the density more and more finely as n increases. For instance, if the tangent
space is the linear closure of a finite set of such directions {h;, : 1 < j < k,,}, then
X&, statistics are derived as above. If the number of directions is unlimited as
in {h,, : 7, € R%}, then test statistics of the Bickel and Rosenblatt (1973) form
arise.

4. Score Tests and the Method of Sieves

4.1. Testing Paradigm

The above ideas motivate our general testing paradigm. For a simple null hypoth-
esis, we consider a basic score statistic of the form

Z, (1) = %i“"”
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where h is a direction in the tangent space

heP (B)

Our overall approach is to build test statistics using Z,, (h).
For composite hypotheses, consider the space of alternatives

P={Pop:acApecB}
where A, B are function spaces. The null hypothesis of interest is
H:p5=0
Define the “full”, “null” and “alternative” tangent spaces

7.3 (a,3) = Tangent Space of the Model P at P, )
.0 (a,0) = Tangent Space of {P(a,()) € A} at P

7.70L (a,0) = Orthogonal Complement of Po (,0) in P (a,0)
That is, Py (o, 0) J_7.Dj (a,0) and P (o, 0) :;70 (a,0)® 7.73 (a,0). Suppose
7.3; (e, 0) is representable as the image of a fixed Hilbert space H under II (-, ) :
H —>7.3; (a,0). Define the score process by

auaniifnmﬂﬂ&y

Now, if Pis,0) is a “consistent” estimate of ) under H, then we form a proxy for
Zy, (h, ) by
A 1 2
Zn(h)=—=)> h"(X;,&)
v

and build test statistics using this proxy.
We think of Z, () and Z, () as stochastic processes defined on H in analogy
to empirical processes — see Pollard (1989), for instance.
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4.2. Sieve Approximation

As with approximation of general functions by truncated power series, we use the
concept of sieves to provide approximation to “large” spaces of alternatives for
the purpose of testing. In particular, we define a sieve for P as a class of sets

Q={Qp:0€0}, k=1,...,00
where the (Jy’s are probability measures satisfying the following conditions:
(1) QrC Qpy1, k=1,...,0
(17) Qg is a regular parametric family
(131) limg oo Qpr =P

where (7i7) is to be understood in the sense of a projective weak limit, i.e. if
P € P there exist Q € 9y, such that Q, — P in law.

These conditions capture the notion that the O sets provide an increasingly
rich set of probability measures to approximate the set of alternatives. On techni-
cal grounds, () is not necessary for what follows, (i7) is applied only to assure that
procedures such as maximum likelihood estimation are well behaved in Oy, and
(7i1) need only hold in a weak sense to ensure that these estimators converge. The
typical framework, though not necessarily needed in our case, will have a sieve
defined with an explicit nesting: ©, = R, and for elements Q0:,00,..0,) € Qe
there exist corresponding elements Q s, g,,....0,.0) € Qk41; again as an analogue to
series expansion of functions.

Our results apply to the practical methods of estimation and testing using a
set Qy in place of the true alternative set P. Specifically, we employ the following

Sieve Estimation Principle: Given Xj, ..., X, choose k (X1,...,X,) and act

)
as if Q; were the true family of alternatives. For instance, if 0% is the
maximum likelihood estimator of 6 in Q;, then we estimate P € P by

Qék € 9;.

12



5. Index Models

5.1. Introduction

Again assume that X = (W,Y) where W = (U, V), U e R,V € R and Y € R.
Suppose that [yf (W,y)dy = 0 a.s., and [ (|w|2 + y2> f(w,y)dy dw < co. Let
p(w,y; f,v) = f (w,y — v (w)) for some function v (-) such that
[V (w) f(w,y)dy dw < oo. Let P be the collection of all distribution functions
with such a density (i.e. for all possible f and v). Finally, let Hy be the hypothesis
that v (U, V) = v (U) almost surely where the v on the left hand side maps R%*d
to R while that on the right maps R*™ to R. That is E (Y|W) = E (Y|U).

The tangent spaces are easy to characterize as shown in Newey (1990) and
Bierens and Ploberger(1997), among others. The following lemma is proved for
completeness.

Lemma 5.1. We have

P={a(W,Y): Ep [a*(W,Y)] < 00, Bp[a(W,Y)] =0}

Po = {a(WY)=h (WY —v(U) + Ly (Y v (V) g (U):
a, h 67.7, Jyh (W,y)dy =0, a.s.}
Py = {aWy) = (W)~ BGWID (Y ~ BO0) : a,b B}

where E’YW (y|w) is the derivative of the conditional log-likelihood of Y given W
at (y,w).

Proof. Since the “large” space is unrestricted, 7.3 is “everything,” but with the

moment conditions. The structure of 7.30 is obtained by considering the deriva-
tive of the general one-dimensional submodel p; (w,y) = f; (w,y — v (u) + tg (u)),

L[] J~ L] L[]
where h = f,/ ft‘ ,- Finally, P is the orthocomplement of Ppin P. But a (W,Y)

t=
is orthonormal to

{ny = v @), [oh W) dy=0as.}

if and only ifa (W,Y) = b (W) (Y — v (U)), a.s. This latter object is orthogonal to
all functions in P of the form E; (W)Y —v(U))g(U) if and only if E(b(W)|U) =

13



0 a.s. which follows from the fact that for any p.d.f. ¢ (with mean 0), we have
[xq (x)dr = —1. O

Therefore, our score process is defined by

/\

J2 a0 = Bp @ (W) [0)] (Y - B (VIT)) 6.1

i=1

where the estimator P is yet to be defined.

Let B = B, = {B.1,...,Buk,} be a partition of the range of U. Our sieve
estimator P is the nonparametric maximum likelihood estimator (NPMLE) of P,
for the family of distributions such that the conditional distribution of W|U = u
is the same for all uw € B,,;, j =1,..., K,,. Thus, v(U) = ¢; on B,,;. The “natural”
NPMLE P is easily seen to concentrate on {(u,w,y) : u = U;, (w,y) = (W;,Y;)
for some 1 <4,5 < n} and be given by,

~

PlU

SI*—‘

Z Uk € Bn]

> b1 LUk € By 1((Vi, Vi) = (VYY)

PV = U] = 7 10 € B.y)
= nj

it U; € B,j, 1 <j < K,,. This leads to

K, n
” Y a(Wi)1[U; € Byl
Ey(a(W)|U) = 1(U € B,;) —/—=; 5.2
K, n
n i1 Yil[U; € By
Es(YU) = 1(U € B,;) = 5.3
P (VIU) = 3 1(U € By) S (5.3)
Given the score process we can construct several different test statistics.
1. Cramer-von Mises type test statistics: Let
a,(w) =1(w <), ye RW
Then,
T= [ 2 (a@)du(). (5.4)
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where g is Lebesgue measure, gives an analogue to traditional Cramer-von
Mises statistics. If both U and V' are real, it may make sense to consider B,,;
to be intervals for Zn, and to consider discrete p with atoms at the intervals’
ends instead of Lebesgue measure.

. Kolmogorov-Smirnov type test statistics: With the same set {a,}, consider
the test statistics

A

Zn ()

T = sup , (5.5)
Y

where the ‘sup’ can be unrestricted or limited to a finite grid.

. x? type test statistics: We can define a, s to be a function centered at v
concentrated as ¢ \, 0. For example, a,s(-) = (1/6)ao ((- —)/6), where
ap may be any indicator function, or any other window function. Then one
can consider the test statistic:

T:/@@Wmh (5.6)

where &, \, 0 as is done in Ait-Sahalia, Bickel and Stoker (1998) and Hart
(1997), Bickel and Ritov (1992) and Fan (1996).

. Bickel-Rosenblatt type statistics: In analogy to the relation between the
“Cramer-von Mises type” statistics and the “y? type” statistics we can con-
sider )

T = sup | Zu(as,)| (5.7)

where K is a compact set. In the goodness-of-fit problem these correspond
to the statistics proposed by Bickel and Rosenblatt (1973).

The first two approaches are appropriate when one wants to focus on particular
departures, such as departures from the null hypothesis of the type of a change
point in the conditional distribution. The last two approaches, on the other
hand, are relevant when comparable interest is attached to all equi-distant local
departures from the assumptions. Further, the first two types of tests can be
designed to have non-trivial power against any /n alternative (i.e. if we consider
a sequence of problems in which E (Y|W = w) = v (u) + n~"/2g (w)). The price
for this is having considerable power against only a few directions, and very little
power against all other possible departures from the null assumption. In contrast,
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the third (x?) type test and fourth Bickel-Rosenblatt test has asymptotically no
power against y/n alternatives, but has comparable power in all directions. In
short, the choice between these types of testing approaches is a choice between
concentrating the testing power in a specific way versus diffusing the power. One
further observation is that the Kolmogorov-Smirnov type or Bickel-Rosenblatt
type tests have an additional benefit: when the null hypothesis is rejected, they
can identify the direction of departure.

We can consider many different sets of directions that yield different tests.
Thus we could consider a variation of the above family by scaling the func-
tions: a, (w) = a ()1 (w < 7). This scaling gives more weight to some directions
(where a () is large), thus making the tests have more power in those direc-
tions. On the other hand, such tests would behave poorly in directions where
the weights a () are small. We can change the family to the larger family of
ayr (W) = 1(y <w < k). Compared with the original test, this test will have
more power against some alternatives (i.e., those which are characterized by a
different behavior in the middle of the range), but less power against other alter-
natives (in particular, if the alternative is in the direction of a., for v in the middle
of the range).

We highlight these aspects of testing direction and power in simulations pre-
sented in Section 9. First, however, we consider the basic asymptotic properties
of the tests as well as bootstrap approximation for critical values.

6. Asymptotics for the Score Process

We turn to the basic asymptotics which will justify the inferential results for
Kolmogorov-Smirnov and Cramer-von Mises type statistics claimed in the next
section. The third and fourth types of statistics (“x*” and Bickel-Rosenblatt)
involve new technical problems that we will deal with in a subsequent paper. The
Ait-Sahalia, Bickel, Stoker (1998) paper deals with a special case of the x? type.
We now give a general approach to proving convergence and to determining
limiting distributions for these statistics as well as a wide range of others.

6.1. The Score Process Under H

We begin by establishing asymptotic normality and tightness. The required nota-
tion and assumptions are as follows. Let B,, = {B,1,...., B.k, } be a partition of
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the support of U. Let M, (U) = E (a (U,V)|U) and M (U) = E (a (U,V) |B,),
the conditional expectation given which B,,; corresponds to U. Thus

=

n

M"(U) =3 1(U € B,;)E(a(W)|U € B,;). (6.1)

<.
Il
—_

Let & = &, be a point in B,,;; for example the center if B,,;, is a rectangular block.
Finally, let A be a family of bounded functions. We now make the following
assumptions

[A1] Let e =Y — v(U). Then, Var (¢|U,V) < .

[A2] Suppose K,, — oo, K,,/n — 0. Let my,, = X115, (U;). Then m! =
ming m,,, — 0o and max; Mk /1 £o.

[A3] Let A, = sup{|v(u) —v(u)| : u,u’ € By, 1 < j < K,}. Then A, — 0.
Let 7, = sup{la(u) —a(v)| : a € A, u,u’ € B,;, 1 < j < K,}. Then,
Yo — 0. Let A, = sup{|v(u) — v(u)||M™ (v) — MM ()| : u, v’ € By,
1<j<K,, ac A}. Then, A,n'/? — 0.

[A4] Given a metric d on A let log N (e, A, d) be the bracketing entropy with
respect to d. That is, Nj (e, A,d) is the minimal cardinality of a set of
brackets [ag,alg], 1 < ¢ < Npj such that d(ag,alg) < ¢ and for every a € A,
there exists ¢ such that d(ay,a,) < e. With || - ||» the Ly(P) norm on A,
assume that

Ny (e A - ll2) < CeP
for all € > 0 some C, 3 > 0. Note that then

1
/ \/log Nij(em A, || - ||l2)de < oo for all 0 <7 < oo. (6.2)
0

Remark. We say that a function f satisfies the Lipschitz condition of order «v if
for some e, sup {f (x +y) — f(x) / [|ly]|” : 2,0 < ||y|]| < €} < co. Suppose that the
support of U is compact, and U has density bounded away from 0. Assumption
[A3] is natural if v is Lipschitz of order 5 and M, is Lipschitz of order /3, where
a+ (> 1/2. We can then take the blocks to have a width of order 6, 6, — 0,
né, — 00, §2Pn1/2 — 0. Thus both block assumptions [A2] and [A3] are satisfied.
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If A is such that a(u,-) = a (u', ) for any u and v’ in the same block, then the
above condition is essentially a condition on how close the conditional density of
U given V and U € B, is to uniform:

M, (u) — M, (u') = J (a (u,v) f (v|u) —a (u',v) f <v|u')) dv
ulv / UI|U
= f(v)Ja(u) (f;(if - ,g(u,))> dv.

Similarly, if A is a class of indicators of quadrant, or hypercubes as we discussed
[A4] is guaranteed by smoothness of the conditional density of V' given U in both
arguments.

Other metrics including random ones will prove important. In particular for
B, as above, let D?(a,a’) = (1/n) X", E[(a — d')*(W;) | B,] where Wy,..., W,
are i.i.d. In the Appendix, we show that

Lemma 6.1. If [A2] and [A4] hold then

1
P[/O Jlog N (5, A, Dp)de < 00| — 1. (6.3)

This lemma permits us to demonstrate tightness, as in

Theorem 6.2. Suppose assumptions [A1]-[A4] are satistied andv(U, V') = v(U).
Then the process {Zn (a) :a€ A} is tight. Moreover, let
. 1 _
Zn(a) = — a(W;) — M, (U;)) & (6.4)
oy )
where, as above, ¢; = Y; — E (Y;|U;). Then

- P

T (@) = Zn (a)] 5 0.

sup
acA

Thus, )
Zn(:) = Z(") (6.5)

where Z(-) is Gaussian mean 0 with

cov (Z(a), Z(d')) = Eei(a(W) — Ma(U))(a'(W) — M (U)).
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The structure of the proof is seen as follows. Let M (u) = Ep(a(W)|U = u),
where the right-hand side is defined by (5.2). Since

S b(U (a(Ws) - MU = 0

-
Il
—

IN
.
IN

if b is constant on B,,;, 1 K,, we have the following decomposition

Zn(a) = Z= ¥ (a(Wi) = M{(U))(Y; — Ep(Y|UL))
= JrTh(aW) - M (U;)Y;
= TE?: (a(Wi) — Mo(Us))e
+ I T (Ma(U) — M (U) )es
+ S (MU — ME(U))es
+ = Y (a(W) = M{(U:)v(Us).

The proof of this theorem follows from Lemmas 6.3-6.6. In Lemma 6.3 we es-
tablish the Donsker property of {(a — M,(:))e : a € A} and hence by Theorem
2.11.9 of van der Vaart and Wellner (1996),' the central limit theorem claimed in
(6.5) for Z,. In Lemma 6.4-6.6 we show that all the remaining three terms are
negligible. The proofs of the last four lemmas are given in the Appendix.

Lemma 6.3. The class D = {(a — M,(-))e : a € A} satisfies the conditions of
Theorem 2.11.9 of van der Vaart and Wellner (1996).

Proof. We need only check that
E(a— M,)(W)*e* < [|alf50™

which is obvious. The lemma then follows from [A4], ||a|le < M for all a € A,
and [A1]. O

Lemma 6.4. Under [A3], [A4]

up {\% (M (05) — B (U)

‘a€ A} £o. (6.6)

ITheorem 2.11.9 is stated in the Appendix.
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Lemma 6.5. Under [Al], [A2] and [A4],

sup {‘% Zn:(Mén)(Uz’) — MM (U:))es

i=1

‘a € A} £o. (6.7)

Lemma 6.6. Under [A1]-[A4],

1 . -
sup—> (a(U;, V;) — M™ (U ))wv(U;) = 0.
aeﬁ\/ﬁ;(( ) (U)v(U;)

6.2. The Score Process Generally

Suppose, E(Y|W) # E(Y|U). Intuitively, Z,(a) should diverge. More precisely
let,

3 1

Zng(a) = % ;(G(M/z) — Ma(Us))eiq

where ¢;, = Y; — E(Y;|W;) denotes the ‘general’ error. Evidently an and Z,
coincide under H. We need a trivial strengthening of assumptions

[Alg] Var (e1,|WW1) < 02,

and an assumption which as we shall see comes from a possibly unsatisfactory
definition of M (™ (U;).

[A2g] In addition to [A2] suppose that

— 0.

K,
N
Then

Theorem 6.7. Suppose [Alg], [A2]-[A4] hold and v(U, V') is uniformly bounded
and hence so is v(U). Then,

sup {

(@) = Zng(a) — % S (a(W)) = Ma(Us)(r(U,) — (U, w))‘ ae A} 20,

- (6.8)
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In fact, )
Zy(a) = VnE(a(W1) — Mu(Un))(v(Ur) — v(Ur, V1))

is tight and converges weakly to Z,, a Gaussian process with mean 0 and
cov (Z,(a), Z,(a) = B (2, (a(W2) = Ma(U2))(d(Wh) — My (U1)))

The proof of this rests on the identity.
Zn(a) = Z - MI(U)(w(U;) = v(Us, V7))

where an(a) is obtained by replacing Y; by Y; — v(U;, Vi) + v(U;) in Zn(a).
The first part of Theorem 6.7 will follow from Theorem 6.2 (since (U,V,Y —
v(U,V)) satisfies [A1]-[A4]) provided that we prove

Lemma 6.8. If [Alg], [A2g], [A3], [A4] hold then
Sup{\/_ ST(MM(Uy) — MU w(U) — v(Ui, Vi) ta € A} L0 (6.9

Equation (6.9) is proved in the appendix. Showing the second part of Theorem
6.7 merely requires a check of the tightness of (1/y/n) =7, { (a(W;)—M™(U,)) (v(Us)—
v(U;, Vi) — E(a(W) — M, (U))((U) —v(U,V))}. The boundedness of v(U, V') and
[A4] guarantee the required tightness. O

As we shall see in the proof of Lemma 6.8 the unwanted [A2g] comes only
because we have defined M(™ as we have, rather than the intuitively at least as
appealing

. Kn 1
M~ () = 32 1(u € Bog) ): Us € Bujy Us #u}. (6.10)
i=1 i
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7. Inference Under the Null Hypothesis and Contiguous
Alternatives

7.1. Theory

Let S : oo — R Dbe a function defined on bounded functions on .A, which is
continuous with respect to the sup norm on 4. Consider S(Z,(-)). By Theorem
6.2, under H, if [A1]-[A4] hold we have

L(S(Z(-))) = L(S(Z(")))-

Examples of such functions S are sup 4|z(a)|, and [n(z(a,))*du(y) for p a finite
measure over I' (with v — a, continuous); namely the tests that we have desig-
nated as of Kolmogorov-Smirnov or Cramer-von Mises type. Let cg(a, F') be the
a quantile of the distribution of S(Z(:)) when F' is the distribution of (U, V)Y
and F' obeys H.

Suppose we are given consistent estimates ¢, of cg(a, F') for F satisfying H.
Then we clearly have

m {PulS(Za(-) > éa] < PrlS(Z(-)) > cs(a, F)]} < 0. (7.1)

On the other hand suppose {F} is a sequence of contiguous alternatives to F'
which are locally asymptotically normal (LAN) at the rate % in the sense of
Le Cam

n

" 1
Z(logpF(")(m/i?)/z) IngF(VVl?}/; - _Z M/Z,K _§E¢2(W17X1)+0PF(1)
i=1

i vn
(7.2)

Fn

where Epp(W1,Y1) = 0, Ep?(W,Y1) < oo. Contiguity implies that ¢, Ty
cs(a, F).

Moreover (Z > (W, Y;)) is tight and has a limiting mean 0 Gaussian
distribution (Z(-), ) Wlth covariances specified by those of Z(-); Var ¢(Wy, Y1)
and cov (Z(a), N) =covp((a(W1)—M,(Uy))er, (W1, Y1)). Therefore, by Le Cam’s
third lemma (c.f. Bickel, Klaasen, Ritov and Wellner (1993)), we have

Zu() = Z() (7.3)
where Z(-) is a Gaussian process with

EZ(a) = covi(a(Wi) — My(U1))er, o(Wh, Y1) (7.4)
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and the same covariance structure as Z (+). Since, by contiguity and Theorem 6.2,
(7.3) applies to Z,, as well we have proved.

Theorem 7.1. Suppose F' obeying H satisfies [A1]-[A4], F,, is LAN as in (7.2)
and S is as specified. Then the test which rejects iff S(Z,(-)) > &, is asymp-
totically level a and, for all a such that cg(o, F) is a continuity point of the
distribution of L;S(Z(+)), has asymptotic power against F,, given by

P[S(Z(")) > cs(a, F)).

Theoretically we can see how the power of such tests behave by specializing
to the homogeneous Gaussian case where under F, Y; — v(U;) are i.i.d. N(0,1)
while under F,,, Y; — v,(U;, Vi) are i.i.d. N(0,1) with v, (U, V) = Eg, (Y|U,V).
This leads to (W, Y) = b(W)e for some b(W). So for (7.4),

EpZ(a) = E((@(W)— Mi(U))b(W)e?)
(7.5)
= E((@W) = M,(U))b(W)) = E (a(W)(bW) — My(U)) .

If {a(W) : a € A} is dense in the set of all L, functions of W then ErZ(-) does not
vanish identically unless E(b(W) — M,(U))?* = 0, that is b is a function of U only
which means that the F), are not a genuine sequence of alternatives. Thus a test
of the Kolmogorov-Smirnov or Cramer-von Mises type (with A = {a, : v € T'})
with A dense will have power against all contiguous alternatives of this type.

7.2. Approximation of Critical Values

In general it is impossible to find an analytic approximation for the limiting distri-
bution of the Kolmogorov-Smirnov type test statistics. Statistics of the Cramer-
von Mises type have distributions depending on eigenvalues of integral equations
which can not be solved explicitly. One possible approach is to sample from the
limiting Gaussian process. A more natural approach is to sample from a distri-
bution that is close to the empirical distribution of the data but obeys the null
hypothesis.? However, since the distribution of Y can depend on V under the null
hypothesis (only the mean of Y does not), this kind of sampling cannot be done
without making some further smoothness assumptions.

2We could study the situation of taking samples of size m with m — oo, m/n — 0 , as in
Bickel, G6tze and Van Zwet (1997), however we leave this to future research.
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We propose the following general prescription for sampling. Recall that B,, =
{Bu1,-...,Buk,} is a partition of the support of U, and let C,, = {Cy1, . .., Cur, } be
a partition of the support of V. Assume that ming; m,,x 2, 00 and maxy; M, /n 2,
0, where my = Y01 1 (W; € B X Cpy). Let

N Y Yil [Uz’ € an]

k=1,....K,
TS 1 € By o

ﬁ o 2?21 }/zl [VVz S Bnk X Cnl]
YN LW € By x Cl
The bootstrap sample can be taken as follows. Sample W from Wy, ..., W, and if
the resulting W; obeys W; € B,,;,XCyy, then sample Y from {Y; — gy + 0y : Wi € B X Cri}-
Now, the bootstrap sample is taken from a distribution under which

k=1,....K,l=1,... L,

E*(Y|W) = E*(Y|U)

where * denotes an operation under the bootstrap distribution. When the null
hypothesis is true, y; ~ i, and the bootstrap distribution is close to the empirical
distribution, and hence to the true distribution.

If (W7, Y*) 1< i<nisa bootstrap sample we can define Z*(-) as Z, de-
fined for the bootstrap sample. We can prove the asymptotic correctness of the
bootstrap critical values. under a slight strengthening of [A1]-[A4].

[A1’] Var (¢|U,V) < % and Fe* < .

[A2’] In the partition {B,; X Cpne} if my,j denotes the number of W; € B,; X
Cwo (1 <7< K,1</¢<1L,), then P{c§w<1] — 1 for some

minmy, — ¢
¢ — 0. This plus our previous assumptions on m,,;, implies K,,, L, — oo,
K, /n, L,/n — 0. But we also require K2L? = O(n).

Theorem 7.2. Under [Al]-[A4]
P[Z;()= Z()] = 1 (7.6)

where Z(-) is given in (6.4).
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The proof hinges on the following two lemmas whose proofs are given in the
appendix. Let M(™*(u), M{™*(u) denote the bootstrap versions of M{™ M.
Thus,

_ Kn WHL(U; € B,,)
M"*(u) =3 1(u € By, > a(v; T
and .
N n WU} € B,,)
NI () = 3 1 € By) =WV UUE € By
Let

ef =Y = 01U € Bup)
k

. 1 2 _
ZHa) = == (a(W}) = M™*(U))er.
(a) \/ﬁ;( (W7) U7))
Lemma 7.3. Suppose [A1’], [A2’], [A3], [A4] hold. Then
sup {‘Z;(a) — Z;(a)‘ ta € .A} £o. (7.7)

This convergence in probability is in terms of the joint probability of the(W;,Y;)
1 <i<nandthe W:Y*)1<i<n.

Lemma 7.4. Under [A1’], [A2’], [A3], [A4],
Zn(-) = Z()

in probability. That is, say the Prohorov distance between S(Z*(-)) and S(Z(-))
tends to 0 in probability for all continuous S : C* — R.

As a consequence of Theorem 7.2 we can use the a quantile of the bootstrap
distribution of S(Z}(-)) as a consistent estimate of cs(a, F).
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8. Consistency Under Fixed Alternatives

If conditions [Alg], [A2], [A3], [A4] are satisfied, but F' does not satisfy the null
hypothesis, then (as noted in section 6.2) we expect that the process Z,(-) drifts
off to oo in some direction a. Evidently then a test based on S(Z,(-)) will be
consistent against a fixed alternative if

(i) S(Zy(+)) 5 oo, which is expected if S pays attention to a dense set of a’s
(as in the Kolmogorov-Smirnov or Cramer-von Mises case), and

(ii) é, = Op(1), where ¢, is the critical value used.

In particular if we obtain é, from the bootstrap this will happen if [A1’g],[A27],
[A3], [A4] hold where [Al’g] is [Alg] and in addition £ (5;19) < 00. As in section
6.2 this requires proving that

Sup 4 — SO MUY — SO U (4 (UF) — v (U V) - a EN
p{ﬁz;(Ma(UZ) B U (3 (UF) = v (U7, V7)) eA} 0

and that —= 37 { (a(W;) =M (U7)) (v* (UF ) —v* (U7, V")) is tight. The arguments
are analogous to those given for Lemma 6.8 and we omit them.

9. Simulations

We checked the behavior of different test statistics using a small Monte Carlo
experiment. We consider a sample of 500 independent observations fromU, V,Y =
vy (U, V) + &, where U,V and ¢ are independent, U,V ~ U (0,1), ¢ ~ N (0,1).
We take vy (u,v) = 0.8sin (Au)sin (Av), where A = 0, 7/2, m, 6m. With A =0
taken as the null assumption, this design gives a wide range of different types of
departures from the null hypothesis, as illustrated in Figure 9.1.
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Figure 9.1: Simulation Departures: vy (u,v) = 0.8 sin (Au) sin (Av)

We examine three different test statistics as described below. All are all based
on a partition of the unit square into 10 x 5 blocks, where the support of U was
divided to 10 blocks. We chose a partition that is asymmetrical in the U and
V' because of the way bias is introduced by the partitioning. In particular, the
discretization of the range of U can introduce a bias — if it is not fine enough, a
distribution in which Y and W are conditionally independent given U, may not
adequately display such conditional independence given the blocks. Condition
[A3] is necessary to ensure that the test will be asymptotically unbiased. In
contrast, the wideness of the blocks on the V' dimension is secondary and enters
only through efficiency considerations, and the behavior of the bootstrap.

With the division to blocks, one simple test statistic is the standard ANOVA F
statistic for testing for the presence of only an effect of U (i.e. no V effect and no
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interaction). This is our first test statistic. The second is the Kolmogorov-Smirnov
statistic with {a,} taken as the quadrant indicators {1 (u > v1,v > 72)}. The
third is another Kolmogorov-Smirnov statistic with {a.} taken as the rectangle
indicators {1 (1 < u < 7y9,73 <v <)}

The tests are defined formally as follows. With some abuse of notation, let
Yim, k=1,...,K, Il =1,......L, m = 1,...,my be the Y-value of the m-
th observation in the kI block. Denote as usual Y}, = m,;ll S Yium and Y, =
m,;_l > im Yeim. Note that

S (a(Wi) — Ep (WD) (Y; — Ep (YIU)) = Y a (W) (Y; — Ep (Y|UL)
i=1 i=1
The three test statistics are then

> ki Yk%.mkl — >k Ykg.mk-

F = _
S kim Yt — Sor Yoy,
KS, = max Z Z Z ( s — )‘
—1 m=1
ko Iy ™ty
KSi= | 50305 (Vv — i)

The three simulated departures (A =m/2, m, 67 of Figure 9.1) are intended to
check the strength and weakness of these test statistics. The first Kolmogorov-
Smirnov statistic, K.S1, is appropriate for deviations like the one with A = /2,
in which the corners are different from the average. The second Kolmogorov-
Smirnov statistic, KSs, is supposed to show its strength against deviations which
are concentrated in the center as the case of A = 7. Finally, the statistic F' diffuses
its strength among 40 degrees of freedom. Hence it will be weak against particular
deviations, but unlike the two KS tests, it will be relatively strong against more
complicated deviations like the one with A\ = 6m. (This paragraph was written
before any simulation was done).

The bootstrap was done essentially as described above. There were, however,
two modifications. Theoretically the number of observations in a cell should in-
crease to oo, but in practice it is finite, and may be quite small (in our simulation,
there were, on average, 10 observations in a cell). Since we center the observa-
tions in a cell (so that we sample under H), this decreases the variance of the
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distribution from which the bootstrap samples are taken, and as a result, the
spread of the test statistics is reduced. To correct this, our first modification was

to multiply each observation in the ki cell by \/mkl / (my — 1). See Silverman
(1981) for a similar correction. The F test is invariant to this correction, but the
Kolmogorov-Smirnov type tests were not conservative without the inflation. The
second modification was to bootstrap sample only the Y values (hence our critical
values apply to tests conditional on the WW’s).

Rejection was defined as occurring whenever the test statistic was one of the
100 (1 — ) % larger values among 200 bootstrap observations, where « is the
declared value. The randomization (both the sampling and the bootstrapping)
was common to the twenty four combinations of test statistics and values of A
and a.

The results are given in the following table

| Test Statistics [ A=0 | A=7/2 | A=7 | A=6r |

a=0.1

F 0.072 | 0.492 0.443 | 0.453
KS; 0.115 | 0.970 0.565 | 0.122
KS, 0.095 | 0.838 0.887 [ 0.113
a = 0.05

F 0.025 | 0.355 0.290 | 0.307
KS; 0.052 | 0.922 0.395 | 0.072
KS, 0.050 | 0.728 0.818 | 0.060

These results confirm the intuition behind the design of our simulation. In
particular, the F' statistic displays roughly the same rate of rejection among the
different alternatives. The Kolmogorov-Smirnov statistics display higher power
against the alternatives A = 7/2 and A = 7w and very low power against the alter-
native A = 6x. Specifically, K'S; displays relatively higher power against A = 7/2
than A = 7, and the opposite is true for K.S;. In any case, this simulation high-
lights how the different types of departures are captured by the three statistics,
as well as how much that affects the performance of the different test statistics.
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10. Conclusion

In this paper we have given a systematic coverage of score tests in semiparametric
and nonparametric contexts. We have highlighted the way different approaches to
testing give differential treatment to alternative departures from the null hypoth-
esis. For the case of testing index restrictions on regression functions, we have
examined several tests and illustrated how important the construction of the test
is to performance under different alternatives.

Our development is clearly only the first step in a general coverage of test
design for index models. The family of tests analyzed in the previous section is
clearly not the only possible one. For example, we have focused on nonparametric
approximation via blocks, and one may design other more modern or more elegant
ways of nonparametric estimation of the required conditional expectations. In
addition, we have only considered the situation in which the index model does
not depend on an unknown parameter. Certainly this should be generalized to
meet the needs of testing in applied research. However, we have limited our
attention to this simplest case because the formal analysis above was complicated
enough, and analyzing many other methods would obscure much of our general
conceptual (‘soft’) discussion.

A. Appendix

Our results are based on Theorem 2.11.9 of van der Vaart and Wellner (1996),
which we state here for ease in following our arguments below. As above (c.f.
[A3]), for every n, define the bracketing number Njj (e, F, L3) as the minimal
number of sets N; in a partition F = Uf;lfgj of the index sets into sets F7; such
that, for every partitioning set F_’

ST E N Zwi (f) — Zui (9)* < €7,
=1

where the partitions are clearly allowed to depend on n. If we denote the outer
integral as £*, then Theorem 2.11.9 of van der Vaart and Wellner (1996) is stated
as:

Bracketing Central Limit Theorem: For each n, let Z,,,..., Z, ,, be inde-
pendent stochastic processes with finite secomd moments indexed by a to-
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tally bounded semimetric space (F, p). Suppose

S E || Zoill {1 Zuill 7 > 0} — 0, for every n > 0.

i=1

My,

sup > E(Zui (f) = Zui (9))> — 0, for every 6, \, 0

o(f,9)<6n =1

on
/ \/log N (e, F,Ly)de — 0, for every 6, \, 0
0

Then the sequence > (Z,; — E (Z,:)) is asymptotically tight in £>° (F)
and converges in distribution provided it converges marginally. If the par-
titions can be chosen independent of n, then the middle of the displayed
conditions is unnecessary.

Suppose that the family A of functions is bounded by a constant L.

Proof of Lemma 6.1. Write

LEl(a—d)?(W)|U € By). (A.1)

Then

D2(a,a") = [la —d'|ls] =

Z;E[(a ~dPW)IU € By} (22 - PIU € B,y))

Apply Cauchy-Schwarz to obtain

1D} (a,d’) — [|la—d'[3] < |la—d|2Rn(a,d) (A.2)
where
, 1/2
/ KnE /QWU B (m_:‘L_P[UEan])Q
But

(A.3)




and

K, ) 2 K
E (":;” _PlUe an]> JPU € B,]| <=2 =0 (A.4)
i=1
Now, |D2(a,a’) — |la — d'||3] < ||la — d||» for all a,a’ implies
2
N A D) < 8 (AT )
for e < 1. Thus (A.2), (A.3), and (A.4) yield the lemma. O

Proof of Lemma 6.4. Evidently,
2
1 & - -
B (0= 2000 ~ MW < *EOM(0) = MG < 0% =0
i=1
by [A3]. We apply the Bracketing Central Limit Theorem and check that,

sup{|M, (V) — MO (U)] < a € AYleilL(le] > /| (Mo — 517) (U3)]”

v

This is true by [A3] as above by decomposing according to which B,; that U;
belongs to and bounding the expected absolute value of each term by

W

Tr

Tr

vn

so that the sum is bounded by o?y2> — 0, and the first condition of Theorem
2.11.9 applies. Further,

2.2
SU%L-

E|51|]_
nn

le1] =

sup{ E((My— M) (Uy)— (M — MY (U))2%€2 : d(a, ') < 6,} < 0762 — 0 (A.5)

and the second condition of Theorem 2.11.9 follows.
Similarly apply the vector form of Jensen’s inequality to check that for any

A*C A

E sup { [(Ma — My)(Uy) — (MM — ]\Zféfn))(%)r«f% ca,d € A*}
(A.6)

< 20?Esup{(a—a)?*(U1) : a,a’ € A*}.
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It is then easy to see that |a|o < M and [A4] guarantee the third condition of
Theorem 2.11.9 and tightness of % > (M, (U;) — M (U;))e; and the lemma
follows. O

Proof of Lemma 6.5. We can write, since both Mé”) and M(™ are constant on
R = =S (MM(U) = MP(U:))es
= o= S (M (&) — M (€5)) S

where ¢; is a representative value in B,,; and S,; = > -{¢; : U; € By;}.

Condition A, (a) on W, ..., W, and take second moments noting that E(S,,;|W1, ..., W,) =
0. We obtain

(A7)

B(Ry(a)[Wh,..., Wy) = ~ S (M) — Mu(&5))? may - Var (e|U € Byy).
=1
Hence 1 K
BRL@IB) < o4 T B U € By) )
< o2 FBa?(W) — '
n (A.8) we use [Al] and E(a*(W)|U € B,;) = Ea*(W)1(U € B,;)/P(U €
B,;) < Ea*(W). To prove tightness of {A,(a)} we use the Bracketing Central

Limit Theorem, conditional on B,,.
Since the second condition of Theorem 2.11.9 is trivial, we need to check

(a)
\/—Z] 1E[Supa€A{|M ( ) M(n)(EJ)HSnJl}

Lsup,e 4 {[ME (&) = M (E)]|Snsl > nv/m}1Ba} = 0
for every n > 0.

(b) If Njy(e, A, L) = Minimal number of sets in a partition of A such that for
each member Ay, 1 </ < Npj

1 55 Blsup{ (M{(&;) — Ma, (&) — MP(&))
M{(&))25%; < a1, as € Ag}|B,] < &
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with probability 1, then

bn
/ VIog N (2, A, Ls)d= 2 0 it 6, — .
0

We begin by proving (a). Apply the Markov inequality given Wy, ... W, to
obtain as a bound for the left-hand side of (a)

o S sup{|MU(&5) — M) - a € AYE(Sy Wi, W) 7tz

= %Esup{]Mé”)(Ul) — MM™(U)|?:a € A}.
Now,
M{(U) = ME(Uy) = 0
by an elementary argument conditioning on B,,. Moreover condition [A4] is easily
seen to imply that a condition of Bickel and Millar (1992) trivially applies to the
process M (U;) — M™(U,) so that
sup{| M (U,) — M (U))] - a € A} 5 0. (A.10)

Then, (A.10) and the boundedness of A imply that the right-hand-side of (A.9)
— 0 and (a).
To prove (b) we note that,

e D E[SUP{( () — M) — MP(&)
M(")(é})) alaaz € Ar}|B,)
< ‘; S E[sup{(a1 —a2)*(Wy) : a1, as € Ag}|B,]

and hence

* n €
Niy (e, A LE) < N, (;,A, Dn> . (A.11)
Thus, (b) follows from [A4] and Lemma 6.1. O

Proof of Lemma 6.6. For U; € B,;, let 7(U;) = m,,; > {v(U;),U; € By;}, then

& S0 (U, V) = MO U)(U)

= & S0, V) = SO U)T) — o(U) a2
:Tzz;( U3, Vi) = MaU) (0(T) = 2(U3)

S (M) - P U) (V) - 7).
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We show that the first term in (A.12) is tight as a process in a, and tends in
probability to 0 by applying the Bracketing Central Limit Theorem. The first
condition (a) is easy since

sup{|a(W) — Mo (U)||w(U) — 5(U)| : a € A} < 2L|y(U) — 5(U)| < 2LA, — 0.

Define N/7(e, A, L3) to be the smallest cardinality for a partition Aj,. .. ,ANﬁ
such that,

3= Bsup{(o(01) = V) (a1 = 02) W) = (Mo, = MU a1,0 € A} < °

for1 </< N[*T But
= i Elsup{(v(Uh) — o(U;))*(a(W;) — Mu(U3))? s a € A — A}

< 2a | Blsup{(a(Wh) — Mo(U3)? : a € A — A} |B,]
and since E((a — b)(W) — (M,(U) — My(U)))* < E(a — b)*(W),

3

Nw(g,A, L;) < NH <A ,

A, Dn> .

0\ log Ni7(e, A, Ly)de < A, Jo*'*\log Ny (e, A, D,,)de
(A.13)

< Ay J3" \/log Ny (€, A, Dy)de = 0

by [A4] and Lemma 6.1 since N (2L, A, D,,) = 1.
Thus the first term in (A.12) is a tight process. It is elementary to check that

E <n_1/2 zn:(a(Wz) — M, (U,)(w(U;) —o(Uy))|Uy, .. ., Un> =0

i=1

and
2

B (n ' 1Ly (a(Wh) = Mu(U)(w(U) — 2(U))
< U BE(U) — o(U)?
= AL*E(v(Uy) — v(Uh))?

—~ —
[
~—



Thus,
1 & _ P
sup {‘% 'E_l(a(VVi) — M, (U)(wv(U;) — V(UZ))‘ ta € A} — 0. (A.14)

Consider the second term in (A.12). Note that

|7 S (M(U;) = M U) (v (T) = (Uy)|
= |J S (Mo(U) = ML (U)) () = 2(U3))|

_ _ (A.15)
< % ZK" Y e, {1 Ma(Ui) — Ma(Ui))(v(Us) — 0(Us))}
< S Zad (n12A,,) < n'2A, 5 0.
Hence, combining (A.14) and (A.15) the lemma follows. O

Proof of Lemma 6.8. We begin by establishing the lemma with MM(U)
replaced by M~ given by (6.10) a familiar alternative estimate of the conditional
expectation. We can write

== S (MM=(U) = MM (Uj0) (v (Us) = v(Us, Vi)

= 72 25 (kg Seil (a(W2) = E(a(Wa)|Ux € By)(w(Ui) = v(U, Vi)Y : U, Ui € Boj})

(A.16)

Given B,, the K, summands are independent and each summand is a multiple of
a degenerate U statistic since

E{(a( ) E( (Wk))|Uk€anvva EB”J}_O
E{(V( ) — V(UZ,V))|U € Bn], Wk, U, € Bn]} =0.

Thus,
< i — MM (U:))(w(U, Vi) = v(U,»)))Q ~0 <%> (A7)
To prove tightness we need to bound
%iﬂz{(*"%n)_ = M = M+ MP)U)) (U, Vi) = w(U:))2}. (A18)
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But again by appealing to the boundedness of v and the variance calculation for
degenerate U statistics, (A.18) is,

ﬁ%éEwwdfMM&> (A.19)

and tightness follows in the same fashion as we have argued in Lemma 6.1. To go
from MCE”)_(U ) which is in fact a natural and attractive alternative to M (U;)
(see Ait Sahalia, Bickel and Stoker (1998) for instance) we need consider

Ja SOHO~(0) = M) (AU — (U, i)

= 2 250 2= S @) = MO(U) ((U;) = v(U3, V7)) : Ui € Bug}
+=
Vn =1
o ik (a(Wh) — Ba(W))|Ui € Byg)(v(Ux) — v(Us, Vi) : Ui, Ur € By}

(A.20)
The second term is familiar but of small order because of the additional m,,;. The
second is an uncentered sum of independent variables with expectation bounded
by O (K.,./\/n) = o(1) by [A2g]. Its variance is evidently o(1). Tightness here can
be argued as for the M~ case. a

Proof of Lemma 7.3. The proof of Lemma 7.3 involves paralleling the treatment
in Lemma 6.5 with one extra level of randomness. Thus, if

R;(a) = fal<wwm—mwwmq
B (R (a)|Wr, W) = L 1o (N (&) (A.21)
PLMZWMhM%WG&mWG&J

*
n
*

Now
Var*(e;|W}r, U € Bjy,) =

{(Y; = Y30)’L(W; € By % Cur)}

it W; € B,,; x Cpe. Further,

Plmax; Var*(ef|W;, UF € Bj,) > M|
< K,L, maXJgP[ - 5(Y; — B(Y;|[W; € By x Cur))* > L]
<E(Y - E(Y|W ¢ an X Cog)PEUSsLl” 1 o(1))

L2n
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since by assumption [A2’] min;,my;; > - with probability tending to 1.
Hence,
max Var*(e;|[W;) = O,(1) (A.22)
J
so that

Var*(a(W*)|U* € B,;)

mnj

E*([A7](a)|B;)

(A.23)

Now we argue as for (A.4) that this last expression is O, (K,,/n) = 0,(1). The
proof of tightness proceeds in the same way. The only new difficulty is that we
now have to deal with the metric

D?**(a,a’) ZE*(a—a (W/z*)|82)

But we can argue as for Lemma 6.1 that
P[|D?(a,a’) — Di(a,d’)| < eD,(a,ad)] — 1

for every € > 0 and the lemma follows. O

Proof of Lemma 7.4. Lemma 7.4 is proved in the same way as Lemma 6.1,
using tightness according to D} and the double array Bracketing Central Limit
Theorem. O
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