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     Abstract   

Breiman[1996] showed that bagging could effectively
reduce the variance of regression predictors, while
leaving the bias unchanged.   A new form of bagging
we call adaptive bagging is effective in reducing both
bias and variance.  The procedure works in stages--
the first stage is bagging.  Based on the outcomes of
the first stage, the output values are altered and a
second stage of bagging is carried out using the
altered output values.  This is repeated until a
specified noise level is reached.   We give the
background theory, and test the method using both
trees and nearest neighbor regression methods.
Application to two class classification data gives some
interesting results.

1.    Introduction

In regression, the average mean-squared generalization error is the sum of
the noise variance, the predictor bias and predictor variance.   Breiman[1996]
introduced bagging as a way of reducing predictor variance.  Applied to a
number of real and synthetic data sets, it significantly reduced test set error.
Bagging reduced variance,  but had no effect on the bias, and the bias and
noise variance remained as the lower limit to the prediction error.   But
surprisingly,  there is a variant of bagging we call adaptive bagging that can
reduce the bias as well as the variance.   The condition for it to work is
analogous to the “weak learning” condition.

Our plan of presentation is this:  Section 2 gives the theoretical
underpinnings for our procedure.   It basically consists of running stages of
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baggings, but such that after each stage, the output values are modified.   It
will work if the basic predictor used satisfies an analogue of the weak learning
condition.  Section 3  introduces our implementation of the theoretical
reduction procedure which we will refer to as adaptive bagging or debiasing.
and tests it out by computing bias and variance for the three synthetic data
sets.

 Section 4  gives empirical results both on real and synthetic data sets using
unpruned trees as the basic predictor.   On some of the data sets adaptive
bagging gives significant decreases in error rates.  Computing bias and
variances before and after for the synthetic data sets gives insight into when it
does or does not give reductions.

In Section 5 we switch over to nearest neighbor regression to see what the
effects of adaptive bagging are using this predictor.  While  bagging usually
results in large decreases in error,  debiasing  produces no further error
reduction on most of the data sets.   We conjecture that nearest neighbor
prediction satisfies the “weak learning” condition less often than trees.

In bagging, one uses the largest trees grown because bagging effects only
variance.  Therefore the individual predictors should be as unbiased as
possible, and generally, the smaller the tree used, the larger the bias.  But since
adaptive bagging can reduce both bias and variance, this opens the possibility
of using smaller trees and saving on computation.   Section 6 explores this
empirically and shows that, indeed, using adaptive bagging,  much smaller
trees can give error rates only slightly larger than using unpruned trees.

One interesting avenue opened by debiasing leads to classification.   A two
class problem can be translated into a regression problem with a zero-one
output.   Can adaptive bagging be applied to get effective classification?  The
answer is generally yes, but with a twist.   Unpruned trees, in classification as
in regression, have small bias.  To get optimal results in classification, we
need to use smaller trees with a small number of terminal nodes.  Then
misclassifications rates competitive with Adaboost are produced.  These
results, are contained in Section 7.

Most of the main recent work in regression has focused on reducing variance.
The exceptions (Drucker [1997],[1999]) consist of efforts made to adapt
Adaboost to a regression context.    The work by Drucker contain experimental
results that show decreases in mean squared error as compared to bagging.
Freund and Schapire[1996] have shown that Adaboost reduces both bias and
variance in classification, so it is possible that some of the bias reduction
carries over into regression.  There also has been promising  work on
regression using Support Vector Machines, but it is not clear how this is
related to debiasing.
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2.             A Generous Fairy Godmother

    2.1 Recalling the Bias-Variance Decomposition

Suppose a training set

   T={(yn ,xn ) n=1,... ,N}

consists of N instances independently  drawn from the same underlying
distribution.  Let Y,X  be random variables having the same distribution.   We
can always write Y as:

(1)       Y = f *(X)+ ε

where
f *(X) = E(Y |X), E(ε |X)= 0

Equation (1) decomposes Y  into its structural part f *(X)  which can be
predicted in terms of X ,  and the unpredictable noise component.
Suppose there is a prediction algorithm which uses the training set to
form predictions f (x,T)  of y given the input vector x .   The mean-
squared generalization error of  f is defined as

(2) PE( f (•,T))= EY ,X (Y − f (X,T))2

where the subscripts indicate expectation with respect to Y,X  holding T
fixed.

Take the expectation of (2)  over all training sets of the same size drawn
from the same distribution and denote this average generalization error
by  PE*( f ) .  Also, let f (x) be the average over training sets of the
predicted value at x.   That is;

(3) f (x) = ET ( f (x,T)).

 Then the bias-variance decomposition (see Breiman [1996], Geman et.al
[1992] ) is

(4) PE * ( f )= Eε 2 + EX ( f * (X)− f (X))2 + EX,T ( f (X,T) − f (X))2

where the first term is the noise variance, the second is the bias and the
third is the variance.
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In the theoretical setting for bagging  ( Breiman [1996] ) we noted that if
there was a fairy godmother kind enough to give us an endless supply
of training sets of the same size, each drawn from the same distribution,
then we could compute the predictor f (x)  which has zero variance but
the same bias as f (x,T) .   Then bagging was introduced as a way of
imitating the endless supply of replicate training sets to produce a
reduced variance predictor.

2.2       A Better Fairy Godmother   

While bagging can significantly reduce variance and, in consequence,
the generalization error, it has little effect on the bias.   Therefore, we
postulate a more generous fairy godmother.    For any prediction
algorithm , denote the function f  by Sf *, where S is an operator on
functions and f *is the structural component of the output .   After the
end of the first round of training sets donated by the fairy godmother,
we can compute Sf *.

As an example of what the operator S looks like, consider nearest
neighbor regression where f (x,T)  is the value of y corresponding to the
xn  in T closest to x .    Look at the instances in T as N random vectors
independently drawn from the Y,X  distribution.  Let p(dz |x) be the
distribution of the nearest neighbor in T to x .   Then,

(5)                     Sf * (x)= f *(z)∫ p(dz |x)

For  nearest neighbor regression S is a linear operator.   This is also true
for linear regression on any set of basis elements.  But for predictors
such as trees and neural nets, S is non-linear and complex.

Subtract   Sf * (X)  from Y  getting the revised output distribution
corresponding to

′Y = f * (X) − Sf * (X) + ε

Now, our more generous godmother supplies us with an infinite
number of training sets sampled from the new Y distribution and the
same X distribution.   This lets us compute S( f *−Sf *).  Subtract this
from the Y’ distribution getting the new output distribution

′Y = f *(X)−Sf *(X)−S( f *(X)−Sf *(X))+ε

or

 ′Y =(I−S)2 f *(X)+ε
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The new predictor is

Sf *+S( f *(X)−Sf *(X))

Continuing this way for K steps,  the current output distribution is

(6) Y (K ) =(I−S)K f *(X)+ε

and the current predictor is:

(7) (I−(I−S)K ) f *(X) .

The variance in the predictor (7) is still zero--the bias is

(8) EX ((I−S)K f *(X))2

Results (6), (7), (8) hold for S  non-linear.  There are reasons to believe
that (8) may go to zero for reasonable prediction methods and initial
functions.  For instance, , if there exists an ε >0 such that  for f  any one

of the functions  (I−S)K f *(X)

(9)  EX ((I−S) f (X))2 <(1−ε )EX ( f (X))2

the bias goes to zero as (1−ε )K .   In expanding the left-hand side of  (9),
the condition becomes that

(10)            2EX ( f (X)S f (X))>εEX ( f (X))2 +EX (Sf (X))2

An intuitive version of (10) is that the correlation between f  and Sf  is
greater than  .5(1+ε ).  This forms an interesting analogy to the concept of
a weak learner in classification.

Generally, our experiments have showed that (I−S) f *(X) is small.  This
is the decrease brought about by bagging.  The problem is with the
further iterates.

2.3       Debiasing as an Stage-wise Process

To set the framework for out implementation of the debiasing idea,  it’s

useful to frame the above procedure as a succession of stages.   Let Y( j)
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be the output distribution in the jth stage, with Y(1)=Y .  Abusing
notation slightly, if Y' = f +ε , let SY' =Sf .  Then,

11) Y ( j+1) =Y ( j) −SY ( j).

Also, if f ( j) is the predictor during the jth stage, with f (1)=SY , then

12)  f ( j+1) = f ( j) +SY ( j)

In Section 3, this sucession of stages is mimicked with finite data sets.

3     Adaptive Bagging.   

Using training sets that are bootstrap samples from the original training
set imitates  a sequences of training sets independently sampled from
the same underlying distribution.   The question is how to imitate the
iterative stages given in (11), (12).  This is our implementation:

(I) The procedure will proceed in stages, with each stage 
consisting of a bagging a fixed number K of predictors using the
same input values but with altered output  values.  Let the 
values of the output variable used in the jth stage of bagging  be 

`denoted by {yn
( j)}, with {yn

(1)} being the initial output values.

(II) During  jth stage,  denote by ŷn.k  the predicted values given by
the kth predictor grown,  At the end of the jth bagging stage,  set

(13) yn
( j+1) =yn

( j) −avk ŷn,k

where the average over ŷn,k  is taken only over those k such that 

the nth instant is not in the kth training set.

(III) If x is an input value not in the initial training set, then the 

predictor f ( j+1) (x) for x after j stages is gotten as follows:   let 
f j,k (x)  be the value predicted for x  by the kth predictor in the jth 

stage.   Then

(14) f ( j+1) (x)= f ( j) (x)+avk f j,k (x)

Here is how this makes sense--assume we have repeated the bagging 100
times.   In each bootstrap training set, about 37% of the instance will be



7

left out.   Therefore, the ŷn,k   are getting averaged over roughly  37

training sets and this average subtracted from yn
( j) to form the new

outputs.    The averaged ŷn,k   are approximations to test set values of

SY( j)evaluated at training set instances and the averages of f j,k (x)   are

approximations to SY( j)  evaluated for instances not in the training set.

Then this procedure is repeated in successive cycles. The signal to stop
repeating is this:  if the mean sum-of-squares of the new y's is greater
than 1.1 times the minimum of the mean sum-of-squares of the y's in
any of the previous stages, then stop and use the predictor given by the
end of the stage having minimum mean sum-of-squares. with the
previous predictor.  The reason for this stopping rule is that the mean-
sum-of-squares of the y’s is a measure of the residual bias (see (5)).
When they begin increasing, the debiasing is beginning to reflect noise.
Then we stop and go back to the minimum value.

    4 Empirical Results

    4.1 Bias and Variance for Synthetic Data

For synthetic data, we can compute bias and variance for any given prediction
method.   We work with four synthetic data sets. .   The  last three last
originated in Friedman [1991] and are also described in Breiman[1998]. The
Peak20 data (Breiman[1994] ) are gotten as follows:  let r=3u  where u is
uniform on [0,1].   Take x to be uniformly distributed on the 20-dimensional
sphere of radius r .   Let y=25exp(−.5r2 ). Training sets of size 400 are generated
from the Peak20 data, and of size 200 for the Friedman data.

Using these four synthetic data sets , bias and variances were computed
using  unpruned CART as the predictor.  The results are given in Tables
1 together with the theoretical noise variance.

           Table 1 Bias and Variance--Unpruned CART

     Data Set        Bias               Variance                 Noise

Peak20 10.5 33.5 0.0
Friedman#1   3.4 10.7 1.0
Friedman#2+3  1.0 26.7           16.0
Friedman#3 -3  8.0 33.8           11.1

* The +and - following a data set name indicate the power of 10 to multiply the result by.  For
instance, the error of Friedman #3 is 8.0x10-3.   The same multipliers will be used in all further
tables.
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Then we computed bias and variances for the same data  using bagging  (50
unpruned trees) and adaptive bagging  (fifty unpruned trees per stage).  These
are shown in Table 2. The  - - -  symbol means that adaptive bagging produced
no change from bagging i.e. debiasing stopped after one stage.

    Table 2  Bias-Variance for Bagging and Adaptive Bagging

     Data Set          Bagging                       Adaptive    
              Bias            Variance              Bias             Variance    

Peak20  10.7 2.2 1.1 2.7
Friedman#1   3.8 1.4 1.2 1.9
Friedman#2  0.7 4.6 - - - - - -
Freidman#3   7.6 5.9 6.2 7.4

In the first two data sets, adaptive bagging raises the variance slightly,
but drastically cuts the bias.   In Friedman #2, the bias is so small already
that debiasing has no effect.    Friedman#3 has bias and variance nearly
equal after bagging.   The debiasing occasionally goes on for two stages,
which may explain the decrease in bias.  But this is offset by the increase
in variance.

The noise variance of Friedman#3 is 11.1, and this may make the
debiasing noisy.  To explore this last possibility Friedman#3 was run
without noise to give bias and variance values.  After bagging, the bias
and variance were 7.9 and 3.6.  After adaptive bagging they were  2.4 and
4.9.   So it is clear that the presence of noise of the same order as the bias
and variance, in this example, prevented effective debiasing.

The greatest effect is seen in the Peak20 data.  Starting with a test set
mean-squared error of 44.0 , bagging reduces it to 12.9, and adaptive
bagging to 3.8.

    4.2 Experiments on More Data Sets

Nine data sets are used in our experiments, including the four synthetic
data sets used above.  A summary is given in Table 3.

    Table 3  Data Set Summary

Data Set    Nr. Inputs     #Training        #Test

Boston Housing 12 506 10%
Ozone   8 330 10%
Servo -2   4 167 10%
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Abalone   8           4177 25%
Robot Arm -2 12        15,000            5000
Peak20 20 400            4000
Friedman#1 10 200            2000
Friedman#2 +3   4 200            2000
Friedman#3  -3   4 200            2000

Of these data sets, the Boston Housing, Abalone and Servo are available
at the UCI repository.  The Robot Arm data was provided by Michael
Jordan.

Bagging and adaptive bagging  using unpruned CART with 50 trees per stage
were applied to the data sets listed in Table 3. The first three data sets listed
are moderate in size and test set error was estimated by leaving out a random
10% of the instances, running both bagging and adaptive bagging on the
remaining 90% and using the left out 10% as a test set.   This was repeated 100
times and the test set errors averaged.  The abalone data set is larger with 4177
instances and 8 input variables.  It originally came with 25% of the instances
set aside as a test set.   We ran this data set leaving out a randomly selected
25% of the instances to use as a test set,  repeated this 10 times and averaged

The 3rd column of Table 4  gives the percent reduction in test set mean-
squared error from that of bagging. The last column gives the average
number of stages used in the adaptive bagging.

       Table 4 Percent Reduction of Error  and Stages Used   

Data Set           Bagging      Debiased   %Reduction  #Stages

Boston Housing 12.7 10.8            14 2
Ozone             17.8 17.8  0 1
Servo -2 24.5 25.1             -3 1
Abalone   4.9   4.9  0 1
Robot Arm -2   4.7   2.8 41 3
Peak20      12.8   3.7 71 3
Friedman #1   6.3   4.1 35 2
Friedman #2+3             21.5 21.5   0 1
Friedman #3 -3        24.8 24.8  0 1

Table 4 shows that significant reductions in error can be made by using
adaptive bagging.    When it does not produce reductions compared to
bagging,  it stops after one stage so that accuracy does not deteriorate.    The
slight deterioration in the servo data set  is caused by the fact that the data set
is small (167 instances) and the mean sum-of-squares of the y’s noisy.  The
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result is that in a small number of the 100 runs it goes to two stages where the
accuracy is less than if it had stopped at one stage.

5      Nearest Neighbor Bagging and Debiasing

The decreases in prediction error using adaptive sampling depend on
the prediction algorithm.  In this section, nearest neighbor prediction is
used.  Given a training set T and a point x, the prediction for x  is the
value corresponding to that  in the training set closest to x .   Euclidean
distance was used, with coordinates normalized by their standard
deviations.   This prediction method has bias and variance given in
Table 5.

            Table 5 Bias and Variance--Nearest Neighbor

     Data Set        Bias               Variance                 Noise

Peak20 51.7 15.7 0.0
Friedman#1   5.2 13.2 1.0
Friedman#2   2.7 34.9           16.0
Friedman#3            15.5 39.7           11.1

Although nearest neighbor regression is not a good prediction method
in high dimensions (Friedman[1997]), the results of bagging and
adaptive bagging are interesting.  We began by running both bagging
and adaptive bagging on the synthetic data sets and computing the bias
and variance given by each method.   The results are summarized in
Table 6.

    Table 6 Bias and Variance for the Nearest Neighbor  Prediction Method

     Data Set                         Single         Bagged                     Adaptive Bagging
    bias          variance               bias          variance                bias           variance    

Peak20 51.7 15.7 62.0       6.4 9.7 17.7
Friedman #1  5.2 13.2  5.2        5.8 - - - - - -
Friedman #2  2.7 34.9  3.1 14.3 - - - - - -
Friedman #3           15.5 39.7            15.8 17.4             - - - - - -

Although bagging  lowers the variance considerably in all four data sets,
adaptive bagging does not help in the last three.   In Peak20, where the
bias dominates, there is a major reduction in bias more than offsetting
the increase in variance.   The inability of adaptive bagging to reduce
bias, say in Friedman #3, may be due to violation of the “weak learner”
condition.
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In the next experiment, the real data sets listed in  Table 1 were used.
Table 7 below gives the test set error estimated by leaving out 10% of the
data for use as a test set and averaging over 100 repetitions.

    Table 7  Mean-Squared Error for Nearest Neighbor Prediction    

     Data Set                 Single                 Bagged           Adaptive Bagged

Boston Housing 18.6 10.5            - - -
Ozone            32.2 22.4            - - -
Servo            83.5 43.9           44.4 
Abalone             6.4   6.4            - - - 
Robot Arm            22.3             13.2            - - -
Peak20            67.4 68.3           27.4
Friedman#1            19.4 12.0            - - -
Friedman#2            53.6 33.4            - - -
Friedman#3            66.3 44,3            - - -

The Peak20 data consists of 400 instances in 20  dimensions and the bias
overwhelms the variance.  So it is not entirely surprising that bias
reduction has an important effect.

For all the other data sets bias reduction is virtually non-existent, but
variance reduction, via bagging,  decreases error significantly.   The
easiest explanation is that nearest neighbor regression is not a “weak
learner” for the data sets used.   But whether this is the full explanation
is uncertain.  On all data sets the debiased CART errors were lower than
the nearest neighbor debiased errors except for the Boston Housing data.

6.       Using Small trees as Predictors.

An interesting possibility occurs with the use of debiasing.  Simple
predictors that would never be used because of their high bias may
become fairly accurate when debiased.  The trade off is between the bias
and variance of the predictors used.  Unpruned CART is the lowest bias
and highest variance version of CART.   Unpruned CART is the right
thing to use with bagging, since bagging reduces variance only.

 Suppose we used smaller trees.  This would reduce variance and
increase bias.  But since the debiasing algorithms  are a combination of
bagging  and bias removal, there might be an interesting trade-off
between smaller tree size and increased debiasing.  We study this
question in this section.    In particular, we show that with debiasing
quite small trees lead to predictors only slightly less accurate than using
the unpruned tree.
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The advantage of using smaller trees  is not that there is a significant
reduction in generalization error, but that computations are can be
speeded up.  For instance, computing the one split leading to a stump
(two terminal tree)  takes about 1/log2N as much computing time as
growing the full tree, where N is the number of instances in the data
set.   This point was also made in the classification context by Friedman
et.al [1998].

What our empirical investigation showed is that for each data set there
is a smallest tree such that its error is only a bit larger than that of the
largest tree.   For trees smaller than this tree, the error escalates.  This
critical tree is usually small.  Sometimes it is the stump, sometimes it is
a three or four terminal node tree, and sometimes larger.   I believe that
the critical factor is how well the structural function can be
approximated by combinations of predictors in the class.

The critical tree was found by the looking at the error as computed for
Table 4 and increasing the tree size from the stump on up until the
error was close enough to that of the full tree.

Table 8 shows, for each data set, the test set error of the debiased
unpruned tree. This is compared to the test set error of the debiased
critical tree,  the average number of terminal nodes in it, and the
average number of stages in the debiasing process.  The errror resulting
from bagging the critical tree without debiasing is given in the last
column.

                 Table 8  Mean Squared Error for the Unpruned and Critical Trees   

       Data Set                 Big  Tree            Debiased Critical Tree          Bagged Critical Tree    
                error               error         # nodes        #stages                 error   

Boston Housing 10.8  11.5 10 2 14.0
Ozone 17.8 19.0   4 2 21.5
Servo 25.1 30.0   5 3 57.5
Abalone   4.9   5.2       3 7   6.8
Robot Arm   2.8   3.0   100 7   6.1
Peak20   3.7   4.1       5 6 26.3
Friedman #1   4.1   4.6   2 8 16.9
Friedman #2 21.5 22.7   7 2 28.7
Friedman #3 24.8 26.7   7 2 40.6

The number of terminal nodes in the critical tree is only a fraction of the
number of terminal nodes in the unpruned tree.  Generally, the number of
terminal nodes in the unpruned tree is a little less than the number of
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instances.   So, for instance, in the robot arm data, the unpruned tree has
about 100 times as many terminal nodes as the critical tree.  The last column
shows that bagging small trees without debiasing is not as effective in
lowering the error rate as it is in bagging the unpruned tree.

Since there is no computational advantage in growing the largest size tree
and pruning back, the smaller trees used here were constructed by fixing the
number of nodes to be split.  That is, my tree algorithm splits 1 into 2 and 3,  2
into 4 and 5, 3 into 6 and 7, etc.   To work with trees having 4 terminal nodes,
just stop after node#3 is split.  This  results in 4 terminal node trees that may
be far from optimal among all 4 node trees.   But they serve to illustrate the
point. For a better method of growing small trees, see Friedman et.a.[1998].

While the error rates of the small trees come close to those of the unpruned
trees,  they are never less.  Some accuracy is lost by going to the smaller trees.
This contrasts to the case in classification, detailed in the next section.

    7.  Debiasing Applied to Classification

Two-class classification problems can be cast into the regression context  by
letting the response for class#1 be 0 and 1 for class#2.   Then new data is
classified as class#2 if the predicted outcome is >.5, otherwise as class#1.   In
our exploration of these classification problems, it became apparent that
optimal accuracy was gotten by using small trees along with debiasing.  This
contrasts with the situation in straight regression where the optimum
accuracy is always achieved by debiasing the largest tree.  To illustrate, we did
runs on the two class data sets listed in Table 9.  These data are available in
the UCI repository.

    Table 9  Data Set Characteristics

#         Data Set         Instances      Inputs

1 diabetes     768 8
2 breast     699 9
3 ionosphere      351           34
4 sonar      208           60
5 heart (Clevld)    303               13
6 german credit         1000           24
7 votes  435           16
8 liver  345 6

The procedure used was this:  the number of terminal nodes was varied from
2 up to 10.  Keeping the number of terminal nodes fixed, 100 runs were done.
In each of these runs, a random 10% of the instances were left out, the
debiasing carried out, and the deleted 10% used as a test set.  The test set
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misclassification errors were then averaged over the 100 runs.  Table 10 gives
the error for the two-node stump, the minimum error over the 2-10 range of
terminal nodes, and, in parentheses, the number of terminal nodes at which
the minimum occurred.   The next column is the error for the debiased
unpruned tree computed the same leave-out-10% way.   The last column
gives the Adaboost error rate as a standard of comparison.

      Table 10  Misclassification Errors (%)   

     Data Set               Two-Err              Min-Err           UP-Err              Ada-Err   

diabetes            24,1            23.4  (3)         24.6          26.6
breast     5.6        3.9   (5)        4.2 3.2
ionosphere      7.0        6.6   (8)           7.7 6.4
sonar            23.0      14.1   (8)      14.9          15.6
heart (Clevld)         15.6      15.6   (2)         18.8          20.7
german credit         25.3          23.6   (7)         24.8          23.5
votes            4.5        3.7  (10)        4.6            5.4
liver            29.6           25.9   (6)         30.4           28.7

Unlike the situation in regression, on the average, debiased trees with ten or
fewer terminal nodes can have misclassification error less than the debiased
unpruned tree.  Averaging over the 8 data sets, the debiased unpruned trees
have error rates 13% larger than the minimum over debiased trees with 2-10
terminal nodes.  Note also that the minimum small tree error rates are
comparable to the Adaboost error rates.   It is possible that with a more
optimal choice of the small trees such as that employed by Friedman
et.al.[1998] even lower error rates could be gotten.

We also kept track of the average number of stages used for each node size.
These values are given in Table 11.

    Table 11  Average Number of Stages Used

     Number of Terminal Nodes

2 4 6 8 10 UP
     Data Set   
diabetes 4.1 3.0 2.6 2.2 2.0 1.8
breast 7.1 3.0 2.4 2.1 2.0 1.7    
ionosphere 4.5 3.0 2.9 2.7 2.1 2.0     
sonar 3.8 3.2 3.2 3.0 3.0 2.9 
heart (Cleveland) 3.8 3.0 2.4 2.0 2.0 1.2
german credit         4.2 3.1 3.0 3.0 2.8 2.0
votes 3.5 2.0 2.0 2.0 2.0 1.0
liver 3.3 3.0 2.8 2.3 2.1 1.3
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Table 11 shows that the smaller and more biased the tree, the more stages are
used in an effort to remove the bias.   The debiasing is fairly successful even
in the presence of high bias, since, for instance, Table 10 shows that the error
rate in the two node stump is usually comparable to the minimum error rate.
That debiasing works this well is surprizing since adaptive bagging was
constructed in a regression context and the application to classification came
as an afterthought.           

    9 Discussion    

For decades, the prevalent philosophy of constructing good predictors was to
grow a sequence of predictors through regularization and try to find the
predictor in the sequence that had the lowest sum of bias and variance.   But
for a class of predictors, the given was that there was no way of reducing  bias
without increasing variance and vice versa.    Now this thinking needs to
change because both bias and variance can be simultaneously reduced.

Bagging reduces variance  by altering the distribution of instances in the
training set, but leaving the input and output variables in each instance
unchanged.   Adaptive bagging forms bootstrapped training sets but also
changes the output variables in each training instance.

The key to the bias reduction is that the estimates based on the times that
instances were out-of-bag can imitate independent test set estimates.   This is a
powerful feature of bagging.   A analogous device in classification is used in
Breiman [1998a] to estimate which instances in the training set will be
misclassified by the aggregated classifier.   The result is a classifier which is
competitive with Adaboost.

Both in classification and regression, the core problem is the same.  Bagging
can reduce variance but is helpless against bias.   Freund and Schapire[1996]
have shown that Adaboost is effective in reducing bias as well as variance, but
the mechanism by which it does this is still obscure.   Adaptive bagging, both
in regression and classification has an intuitive foundation--use the out-of-
bag instances to emulate an independent test set.

The emulation is imperfect because the out-of-bag  estimates govern the
future  course of the adaptive bagging.  Thus there is some dependence
between the estimates and the predictors selected.  This dependence makes
the out-of-bag estimates of error biased, in contrast to straight bagging where
they can provide unbiased estimates of the generalization error (Wolpert and
Macready [1996], Tibshirani[1996], Breiman[1997]).    However, our empirical
results show that for the purpose of bias reduction they work well,
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