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Abstract

Motivated by questions related to a fragmentation process which has been studied by
Aldous, Pitman, and Bertoin, we use the continuous-time ballot theorem to establish some
results regarding the lengths of the excursions of Brownian motion and related processes. We
show that the distribution of the lengths of the excursions below the maximum for Brownian
motion conditioned to �rst hit � > 0 at time t is not a�ected by conditioning the Brownian
motion to stay below a line segment from (0; c) to (t; �). We extend a result of Bertoin by
showing that the length of the �rst excursion below the maximum for a negative Brownian
excursion plus drift is a size-biased pick from all of the excursion lengths, and we describe
the law of a negative Brownian excursion plus drift after this �rst excursion. We then use the
same methods to prove similar results for the excursions of more general Markov processes.

1 Introduction

We use a continuous-time analog of the classical ballot theorem to prove some results pertaining
to the lengths of the excursions of Brownian motion. We also extend these results to other
Markov processes. This work was motivated by questions raised by an alternative construction
described by Bertoin in [6] of a fragmentation process introduced by Aldous and Pitman in [4].
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Before reviewing the descriptions of this process, we recall the de�nition of a fragmentation
process, as given in [6]. For l � 0, de�ne

�l =
�
(xi)

1
i=1 : x1 � x2 � : : : � 0;

1X
i=1

xi = l
	
:

Let � =
S
l�0�l. Suppose �t(l) is a probability measure on �l for all l � 0 and all t � 0.

For each L = (l1; l2; : : :) 2 �, let �t(L) denote the distribution of the decreasing rearrangement
of the terms of independent sequences L1; L2; : : :, where Li has distribution �t(li) for all i 2 N.
Then, for each t � 0, denote by �t the family of distributions (�t(L); L 2 �), which we call the
fragmentation kernel generated by (�t(l); l � 0). If the fragmentation kernels (�t; t � 0) form
a semigroup, then any �-valued Markov process with (�t; t � 0) as its transition semigroup is
called a fragmentation process.

In [7], Bertoin characterizes all fragmentation processes that satisfy a kind of invariance under
scaling. In [8], Bertoin extends this characterization to a class of fragmentation processes having
a weaker self-similarity property. The self-similar fragmentation that has been studied the most
thoroughly is the fragmentation process introduced by Aldous and Pitman in [4] and constructed
another way by Bertoin in [6].

If X = (Xt)t�0 is a stochastic process such that Z = ft : Xt = 0g is almost surely a closed set
of zero Lebesgue measure, then (0; l)nZ almost surely consists of a �nite or countable collection
of disjoint open intervals whose lengths sum to l. The sequence consisting of the lengths of these
intervals in decreasing order is almost surely in �l, and we denote this sequence by Vl(X). The
distribution of Vl(X) when X is Brownian motion or a Bessel process of dimension � 2 (0; 2) is
studied in [21], [23], and [25]. In this case, it was shown in [19] that Z is the closure of the range
of a stable subordinator of index �, where � = 1� �=2.

We now describe Bertoin's construction in [6] of a fragmentation process derived from Brow-
nian motion with drift. Let B = (Bt)t�0 denote one-dimensional Brownian motion started at
zero. Let B� = (B�

t )t�0 = (Bt + �t)t�0 denote Brownian motion with drift �, and de�ne
M�

t = sup0�s�tB
�
s . Let Ta = infft : Bt > ag, and let

F (�) = VT1(M
� �B�): (1)

Thus F (�) consists of the lengths of the excursions below the maximum, up to time T1, for
Brownian motion with drift. Bertoin shows in [6] that (F (�))��0 is a fragmentation process. To
describe the fragmentation kernels, let e = (et)0�t�l be a Brownian excursion of duration l, and
de�ne 	�e = (	�et)0�t�l by

	�et = sup
0�s�t

(�s� es)� (�t� et): (2)

Let '�(l) be the distribution of Vl(	�e), and let '� be the fragmentation kernel generated by
('�(l); l � 0). Bertoin shows that ('�; � � 0) is the transition semigroup of (F (�))��0.
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In [4], Aldous and Pitman study a fragmentation process (G(�))��0, where G(�) consists of
the ranked masses of the components of the Brownian continuum random tree (see [1], [2], and
[3]) when the skeleton of the tree has been subjected to a Poisson process of cuts for time �.
Aldous and Pitman show in [4] that the same fragmentation process arises by time-reversing the
standard additive coalescent. To describe the distribution of G(�), let B = (Bt)t�0 be Brownian
motion, and de�ne T = (Ta)a�0 by Ta = infft : Bt > ag. Let (Ji)

1
i=1 be the sequence of jump sizes

of (Ta)0�a�� ranked in decreasing order. Since it is well-known that T is a stable subordinator
of index 1=2, it follows from Theorem 4 of [4] and scaling properties of stable subordinators that

G(�) =d (J1; J2; : : : jT� = 1): (3)

Note that (Ji)
1
i=1 is the ranked sequence of the lengths of the excursions of B below its maximum

that are completed before time T�. That is, if M = (Mt)t�0 is de�ned by Mt = sup0�s�tBs for
all t, then (Ji)

1
i=1 = VT�(M �B). Thus, (3) can be written as

G(�) =d (V1(M � B)jT� = 1): (4)

Bertoin shows in [6] that ('�; � � 0) is also the transition semigroup for the process (G(�))��0.
We haveG(0) = (1; 0; 0; : : :) almost surely, whereas F (0) = VT1(M�B). Therefore, (F (�))��0 and
(G(�))��0 are fragmentation processes with the same semigroup but di�erent initial distributions.
The fact that ('�; � � 0) is the semigroup of (G(�))��0 implies that if e = (et)0�t�1 is a Brownian
excursion of duration 1, then

(V1(	�e))��0 =d (G(�))��0: (5)

In [12], Chassaing and Louchard give an alternative proof of (5) based on a discrete approximation
using parking functions. Note that (4) and (5) imply that

V1(	�e) =d (V1(M � B)jT� = 1) (6)

for any �xed � > 0. Conversely, once it is established that (F (�))��0 and (G(�))��0 are frag-
mentation processes, the equality in (6) combined with scaling arguments is su�cient to establish
that the fragmentation kernels for these two processes must be the same. See section 7 of [12]
for the necessary scaling arguments. In section 4, we will show how (6) follows from a path
transformation result in [11] (see Lemma 16 and Remark 17).

The work in [6] raises further questions pertaining to the processes (F (�))��0 and (	�et)0�t�1.
The main purpose of this paper is to answer three such questions using the continuous-time ballot
theorem. We introduce the three questions in subsections 1.1, 1.2, and 1.3 of the introduction.
In section 2, we review the continuous-time ballot theorem. In section 3, we establish two
theorems for the inverses of nondecreasing pure-jump processes with interchangeable increments.
In section 4, we apply these results to prove the propositions stated in subsections 1.1, 1.2, and
1.3. In section 5, we show how, via path transformations, one of these results for Brownian
motion yields information about the Brownian bridge, the Brownian excursion, the Brownian
meander, and the three-dimensional Bessel process. Finally, in section 6, we apply the theorems
in section 3 to obtain results about the excursion lengths of more general Markov processes.
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1.1 Brownian motion conditioned to stay below a line

The equality of the transition semigroups of the processes (F (�))��0 and (G(�))��0 suggests the
following result regarding the lengths of the excursions below the maximum for Brownian motion
conditioned to �rst hit �+ 1 at time 1.

Proposition 1 Fix � � 0. Let W = (Wt)t�0 be a process with the same law as a Brownian
motion B conditioned on T�+1 = 1, where T�+1 = infft : Bt > � + 1g. De�ne M = (Mt)t�0 by
Mt = sup0�s�tWs. Then V1(M �W ) is independent of the event fWt � 1+�t for all t 2 [0; 1]g.

Note that V1(M �W ) is the sequence of lengths of the excursions of W below its maximum up
to time 1, and fWt � 1 + �t for all t 2 [0; 1]g is the event that W does not cross the line from
(0; 1) to (1; �+ 1).

We defer to section 4 a rigorous proof of Proposition 1. Now, we give an informal argument,
without justifying the conditioning involved, for why we should expect Proposition 1 to follow
from the equality of the transition semigroups of (F (�))��0 and (G(�))��0.

It follows from (4) and the de�nition of F (�) given in (1) that G(1) has the same distribution
as F (0) conditioned on T1 = 1. Since the processes (F (�))��0 and (G(�))��0 have the same
transition semigroup, it follows that for any �xed � > 0, the distribution of G(� + 1) is the
same as the conditional distribution of F (�) given T1 = 1. Thus, letting B�

t = Bt + �t and
M�

t = sup0�s�tB
�
s and using (4) and (1), we obtain

(V1(M � B)jT�+1 = 1) =d (V1(M
� � B�)jT1 = 1): (7)

De�ne T�
a = infft : B�

t > ag. If T1 = 1 then T�
�+1 = 1. Conversely, if B�

1 = �+ 1, then T1 = 1 if

and only if B�
t � 1+�t for all t 2 [0; 1]. Therefore, T1 = 1 if and only if T�

�+1 = 1 and B�
t � 1+�t

for all t 2 [0; 1], which means (7) can be written as

(V1(M �B)jT�+1 = 1) =d (V1(M
� �B�)jT�

�+1 = 1 and B�
t � 1 + �t for all t 2 [0; 1]): (8)

It is a consequence of Girsanov's Theorem that for all a 2 R and � 2 R, the process (Bt)0�t�1
conditioned on B1 = a has the same law as (B�

t )0�t�1 conditioned on B�
1 = a. Therefore,

(B�
t )0�t�1 conditioned on T�

a = 1 has the same law as (Bt)0�t�1 conditioned on Ta = 1. This
fact, combined with (8), implies

(V1(M � B)jT�+1 = 1) =d (V1(M �B)jT�+1 = 1 and Bt � 1 + �t for all t 2 [0; 1]);

which is equivalent to the statement of the proposition.
Since Proposition 1 is just a fact about Brownian motion, the above discussion raises the

question of whether one can �nd a proof that does not require introducing a fragmentation
process. In section 4, we prove Proposition 1 using the continuous-time ballot theorem.
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1.2 The length of the �rst excursion of 	�e

In [6], Bertoin also studies the length of the �rst excursion of the process 	�e de�ned in (2),
where e is a Brownian excursion of duration 1. We �rst give the following de�nition.

De�nition 2 Given a random sequence V = (Vi)
1
i=1 in �, a size-biased pick from V is a random

variable VN such that

P (N = njV ) =
VnP1
i=1 Vi

: (9)

Note that since (9) involves conditioning on the sequence V , a random variable can have the
same distribution as a size-biased pick from V without being a size-biased pick from V .

Size-biased picks from random sequences in �1 that are given by the interval lengths of
(0; 1) n Z, where Z is a random closed set, have been studied, for example, in [20], [23], [24],
and [25]. In [23], Pitman and Yor show that if Z is the zero set of Brownian motion or a Bessel
process of dimension � 2 (0; 2), then the length of the last interval of (0; 1) nZ, which has length
1� supft 2 (0; 1)\Zg, is a size-biased pick from all of the interval lengths. Pitman and Yor show
in [24] that if Z is any random self-similar closed subset of (0;1) with zero Lebesgue measure,
then 1 � supft 2 (0; 1) \ Zg has the same distribution as a size-biased pick from the lengths of
the intervals of (0; 1) n Z but is not necessarily a size-biased pick from these lengths.

A consequence of Proposition 10 of [6] is that the length of the �rst excursion interval of 	�e

has the same distribution as a size-biased pick from the interval lengths in the sequence V1(	�e).
Using the continuous-time ballot theorem combined with a path transformation identity proved
in [11], we show that the length of the �rst excursion interval of 	�e is indeed a size-biased pick
from V1(	�e). We state this result as Proposition 3 below.

Proposition 3 Let e = (et)0�t�1 be a Brownian excursion of length 1, and de�ne 	�e as in (2).
Let H = infft : �t� et > 0g. Then, H is a size-biased pick from the sequence V1(	�e).

1.3 The process (�t� et)H�t�1

We know from Proposition 3 that H = infft : �t� et > 0g is a size-biased pick from the sequence
V1(	�e). It follows from results in [11] (see Theorem 2.6 and the discussion in subsection 6.3)
that conditional on H = h, the process (�t� et)0�t�H has the same law as a Brownian excursion
of length h. The following proposition describes the process (�t� et)H�t�1.

Proposition 4 Let e = (et)0�t�1 be a Brownian excursion of length 1. Fix � > 0, and let
H = infft : �t � et > 0g. For all r � 0, let W�;r = (W�;r)t�0 be a process with the same law as
a Brownian motion B conditioned on T� = r, where T� = infft : Bt > �g. Then, the law of the
process (�(t + H)� et+H)0�t�1�H conditioned on H = h is the same as the conditional law of

(W�;1�h
t )0�t�1�h given the event fW�;1�h

t � �(t+ h) for all t 2 [0; 1� h]g.
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We show in section 4 that Proposition 4 follows from the continuous-time ballot theorem and
a result in [20] pertaining to size-biased sampling from Poisson point processes.

2 The continuous-time ballot theorem

We �rst recall the classical ballot theorem. Suppose in an election, candidate A receives a votes
and candidate B receives b votes, where a > b. The classical ballot theorem states that if the
votes are counted in random order, then the probability that, for all n � 1, candidate A leads
candidate B after n votes have been counted is (a� b)=(a+ b). A short proof using the re
ection
principle is given in section 3.3 of [13]. Another proof is given in [27].

To reformulate this result, let �i = 0 if candidate A receives the ith vote, and let �i = 2 if
candidate B receives the ith vote. Let Xn =

Pn
i=1 �i, and let N = a + b. Then, the classical

ballot theorem states that for all even integers k less than N , we have

P (Xn < n for all 1 � n � N jXN = k) =
a� b

a+ b
= 1�

2b

N
= 1�

k

N
: (10)

As shown in [27] and [17], equation (10) holds whenever the vector (�1; : : : ; �N) has nonnegative
integer-valued components and its distribution is invariant under the N cyclic permutations of
its components.

The ballot theorem has a natural generalization to continuous-time processes with cyclically
interchangeable increments. Namely, if T > 0 is �xed and (Xt)0�t�T is a nondecreasing process
with cyclically interchangeable increments such that the derivative of t 7! Xt is almost surely
zero Lebesgue almost everywhere, then

P (Xt � t for all 0 � t � T jXT ) = max

�
0; 1�

XT

T

�
: (11)

In [27], Tak�acs studies this generalization extensively and discusses applications to queuing pro-
cesses and storage processes. See [17] for another proof of (11). See also [16] for a recent extension
of the result to include processes with stationary, but not necessarily cyclically interchangeable,
increments.

From (11), we easily obtain the following corollary, which we apply in section 3.

Corollary 5 Fix T > 0 and s > 0. Let X = (Xt)0�t�T be a nondecreasing stochastic process
with cyclically interchangeable increments such that almost surely X0 = 0 and XT = s. Suppose
the derivative of t 7! Xt is almost surely zero Lebesgue almost everywhere. Fix c 2 [0; T ]. Then

P (Xt � (t� c)

�
s

T � c

�
for all 0 � t � T ) =

c

T
:
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Figure 1 Figure 2

Proof. Let K = (T � c)=s. De�ne the process Y = (Yt)0�t�T by Yt = K(XT � XT�t). (See
Figures 1 and 2, and note that Figure 2 can be obtained from Figure 1 by a 180 degree rotation.)
Note that Y is a nondecreasing process with cyclically interchangeable increments. It is also
easily checked that the derivative of the function t 7! Yt is almost surely zero Lebesgue almost
everywhere. Since YT = Ks almost surely, (11) gives

P (Yt � t for all 0 � t � T ) = max

�
0; 1�

Ks

T

�
= max

�
0;
c

T

�
=

c

T
: (12)

Note that Yt � t if and only if XT�t � s� t=K = s�st=(T �c) = (T � t�c)s=(T � c). Therefore,
Yt � t for all 0 � t � T if and only if Xt � (t� c)s=(T � c) for all 0 � t � T , so (12) implies the
corollary.

3 Results for processes with interchangeable increments

In this section, we establish two theorems which apply to the inverses of nondecreasing pure-jump
processes with interchangeable increments. Throughout the section, we assume that T > 0 is
�xed and that X = (Xa)0�a�T is a nondecreasing right-continuous process with interchangeable
increments for which the closure of the range has zero Lebesgue measure. The condition that the
closure of the range ofX has zero Lebesgue measure is equivalent to the condition thatX is a pure-
jump process. We also de�ne the inverse process Y = (Yt)0�t�XT

such that Yt = inffa : Xa > tg
for 0 � t < XT and YXT

= T . It follows from Kallenberg's characterization of processes with
interchangeable increments (see Theorem 2.1 of [15]) that if J = (Ji)

1
i=1 consists of the sizes of

the jumps of X in decreasing order, then there exists a sequence (Ui)1i=1 of independent random
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variables with a uniform distribution on [0; T ] such that (Ui)
1
i=1 is independent of (Ji)

1
i=1 and

Xa =
1X
i=1

Ji1fUi�ag (13)

for all 0 � a � T .
For all j = (ji)

1
i=1 2 �, we also de�ne a process Xj = (Xj

a)0�a�T by

Xj
a =

1X
i=1

ji1fUi�ag: (14)

Let s =
P1

i=1 ji, and de�ne Y j = (Y
j
t )0�t�s by

Y j
t = inffa : Xj

a > tg for 0 � t < s; (15)

Y j
s = T: (16)

Note that the law of Xj is the same as the conditional law of X given J = j, and therefore the
law of Y j is the same as the conditional law of Y given J = j.

The �rst theorem of this section states that for c 2 [0; T ], the probability that Y does not
cross a line from (0; c) to (XT ; T ) is c=T , and that this \crossing event" is independent of the
jump sizes of X (see Figure 3).

Theorem 6 Fix T > 0. Let X = (Xa)0�a�T be a nondecreasing right-continuous process with
interchangeable increments such that X0 = 0 a.s. Let S = XT , and assume S > 0 a.s. Let Z
be the closure of ft : Xa = t for some 0 � a � Tg, and assume Z has Lebesgue measure zero.
Let J = (Ji)

1
i=1 be the sequence consisting of the lengths, in decreasing order, of the disjoint open

intervals whose union is (0; S) n Z. Let Y = (Yt)0�t�S be the right-continuous inverse of X,
de�ned by Yt = inffa : Xa > tg for 0 � t < S and YS = T . Let c 2 [0; T ]. Then

P
�
Yt � c+

�
T � c

S

�
t for all 0 � t � S

�
=

c

T
: (17)

Moreover, J is independent of the event
�
Yt � c+

�
T � c

S

�
t for all 0 � t � S

	
.
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Proof. It su�ces to show that

P
�
Yt � c+

�
T � c

S

�
t for all 0 � t � S

��J) = c

T
:

Since the law of the process Y j de�ned by (15) and (16) is the same as the conditional law of Y
given J = j, it su�ces to prove that

P
�
Y j
t � c+

�
T � c

s

�
t for all 0 � t � s

�
=

c

T
(18)

for all j = (ji)
1
i=1 2 �, where s =

P1
i=1 ji.

Fix j = (ji)
1
i=1 2 �, and let s =

P1
i=1 ji. Since Y

j
t � T for all 0 � t � s, clearly (18) holds

when c = T . Assume c < T , and let K = s=(T � c). We claim that Y j
t � c + K�1t for all

0 � t � s if and only if Xj
a � K(a� c) for all 0 � a � T . If Y j

t � c+ K�1t, then Xj
c+K�1t

� t

by the right continuity of Xj. If Y j
t > c+K�1t for some 0 � t < s, then there exists � > 0 such

that Y j
t > c + K�1(t + �) and thus Xj

c+K�1(t+�)
� t < t + �. Therefore, Y j

t � c + K�1t for all

0 � t � s if and only if Xj
c+K�1t

� t for all 0 � t � s. By making the substitution a = c+K�1t,

we see that Xj
c+K�1t

� t for all 0 � t � s if and only if Xj
a � K(a� c) for all 0 � a � T , which

proves the claim.
It follows from (14) that Xj

T = s and the derivative of the function a 7! Xj
a is zero Lebesgue

almost everywhere (see the Corollary on p.529 of [14]). Therefore, using Corollary 5 for the
second equality, we have

P (Y j
t � c+K�1t for all 0 � t � s) = P (Xj

a � K(a� c) for all 0 � a � T ) =
c

T
;

which proves (18).

Remark 7 In Theorem 6, it is possible to replace the assumption thatX has interchangeable in-
crements with the weaker assumption thatX has cyclically interchangeable increments. However,
we will not need this generalization for the results that follow.
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Before stating the second theorem of this section, we give a de�nition.

De�nition 8 Fix T > 0. Let f : [0; T ]! R be a function, and �x w 2 [0; T ]. Let rwf : [0; T ]! R

be the function de�ned by

rwf(t) = f(w + t) � f(w) if 0 � t < T � w
rwf(t) = f(T )� f(w) + f(w + t � T ) if T � w � t � T .

That is, rwf is the function obtained by cutting the function f at the point w and interchanging
the segment of f from 0 to w with the segment of f from w to T . If Y = (Yt)0�t�T is a stochastic
process and w 2 [0; T ], then we can de�ne a stochastic process rwY = (rwYt)0�t�T by replacing
f with Y in the de�nition above.

Theorem 9 Fix T > 0. Let X = (Xa)0�a�T be a nondecreasing right-continuous process with
interchangeable increments such that X0 = 0 a.s. Let S = XT , and assume S > 0 a.s. Let
� = T=S. Let Z be the closure of ft : Xa = t for some 0 � a � Tg, and assume Z has Lebesgue
measure zero. Let J = (Ji)

1
i=1 be the sequence consisting of the lengths, in decreasing order, of the

disjoint open intervals whose union is (0; S) n Z. Let U = (Ui)
1
i=1 be a sequence of independent

random variables with a uniform distribution on [0; T ] such that U is independent of J and (13)
holds. Let Y = (Yt)0�t�S be the right-continuous inverse of X, de�ned by Yt = inffa : Xa > tg

for 0 � t < S and YS = T . Let c 2 [0; T ]. Then

(a) The process (Yt � �t)0�t<S almost surely attains its maximum at a unique time,
which we denote by K. Almost surely K = gi for some i, where gi = XUi�.

(b) Let H = infft : rKYt > 0g. Then H is a size-biased pick from (Ji)1i=1.

..

�
�
�
�
�
�
�
�
�
�
�
�
�
��

.

S

T

�Ji

gi = K di

Yt

S

T

H = Ji

rKYt

Figure 4 Figure 5

In Figure 4, we have labeled the time K at which (Yt � �t)0�t<S attains its maximum. Part
(a) of Theorem 9 states that such a time must exist and be unique. Since the jump of X having
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size Ji is associated with a 
at interval of Y having length Ji, part (b) of Theorem 9 implies that
the length of the 
at interval of Y starting at K is a size-biased pick from the lengths of all of
the 
at intervals of Y . Equivalently, part (b) implies that the length of the �rst 
at interval of
rKY (see Figure 5) is a size-biased pick from the lengths of all 
at intervals of rKY .

We now outline our strategy for proving Theorem 9. We �rst show in Lemma 10 that if
w 2 [0; S], then (Yt � �t)0�t<S attains a unique maximum at w if and only if rwYt < �t for all
0 < t < S. Then we show in Lemma 13 that if gi is the left endpoint of the 
at interval of length
Ji, then

P (rgiYt < �t for all 0 < t < SjJ) = Ji=S: (19)

Since
P1

i=1 Ji = S, equation (19) implies part (a) of Theorem 9, and part (b) follows from the
fact that Ji = infft : rgiYt > 0g.

To see how (19) follows from the continuous-time ballot theorem, consider Figure 5. Note
that rgiYt = 0 for 0 � t < Ji, so rgiYt < �t for all 0 < t < S if and only if (rgiYt)Ji�t�1 stays
below the line from (Ji; �Ji) to (S; T ). Since the portion of Figure 5 to the right of the dashed
line looks like Figure 3, the probability of this event, conditional on Ji, is �Ji=T = Ji=S.

We now begin the formal proof. We �rst establish two deterministic lemmas.

Lemma 10 Fix s > 0, T > 0, and w 2 [0; s]. Let � = T=s. Suppose f : [0; s] ! [0; T ] is a
function such that f(0) = 0 and f(s) = T . Then rwf(t)� �t � 0 for all 0 � t � s if and only if

f(w)� �w = max
0�t�s

(f(t)� �t):

Also, rwf(t)� �t < 0 for all 0 < t < s if and only if f(w)� �w > f(t) � �t for all t such that
0 < jt� wj < s.

Proof. If 0 � t < s � w, then

rwf(t)� �t = f(w + t)� f(w)� �t =
�
f(w + t)� �(w+ t)

�
� (f(w)� �w): (20)

If s � w � t � s, then

rwf(t)� �t = f(s)� f(w) + f(w + t � s)� �t

= (f(s)� �s)� (f(w)� �w) +
�
f(w + t � s)� �(w+ t � s)

�
=
�
f(w + t� s)� �(w + t � s)

�
� (f(w)� �w): (21)

Equations (20) and (21) imply both statements of the lemma.

Lemma 11 Fix T > 0. Choose a sequence j = (ji)
1
i=1 in � and a sequence u = (ui)

1
i=1 in

[0; T ]1. Let s =
P1

i=1 ji. De�ne a function f : [0; T ]! [0; s] by

f(t) =
1X
i=1

ji1fui�tg:

11



De�ne a function m : [0; T ]� [0; T ]! (0; T ] such that m(u; w) = u� w if u > w and m(u; w) =
u� w+ T if u � w. Then,

rwf(t) =
1X
i=1

ji1fm(ui;w)�tg (22)

for all w 2 [0; T ].

Proof. If 0 � t < T � w, then

rwf(t) = f(w + t)� f(w) =
1X
i=1

ji1fw<ui�w+tg =
1X
i=1

ji1fm(ui;w)�tg: (23)

If T � w � t � T , then

rwf(t) = f(T )� f(w) + f(w + t � T ) = s �
1X
i=1

ji1fw+t�T<ui�wg

= s �

1X
i=1

ji1fm(ui;w)>tg =
1X
i=1

ji1fm(ui;w)�tg: (24)

Equations (23) and (24) establish (22).

Lemma 12 Fix j = (ji)
1
i=1 2 �, and let s =

P1
i=1 ji. De�ne Xj as in (14) and Y j as in (15)

and (16). Fix i 2 N. De�ne gi = Xj
Ui�

and di = Xj
Ui
. Then, we have rgiY

j
t = 0 for 0 � t < ji

a.s. and rgiY
j
t+ji

= inffa : rUi
Xj
a > tg for 0 � t < s � ji a.s.

Proof. It follows from (14) that di = Xj
Ui

= ji + gi and Y j
t = Ui for gi � t < di. Also, X

j
0 = 0

a.s. because Uj = 0 a.s. for all j 2 N. We now prove the lemma by considering three cases.

Case 1: Suppose 0 � t < ji. Then gi + t < ji + gi = di � s, so rgiY
j
t = Y j

t+gi
� Y j

gi = Ui�Ui = 0,
as claimed.

Case 2: Suppose 0 � t < s�di. Then X
j
T�X

j
Ui

= s�di > t, so inffa : Xj
Ui+a

�Xj
Ui
> tg � T�Ui.

It follows from this inequality and the fact that Xj
0 = 0 a.s. that inffa : rUi

Xj
a > tg = inffa :

Xj
Ui+a

�Xj
Ui
> tg = inffb�Ui : X

j
b > t+dig = Y j

t+di
�Ui = Y j

gi+t+ji
�Y j

gi = rgiY
j
t+ji

, as claimed.

Case 3: Suppose s � di � t < s � ji. If a < T � Ui, then Xj
Ui+a

�Xj
Ui
� s � di � t. Therefore,

inffa : rUi
Xj
a > tg = inffa : s � Xj

Ui
+ Xj

Ui+a�T
> tg = inffb + T � Ui : X

j
b > t + di � sg =

Y j
t+di�s

+ T � Ui = T � Y j
gi + Y j

gi+t+ji�s
= rgiY

j
t+ji

, as claimed.

Lemma 13 Fix j = (ji)
1
i=1 2 �, and let s =

P1
i=1 ji. De�ne Xj as in (14) and Y j as in (15)

and (16). For all i 2 N, de�ne gi = Xj
Ui�

and di = Xj
Ui
. Let � = T=s. Then, for all i 2 N such

that ji > 0, we have P (rgiY
j
t < �t for all 0 < t < s) = ji=s.

12



Proof. It is easy to verify the lemma if ji = 0 for all i � 2, so we will assume j2 > 0. Fix i 2 N
such that ji > 0. De�ne a process Ri = (Ri

t)0�t�s�ji by R
i
t = rgiY

j
t+ji

. By Lemma 12, we have

rgiY
j
t = 0 < �t for 0 < t < ji. Therefore rgiY

j
t < �t for all 0 < t < s if and only if rgiY

j
t < �t for

all ji � t < s, or, equivalently, if and only if Ri
t < �(t+ ji) for all 0 � t < s� ji.

De�ne Xj;i = (Xj;i
a )0�a�T such that Xj;i

a = rUi
Xj
a if 0 � a < T and Xj;i

T = s� ji. By Lemma
11, we have

Xj;i
a =

X
k 6=i

jk1fm(Uk;Ui)�ag (25)

for all 0 � a � T , where m is the function de�ned in Lemma 11. Since the random variables
m(Uk; Ui) for k 6= i are independent and have a uniform distribution on [0; T ], equation (25)
implies that Xj;i is a nondecreasing, right-continuous process with interchangeable increments
such thatXj;i

0 = 0 a.s. andXj;i
T = s�ji > 0. Also, the closure of ft : Xj;i

a = t for some 0 � a � Tg

has Lebesgue measure zero. By Lemma 12, Ri
t = rgiY

j
t+ji

= inffa : rUi
Xj
a > tg = inffa : Xj;i

a > tg

for all 0 � t < s � ji, and Ri
s�ji

= rgiY
j
s = T . Let 0 � � < 1, and let c = (1 � �)jiT=s. By

Theorem 6,

P (Ri
t � c+

�
T � c

s � ji

�
t for all 0 � t � s� ji) =

c

T
=

(1� �)ji
s

: (26)

Note that

c+

�
T � c

s� ji

�
t =

(1� �)jiT

s
+

�
T � (1� �)jiT=s

s � ji

�
t = �

�
(1� �)ji +

�
s � (1� �)ji

s � ji

�
t

�
;

which equals �(t + ji) if � = 0 and is less than �(t + ji) if � > 0 and 0 � t < s � ji. Therefore,
equation (26) when � = 0 becomes

P (Ri
t � �(t+ ji) for all 0 � t � s� ji) =

ji
s
:

Since we always have Ri
t � �(t+ ji) when t = s � ji, it follows that

P (Ri
t < �(t+ ji) for all 0 � t < s� ji) �

ji
s
: (27)

Using (26) when � > 0, we obtain

P (Ri
t < �(t+ ji) for all 0 � t < s � ji) � P (Ri

t � c+

�
T � c

s� ji

�
t for all 0 � t � s� ji)

=
(1� �)ji

s
:

Letting � # 0 gives P (Ri
t < �(t + ji) for all 0 � t < s � ji) � ji=s, which, combined with (27),

implies the lemma.
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Proof of Theorem 9. If Ji > 0, then gi < S. Therefore, by Lemma 10, (Yt � �t)0�t<S attains
its maximum only at time gi if and only if rgiYt < �t for all 0 < t < S. Since, for all j 2 �,
the distribution of Y j is the same as the conditional distribution of Y given J = j, Lemma 13
implies that

P (rgiYt < �t for all 0 < t < SjJ) = Ji=S

on the event fJi > 0g. Since
P1

i=1 Ji = S, it follows that almost surely (Yt��t)0�t<S attains its
maximum at a unique time K, and

P (K = gijJ) = Ji=S (28)

for all i 2 N, which proves part (a) of Theorem 9. Part (b) will also follow from (28) if we can
show that H = Ji a.s. on the event fK = gig whenever Ji > 0. Note that rgiYt = Yt+gi � Yt =
Ui � Ui = 0 a.s. if 0 � t < Ji. If di = S, then rgiYJi = YS � Ygi + Y0 � T � Ui > 0 a.s. because
almost surely Ui < T for all i, so in this case infft : rgiYt > 0g = Ji. If instead di < S, then for
0 < t < S � di, we have rgiYJi+t = Ydi+t � Ygi > 0, since Ydi+t > Ui by the right continuity of X .
Hence, infft : rgiYt > 0g = Ji, so H = Ji a.s. on fK = gig, as claimed.

4 Proofs of Propositions 1, 3, and 4

In this section, we prove Propositions 1, 3, and 4 in the introduction by applying Theorems 6 and

9. We �rst introduce some notation. Let Bjbrj;r = (B
jbrj;r
t )0�t�r be a re
ecting Brownian bridge

from (0; 0) to (r; 0), and let (L
jbrj;r
t )0�t�r be its local time at zero, meaning that L

jbrj;r
t is the local

time of Bjbrj;r at zero up to time t. By Lemma 12 of [22], for each r > 0 there exists, on the path
space of continuous functions de�ned on [0; r], a unique family of conditional laws (P�;r; � � 0)

for Bjbrj;r given L
jbrj;r
r = � that is weakly continuous in �. Let A�;r = (A�;r

t )0�t�r be a process

with law P�;r, and let L�;r = (L�;rt )0�t�r denote its local time at zero. De�ne another process

W�;r = (W�;r
t )0�t�r by W

�;r
t = L�;rt � A�;r

t . We claim that for � > 0, the process W�;r has the
same law as Brownian motion conditioned to �rst hit � at time r.

To prove this claim, let (Bt)t�0 be Brownian motion, and let (Lt)t�0 be its local time at
zero. Let Mt = sup0�s�tMs for all t � 0. For all � � 0, let T� = infft : Bt > �g and let

�� = infft : Lt > �g. By equation (5.a) of [23], the conditional law of (B
jbrj;r
t )0�t�r given

L
jbrj;r
r = � is the same as the conditional law of (jBtj)0�t�r given �� = r. By L�evy's Theorem,

(Mt � Bt;Mt)t�0 =d (jBtj; Lt)t�0. Therefore, for all � > 0, the conditional law of the process
(Mt�Bt;Mt)0�t�r given T� = r is the same as the conditional law of (jBtj; Lt)0�t�r given �� = r.

Thus, the process (A�;r
t ; L�;rt )0�t�r has the same law as the conditional law of (Mt�Bt;Mt)0�t�r

given T� = r. It follows that (W�;r
t ; L�;rt )0�t�r has the same law as the conditional law of

(Mt � (Mt �Bt);Mt)0�t�r = (Bt;Mt)0�t�r given T� = r, which implies the claim.
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A construction of A�;r for � � 0 and r > 0 is sketched in the proof of Lemma 12 of [22]. This
construction in the case when r = 1 is described in section 6 of [23] and subsection 6.3 of [11].
We record the construction below.

Construction 14 Fix � � 0 and r > 0. Let J = (Ji)
1
i=1 be a random sequence having the same

distribution as Vr(A
�;r). For a description of this distribution when r = 1, see subsection 6.3 of

[11]. Independently of J , let U = (Ui)
1
i=1 be a sequence of i.i.d. random variables with a uniform

distribution on [0; �]. De�ne a process X = (Xa)0�a�� by

Xa =
1X
i=1

Ji1fUi�ag: (29)

For all i 2 N, let di = XUi
and gi = XUi�. Independently of (J; U), let (ei)1i=1 be a sequence of

independent Brownian excursions of length 1. De�ne A�;r = (A�;r
t )0�t�r by

A�;r
t =

p
di � gi e

i
(t�gi)=(di�gi)

for t 2 (gi; di) and A
�;r
t = 0 for t =2 (0; r) n

S1
i=1(gi; di). Then, A

�;r has law P�;r. Moreover, it is

stated in [11] and [23] that if L�;r is the local time of A�;r at zero, then L�;rt = Ui for t 2 (gi; di).

Using the notation of Construction 14, note that if t 2 (gi; di) for some i 2 N, then we have

inffa : Xa > tg = Ui = L
�;r
t . Since t 7! L

�;r
t is a.s. nondecreasing and continuous, it follows that

L�;rt = inffa : Xa > tg for all 0 � t < r a.s. (30)

Likewise, if we de�ne W�;r = L�;r � A�;r and M�;r
t = sup0�s�tW

�;r
s , then M�;r

t = Ui for all

gi < t < di and t 7!M�;t
t is a.s. nondecreasing and continuous. Therefore,

L�;rt =M�;r
t for all 0 � t � r a.s.; (31)

and so
(Ji)

1
i=1 = Vr(A

�;r) = Vr(L
�;r �W�;r) = Vr(M

�;r �W�;r) a.s. (32)

It follows from (32) that the terms of the sequence (Ji)
1
i=1 are both the lengths of excursions of

A�;r away from zero and the lengths of excursions of W�;r below its current maximum.
It is clear from (29) that (Xa)0�a�� is a nondecreasing right-continuous process with inter-

changeable increments such that X0 = 0 a.s. and X� = r > 0 a.s. Also, (29) implies that if Z is
the closure of ft : Xa = t for some 0 � a � �g, then Z has Lebesgue measure zero a.s. Therefore,

X satis�es the hypotheses of Theorems 6 and 9. From (30) and the fact that L�;rr = �, we see
that the process L�;r plays the role of Y in those theorems. Also, J is the sequence of ranked
lengths of the open intervals whose union is (0; r) n Z. Therefore, by applying Theorem 6, we
obtain Proposition 15 below. From Proposition 15, we can deduce Proposition 1 by putting �+1
in place of � and setting r = c = 1.
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Proposition 15 Fix � > 0 and r > 0. Let (W�;r
t )0�t�r be a process with the same law as a

Brownian motion B conditioned on T� = r, where T� = infft : Bt > �g. Fix c 2 [0; �], and de�ne

M�;r
t = sup0�s�tW

�;r
s . Then

P
�
W�;r

t � c+

�
�� c

r

�
t for all t 2 [0; r]

�
=

c

�
: (33)

Moreover, Vr(M
�;r�W�;r) is independent of the event

�
W�;r

t � c+

�
�� c

r

�
t for all t 2 [0; r]

	
.

Proof. FromTheorem 6 and equations (30) and (32), we obtain the conclusions of the proposition

with L�;rt in place of W�;r
t in (33) and in the de�nition of the event at the end of the statement of

the proposition. The conclusions of the proposition then follow from (31) and the fact that the

events fM�;r
t � c+ ((�� c)=r)t for all t 2 [0; r]g and fW�;r

t � c+ ((�� c)=r)t for all t 2 [0; r]g
are the same.

Our next goal is to prove Propositions 3 and 4. For the rest of this section, we will �x � > 0
and we will use the notation of Construction 14 and the discussion preceding Proposition 15.
Also, we will de�ne A = A�;1, L = L�;1, W = W�;1, and M = M�;1. By part (a) of Theorem 9,
there is almost surely a unique time K at which (Lt��t)0�t<1 attains its maximum, and almost
surely K = gi for some i. The fact that (Lt � �t)0�t<1 attains its maximum at a unique time
also follows from Theorem 2.6 of [11]. Let

H = infft : rKLt > 0g:

We have H = Ji a.s. on the event fK = gig, as shown in the proof of Theorem 9. It follows
from the description of the distribution of (Ji)

1
i=1 in section 6.3 of [11] that J1 > J2 > : : : > 0

a.s. Therefore
fH = Jig = fK = gig (34)

up to a null set. Since Agi = 0 for all i 2 N, we have LK = WK a.s. Since Wt � Lt for all t, it
follows that K is also the unique time at which (Wt � �t)0�t<1 attains its maximum.

Lemma 16 Let (~et)0�t�1 be a Brownian excursion. Then (rKWt)0�t�1 =d (�t� ~et)0�t�1.

Proof. Corollary 2.9 of [11] states that the process (et)0�t�1 de�ned by

et = AK+t + �t� LK+t + LK if K + t < 1 (35)

et = AK+t�1 + �t� LK+t�1 + LK � � if K + t � 1 (36)

is a Brownian excursion. IfK+t < 1, then �t�et = LK+t�LK�AK+t = WK+t�WK = rKWt. If
K+t � 1, then �t�et = �+LK+t�1�LK�AK+t�1 = �+WK+t�1�WK = W1+WK+t�1�WK =
rKWt. Thus, rKWt = �t� et for all 0 � t � 1, which proves the lemma.
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Remark 17 Note that equation (6) in the introduction can be deduced from Lemma 16 because
V1(	�e) is the sequence consisting of the ranked lengths of the excursions of (�t � et)t�0 below
its maximum, and (V1(M �B)jT� = 1) consists of the ranked excursion lengths of (Wt)t�0 below
its maximum, or, equivalently, the ranked excursion lengths of (rKWt)t�0 below its maximum.
Therefore, Lemma 16, combined with scaling arguments, can be used to establish the equality of
the transition semigroups for the two fragmentation processes discussed in the introduction.

Proof of Proposition 3. De�ne a Brownian excursion e = (et)0�t�1 as in (35) and (36), so
�t� et = rKWt for 0 � t � 1. Then, we have

H = infft : rKLt > 0g = infft : rKWt > 0g = infft : �t� et > 0g:

By part (b) of Theorem 9, H is a size-biased pick from (Ji)
1
i=1. Therefore, to prove Proposition

3, it su�ces to prove that (Ji)
1
i=1 = V1(	�e) a.s., where 	�e is as de�ned in (2). By (32),

it su�ces to show that V1(M � W ) = V1(	�e) a.s. Note that Mt � Wt = 0 if and only if
Wt = sup0�s�tWs, and 	�et = 0 if and only if �t � et = sup0�s�t(�s � es) or, equivalently, if
and only if rKWt = sup0�s�t rKWs. Since M0 = W0 = 0, MK = WK , and M1 = W1 = � a.s.,
De�nition 8 implies that the following hold up to a null set:

ft � 1�K : rKWt = sup
0�s�t

rKWsg = ft �K : t � K; Wt = sup
0�s�t

Wsg (37)

ft � 1�K : rKWt = sup
0�s�t

rKWsg = ft + 1�K : t � K; Wt = sup
0�s�t

Wsg: (38)

Equations (37) and (38) imply that V1(M �W ) = V1(	�e), which proves the proposition.

To prove Proposition 4, we will need the following lemma, which can be deduced from equation
(4.i) of [20].

Lemma 18 Let (Zi)
1
i=1 be the points of a Poisson point process N on (0;1) with mean measure

�. Assume that � is �-�nite and �((0;1)) = 1. Also, assume T =
P1

i=1Zi is a.s. �nite. Let
N 0 be a point process obtained by deleting a point Z from N , where Z is a size-biased pick from
(Zi)

1
i=1. Let T

0 = T � Z. Then, the conditional distribution of N 0 given T = t and T 0 = t0 is the
same as the conditional distribution of N given T = t0.

Remark 19 Recall that the jump sizes of a subordinator run for time t have the same distribu-
tion as the points of a Poisson point process on (0;1) whose mean measure is t times the L�evy
measure of the subordinator. The L�evy measure � of a stable subordinator of index 1=2 is given
by �(dx) = Cx�3=2 dx, where C is a constant. Therefore, t� is �-�nite and t�((0;1)) =1.

Proof of Proposition 4. For all l 2 N, let J(�l) = (J
(�l)
i )1i=1 be a sequence of random variables

such that J
(�l)
i = Ji for i < l and J

(�l)
i = Ji+1 for i � l. De�ne (U

(�l)
i )1i=1 by U

(�l)
i = m(Ui; Ul)
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for i < l and U
(�l)
i = m(Ui+1; Ul) for i � l, where m is as de�ned in Lemma 11 with � in place

of T . It follows from Lemma 11 and the fact that m(U
(�l)
l ; U

(�l)
l ) = � for all l 2 N that

rUl
Xa =

1X
i=1

J
(�l)
i 1

fU
(�l)
i

�ag
(39)

for all l 2 N and 0 � a < �. Now de�ne J 0 = (J 0i)
1
i=1 and U 0 = (U 0

i)
1
i=1 such that for all i 2 N

and l 2 N, we have J 0i = J
(�l)
i and U 0

i = U
(�l)
i on fK = glg. De�ne X

0 = (X 0
a)0�a�� by

X 0
a =

1X
i=1

J 0i1fU 0

i
�ag: (40)

By Lemma 12, we have rglLt+Jl = inffa : rUl
Xa > tg for all l 2 N and 0 � t < 1 � Jl. Since

H = Jl and X 0 = rUl
X a.s. on fK = glg, it follows that

rKWt+H = rKLt+H � rKAt+H = inffa : X 0
a > tg � rKAt+H (41)

for all 0 � t < 1�H .
De�ne W�;1�h = L�;1�h � A�;1�h, where A�;1�h and L�;1�h are obtained from ~J = ( ~Ji)

1
i=1,

~U = (~Ui)
1
i=1, and a sequence of Brownian excursions (~ei)1i=1 as in Construction 14. De�ne

~Xa =
1X
i=1

~Ji1f~Ui�ag
(42)

for all 0 � a � �. Then, using (30), we obtain

W�;1�h
t = L�;1�ht �A�;1�h

t = inffa : ~Xa > tg � A�;1�h
t (43)

for 0 � t < 1 � h. We now claim that the conditional distribution of ( ~J; ~U) given the event

fW�;1�h
t � �(t + h) for all t 2 [0; 1 � h]g, which we denote hereafter by Eh, is the same

as the conditional distribution of (J 0; U 0) given H = h. Recall that (rKAt+H)0�t�1�H and

(A�;1�h
t )0�t�1�h were constructed from independent Brownian excursions over the 
at intervals

of (rKLt+H)0�t�1�H and (L�;1�ht )0�t�1�h respectively. Therefore, by equations (40), (41), (42),
and (43), the claim implies that the conditional law of W�;1�h given Eh is the same as the condi-
tional law of (rKWt+H)0�t�1�H given H = h. Thus, by Lemma 16, the claim proves Proposition
4. To prove the claim, it su�ces to prove the following two statements:

(a) The conditional distribution of ~J given Eh is the same as the conditional distribution
of J 0 given H = h.

(b) The conditional distribution of ~U given Eh and given ~J = j is the same as the
conditional distribution of U 0 given H = h and J 0 = j.

18



We �rst prove (a). Let B be a Brownian motion, and let (Lt)t�0 be the local time of B at
zero. De�ne �� = infft : Lt > �g. As shown in the second paragraph of this section, the law of
M �W is the same as the conditional law of jBj given �� = 1. Therefore, using (32), we see that
J has the same distribution as the conditional distribution of V1(B) given �� = 1, which is the
same as the conditional distribution of V��(B) given �� = 1. By (34) and part (b) of Theorem 9,
J 0 is obtained from J by deleting a point H , where H is a size-biased pick from J . Therefore,
if V 0

��
(B) is a sequence obtained by removing a size-biased pick Z from the sequence V��(B),

then the conditional distribution of J 0 given H = h is the same as the conditional distribution of
V 0
��
(B) given �� = 1 and Z = h, which is the same as the conditional distribution of V 0

��
(B) given

�� = 1 and ���Z = 1�h. Recall that V��(B) consists of the jump sizes of a stable subordinator
of index 1=2 run for time �, and �� is the sum of these jump sizes. Therefore, by Lemma 18
and Remark 19, the conditional distribution of V 0

��
(B) given �� = 1 and �� � Z = 1 � h is the

same as the conditional distribution of V��(B) given �� = 1� h, which by (32) is the same as the
distribution of ~J . By Proposition 15, ~J is independent of Eh. Therefore, the distribution of ~J is
the same as the conditional distribution of ~J given Eh, which establishes (a).

We now prove (b). For all h 2 (0; 1) and all j 2 �1�h, there exists a subset Dj;h of [0; �]1

such that if ~J = j then Eh occurs if and only if ~U 2 Dj;h. Let �� denote Lebesgue measure on
[0; �], normalized by 1=�, and let A be a Borel subset of [0; �]1. Proposition 15 implies that
P (Eh) = h and Eh is independent of ~J . Fix j 2 �1�h. Since ~U has distribution �1� and is
independent of ~J , we have

P ( ~U 2 AjEh; ~J = j) =
P (f ~U 2 Ag \ Ehj ~J = j)

P (Ehj ~J = j)
=
P ( ~U 2 A \Dj;hj ~J = j)

h
=
�1� (A \Dj;h)

h
:

(44)
Fix l 2 N such that l� 1 is the number of terms in the sequence j greater than h, and let j(+h)

be the sequence in �1 whose terms include h and all of the terms of j. By Lemma 10, we have
K = gl if and only if rglLt < �t for all 0 < t < 1. Since (Lt � �t)0�t<1 attains its maximum at
a unique time, Lemma 10 also implies that up to a null set, the condition that rglLt < �t for all
0 < t < 1 is equivalent to the condition that rglLt � �t for all 0 � t � 1, which by Lemma 12 is
equivalent to the condition that rglLt+Jl � �(t+ Jl) for all 0 � t � 1� Jl. By (39) and Lemma
12, we have rglLt+Jl � �(t + Jl) for all 0 � t � 1 � Jl if and only if U (�l) 2 DJ(�l);Jl

. Since

fU 0 = U (�l)g = fK = glg by the de�nition of U 0, it follows from (34) that

fU 0 2 Ag \ fH = Jlg = fU 0 2 Ag \ fU (�l) 2 DJ(�l);Jl
g = fU (�l) 2 A \DJ(�l);Jl

g

up to a null set. Since U (�l) has distribution �1� and is independent of J , and since H is a
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size-biased pick from J , we have

P (U 0 2 AjH = h; J 0 = j) = P (U 0 2 AjH = h; J = j(+h)) =
P (fU 0 2 Ag \ fH = hgjJ = j(+h))

P (H = hjJ = j(+h))

=
P (U (�l) 2 A \Dj;hjJ = j(+h))

h
=
�1� (A \Dj;h)

h
: (45)

Equations (44) and (45) imply (b).

5 Results obtainable by path transformations

In this section, we present some corollaries of Proposition 15 that relate to the Brownian bridge,
the Brownian excursion, the Brownian meander, and the three-dimensional Bessel process. We
prove these results by applying well-known path transformations that enable us to construct one of
these processes from another. See [9] for a discussion of a large collection of such transformations.
Lemma 20 below contains the path transformation results that we will use.

Lemma 20 Let (Bt)t�0 be a one-dimensional Brownian motion started at zero, and let (Rt)t�0
be a three-dimensional Bessel process started at zero. Then, the following hold:

(a) The processes
�
(1� t)Bt=(1�t)

�
0�t�1

and
�
tB(1�t)=t

�
0�t�1

are Brownian bridges.

(b) The processes
�
(1� t)Rt=(1�t)

�
0�t�1

and
�
tR(1�t)=t

�
0�t�1

are Brownian excursions.

(c) For all � > 0, de�ne T� = infft : Bt = �g and L� = supft : Rt = �g. Then, the processes
(Rt)0�t�L�

and (��BT��t)0�t�T� have the same law.

Part (a) of Lemma 20 is part of exercise 3.10 in chapter I of [26]. The fact that
�
tR(1�t)=t

�
0�t�1

is a Brownian excursion is stated in the proof of Proposition 10 in [6]. It then follows from the
invariance of Brownian excursions under time reversal (see Corollary 4.3 in chapter XII of [26])
that

�
(1� t)Rt=(1�t)

�
0�t�1

is a Brownian excursion. Part (c) is a time-reversal theorem proved

by Williams in [28] and is also Corollary 4.4 in chapter XII of [26]. LeGall gives an alternative
approach to this result in [18].

We begin with the following corollary pertaining to the Brownian bridge.

Corollary 21 Let Bbr = (Bbr
t )0�t�1 be a Brownian bridge. Fix � > 0 and c 2 [0; �]. Let

� = infft : Bbr
t = (1� t)�g. Then

P
�
Bbr
t � c+

�
�(1� �)� c

�

�
t for all 0 � t � �

���� = c

�
: (46)

Likewise, let 
 = supft : Bbr
t = �tg. Then

P
�
Bbr
t �


(�� c) + (c� �
)t

1� 

for all 
 � t � 1

��
� = c

�
: (47)
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Equation (46) states that if (�; �� ��) is the point at which Bbr �rst crosses the line segment
from (0; �) to (1; 0), then Bbr crosses the line segment from (0; c) to (�; (1� �)�) with probability
c=� (see Figure 6). Equation (47) states that if 
 is the last time that Bbr crosses the line segment
from (0; 0) to (1; �), then Bbr crosses the line segment from (
; �
) to (1; c) with probability c=�
(see Figure 7).
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Bbr
t

Bbr
t

��

Proof. Let B = (Bt)t�0 be Brownian motion, and let T� = infft : Bt = �g. By part (a)
of Lemma 20, we may assume that Bbr

t = (1 � t)Bt=(1�t) for all 0 � t � 1. Then, we have

Bbr
t = (1� t)� if and only if Bt=(1�t) = �, so T� = �=(1� �). Furthermore, since

(1� t)

�
c+

�
�� c

T�

��
t

1� t

��
= c+

�
�(1� �)� c

�

�
t;

it follows from Proposition 15 that

P
�
Bbr
t � c+

�
�(1� �)� c

�

�
t for all 0 � t � �

����

= P
�
Bt � c+

�
�� c

T�

�
t for all 0 � t � T�

��T�� = c

�
;

which proves (46). We can deduce (47) from (46) by time reversal, replacing t by 1� t. Alter-
natively, we can establish (47) by assuming Bbr

t = tB(1�t)=t and giving another argument similar
to that above.

We now use Williams' time-reversal theorem to obtain a result about the three-dimensional
Bessel process. See Figure 8 for the associated picture.

Corollary 22 Let (Rt)t�0 be a three-dimensional Bessel process started at zero. Fix � > 0 and
r > 0, and �x c 2 [0; �]. Then, P (Rt � ct=r for all 0 � t � rjRr = �) = (�� c)=�.
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Proof. Let (Bt)t�0 be Brownian motion. De�ne T� = infft : Bt = �g and L� = supft : Rt = �g.
Let a = � � c. Then, Bt � a + (� � a)t=T� for all 0 � t � T� if and only if � � BT��t �
(�� a)t=T� = ct=T� for all 0 � t � T�. It follows from Proposition 15 and part (c) of Lemma 20
that

P (Rt � ct=r for all 0 � t � rjL� = r)

= P (�� BT��t � ct=r for all 0 � t � rjT� = r)

= P
�
Bt � a+

�
�� a

r

�
t for all 0 � t � r

��T� = r
�
=
a

�
=
�� c

�
: (48)

It is stated in the proof of Theorem 3 of [10] that (Rt)0�t�r conditioned on L� = r has the
same law as (Rt)0�t�r conditioned on Rr = �. This result, combined with (48), establishes the
corollary.

Remark 23 Let (mt)0�t�1 be a normalized Brownian meander. It is proved in [10] that if f
is a nonnegative measurable function whose domain is the set of all continuous [0;1)-valued
functions de�ned in [0; 1], then

E
�
f
�
(mt)0�t�1

��
= E

�
f
�
(Rt)0�t�1

�r�

2

1

R1

�
:

Therefore, the process (mt)0�t�1 conditioned on m1 = � has the same law as (Rt)0�t�1 condi-
tioned on R1 = �. Thus, Corollary 22 gives P (mt � ct for all 0 � t � 1jm1 = �) = (�� c)=� for
all c 2 [0; �].

We now show how Corollary 22 gives rise to a result for Brownian excursions. See �gures 9
and 10 for the pictures associated with equations (49) and (50) respectively.
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Corollary 24 Let e = (et)0�t�1 be a normalized Brownian excursion. Fix � > 0 and u 2 (0; 1).
Fix c 2 [0; �]. Then

P
�
et �

�
c

u

�
t for all 0 � t � u

��eu = �
�
=
�� c

�
(49)

and

P
�
et �

�
c

1� u

�
(1� t) for all u � t � 1

��eu = �
�
=
�� c

�
: (50)
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Proof. Let (Rt)t�0 be a three-dimensional Bessel process. By part (b) of Lemma 20, we may
assume that et = (1�t)Rt=(1�t) for all 0 � t � 1. Then eu = � if and only if Ru=(1�u) = �=(1�u).
Therefore, using Corollary 22 for the next-to-last equality, we have

P (et � ct=u for all 0 � t � ujeu = �)

= P
�
(1� t)Rt=(1�t) � ct=u for all 0 � t � ujRu=(1�u) = �=(1� u)

�
= P

�
Rt=(1�t) � ct=u(1� t) for all 0 � t � ujRu=(1�u) = �=(1� u)

�
= P

�
Rs � cs=u for all 0 � s � u=(1� u)jRu=(1�u) = �=(1� u)

�

= P

�
Rs �

�
c

1� u

��
u

1� u

��1
s for all 0 � s �

u

1� u

����Ru=(1�u) =
�

1� u

�

=

�
�

1� u
�

c

1� u

���
�

1� u

�
=
�� c

�
;

which proves (49). Equation (50) follows easily from the symmetry of Brownian excursion under
time reversal. Alternatively, (50) can be proved by assuming et = tR(1�t)=t and following steps
similar to those above.
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6 Excursions of Markov processes

In this section, we show how Theorems 6 and 9 lead to results pertaining to the excursions
of more general Markov processes. We consider a Markov process � = (�t)t�0 which is \nice"
in the sense de�ned at the beginning of chapter IV of [5]. That is, we assume � is an Rd-
valued stochastic process with right-continuous sample paths that is adapted to a complete right-
continuous �ltration (Ft)t�0 and satis�es a Markov property. The Markov property is de�ned in
[5] as the property that there exists a family of probability measures (Px; x 2 Rd) such that for
every stopping time T < 1, the shifted process (�T+t)t�0 conditional on �T = x is independent
of FT and has law P x. As noted in [5], Feller processes satisfy these conditions.

We assume that �0 = 0 a.s. We also assume that 0 is a regular point, which means that
infft > 0 : �t = 0g = 0 a.s., and an instantaneous point, meaning that infft > 0 : �t 6= 0g = 0 a.s.
Thus, � does not hold in its initial state, but it returns to that state at arbitrarily small positive
times. We also assume that 0 is recurrent, meaning that supft : �t = 0g = 1 a.s. Let Z denote
the closure of ft : �t = 0g. Then, (0;1) n Z consists of a collection of disjoint open intervals,
which we call the excursion intervals of � away from 0.

In section 2 of chapter IV of [5], Bertoin constructs a process (Lt)t�0 called the local time of �,
which is determined up to an arbitrary positive constant. By Theorem 4 in chapter IV of [6], the
process (Lt)t�0 is continuous and nondecreasing and satis�es L0 = 0. The same theorem states
that Z is the support of the Stieltjes measure dL, so L is constant on the excursion intervals of
�. Still following [5], we de�ne the inverse local time process � = (�a)a�0 by �a = infft : Lt > ag.
Then, by Proposition 7 in chapter IV of [5], the following two equations hold for all t > 0:

�Lt
= inffs > t : �s = 0g; (51)

�Lt� = supfs < t : �s = 0g: (52)

By Theorem 8 in chapter IV of [5], the process (�a)a�0 is a subordinator. For this result, we need
the assumption that 0 is recurrent, which ensures that limt!1 Lt =1 almost surely.

Lemma 25 The set Z is the closure of ft : �a = t for some ag.

Proof. Since �0 = 0, clearly 0 2 Z. If Lt = 0 for some t > 0, then the Stieltjes measure dL is
supported on [t;1), which contradicts that Z is the is the support of dL. Thus, �0 = 0. Now
suppose t > 0 and �t = 0. By (51), if 0 < � < t, then �Lt��

= inffs > t� � : �s = 0g, which is in
the interval [t� �; t]. Therefore, t is in the closure of ft : �a = t for some ag. It follows that Z is
contained in the closure of ft : �a = t for some ag.

Next, suppose t > 0 and �a = t for some a. Since (Ls)s�0 is continuous and lims!1 Ls = 1
a.s., there exists u > 0 such that Lu = a. By (51), we have �a = �Lu

= inffs > u : �s = 0g 2 Z.
It follows that ft : �a = t for some ag � Z, so the closure of ft : �a = t for some ag is contained
in Z.
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Corollary 26 Fix T > 0. Let � = (�t)t�0 be a Markov process which is \nice" in the sense
de�ned at the beginning of this section. Assume �0 = 0 a.s. and that 0 is regular, instantaneous,
and recurrent. Let Z be the closure of ft : �t = 0g, and assume Z has Lebesgue measure zero a.s.
Let (Lt)t�0 be the local time of � at zero. Let S = infft : Lt > Tg, and let � = T=S. Let (Ji)

1
i=1

be the sequence consisting of the lengths, in decreasing order, of the disjoint open intervals whose
union is (0; S) nZ. Then for all c 2 [0; T ],

P
�
Lt � c+

�
T � c

S

�
t for all 0 � t � S

�
=

c

T
;

and (Ji)
1
i=1 is independent of the event fLt � c+ ((T � c)=S)t for all 0 � t � Sg. Moreover,

(Lt � �t)0�t<S almost surely attains its maximum at a unique time, which we denote by K. If
H = infft : rKLt > 0g, then H is a size-biased pick from (Ji)

1
i=1.

Proof. De�ne � = (�a)a�0 by �a = infft : Lt > ag. Since � is a subordinator, � has interchange-
able increments. Recall that �0 = 0 as shown in the proof of Lemma 25, and S = �T > 0
a.s. because (Lt)t�0 is continuous. By Lemma 25, the closure of ft : �a = t for some ag
equals Z, which has Lebesgue measure zero by assumption. By (52), �Lt� � t for all t > 0,
so Lt � inffa : �a > tg for all t > 0. By the continuity of (Lt)t�0, we have �Lt+� > t for all t > 0
and all � > 0, so Lt + � � inffa : �a > tg for all t > 0 and all � > 0. Also, �a > 0 for all a > 0,
so L0 = 0 = inffa : �a > 0g. Hence, Lt = inffa : �a > tg for all 0 � t < S, and LS = T by the
continuity of (Lt)t�0. Thus, Corollary 26 follows from Theorems 6 and 9.

Note that (Ji)
1
i=1 consists of the lengths of the excursions of � away from 0 that are completed

before local time T . Corollary 26 thus states that the event that the local time process stays
below the line from (0; c) to (S; T ) occurs with probability c=T and is independent of the excursion
lengths. Also, note that H is the length of the excursion of � that begins at K, so the corollary
shows that the length of the excursion that begins at the unique time when (Lt��t)0�t<S attains
its maximum is a size-biased pick from all of the excursion lengths.
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