
INVERSE PROBLEMS AS STATISTICS

STEVEN N. EVANS AND PHILIP B. STARK

Abstract. What mathematicians, scientists, engineers, and statisticians mean by \inverse

problem" di�ers. For a statistician, an inverse problem is an inference or estimation problem.

The data are �nite in number and contain errors, as they do in classical estimation or inference

problems, and the unknown typically is in�nite-dimensional, as it is in nonparametric regres-

sion. The additional complication in an inverse problem is that the data are only indirectly

related to the unknown. Canonical abstract formulations of statistical estimation problems

subsume this complication by allowing probability distributions to be indexed in more-or-less

arbitrary ways by parameters, which can be in�nite-dimensional. Standard statistical concepts,

questions, and considerations such as bias, variance, mean-squared error, identi�ability, con-

sistency, e�ciency, and various forms of optimality, apply to inverse problems. This article

discusses inverse problems as statistical estimation and inference problems, and points to the

literature for a variety of techniques and results. It shows how statistical measures of perfor-

mance apply to techniques used in practical inverse problems, such as regularization, maximum

penalized likelihood, Bayes estimation, and the Backus-Gilbert method. The article general-

izes results of Backus and Gilbert characterizing parameters in inverse problems that can be

estimated with �nite bias. It establishes general conditions under which parameters in inverse

problems can be estimated consistently.
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1. Introduction

This paper casts inverse problems as statistical estimation and inference problems. It was

written to introduce some standard statistical ideas and approaches to the Inverse Problems

community. It is mostly expository, but Section 2.4 contains new results concerning consistent

estimation in linear inverse problems.

In forward problems in statistics, one has a class of possible descriptions of the world, and

a forward operator that maps each description into a probability measure for the observables.

The data consist of a realization of (i.e., a sample from) the probability measure. The prob-

ability measure tells the whole story: it captures any stochastic variability in the \truth,"
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contamination by measurement error, systematic error, etc. We refer to each possible descrip-

tion of the world as a model. Applied mathematicians generally write forward problems as a

composition of steps: (a) transforming the correct description of the world into ideal, noise-free,

in�nite-dimensional data (\physics"), (b) censoring the ideal data to retain only a �nite list of

numbers, because we can only measure, record, and compute with such lists, and (c) possibly

corrupting the list with deterministic measurement error. This sequential procedure is equiv-

alent to a single-step procedure in which the corruption (c) is on a par with the physics (a),

and the mapping yields only the actual observables, incorporating the censoring (b). The prob-

ability distribution of the observables is degenerate if the observational error is deterministic.

Hence, the statistical framework for forward problems is at least as general as that of applied

mathematics: Forward problems of applied mathematics are instances of statistical forward

problems.

Typically, the class of models is indexed by a set � with some special structure. For example,

� could be a convex subset of a separable Banach space T . For convenience, we refer to � as

the class of possible models, and to the model with index � 2 � as the model �. The forward

mapping is then � 7! P�, the mapping from (the index of) the model to a probability distribution

for the observables. The index � generally has a physical signi�cance that gives the forward

mapping � 7! P� reasonable analytic properties, e.g., continuity. The class of possible models is

denoted P = fP� : � 2 �g. The forward problem is linear if P� is the probability distribution

of K�+ �, where K is a linear operator and � is a random variable whose distribution does not

depend on �. A parameter of a model � is the value g(�) at � of a function g de�ned on �; the

function g could be the identity|and often is.

In inverse problems, we observe data X drawn from the probability distribution P� for some

unknown � 2 �; we want to use X and the knowledge that � 2 � to learn about �, for example,

to estimate a parameter g(�). In essence, the goal of inverse problems is to invert partially the

forward operator. We shall always assume that � contains at least two points; otherwise, there

is no problem to solve|there is only one possible value of g(�), and data are superuous. The

di�erences between how applied mathematicians and how statisticians view inverse problems

center on the number of observations, whether the observations are contaminated, the nature

of such contamination, and the questions whose answers are interesting. For example, to a



4 STEVEN N. EVANS AND PHILIP B. STARK

statistician, the number of data is �nite|although the behavior of the problem as the number

of data grows is investigated frequently|and the data contain errors that are modeled at least

in part as stochastic. Bias, variance, identi�ability, consistency, and similar notions �gure

prominently; emphasis is on estimation and inference. Applied mathematicians often are more

interested in existence, uniqueness, and construction of a solution consistent with an in�nite

number of ideal noise-free data, and stability of the solution when the data are contaminated

by a deterministic disturbance.

The two viewpoints are related. For example, identi�ability|distinct models � yield distinct

probability distributions P� for the observables|is similar to uniqueness|the forward operator

maps at most one model into the observed data. Consistency (the parameter can be estimated

with arbitrary accuracy as the number of data grows) is related to stability of a recovery

algorithm (small changes in the data produce small changes in the recovered model), because

consistency essentially requires that arbitrarily small changes in the model produce detectable

changes in the data. There are also quantitative connections between the two points of view.

For example, statistical measures of the di�culty estimating a linear functional of an element of

a Hilbert space from observations of linear functionals of the element contaminated by Gaussian

errors can be calculated by scaling the error bound given by the theory of optimal recovery of

a linear functional from linear data corrupted maliciously [19]. Many of the tools used to study

inverse problems in statistics and applied mathematics are the same, too: functional analysis,

convex analysis, optimization theory, nonsmooth analysis, approximation theory, harmonic

analysis, and measure theory.

This paper is organized as follows. Sections 2.1, 2.2 and 2.3 summarize a standard abstract

statistical framework that subsumes many inverse problems. Section 2.4 studies the possibility

of consistent estimates in inverse problems, and gives necessary conditions and su�cient con-

ditions involving the class � of possible models, the forward operator, and the observational

errors. Section 2.5 introduces a simple example and shows how the ideas developed previously

in Section 2 apply to this example. Section 3.1 introduces some ideas and notation from statis-

tical decision theory. Section 3.2 applies these ideas to estimation, and presents some common

loss functions used to compare estimators and to de�ne what it means for an estimator to be
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optimal. Section 3.3 does the same thing for con�dence sets. Section 4 examines some estima-

tors and con�dence sets used in statistics and inverse problems, including the Backus-Gilbert

method, Bayes estimation, maximum likelihood and some of its variants involving penalization

and regularization (such as stochastic inversion and the method of sieves), shrinkage estimators

(including wavelet and wavelet-vaguelette shrinkage), and strict bounds. Appendix A presents

some results from probability theory used elsewhere in the paper, and Appendix B is a brief

refresher on measure-theoretic probability as used in the paper.

2. Identifiability and Consistency in Inverse Problems

We re-state a canonical inverse problem as a statistical inference problem. Let � be a non-

empty subset of a separable Banach space T . The set � represents possible \theories" about

the state of nature|the competing models � that might spawn the observations X. We allow X

to take values in any separable metric space X , but in our examples, X = R
n and X = fXjgnj=1.

Let P = fP� : � 2 �g be a collection of probability measures de�ned on a common �-algebra F
on X . If theory � 2 � is true, the probability distribution of the data X is P�; that is, X � P�.

Each possible value of � 2 � induces a probability distribution for X; many di�erent values of

� might yield the same probability distribution for X. In the language of applied mathematics,

this is the non-uniqueness problem; in the language of statistics, it is non-identi�ability of �.

We discuss identi�ability in more detail below.

One of the theories � 2 � is true|in fact, X � P�. We do not know the value of �, only that

it is an element of �. We wish to learn something about � from X. The quadruple (�;P;X ;F)
is a statistical experiment indexed by �; see [44]. It is our mathematical model for inverse

problems in the most general setting.

Parameters are features of � we might wish to learn about. For our purposes, a parameter

is the value at � of a continuous mapping g : � ! G, where G is a separable metric space.

(Restricting attention to continuous mappings is not always necessary or desirable; see, e.g.,

[17].) We insist further that g(�) (and thus �) contain at least two points|if g were constant

on � we would know g(�) perfectly before observing any data. If we sought to estimate � in its

entirety, we might take G = T . We might instead be interested in a low-dimensional projection

of �, the norm of �, or some other function or functional.
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We try to distinguish between characteristics of the statistical experiment, and characteristics

of methods used to draw inferences in the statistical experiment. One of the most fundamental

statistical properties a parameter is identi�ability.

A parameter g(�) is identi�able if for all �1, �2 2 �,

(2.1) fg(�1) 6= g(�2)g =) fP�1 6= P�2g :

That is, a parameter is identi�able if a change in the parameter always is accompanied by a

change in the probability distribution of the data. In most inverse problems, g(�) = � is not

identi�able: this is essentially the problem of nonuniqueness. Moreover, in most linear inverse

problems (de�ned below) most linear functionals of � are not identi�able; see Theorem 2.6. We

present some results on indenti�ability of parameters in linear inverse problems in Section 2.3

2.1. Estimators. We have said that we seek to learn about g(�) from X, but we have said

nothing about the tools we can use. This section characterizes the kind of tools we shall

consider, and gives minimal conditions they must satisfy.

A (randomized) decision rule

� : X ! M1(A)

x 7! �(x)(�);

is a measurable mapping from X to the collection M1(A) of probability distributions on a

separable metric space A of actions, where the probability distributions are de�ned on a sub-

�-algebra of the Borel �-algebra on A. (A mapping � from X to the collection of measures on

A is measurable if for every � 2 �, �(x)(A) is a P�-measurable function of x for every Borel set

A � A.)
A non-randomized decision rule is a randomized decision rule that, to each x 2 X , assigns

a unit point mass at a value a = a(x) 2 A. It is useful (often in proofs and occasionally in

practice) to consider randomized decision rules; in e�ect, they are convex combinations of non-

randomized rules. For ease of notation, a non-randomized decision rule will often be written as

an A-valued function rather than a M1(A)-valued one.

An (non-randomized) estimator of a parameter g(�) is a (non-randomized) decision rule for

which the space A of possible actions is the space G of possible parameter values. A common
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notation for an estimator of a parameter g(�) is ĝ. In keeping with our convention above, a non-

randomized estimator will often be written as an G-valued function rather than aM1(G)-valued
one.

To see how a randomized estimator might arise, consider the following example. We wish to

estimate the probability p that a given coin lands heads when it is tossed. We know a priori

that either p = 1=3 or p = 2=3. We toss the coin 10 times and observe X, the number of

times the coin lands heads. A reasonable estimator p̂(X) might be de�ned as follows: let W

be a random variable that equals 0 with probability 1/2 and equals 1 with probability 1/2,

independent of X. De�ne

(2.2) p̂(X) =

8>>>>>>>><>>>>>>>>:

1=3; X < 5;

1=3; X = 5 and W = 0;

2=3; X = 5 and W = 1;

2=3; X > 5:

This estimator only returns possible values for p, but in e�ect tosses a fair coin to decide which

of the two possible values to use as the estimate when the data do not favor either. See [47]

x5.1 for more motivation for randomized estimators.

2.1.1. Mean distance error and bias. There are many common measures of the performance of

estimators; we shall see several in Section 3, but two of the simplest are mean distance error

and bias. For simplicity, we restrict attention to non-randomized estimators. Let dG(�; �) denote
the metric on G. The mean distance error at � of the estimator ĝ of the parameter g(�),

(2.3) MDE�(ĝ; g) = E� [d(ĝ; g(�))];

is the expected value of the distance between the estimator and the parameter when the model

is �. Because the space G of parameter values is a metric space and the metric takes values in

R
+, the mean distance error is always well de�ned. When the metric derives from a norm, the

mean distance error is called the mean norm error (MNE). When G is a Hilbert space with

norm k � k, the mean squared error (MSE) is

(2.4) MSE�(ĝ; g) = E�

�kĝ � g(�)k2� :
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When G is a Banach space, we de�ne the bias at � of ĝ to be

(2.5) bias�(ĝ; g) = E� [ĝ � g(�)]

when the expectation is well-de�ned. If bias�(ĝ; g) = 0, we say that ĝ is unbiased at � (for g).

If ĝ is unbiased at � for g for every � 2 �, we say ĝ is unbiased (for g).

Remark 2.1. If, in an inverse problem, there is some estimator ĝ that is unbiased for g (in which

case g is said to be U-estimable), then g is certainly identi�able.

Let �g� � E� [ĝ]. Then bias�(g) = �g� � g(�). When G is Hilbertian, we de�ne the variance of

the estimator ĝ to be

(2.6) Var�(g) � E � [kĝ � �g�k2]:

We can use the projection theorem to decompose the mean squared error into a sum of two

terms, the variance of ĝ and the square of the norm of the bias of ĝ. That is,

E� [kĝ � g(�)k2] = E� [kĝ � �g�k2] + k�g� � g(�)k2

= Var�(ĝ) + kbias�(ĝ)k2:(2.7)

Mean distance error and mean squared error are examples of risk functions, discussed in more

detail in Section 3.

2.1.2. Sequences of estimators and consistency. Consistency has to do with the behavior of

sequences of estimators for a sequence of inverse problems. While it is possible to consider a

very general situation in which there is a di�erent parameter in each of the inverse problems,

we will restrict attention the most natural situation: the nth inverse problem in our sequence

has its own data space Xn, but all the problems have the same index space � and the same

parameter g. Moreover, the sequence of problems is nested in the sense that Xm is a Cartesian

factor of Xn for m � n (for example, Xm = R
m and Xn = R

n) and the probability measure

P�;m governing the data for the mth problem is the Xm marginal of the probability measure P�;n

on Xn governing the data for the nth problem. Thus, the di�erent problems in the sequence

di�er only in how many data are available. The sequence of estimators is consistent if for any

parameter value the estimated value of the parameter converges to the true value, in a sense

made precise below, as more data are used.
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In real problems, the number of data is �nite and frequently �xed. However, it is often

possible, at least notionally, to embed a particular problem within an hypothetical hierarchical

sequence in which more experiments of a similar type are conducted or more measurements are

made. It is then comforting to know that if one could collect more data, the parameter could

be estimated with arbitrary precision.

Notation 2.2. We write dG for the metric on G.

De�nition 2.3. Given a nested sequence of forward problems ffP�;n : � 2 �gg1n=1 and a

parameter g : � ! G, a sequence of non-randomized estimators fĝng1n=1, gn : Xn ! G is

consistent (for g) if for every � 2 � and every neighborhood U of g(�) 2 G,

(2.8) lim
n!1

P�;nfĝ =2 Ug = 0:

A parameter g is consistently estimable if there exists a sequence of estimators that is con-

sistent for g. If g is the identity mapping and g(�) = � is consistently estimable in some

topology on � (not necessarily the norm topology inherited from T ), we say that the model is

consistently estimable.

2.2. The Linear Forward Problem. Linear forward problems are a special subclass of the

general forward problems de�ned above. Linearity refers to linear structure on the set � of

possible models, the set X of possible data, and the set G of parameter values. In linear

forward problems, the forward operator also possesses a type of linearity, which we clarify after

introducing some notation.

Notation 2.4. Let T be a separable Banach space. Then T � (resp. T ��) denotes the normed

dual (resp. normed second dual) of T , and the pairing between T � and T (resp. between T ��

and T �) is denoted by h�; �i : T ��T ! R (resp. hh�; �ii : T ���T � ! R). The norms on T , T �

and T �� are denoted k � k, k � k�, and k � k��, respectively.

De�nition 2.5. A forward problem is linear if

(1) � is a subset of a separable Banach space T
(2) For some �xed sequence f�jgnj=1 of elements of T �, the datum X = fXjgnj=1, where

(2.9) Xj = h�j ; �i+ �j; � 2 �;
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and � = f�jgnj=1 is a vector of stochastic errors whose probability distribution does not

depend on �. (Thus X = R
n.)

The functionals f�jgnj=1 are the \representers" or \data kernels" of the linear forward prob-

lem. The distribution P� of the Introduction is the probability distribution of X, and P is the

set of all such distributions as � ranges over �. Typically, dim(�) = 1; at the very least,

n < dim(�), so estimating � is an underdetermined problem.

De�ne

K : � ! R
n

� 7! fh�j ; �ignj=1 :(2.10)

We often abbreviate Equation (2.9) by

(2.11) X = K� + �; � 2 �:

Using data X = K� + � and the knowledge that � 2 � to estimate or draw inferences

about a parameter g(�) is a linear inverse problem. In linear inverse problems, the probability

distribution of the data X depends on the model � only through K�, so if there are two points

�1, �2 2 � such that K�1 = K�2 but g(�1) 6= g(�2), then g(�) is not identi�able. We proceed to

study some conditions on K, �, and g that control whether K� determines g(�) on �.

2.3. Identi�ability of Linear Parameters in Linear Inverse Problems. Consider a linear

forward problem with #(�) � 2. Let fgigmi=1 be a collection of (not necessarily bounded)

functionals that are linear on �: for a1, a2 2 R and �1, �2 2 �, g(a1�1+a2�2) = a1g(�1)+a2g(�2)

when a1�1 + a2�2 2 �. This subsection addresses estimating the linear parameter vector

(2.12) g(�) � fgi(�)gmi=1

from data X = K� + �.

An example of such a problem is that of estimating a �nite collection of spherical harmonic

coe�cients of Earth's geomagnetic �eld at the core-mantle boundary from satellite measure-

ments of the �eld (neglecting sources in the atmosphere, crust, and mantle). In that case, T is

a weighted `2 space, and � is a ball in T . See, e.g., [10, 36]. Linearized travel-time tomography

can be cast this way as well; in that problem, T might be the space of functions of bounded
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variation, and � might be the positive cone in T . Similarly, inverting instances of Abel's equa-

tion that arise in seismology and helioseismology can be written in this form, taking T to be

functions of bounded variation, and � to be a hyperrectangle (see, e.g., [54]).

Linear functions composed of linear combinations of the data kernels in linear forward prob-

lems play a special role in the estimation of parameters. Let � be an m� n matrix with real

elements �ij . We de�ne

� �K : T ! R
m

t 7!
 

nX
j=1

�1jh�j ; ti;
nX

j=1

�2jh�j ; ti; � � � ;
nX

j=1

�mjh�j; ti
!
:(2.13)

The following necessary condition for a real-valued parameter to be identi�able extends a

theorem of Backus and Gilbert [5]. It addresses parameters that are somewhat more general

than the linear parameters just described. Note that a vector-valued parameter is identi�able if

and only if each of its components is identi�able, so it su�ces to consider real-valued parameters.

Recall from Lemma A.4 that if Y is a random n-vector and a 2 R, a 6= 0, then the probability

distribution of Y di�ers from that of a + Y ; thus in a linear inverse problem, K�1 6= K�2 i�

P�1 6= P�2. It follows that a parameter g is identi�able i� g(�1) 6= g(�2) implies K�1 6= K�2

whenever �1, �2 2 �.

Theorem 2.6. Let g : �! R be an identi�able real-valued parameter. Suppose there exists a

non-empty symmetric convex set �� � T such that:

i) �� � �,

ii) g(��) = �g(�), � 2 ��,

iii) g(a1�1 + a2�2) = a1g(�1) + a2g(�2), �1; �2 2 ��, a1; a2 � 0, a1 + a2 = 1, and

iv) sup�2�� jg(�)j <1.

Then there is a 1� n matrix � such that the restriction of g to �� is the restriction of � �K to

��.

Proof. We may suppose without loss of generality that �� = �. By replacing T by the closed

subspace of T spanned by �, we may further suppose without loss of generality that the closed

subspace spanned by � is all of T . Then g is the restriction to � of a continuous linear

functional on T , which we will also denote by g.
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Suppose that no such matrix � exists. Then g is not a linear combination of the functions

�1; : : : ; �n. A continuity argument shows that there must exist a �nite set T � � such that g

restricted to T is not a linear combination of the functions �1; : : : ; �n restricted to T . That is,

the �nite-dimensional vector fhg; �ig�2T is not a linear combination of the vectors fh�i; �ig�2T ,
1 � i � n. By standard �nite-dimensional linear algebra, there exist constants fa�g�2T such

that
P

�2T a�hg; �i 6= 0 and
P

�2T a�h�i; �i = 0, 1 � i � n. Furthermore, by replacing fa�g�2T
by fa�g�2T for some  su�ciently small, we may suppose that

P
�2T a�� 2 �.

Now observe that

(2.14) g

 X
�2T

a�� 2 �

!
=
X
�2T

a�hg; �i 6= 0 = g(0);

whereas

(2.15) K

 X
�2T

a�� 2 �

!
=

 X
�2T

a�h�i; �i
!n

i=1

= 0 = K(0);

contradicting identi�ability. �

Theorem 2.6 generalizes somewhat; for example: Suppose there exist �0 2 �, a symmetric

convex set �� � T , a constant c 2 R, and a mapping �g : ��! R such that:

i) �0 + �� � �

ii) g(�0 + ��) = c+ �g(��), �� 2 ��

iii) �g(���) = ��g(��), �� 2 ��,

iv) �g(a1��1 + a2��2) = a1�g(��1) + a2�g(��2), ��1; ��2 2 ��, a1; a2 � 0, a1 + a2 = 1, and

v) sup��2�� j�g(��)j <1.

Then there is a 1 � n matrix � such that the restriction of g to �� + �0 is the restriction of

� �K(� � �0) + c to �� + �0.

Theorem 2.6 gives a necessary condition for identi�ability. Here is a corresponding su�cient

condition.

Theorem 2.7. Suppose that g = fgigmi=1 is an Rm-valued parameter that can be written as the

restriction to � of � �K for some m�n matrix �. Then g is identi�able. Moreover, if E[�] = 0,

then the statistic � �X is an unbiased estimator of g. If, in addition, � has covariance matrix

� = E[��T ], then the covariance matrix of � �X is � � � � �T under any P�.
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Proof. The identi�ability of g is immediate from Lemma A.4.

Suppose that E[�] = 0. We compute:

E � [� �X] = E � [� �K� + � � �]

= E � [� �K�] + E� [� � �]

= � �K� + � � E� [�]

= � �K�

= g(�);(2.16)

so � �X is an unbiased estimator of g(�). Suppose, in addition, that � has covariance matrix

�. We compute:

Cov�(� �X) = E
�
� � � � �T � �T

�
= � � � � �T :(2.17)

�

Corollary 2.8 (The fundamental theorem of Backus and Gilbert). Let T be a Hilbert space;

let � = T ; let g 2 T = T � be a linear parameter; and let f�jgnj=1 � T �. The parameter g(�)

is identi�able i� g = � �K for some 1� n matrix �. In that case, if E[�] = 0, then ĝ = � �X
is unbiased for g. If, in addition, � has covariance matrix � = E [��T ], then the MSE of ĝ is

� � � � �T .

2.4. Consistency in Linear Inverse Problems. This subsection derives, in a fairly general

setting, necessary and su�cient conditions for the model � in a linear inverse problem to be

consistently estimable.

We assume in this subsection that the observational error � of Equation 2.11 is an n-vector of

independent and identically distributed real-valued random variables with common distribution

�. No moment conditions on � are required for the results here.

Whether the entire model can be estimated consistently depends on the space of models

considered, the prior constraints � on the model within that space, the functionals K that are

observed, and the probability distribution of the observational errors. Our results will be framed

in terms of a suitable de�nition of the \size" of the set of probability measures fP� : � 2 �g.
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De�nition 2.9. Let �a, a 2 R, denote the push-forward of � under the map x 7! x+ a. That

is, �a(B) = �(B � a). De�ne a metric � on R by letting �(a; b) be the Hellinger distance

0 � �(a; b) �
�
1

2

Z
(
p
d�a �

p
d�b)

2

� 1

2

=

8<:1

2

Z  s
d�a

d(�a + �b)
�
s

d�b
d(�a + �b)

!2

d(�a + �b)

9=;
1

2

� 1

(2.18)

between the measures �a and �b. The metric �(a; b) is translation invariant (it depends on a

and b only through ja� bj).

De�nition 2.10. Given � > 0, an �{net for a metric space (S; �) is a subset R � S such that

for each s 2 S, �(r; s) < � for some r 2 R. The metric space (S; �) is said to be totally bounded

if it has a �nite �{net for each � > 0. Compactness always implies total boundedness, and the

converse implication holds for complete metric spaces (but not in general).

Notation 2.11. Given a strictly positive sequence of constants fCng1n=1 de�ne pseudo{metrics

dn, n 2 N, on T by setting

(2.19) dn(x
0; x00) =

(
1

Cn

nX
i=1

�2(h�i; x0i; h�i; x00i)
) 1

2

:

Theorem 2.12. Suppose that limnCn = 1, that there is a countable collection of subsets

�1 � �2 : : : � � such that � =
S

h�h, and dn converges uniformly on each set �h � �h to a

metric d on �. Suppose further that each set �h is totally bounded with respect to d. Then the

model is consistently estimable in the d{topology.

Proof. Suppose to begin with that dn converges uniformly to a metric d on � and that � is

totally bounded with respect to d. For k 2 N, let f�k;1; : : : ; �k;Kk
g be a �nite 2�k{net for �

equipped with d.

By a result of Birg�e (see Prop 3, x16.4 of [44]), there exist numbers a > 0 and b > 0 such

that for each n 2 N and pair (k; `0); (k; `00) we have a f0; 1g{valued function  n;k;`0;`00 on Rn with
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the property that

inf fP�f n;k;`0;`00(X1; : : : ;Xn) = 1g : dn(�; �k;`0) � adn(�k;`0; �k;`00)g

� 1� exp(�bCnd
2
n(�k;`0 ; �k;`00))

(2.20)

and

sup fP�f n;k;`0;`00(X1; : : : ;Xn) = 1g : dn(�; �k;`00) � adn(�k;`0 ; �k;`00)g

� exp(�bCnd
2
n(�k;`0 ; �k;`00)):

(2.21)

For each k choose Nk 2 N such that such that if n � Nk, then

(2.22) dn(�k;`0; �k;`00) � 1

2
d(�k;`0 ; �k;`00); 1 � `0 6= `00 � Kk:

For 1 � `0 � Kk write

(2.23) Lk(`
0) = f`00 : d(�k;`0 ; �k;`00) � a�12�(k�2)g:

Set

(2.24) �k;n;`0 =
Y

`002Lk(`0)

 n;k;`0;`00(X1; : : :Xn);

where the product is de�ned to 1 if Lk(`0) = ;.
By construction, if n � Nk and dn(�; �k;`0) < 2�(k�1), then

(2.25) dn(�; �k;`0) < 2�(k�1) � a

2
d(�k;`0 ; �k;`00) � adn(�k;`0 ; �k;`00); `00 2 Lk(`

0);

and hence

P�f�k;n;`0 = 1g � 1�
X

`002Lk(`0)

exp(�bCnd
2
n(�k;`0 ; �k;`00))

� 1�
X

`002Lk(`0)

exp(�bCn2
�2d2(�k;`0; �k;`00))

� 1�Kk exp(�bCna
�22�2(k�1)):

(2.26)

Moreover, for any `00 2 Lk(`
0) we have

P�f�k;n;`00 = 1g � exp(�bCnd
2
n(�k;`0; �k;`00))

� exp(�bCn2
�2d2(�k;`0 ; �k;`00))

� exp(�bCna
�22�2(k�1)):

(2.27)



16 STEVEN N. EVANS AND PHILIP B. STARK

If f1 � ` � Kk : �k;n;` = 1g is empty, let �̂k;n be an arbitrary point �0 2 �. Otherwise, set

�̂k;n = �k;p(k;n), where p(k; n) = minf1 � ` � Kk : �k;n;` = 1g. Consider � 2 � and choose �k;`0

such that d(�; �k;`0) < 2�k. By the above

P�fd(�̂k;n; �) > a�12�(k�2) + 2�kg � P�

0@f�k;n;`0 = 0g [
[

`002Lk(`0)

f�k;n;`00 = 1g
1A

+ 1fdn(�; �k;`0) � 2�(k�1)g

� 2Kk exp(�bCna
�22�2(k�1))

+ 1fdn(�; �k;`0)� d(�; �k;`0) > 2�(k�1) � 2�kg:

(2.28)

Now de�ne 1 = n1 < n2 < � � � 2 N inductively by

nk+1 = minfn > nk : 2Kk+1 exp(�bCna
�22�2k) � 2�(k+1);

sup
�0;�00

jdn(�0; �00)� d(�0; �00)j � 2�k � 2�(k+1)g;(2.29)

and set

(2.30) �̂n = �̂k;n; nk � n < nk+1:

It is clear that for each � > 0

(2.31) lim
n
sup
�2�

P�fd(�̂n; �) > �g = 0:

Now consider the case of general � satisfying the conditions of the theorem. Let f�̂hng1n=1
denote the sequence of estimators constructed above with �h playing the role of �. De�ne

1 = m1 < m2 < : : : 2 N inductively by

(2.32) mk+1 = minfm > mk : sup
�2�k+2

P�fd(�̂k+2p ; �) > 2�(k+1)g < 2�(k+1); 8p � mg

and set

(2.33) �̂n = �̂k+1m ; mk � m < mk+1:

It is clear that for all � 2 �, the sequence f�̂ng1n=1 converges to � in the d{topology in P�

probability. �
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Example 2.13. Suppose that � is the standard normal distribution, that supi k�ik� = 1 and

that, for some � 2 T with k�k = 1, � is the one{dimensional set ft� : 0 � t � 1g. It is not

hard to show that �(a; b) = f1� exp(�ja� bj2=2)g 1

2 and hence �ja� bj � �(a; b) � �ja� bj for
suitable constants 0 < � � � <1 when jaj; jbj � 1. Note for 0 � s; t � 1 that

(2.34)
nX
i=1

�2(h�i; s�i; h�i; t�i) �
nX
i=1

�2(0; h�i; �i)

and that

(2.35) �2js� tj2
nX
i=1

jh�i; �ij2 �
nX
i=1

�2(h�i; s�i; h�i; t�i) � �2js� tj2
nX
i=1

jh�i; �ij2:

It follows that if we set

(2.36) Cn =

(
nX
i=1

�2(0; h�i; �i)
) 1

2

;

then

(2.37) lim
n
Cn =1 if and only if

1X
i=1

jh�i; �ij2 =1:

Assume that limn Cn =1. Then the pseudo{metrics dn certainly converge uniformly on ���

to a metric that is equivalent to the metric induced on � by the norm and hence, in particular,

� is compact in the d{topology.

Consequently, a su�cient condition for the model to be consistently estimable in the norm

topology is that
P1

i=1 jh�i; �ij2 = 1. Conversely, if the model � is consistently estimable,

then certainly the probability measures P0 and P� are mutually singular. Applying Kakutani's

dichotomy A.2 and the calculations above, this will be the case if and only if
P1

i=1 jh�i�ij2 =
1 (alternatively, one could appeal to the Cameron-Martin theorem on equivalence of shifted

Gaussian measures { a result which is itself a consequence of Kakutani's dichotomy). The

su�cient condition given by Theorem 2.12 is therefore also necessary in this case.

By similar arguments, if we take � to be the uniform distribution on [�1; 1], then the model

is consistently estimable in the norm topology if and only if
P1

i=1 jh�i; �ij =1.

Example 2.14. Consider the one{dimensional problem of Example 2.13 with an arbitrary

absolutely continuous error distribution �. We can extend the observation in Example 2.13

that consistent estimation is \easier" for uniform errors than it is for normal errors, by showing
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that consistent estimation for normal errors is, in fact, the \hardest" among all absolutely

continuous error distributions for this problem.

To see this, write f for the density of �. From Parseval's theorem we have

�2(a; b) =
1

2�

Z 1

�1

j exp(iaz)� exp(ibz)j2jdpf(z)j2 dz

=
1

2�

Z 1

�1

j1� exp(i(b� a)z)j2jdpf(z)j2 dz;
(2.38)

where cpf is the Fourier transform of
p
f .

Note that

(2.39) �2(a; b) � 1

2�

Z �
4

��
4

j1 � exp(i(b� a)z)j2jdpf(z)j2 dz � cja� bj2

for some constant c > 0, because for any � > 0Z �

��

jdpf(z)j2 dz �
Z 1

�1

jdpf (z)j2�1� z

�

�2

+

dz

�
����Z 1

�1

dp
f(z)

�
1 � z

�

�
+

dz

����2
=

�
2�

Z 1

�1

p
f (x)

1

�

1� cos �x

�x2
dx

�2
> 0

(2.40)

by the Cauchy-Schwarz inequality and Parseval's identity. Therefore, if consistent estimation

is possible in the one{dimensional model under a normal error distribution for some sequence

of functionals f�ig1i=1, then it is possible for any other absolutely continuous error distribution.

Example 2.15. With Examples 2.13 and 2.14 in hand, it is natural to ask for which absolutely

continuous error distributions � is consistent estimation in the one{dimensional model of those

examples as \hard" as it is in the normal case. That is, when do we get an upper bound on

�2(a; b) corresponding to the lower bound (2.39)?

Again write f for the density of �. It follows from the dominated convergence theorem that

we will get a corresponding upper bound

(2.41) �2(a; b) � Cja� bj2
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for some constant C <1 if

(2.42)

Z 1

�1

jzj2jdpf(z)j2 dz <1:

This is equivalent to

(2.43)

Z 1

�1

j
p
f
0
(x)j2 dx =

Z 1

�1

[f 0(x)]2

2f(x)
dz =

Z 1

�1

�
d

dx
log f(x)

�2
f(x) dx <1;

that is, that the Fisher information for the shift family f�a : a 2 Rg is �nite.

Example 2.16. It it is clear from Examples 2.13, 2.14 and 2.15 that the existence of a consistent

estimator in the absolutely continuous case is intimately related to the lack of smoothness of

the density. In essence, for a given sequence of functionals f�ig1i=1 the estimation problem is

\easier" when the density f of the error distribution � is rougher. This runs counter to the

naive intuition that the tail behaviour of the probability measure � should be the determining

feature for whether or not it is possible to construct consistent estimators. We stress this point

with the following interesting class of error distributions.

Consider a function g : R! R with the properties:

� g is non-negative and bounded,

� g is even (that is, g(z) = g(�z)),
� the restriction of g to the positive half-line is convex and decreasing,

� for some constant 0 < � < 2 there exist constants 0 < c0; c00 <1 such that

(2.44) c0jzj�� �
Z 1

z

g2(w) dw � c00jzj��; jzj � 1;

� 1
2�

R1
�1 g2(z) dz = 1.

It follows from Parseval's theorem and Polya's criterion for a function to be a Fourier transform

of a positive measure (see Theorem A.3) that g is the Fourier transform of a non-negative

function that is the square root of an even probability density. Denote this density by f and

let �(dx) = f(x) dx. We have

�2(0; a) =
1

2�

Z 1

�1

j1 � exp(iaz)j2g2(z) dz

=
1

�

�Z 1

0

j1 � exp(iaz)j2g2(z) dz +
Z 1

1

j1 � exp(iaz)j2g2(z) dz
�
:

(2.45)



20 STEVEN N. EVANS AND PHILIP B. STARK

The �rst integral in the rightmost member is clearly bounded above and below by constant

multiples of jaj2 ^ 1, whilst an integration by parts and a linear change of variable shows that

the second integral is bounded above and below by constant multiples of jaj�^ 1. Therefore, in
the setting of Example 2.13, the one{dimensional model is consistently estimable if and only ifP

i jh�i; �ij� =1.

The condition

(2.46) c0jzj�� �
Z 1

z

g2(w) dw � c00jzj��; jzj � 1;

constrains the degree of smoothness of f . For example, it implies that

(2.47)

Z 1

�1

Z 1

�1

� jpf (x)�p
f(y)j

jx� yj
�2

dx dy <1

if and only if  < (1+�)=2 (cf. Example 1.4.1 of [34]), so that, in some sense, f become rougher

as � decreases.

One might suspect from the uniform versus normal example that it is the compact support of

the uniform distribution that makes consistent estimation easier. However, the densities with

Fourier transforms that satisfy Polya's criterion are never compactly supported, and yet when

� < 1 consistent estimation may be possible under the class of error distributions constructed

above when it is not possible under the uniform distribution.

Corollary 2.17. Suppose that Cn = n, that � =
S

h�h for a countable collection of sets

�1 � �2 � : : : � � that are relatively compact in the norm topology, and that dn converges

pointwise on each set �h��h to a metric d on �. Suppose further that � is absolutely continuous

and that supi k�ik� <1. Then the model is consistently estimable in the d{topology.

Proof. We �rst show that the convergence of dn to d is uniform on each �h. Observe that

(2.48) dn(x
0; x00) � supf�(0; t) : jtj � sup

i
k�ik�kx0 � x00kg:

Note also that

(2.49) jdn(y0; y00)� dn(z
0; z00)j = jdn(0; y0 � y00)� dn(0; z

0 � z00)j � dn(y
0 � y00; z0 � z00):

Because � is absolutely continuous,

(2.50) lim
t!0

�(0; t) = 0:
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The sequence of functions fdng1n=1 is thus equicontinuous on �h��h in the metric induced by

the norm, and uniform convergence follows from Ascoli's theorem.

To complete checking the conditions of Theorem 2.12, we need only show that each �h is

totally bounded with respect to d. Because �h is relatively compact in the norm topology, it

is totally bounded with respect to the metric induced by the norm. Total boundedness with

respect to d now follows from (2.48) and (2.50). �

Example 2.18. Let T = C([0; 1]), the Banach space of continuous functions on [0; 1] equipped

with the supremum norm. For 0 < � � 1, let � be the collection of functions satisfying a

H�older condition of order �. That is, � is the collection of functions x 2 C([0; 1]) such that

(2.51) supfjx(s)� x(t)j=js� tj�; 0 � s 6= t � 1g <1:

By the Arzela{Ascoli theorem, the set � is the union of a countable collection of sets that are

compact in the norm topology. Let � be any absolutely continuous probability measure and

take Cn = n. Fix an irrational number � and let �i be the functional given by evaluation at the

fractional part of i�. That is, h�i; xi = x(i� � bi�c). By the Kronecker{Weyl equidistribution

theorem,

(2.52) lim
n
dn(x

0; x00) =

�Z 1

0

�2(x0(t); x00(t)) dt

� 1

2

= d(x0; x00):

for each pair x0; x00 2 C([0; 1]). It follows from Corollary 2.17 that the model is consistently

estimable in the d{topology.

Notation 2.19. De�ne pseudo{metrics Dn, n 2 N, on T �� by setting

(2.53) Dn(X
0;X 00) =

(
1

Cn

nX
i=1

�2(hhx0; �iii; hhx00; �iii)
) 1

2

:

Corollary 2.20. Suppose that limn Cn = 1, that Dn converges uniformly on each set of the

form f(x0; x00) 2 T �� : kx0k�� � h; kx00k�� � hg to a metric D on T �� that is compatible with

the weak� topology on T �� (as the dual of T �). Then the model is consistently estimable in the

weak topology for any � � T .

Proof. Recall that there is a canonical isometric embedding � : T ,! T ��. This embedding is

continuous from T equipped with the weak topology into T �� equipped with the weak� topology
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(as the dual of T �). The image of fx 2 T : kxk � hg is weak� dense in fx 2 T �� : kxk�� � hg.
It is clear that Dn(�x0; �x00) = dn(x0; x00), so that dn converges uniformly to a metric d on sets

of the form f(x0; x00) 2 T : kx0k � h; kx00k � hg, and D(�x0; �x00) = d(x0; x00). The assumption

that the metric D is compatible with the weak� topology on T �� implies that the metric d is

compatible with the weak topology on T .
By the Banach{Alaoglu theorem, fx 2 T �� : kxk�� � hg equipped with the weak� topology

is compact. Because the metric D is compatible with weak� topology, fx 2 T �� : kxk�� � hg
is totally bounded with respect to D. Hence fx 2 T : kxk � hg and, a fortiori, � \ fx 2 T :

kxk � hg is totally bounded with respect to the metric d for any � � T .
The result now follows from Theorem 2.12 and the fact that the metric d is compatible with

the weak topology. �

Example 2.21. Let T and � � T be aribitrary. Suppose that � is absolutely continuous,

and hence that the metric � is compatible with the usual topology on R. Take Cn = n. Let

�1; �2; : : : be a sequence of linear functionals with closed linear span T � (so that T � is necessarily

separable in the norm topology). Set

(2.54) pj;n =
1

n
#f1 � i � n : �i = �jg:

Assume that limn pj;n = pj > 0 exists for all j and
P

j pj = 1. (For example, if the �i were

chosen independently at random with the probability that �i = �j being pj , then this property

would hold almost surely.) Then

(2.55) Dn(x
0; x00) =

(X
j

pj;n�
2(hhx0; �jii; hhx00; �jii)

) 1

2

and

(2.56) D(x0; x00) =

(X
j

pj�
2(hx0; �ji; hhx00; �jii)

) 1

2

:

It is immediate that D is compatible with the weak� topology. Moreover, given � > 0 choose J

such that

(2.57)
X
j>J

pj � �

2
and

X
j�J

jpj;n � pj j � �

2
;
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then

(2.58) jd2n(x0; x00)� d2(x0; x00)j � �; x0; x00 2 T ;

and hence dn certainly converges uniformly to d on norm bounded subsets of T �T . Corollary
2.20 applies, and the model is consistently estimable in the weak topology.

2.5. An Example. Let L2[0; 1] denote the Hilbert space of Lebesgue square-integrable real-

valued functions on the interval [0; 1]. Let (f jg) denote the inner product of the functions f
and g:

(2.59) (f jg) =
Z 1

0

f(t)g(t) dt:

Let f�jgnj=1 be a �xed collection of closed, disjoint sub-intervals of [0; 1], each of strictly positive
length, and such that there exists an open set �0 � [0; 1] for which

(2.60) �0 \
(

n[
j=1

�j

)
= ;:

For f 2 L2[0; 1], de�ne the continuous linear functionals �j by

(2.61) h�j ; fi =
Z
�j

f(t) dt = (f j1�j
):

The functions f1�j
gnj=1 � L2[0; 1] are called \representers" or \data kernels" in much of the

inverse problems literature. Note that in this example f�jgnj=1 is a linearly independent subset
of T = L2[0; 1]. We observe data X = fXjgnj=1, with

(2.62) Xj = h�j ; fi + �j; j = 1; : : : ; n;

where, in this subsection, the noise terms f�jgnj=1 are i.i.d. normal random variables with zero

mean and variance �2 (we write f�jgnj=1 i.i.d. N(0; �2)). We abbreviate Equation (2.62) by

(2.63) X = Kf + �:

Consider estimating the pair of values (g1(f); ga(f)) from these data, where g1 and ga are given

by

(2.64) g1(f) =

Z 1

0

f(t) dt;
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and

(2.65) ga(f) =

Z 1

0

nX
j=1

aj1�j
(t)f(t) dt;

with fajgnj=1 2 Rn. Both g1 and ga are bounded linear functionals on L2[0; 1].

To translate this problem into the running notation, identify � = L2[0; 1], � = f , X = R
n,

and P to be the location family of n-dimensional normal distributions on Rn with independent

components each of which has variance �2:

(2.66) P�(B) =

Z
B

nY
j=1

�
1p
2��

exp

�
�(xj � (�j�j))2

2�2

��
dnx

for all Borel sets B � R
n. The parameter space G = R

2, and the mapping g is given by

g : � ! R
2

� 7!
 
(�j1);

 
�
��� nX
j=1

aj1�j

!!
:(2.67)

In this model, � is not identi�able. Neither is g(�), because its �rst component (�j1) can
be perturbed arbitrarily without changing the distribution of X (just change � on �0|this

is a special case of Theorem 2.6). The second component of g(�), (�jga), is identi�able. The
estimator

(2.68) ĝa(X) =
nX

j=1

ajXj = a �X

is unbiased for (�jga); there is no unbiased estimator of g.

Let 1 = (1; 1; : : : ; 1) 2 Rn. Suppose we estimate g(�) by the linear estimator

(2.69) ĝ(X) = (1 �X; a �X):

The bias of ĝ is

(2.70) E� [ĝ(X)� g(�)] =

�Z 1

0

(1Sn
j=1 �j

(t)� 1)�(t) dt; 0

�
:

Let b1(�) =
R 1
0 (1 � 1Sn

j=1 �j
(t))�(t) dt. The mean squared error of ĝ(X) is

(2.71) E� [kĝ(X) � g(�)k2] = b21(�) + �2(n+ kak2):

The bias and the MSE of ĝ(X) are unbounded over �.
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Now suppose that in addition to the stochastic errors f�jgnj=1, each datum contains also a

systematic error �j:

(2.72) Xj = h�j; fi + �j + �j ; j = 1; : : : ; n:

Assume we know that � satis�es

(2.73) � 2 T = f� 0 2 Rn : j� 0jj � tj <1 ; j = 1; � � � ; ng � R
n:

We can embed this case in the framework we have developed by appending to � the n-vector

� = f�jgnj=1 2 Rn. These additional parameters, which a�ect the probability distribution but

are not the subject of the estimation problem, are called nuisance parameters. The model space

� is now L2[0; 1]�T, which we endow with the following norm. If � = (f; ) with f 2 L2[0; 1]
and  2 T,

(2.74) k�k2 = kfk2 + kk2;

where kk is the ordinary Euclidean norm of  2 R
n. For � = (f; ) and � = (g; �) this

corresponds to the inner product

(2.75) (�j�) =
Z 1

0

f(t)g(t) dt+  � �:

Let 1j be the n-vector that is zero in every component but j, for which it is 1. The probability

distribution P� on Rn is

(2.76) P�(B) =

Z
B

nY
j=1

�
1p
2��

exp

�
�(xj � (�j(1�j

;1j)))2

2�2

��
dnx

for all Borel sets B � R
n. Now

(2.77) g(�) =

 
(�j(1; 0));

 
�
���( nX

j=1

aj1�j
; 0)

!!
:

Neither component of g(�) is identi�able once we have systematic errors. However, if we use

the same estimator ĝ(X) as before, its bias is

(2.78) bias�(ĝ) = E� [ĝ(X)� g(�)] = (b1(�) + 1 � �; a � � ) :

The �rst component of the bias is still unbounded for � 2 �, but the second is bounded:

(2.79) max
� 02T

ja � � 0j = b(a;T) <1:
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H�older's inequality gives a crude bound on the bias:

(2.80) ja � � j � b(a;T) � kak1k�k1 � kak1ktk1:

The mean squared error of ĝ(X) is

(2.81) E� [kĝ(X) � g(�)k2] = ((b1(�) + 1 � � )2 + (a � � )2 + �2(n+ kak2):

3. Statistical Decision Theory

3.1. General Framework. This section presents a framework for comparing estimators and

con�dence sets in inverse problems: statistical decision theory [64]. Statistical decision theory

can be developed in quite abstract settings (Le Cam [44] frames it in the context of mappings

from an arbitrary set to an L-space); here we insist that the model set � is a subset of a

separable Banach space, and that the observation is an element of a separable Banach space.

References more accessible than [44] include Lehmann [46], Lehmann and Casella [47], and

Berger [11] (for a Bayesian perspective).

Decision theory frames statistical estimation and inference as a two-player game, Nature

versus statistician. Nature picks � 2 �; the value of � is hidden from the statistician; data X

will be generated from P�. Before X is drawn, the statistician chooses a strategy � for guessing

some feature of � from X. The data are generated; the statistician applies the rule; and the

statistician pays a loss `(�; �) that depends on his guess �(X) and the true value of �. We shall

give a more precise mathematical statement of the game after introducing new terminology.

The game has the following ingredients:

(1) a collection P = fP� : � 2 �g of probability distributions on a separable Banach space

X , where � is a known subset of a separable Banach space T . The elements of P are

the strategies available to Nature.

(2) a �xed collection D of randomized decision rules mapping X into probability distribu-

tions onto a space A of actions. The elements of D are the strategies available to the

statistician.

(3) a loss function ` : ��A! R
+. The statistician pays `(�; a) if Nature selects � and the

statistician takes action a.
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If the statistician uses the randomized rule � 2 D to choose his action on the basis of the

data X � P�, in repeated play, his expected loss is the risk at � 2 � of the decision rule � 2 D:

(3.1) r(�; �) � E�

�Z
A

`(�; a) �(X)(da)

�
:

When � is non-randomized, we can think of � as taking values in A rather than in the collection

of probability measures on A; then

(3.2) r(�; �) � E� [`(�; �(X))]:

The statistician seeks to make r(�; �) \small" by choosing � 2 D cleverly.

Because � is unknown, di�erent senses of small compete, and lead to di�erent strategies for

selecting the decision rule �. The two most common strategies for picking an \optimal" decision

rule are minimax and Bayes (see De�nitions 3.1 and 3.2 below for precise de�nitions). Minimax

decision rules minimize over the statistician's choice of decision functions � 2 D the maximum

risk over Nature's possible choices of the parameter �. This hedges against the possibility that

Nature plays the game aggressively, picking the value of � that maximizes the statistician's

guaranteed loss. Bayes decision rules minimize over decision functions a weighted (by a prior

probability distribution �) average risk over nature's possible choices of the parameter �. This

treats Nature as if it draws � at random from � according to the prior distribution �. There are

connections between these two notions that we do not explore here. For example, a su�cient

condition for a decision rule to be minimax is that it be Bayes with respect to some prior

probability distribution and that the resulting average risk coincides with the maximum risk.

The choice of a loss function `(�; a) is essentially arbitrary. Context dictates appropriate

choices, but most of the worked examples in decision theory use loss functions chosen for

analytic convenience rather than for scienti�c relevance. The most common loss function for

point estimates of parameters in Euclidean spaces is squared error: `(�; a) = ka� g(�)k2. For
estimating a real-valued functional g(�), common choices include absolute error

(3.3) `(�; a) = ja� g(�)j;

and zero-one loss depending on the distance between a and �:

(3.4) `(�; a) =

8<: 0; ja� g(�)j � c

1; otherwise:
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For set-valued actions S � G, loss functions typically combine coverage of the parameter|

P�fS 3 g(�)g|and a measure of the size of the set S.1 For example, we might take `(�; S) =

1S 63� +�jSj, with � > 0, where jSj is the diameter of S if � is a subset of a metric space, or the

Lebesgue measure of S, if � � R
n. Another possibility is to combine coverage of the parameter

and distance from the parameter to the closest point in the set. We shall restrict attention to

loss functions that are �nite for all a 2 A and all � 2 �.

When A is a convex subset of a separable Banach space, it is sometimes helpful to require

the loss ` to be convex in its second argument: for every � 2 �, for all  2 [0; 1], and for all a1,

a2 in A,

(3.5) `(�; a1 + (1 � )a2) � `(�; a1) + (1� )`(�; a2):

This holds, for example, if we seek to estimate a parameter g(�) using an estimator � that takes

values in G, and the loss is the norm of the error of the estimate: `(�; a) = kg(�)� ak.

De�nition 3.1. The maximum risk of � 2 D over � is

(3.6) �(�) � sup
�2�

r(�; �):

The minimax risk is

(3.7) �� = ��(D) = inf
�2D

�(�):

If a decision rule �� 2 D has risk �(��) = �� then �� is a minimax decision rule.

De�nition 3.2. If � is a probability measure on �, the posterior risk of � for prior � is

(3.8) ��(�) =

Z
T

r(�; �)�(d�):

The smallest posterior risk is the Bayes risk:

(3.9) ��� = inf
�2D

��(�):

If a decision rule attains the Bayes risk (if ��(��) = ���), it is a Bayes decision for prior �.

1Recall that we require the space A of possible actions to be a subset of a separable metric space. It is

usually possible to represent set-valued actions as elements of such a space | for example, by identifying sets

with their indicator functions and working in a suitable function space or working with closed sets and using

the Hausdor� distance on closed subsets of metric space.
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Although the statistician may not be able to �nd the minimax or Bayes decision rule, he

should at least discard a decision rule if he has another rule that performs better whatever be

� 2 �:

De�nition 3.3. A decision rule � is admissible for loss ` if there is no other decision rule �0

such that

(3.10) r(�; �0) � r(�; �); 8� 2 �

and r(�; �0) < r(�; �) for at least one � 2 �. If such a �0 exists, it is said to dominate �. If � is

not admissible it is inadmissible.

Example 3.4. Consider estimating an m-vector g of linearly independent linear functionals in

a linear inverse problem, as described in Theorem 2.7; suppose that the errors are Gaussian,

and that the conditions of that theorem hold: g = � � � for some m � n matrix �. Although

the Backus-Gilbert estimator � �X is unbiased for g, Section 4.5 shows that if m � 3 and the

variance-covariance matrix � of the data errors has full rank, then � � X is inadmissible for

mean squared error.

However, if m < 3, the Backus-Gilbert estimator is minimax for mean squared error, and can

be characterized as the limit of a sequence of Bayes estimators for prior probability distributions

that are increasingly \at" on Rm.

Determining whether or not a decision rule is minimax or Bayes (or is even admissible) is

essentially an optimization problem. To make this optimization problem as simple as possible,

it is useful to make an a priori reduction in the range of possible decisions that need to be

considered. A useful tool for performing this reduction is the notion of su�ciency.

De�nition 3.5. A statistic is a measurable mapping from the data space X into some other

measurable space. A statistic T is su�cient for P if there is a version of the conditional

distribution under P� of the data X given T (X) that does not depend on � 2 �. It is trivially

true that X is su�cient for P.

For convex loss functions, the following result shows that nothing is lost in restricting atten-

tion to estimators that are functions of a su�cient statistic.
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Theorem 3.6 (Rao-Blackwell Theorem (see [47] Th. 1.7.8)). Let X have probability distribution

P� 2 P = fP�0 : �0 2 �g, and let T be su�cient for P. Let ĝ be an estimator of the parameter

g(�), and let the loss `(�; a) be strictly convex in a. Suppose that ĝ(X) is integrable for all P�,

(3.11) r(�; �) = E � [`(�; ĝ(X)] <1;

and

(3.12) �g(X) = E� [ĝ(X) jT (X)]

(because T (X) is su�cient for �, the conditional expectation on the right{hand side does not

depend on �). Then

(3.13) r(�; �g) < r(�; ĝ)

unless ĝ(X) = �g(X), P� almost surely, for all � 2 �.

Remark 3.7. To be completely rigorous, the statement of Theorem 3.6 needs a further condition.

Conditional expectations are de�ned only up to sets of probability zero, so the de�nition of �g(X)

contains a \hidden" null set that could depend on �. One way of overcoming this unwanted

di�culty is to require that the family P of probability measures is dominated by some �xed

probability measure �, that is, for every � 2 �, P� is absolutely continuous with respect to �.

We will see more telling uses of Theorem 3.6 later, but here is a simple example of how it

can be used to justify rigorously the intuitively obvious. Consider the set-up of Section 2.5,

but change things so that �1 = �2 = : : : = �n (instead of �1;�2; : : : ;�n being pairwise

disjoint). A simple (unbiased) estimator for g(�) = (�j1�1
) is X1. However X2; : : : ;Xn are also

unbiased estimators of g and it seems that we should be able to get a better estimator of g by

incorporating the information about g contained in these estimators. To this end, note that

the statistic 1 �X = X1 +X2 + � � � +Xn is su�cient (the conditional distribution of X given

1 � X = x under any P� is normal with expectation x=n and covariance matrix that doesn't

involve �). Therefore, for loss functions that are strictly convex,

(3.14) �g(X) = E[X1 j1 �X] = (X1 +X2 + � � � +Xn)=n

dominates X1 as an estimator of g: averaging the data gives a better estimate than using a

single datum alone.
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3.2. Estimates as Decisions. We now specialize to the case of estimating a parameter g(�)

where g : � ! G, with G a Banach space with norm k � k. Take the action space A to be

G as well, and consider the set D of decision rules � that are P-measurable mappings from X
to G. A standard choice of `(�; a) is then kg(�) � ak, which is convex. Then r(�; �) is the

average error in the estimator, measured in the norm of G|the MNE. A less common choice

is `(�; a) = 1g(�)62Bc(a), where Bc(a) = f� 2 G : k� � ak � cg. When G is a Euclidean space, the

most common loss function is ka� g(�)k2. When G = R (estimating a single real parameter),

common loss functions are `(�; a) = jg(�)� ajp and `(�; a) = 1jg(�)�aj>c.

3.3. Con�dence Sets as Decisions. In elementary statistics, a con�dence set is a mapping

from possible data values to sets of parameter values (subsets of G). One can think of this

as a mapping from possible data values to functions on G that take the values 0 (the point

is not in the set) and 1 (the point is in the set). Many results in decision theory depend on

the assumption that the loss is convex in the action. We can make the set of actions convex

by allowing the mapping from G to take more values|by considering con�dence sets to be

mappings from possible data values to functions on G that take values in [0; 1], corresponding

to a probability of membership.

A con�dence set for the parameter g(�) 2 G is a decision rule � whose space of actions A
is a collection of (measurable) functions from the space G of possible parameter values to the

interval [0; 1]. Such a decision rule � can be converted into another rule �0 whose space of

actions A0 is a collection of measurable functions from G into the two points f0; 1g (that is,

the collection of measurable subsets of G) by de�ning the probability measure �0(x) to be the

push-forward of the product measure � 
 � under the map (a; u) 7! 1fu � a(�)g, where � is

Lebesgue measure on [0; 1]; that is,

(3.15)

Z
A0

F (a0) �0(x)(da0) =

Z
A

Z 1

0

F (1fu � a(�)g) du �(x)(da);

for F a bounded measurable function on A0.

The coverage probability (at �) of a con�dence set � for the parameter g is

(3.16) (�; �) = E�

�Z
A

a(g(�)) �(X)(da)

�
:
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A 1 � � con�dence set for g is a con�dence set that has coverage probability at least 1 � �,

whatever be � 2 �. The expected measure of � with respect to the measure � on G is

(3.17) �(�; �) = E�

�Z
A

Z
G

a(�)�(d�) �(X)(da)

�
:

For randomized con�dence sets, the coverage probability and the expected measure are linear

functionals of the decision rule, so they are convex, and we could consider a composite convex

risk function

(3.18) r(�; �) = �(�; �) + c�(�; �)

for some c 2 R+, to optimize a tradeo� between coverage probability and expected measure.

This is an example of how constructing con�dence sets might be posed as a problem within the

decision-theoretic framework we have described.

Suppose we restrict attention to sets A of actions that map G measurably into f0; 1g, which
thus can be thought of as measurable subsets � of G. With this restriction, we might choose A
to consist of sets with a given maximum diameter j�j = sup�;�2� k� � �k, for example. In that

case, a reasonable loss function is `(�;�) = 1g(�) 62�. Then r(�; �) is the non-coverage probability:

the probability under P� that the set � does not include g(�). One can seek small con�dence

sets with a given maximum non-coverage probability whatever be � 2 � by taking A to be a

collection of Borel subsets of G with a given maximum diameter, and varying that diameter

until the supremum of r(�; �) over � is the target non-coverage probability �.

4. Estimation

There are a variety of \recipes" for constructing estimators; perhaps the most common in

statistics are maximum likelihood (MLE) and Bayes, both of which have asymptotically optimal

properties under certain restrictive assumptions. However, both can be inconsistent, even when

the dimension of the model is �nite; see below. In the inverse problems literature, regularization

(especially regularized least-squares, which is related to maximum penalized likelihood), using

a truncated basis expansion (which is related to the method of sieves) and the Backus-Gilbert

method are among the most common procedures. In this section, � 2 � � T , a separable

Banach space, K : � ! R
n is linear, and X = K� + �, where � is usually a vector of i.i.d.

zero-mean Gaussian errors.



INVERSE PROBLEMS AS STATISTICS 33

We shall use interpolation (nonparametric regression) on the unit interval as an example

throughout this section: T will be some class of functions, for example, a Sobolev space of

functions � : [0; 1]! R, h�j ; �i = �(tj), ftjgnj=1 � [0; 1], and X = K�+�, where the components

of � are i.i.d. N(0; 1). In statistical nomenclature, this problem is an instance of nonparametric

regression. Let fk denote the kth derivative of the function f . For integerm � 1, letWm denote

the Sobolev space of functions on [0; 1] that are absolutely continuous and have absolutely

continuous derivatives up to order m � 1, and whose mth derivative is in L2[0; 1], with the

norm

(4.1) kfk2 =
m�1X
k=0

jfk(0)j2 +
Z 1

0

jfmj2d�:

The corresponding inner product is

(4.2) (f; g) =

m�1X
k=0

fk(0)gk(0) +

Z 1

0

fmgmd�:

A Hilbert space of functions of position, in which the point-evaluation functional f ! f(t0)

is continuous for every t0 in the domain of f , is a reproducing kernel Hilbert space [1]. By

the Riesz representation theorem, f ! f(t0) is thus the inner product h�t0; fi of f with some

other �xed element �t0 of the space. Reproducing kernel Hilbert spaces are at the heart of

the theory of splines; see Wahba [63] for a statistical treatment. Finite-dimensional Hilbert

spaces of functions are reproducing kernel Hilbert spaces, as are spaces of su�ciently smooth

functions, such as bandlimited functions. In most in�nite-dimensional inverse problems, the

elements of � are not smooth enough for � to be a reproducing kernel Hilbert space.

The space Wm is a reproducing kernel Hilbert space. In particular, for m = 2, with

(4.3) �j(t) =

8<: 1 + ttj +
t2tj
2 � t3

6 ; t � tj

1 + ttj +
tt2j
2 �

t3j
6 ; t > tj;

we have �j 2 W2 and h�j ; fi = f(tj) for all f 2 W2. Moreover, if ti 6= tj, 1 � i 6= j � n, then

the n point evaluators for the points ftjgnj=1 are linearly independent.

4.1. Backus-Gilbert Estimation. In a seminal series of papers [5, 2, 3, 4] George Backus

and Freeman Gilbert developed a rigorous basis for linear inverse theory in Geophysics. Here,

\a linear inverse problem" is an inverse problem in which the data are linearly related to

the unknown but for additive noise, the unknown is an element of a linear vector space with
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constraints but the data, and the estimators are linear in the data. In statistical terms, Backus

and Gilbert showed that the only linear functionals in an unconstrained linear inverse problem

(meaning � = T ) that are identi�able and estimable with bounded bias are linear combinations

of the measurement functionals. That is, if the functional g : � ! R is linear, then g(�) is

identi�able i� g =  �K for some  2 Rn. In that case, as shown in Corollary 2.8,  �X is an

unbiased estimate of g(�), and if � is the covariance matrix of �, the variance of the estimate is

(4.4) E[( �X �  �K�)2] = E[( � �)2] =  � � � :

Backus and Gilbert focused on the case where � is a Hilbert space of functions of position

r 2 D � R
n, and developed a measure of \nearness" of g to the point-evaluator � 7! �(r0),

which typically is not a member of �. Backus and Gilbert developed a framework for trading

o� between the variance of the estimate and the nearness of the linear functional estimated to

�(r0); the latter is called the \resolution" or \resolving width."

In the interpolation problem stated above for W2, the point evaluator is a bounded linear

functional, but only linear combinations of f�jg are estimable using the Backus-Gilbert formal-

ism. In particular, if there is no measurement at the point t0, Backus-Gilbert theory tells us

that f(t0) is not estimable with bounded bias.

When there are additional constraints on the unknown �, for example, if � is a norm-bounded

ellipsoid in a Hilbert space T , more is possible than Backus-Gilbert theory would suggest; see,

e.g., [8, 9, 10, 54] and the sections below. In particular, many more linear functionals can be

estimated with bounded bias. Moreover, Backus-Gilbert estimates generally are not optimal

for two-norm loss when three or more linear functionals are estimated; see Section 4.5 below.

4.2. MaximumLikelihood Estimation (MLE) and its Variants. Suppose that the family

P = fP� : � 2 �g of probability distributions on a measurable space X is dominated by a

common �-�nite measure �. Let p�(x), x 2 X denote the density of P� with respect to �. For

�xed x 2 X , the function

L = Lx : � ! R
+

� 7! p�(x)(4.5)
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is called the likelihood function. If the value X = x is observed, L(�0jX = x) = L(�0) is the
likelihood of �0 given X = x. Note that, despite the suggestive notation, L(�jX = x) is neither

a conditional probability nor a probability density.

The basic idea behind the maximum likelihood method is to estimate � by the value �0 2 �

for which the likelihood function L(�0jX = x) for the observation X = x is largest:

(4.6) �̂ML(x) � arg max
�02�

L(�0jX = x)

when a unique maximizer exists. The spirit of the approach is that the maximizing value of �0

is \most likely" to be the correct one. More generally, we would estimate the parameter g(�) by

ĝML(X) = g(�̂ML(X)). In smooth �nite-dimensional problems, maximum likelihood has some

nice asymptotic properties; see Lehmann and Casella [47]. In many problems, however, it runs

into trouble.

Here are some technical issues. First, in order to de�ne the likelihood function, we need

the set of probability distributions P = fP� : � 2 �g to be dominated by a common �-�nite

measure �. (All such dominating � lead to the same estimator.) Second, we need the likelihood

to attain its maximum (this can be overcome by maximizing the likelihood approximately; see

inequalities 4.23 and 4.26). Third, we need the maximizer to be unique, or else we need a

rule for choosing among maximizers. Fourth, we need arg max�02�L(�0jX) to be a measurable

function of X; this requires additional assumptions. Even when these assumptions are met,

maximum likelihood can have pathological properties, including being inconsistent even when

a consistent estimator exists. See Le Cam [45] and examples in Lehmann and Casella [47].

For an example where the maximum likelihood estimate is inadmissible for a �nite-dimensional

parameter with Gaussian errors, see Section 4.5 below.

One problemmaximum likelihood faces even in quite regular inverse problems is the existence

of in�nitely many maximizers. For example, in the interpolation problem with Gaussian errors,

the likelihood function is

(4.7) L(�jX = x) =

nY
j=1

(2�)�1=2 exp

�
�(xj � �(tj))2

2

�
:

This attains its maximum, (2�)�n=2, for every function � that passes through all the data points

f(tj; xj)gnj=1.
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It is common to minimize the negative of the logarithm of the likelihood function, instead

of maximizing the likelihood function. The likelihood function is nonnegative, so its logarithm

is de�ned; the logarithm is monotonic, so a value of �0 that maximizes the log-likelihood also

maximizes the likelihood. When the data errors are independent, the likelihood function factors,

so taking the logarithm yields a sum of terms, one for each datum. Furthermore, if the errors

are Gaussian, the logarithm inverts the exponentiation in the Gaussian density. For example,

the log-likelihood in the interpolation example is

(4.8) `(�0jX = x) = logL(�0jX = x) = c1 � c2

nX
j=1

(xj � �0(tj))
2;

where c1 and c2 are positive constants. Minimizing the negative of the log-likelihood in this

case leads to minimizing the sum of squares of the discrepancies between the model predictions

f�(tj)gnj=1 and the data fxjgnj=1: least squares.
One can modify the problem by incorporating a strictly concave penalty term to obtain

a problem with a unique maximum. Maximum penalized likelihood subtracts a nonnegative

penalty term J(�) from the likelihood function (or the log of the likelihood function) before

maximizing it. The penalty functional (or regularization functional) J is typically the square

of a Hilbertian norm or seminorm. Maximum penalized likelihood is a form of regularization.

Indeed, many regularization schemes can be viewed as maximumpenalized likelihood estimators

for di�erent choices of the penalty functional. Including the penalty can stabilize the numerical

problem; it need not result in an estimator with good statistical properties. See [51] for a

treatment of quadratic regularization in the context of geophysical inverse theory; see [50]

for a statistical perspective on quadratic regularization in inverse problems, and [59] for a

recent tutorial. In the interpolation problem with Gaussian errors, including a positive de�nite

quadratic penalty leads to linear estimates of �.

For example, in the interpolation problem in W2, we might choose �̂ to be

(4.9) �̂� � argmin
�02T

(
nX
j=1

(xj � �0(tj))
2 + �k�0k2

)

for some � > 0 (standard choices for � are discussed below); then J(�) = �k�k2. (That the

minimizer exists in this problem is a consequence of the projection theorem, which allows us to

conclude that the minimizer is �nite-dimensional; vide infra.) This optimization problem has
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a unique solution (a linear combination of f�jgnj=1, which is a cubic spline). The constant � is

called the regularization parameter .

Next, we shall �nd the solution to the optimization problem 4.9 to characterize �̂�.

Lemma 4.1 (The Projection Theorem). Let T be a Hilbert space, let f�jgnj=1 � T be a linearly

independent set, let M = spanf�jgnj=1, and let x 2 Rn. Then

(4.10) argmin
�02T

fk�0k : h�j ; �0i = xj; j = 1; � � � ; ng 2M:

The minimum is attained, and by a unique element of M .

Remark 4.2. For a proof, see, e.g. [48], x3.10, Thm. 2. Similarly, if M is a closed subspace of

a Hilbert space T and � is an arbitrary element of T ,

(4.11) min
m2M

k� �mk

is attained by an element m0 of M , and � �m0 2M?. See [48], x3.3, Thm. 2.

Remark 4.3. It follows from Lemma 4.1 that if D � R
n is closed, and �0 solves

(4.12) �0 = arg minfk�0k : K�0 2 Dg;

then �0 2M = spanf�jgnj=1.

Let � be the n � n Gram matrix with elements �ij = h�i; �ji, and for  2 R
n, let  � k =Pn

j=1 j�j. That the matrix � is positive de�nite follows from the linear independence of

f�jgnj=1. The penalized maximum likelihood estimate is of the form  � k. For such a model,

we have

k � kk2 = ( � k;  � k)

=  � � � :(4.13)

The vector of noise-free data predictions of such a model is

(4.14) K( � k) =  � �;

and

kx�K( � k)k2 = (x�  � �) � (x�  � �)

= kxk2 � 2 � � � x+  � � � � � :(4.15)
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Thus the penalized log-likelihood of  is (ignoring additive terms that do not involve the

parameter )

(4.16) `(jx) = 1

2
(�2 � � � x+  � � � � �  + � � � � ) :

This is a convex quadratic functional of , so its minimum is attained at a stationary point ~:

(4.17) `0(~jx) = �� � x+ � � � � ~ + �� � ~ = 0:

Solving for ~ gives the familiar expression

(4.18) ~ = (� + �I)�1x;

where I is the identity matrix (recall that � is positive de�nite, so � + �I is too, and hence

� + �I is invertible). Thus the maximum penalized likelihood estimate of � for regularization

parameter � � 0 is

(4.19) �̂�(X) =
�
(� + �I)�1X

� � k:
Let �M = 0 �k, so 0 = ��1K�, �M = ��1K� �k, and �M? = �� �M . The bias of the penalized
estimator is

bias�(�̂�) = E�

�
� � �(� + �I)�1X

� � k�
= � � E�

�
(� + �I)�1(K� + �)

� � k
= � � �(� + �I)�1K�

� � k
= �M? +

�
��1 � (� + �I)�1

�
K� � k:(4.20)

The �rst term is the part of the model � that is in the null space of the forward mapping: the

statistic �̂� estimates �M? by 0. As a result, the bias is unbounded as � ranges over �. If a

prior bound on k�k were available, that would limit the bias. In some inverse problems, such as

estimating the magnetic �eld at the Earth's core-mantle boundary from satellite observations

[9], physically motivated a priori bounds on quadratic functionals are available, but such cases



INVERSE PROBLEMS AS STATISTICS 39

seem to be rare. The variance of �̂� is

Var�(�̂�)) � E�k�̂� � E� �̂�k2 = E�k
�
(� + �I)�1X

� � k� �(� + �I)�1K�
� � kk2

= E�k
�
(� + �I)�1�

� � kk2
= E�

��
(� + �I)�1�

� � � � �(� + �I)�1�
��

= E�

�
� � (� + �I)�1 � � � (� + �I)�1 � ��

= tr
�
(� + �I)�1 � � � (� + �I)�1

�
:(4.21)

The mean squared error of �̂� is

(4.22) MSE�(�̂�) = kbias�(�̂�)k2 +Var�(�̂�):

An approximate maximum penalized likelihood estimator �̂� is one that nearly maximizes

the penalized likelihood, in the sense that

(4.23) L(�̂�jX = x)� �J(�̂�) � sup
�2�

L(�jX = x)� �J(�)� �:

This notion is fruitful when one has a sequence of estimation problems with increasing numbers

of data. Then, with appropriate conditions on the models, if � and � are driven to zero at the

right rates as the number of data grows, such a sequence of approximate maximum penalized

likelihood estimators can be consistent and e�cient in various senses; see, e.g., [53].

Note that the likelihood function can be replaced by other functions of the parameter and

the data that then can be maximized to construct an estimator; estimators that solve general

optimization problems are calledM-estimators. For example, using least-squares to �t a linear

model to data with non-Gaussian errors is a form of M -estimation. For results concerning the

consistency of least-squares estimators in nonparametric regression and inverse problems for

not-necessarily-Gaussian data errors, see [27, 49, 61, 65].

4.2.1. Choosing the Regularization Parameter �. From the point of view of stability, any strictly

positive value of � su�ces; the variance decreases and the bias tends to increase as � increases.

If � is chosen a priori , the regularized estimate is linear in the data. If the data are also used

to select � adaptively, the estimator is nonlinear in the data.

A common way to choose � adaptively in geophysical inverse problems leads to \Occam's

inversion," named after William of Occam by Constable et al. [15]. Occam's Razor demands
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that when choosing among competing hypotheses that explain the data adequately, one pick

the simplest. The quantitative prescription in [15] is to pick the model that attains the smallest

value of the regularization functional among models that predict the data within a normalized

sum of squared errors equal to one:

(4.24)
1

n

nX
j=1

(Xj � h�j; �i)2=�2j = 1:

For independent Gaussian errors, the expectation of the left hand side for the true value of �

is unity; the value on the right can be tuned more �nely to be a quantile of the distribution of

the sum of squares of the errors.

Genovese and Stark [36] give necessary conditions for such estimators to be consistent, and

su�cient conditions, but not necessary and su�cient conditions. O'Sullivan [50] presents regu-

larization of inverse problems from a statistical point of view, and gives various senses in which

regularized estimates are optimal among linear estimates, along with a discussion of methods

for selecting �.

Cross-validation and generalized cross-validation are popular methods in the statistical litera-

ture for choosing the regularization parameter; see Wahba [63] for the nonparametric regression

case and O'Sullivan [50] for applications to inverse problems and further references; see [59] for

an accessible summary. Cross validation is a method for choosing � adaptively: one forms n

data sets of size n� 1, omitting each datum in turn. Let X(j) denote the data set with the jth

datum deleted, and let �̂�;(j) denote the regularized estimate based on the data set X(j) using �

as the value of the regularization parameter. The predictive error for regularization parameter

� is

(4.25) PE(�) =
nX

j=1

(Xj � h�j; �̂�;(j)i)2=�2j :

One selects � to minimize the predictive error. The dependence of � on the data makes the re-

sulting estimator of � nonlinear. Predicting omitted data and recovering the underlying model

� are not the same. See Wahba [63] for more more details about cross validation and its gen-

eralizations, and for the connection between the theory of splines and Bayesian nonparametric

regression.
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4.2.2. Regularization as a Method for Inference. If the mis�t tolerance in Occam's inversion is

chosen appropriately (for example, the quantile �2n;1��=n in the case of Gaussian errors), the

minimal value of J(�) can be interpreted as the lower endpoint of a 1�� one-sided con�dence

interval for J applied to the true model: the set of models that agree adequately with the data

is a con�dence set D for the model, as described in the development leading to Equation (4.57).

Typically, the upper endpoint of a con�dence interval for J is in�nite; see [17] for examples of

functionals for which only one-sided con�dence intervals can be constructed.

4.2.3. The Method of Sieves. Adding a penalty to the likelihood function|regularization|is

not the only way to construct an estimator as the unique maximizer in some optimization

problem. An alternative way to modify maximum likelihood to arrive at a problem with a

unique maximizer is to limit the dimension of the model to obtain an over-determined problem;

the method of sieves implements this approach. See Shen [53] for a recent study of MLE,

penalized MLE, and the method of sieves.

Let f�kg1k=1 be a sequence of subsets of the Banach space T that contains �. Let dk(�) =

inf2�k
k � �k. If for all � 2 �, limk!1 dk(�) = 0, f�kg1k=1 is a sieve. The collection of

subspaces spanned by the �rst k � 1 elements of an ordered basis is a typical sieve. The idea

of the method of sieves is to maximize the likelihood approximately within the approximating

set �n: �nd �̂n 2 �n such that

(4.26) L(�̂njX = x) � sup
�2�n

L(�jX = x)� �;

where n is the number of data.

In a sequence of estimation problems with increasing numbers of data n, if the sieve is chosen

appropriately and � is driven to zero at the right rate as n grows, this method can have desirable

properties such as consistency.

The method of sieves is quite close to a common numerical approach to inverse problems: ap-

proximate � by a �nite-dimensional subspace and perform least-squares collocation within the

subspace. Unfortunately, as mentioned above, the choice of the approximating space matters|

it controls the bias/variance tradeo�|and good results for sieve estimators and other reg-

ularizing methods depend critically on assumptions about � that tend to be unveri�able in

applications.



42 STEVEN N. EVANS AND PHILIP B. STARK

4.2.4. Singular Value Truncation and Weighting. Singular value truncation is another way to

choose an approximating subspace. For a review of the applied mathematics perspective on

singular value truncation and related regularization methods, see [13, 14, 12, 62]. We assume

in this section that T is a Hilbert space, and that the data errors f�jgnj=1 are independent and
identically distributed with mean zero and variance �2. The linear operator K : T ! R

n is

compact; it has an in�nite-dimensional null-space. Because the functionals f�jgnj=1 are linearly
independent ex hypothesi , the orthogonal complement of the null space of K is n-dimensional.

LetK� : Rn ! T be the adjoint operator to K. There is a collection of n triples f(�j; xj; �j)gnj=1
with �j 2 T , xj 2 X and �j 2 R+, such that

K�j = �jxj and(4.27)

K�xj = �j�j:(4.28)

The functions f�jgnj=1 can be chosen to be orthonormal in T , and the vectors fxjgnj=1 can

be chosen to be orthonormal in X ; we assume both conditions hold. In this problem, the

singular values f�jg are strictly positive (a consequence of the linear independence of f�jgnj=1).
We assume that the singular values are ordered so that �1 � �2 � � � � > 0. The triples

f(�j; xj; �j)gnj=1 comprise the singular value decomposition of the operator K.

By virtue of the projection theorem (4.1), a model �� of minimum norm that satis�es the

data X exactly can be written as a linear combination of the singular functions f�jgnj=1; namely,

(4.29) �̂MN = ��(X) =
nX

j=1

��1j (xj �X)�j :

To verify that �̂MN satis�es the data, calculate

K�̂MN =
nX

j=1

�j�
�1
j (xj �X)xj

= X;(4.30)

because fxjgnj=1 is an orthonormal basis for Rn. Because of the linear independence, �̂MN is the

only linear combination of the singular functions f�jgnj=1 that �ts the data X exactly, hence it

is the function of minimum norm that �ts the data exactly.

Let us calculate the bias and variance of the estimator �̂MN(X). To begin, we decompose �

into a component �k in the span of f�jgnj=1 and a component �? in the null space of K. It is
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easily seen that E� �̂MN = �k, so

bias�(�̂MN) = E� �̂MN(X)� �

= �?:(4.31)

The variance of �̂MN is

Var��̂MN = E�


nX

j=1

��1j (xj � �)�j

2

= �2
nX

j=1

��2j :(4.32)

The components associated with small singular values �j contribute substantially to the

variance, because the corresponding components of noise in the data are multiplied by ��1j . The

idea behind singular value truncation is to reconstruct � using only those singular functions

whose singular values exceed some threshold t; that is, to estimate � by

(4.33) �̂SV T =

mX
j=1

��1j (xj �X)�j;

where m = maxfk : �k > tg. This molli�es the noise magni�cation, at the expense of increasing

bias: the bias increases in norm by an amount equal to the norm of the projection of � onto

the subspace spanned by f�jgnj=m+1. The variance decreases by �2
Pn

j=m+1 �
�2
j . If one has

adequate prior information about � (to control the increment to the bias) this bias-variance

tradeo� can be exploited to construct an estimator with smaller mean squared error than the

minimum norm estimator has.

Singular value truncation can be embedded in a family of estimators that re-weight the

singular functions in the reconstruction: regularization using the norm is another. (Maximum

entropy [41, 21] also can be viewed as a nonlinear regularization method.) The general form is

(4.34) �̂w =
nX

j=1

w(�j)(xj �X)�j:

Singular value truncation corresponds to

(4.35) w(u) =

8<: u�1; u � �j0 ;

0; otherwise.
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Regularization using the norm as the regularization functional, with regularization parameter

�, corresponds to

(4.36) w(u) =
u

u2 + �
:

See [50, 62] for discussions of regularization as a statistically optimal linear estimator.

Penalization, sieves, and singular-value truncation work essentially by forcing the estimator

to lie in a compact subset of �, but allowing that subset to grow in a controlled way as n!1.

These methods tend to produce an estimate with norm smaller than that of the maximum

likelihood estimate: they can be viewed as shrinkage estimators (see Section 4.5). Consistency

and optimality results for penalized maximum likelihood and the method of sieves depend on

assumptions about � that control the bias of the estimator; for example, if � is a function,

some smoothness is required. The choices of � = �(n) and (�n) or J(�) and � = �(n) matter,

and optimal rules tend to depend on assumptions about � that cannot be veri�ed empirically.

Moreover, to our knowledge, the �nite-sample behavior of approximate penalized likelihood and

the method of sieves are not guaranteed to be good, even when all the technical conditions are

met|the theorems are asymptotic as n!1.

4.3. Bayes Estimation. The description here is based in part on Lehmann and Casella [47],

chapter 4; see Hartigan [38] and Berger [11] for more complete and technical expositions of

the Bayesian approach, Gelman et al. [35] for Bayesian data analysis; and Le Cam [44] for

a more general and rigorous development. See Tarantola [58] for a Bayesian treatment of

�nite-dimensional geophysical inverse problems.

One of the fundamental tenets of Bayesian inference is that uncertainty always can be rep-

resented as a probability distribution; in particular, the Bayesian approach treats the model �

as the outcome of a random experiment. According to I.J. Good [37]

: : : the essential de�ning property of a Bayesian is that he regards it as meaningful

to talk about the probability P (HjE) of a hypothesis H, given evidence E.

Whether one adheres to a Bayesian view, estimators that arise from the Bayesian approach can

have attractive frequentist properties: the proof of the pudding is in the eating.

The Bayesian paradigm requires a little extra structure:
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� The parameter set � must be measurable. The probability measure P� is now thought

of as a conditional probability distribution for the data, given that the randomly chosen

model has the value �.

� We assume that the probabilities P = fP� : � 2 �g are dominated by a common �-�nite

measure �; the density of P� with respect to � is denoted p�(x) as in Section 4.2. Recall

that p�(x) is the likelihood L(�jx). We shall assume that p�(x) is jointly measurable

with respect to � and x.

� Before any data are collected, a Bayesian has a prior probability distribution � for the

unknown model �|indeed, a Bayesian can estimate � without data.

In addition to the probability distributions P� on X , we now have a probability distribution

on another space, �; let E� denote expectation with respect to �. From the prior distribution

and the distribution P� of the data X given �, we can �nd the joint distribution of � and X. The

marginal distribution of X or the predictive distribution of X is a mixture of the distributions

P� according to �. When fP�g�2� is dominated by �, as we have assumed, the density with

respect to � of the predictive distribution is

(4.37) m(x) =

Z
p�(x)�(d�):

Observing data allows us to update the prior probability distribution using p�(x) (the density

of the observation given �) and Bayes' rule to �nd the posterior distribution of � given X = x:

(4.38) �(d�jX = x) =
p�(x) �(d�)

m(x)
:

(Note that m(x) can vanish; this happens with probability 0. It is not necessary that fP�g�2�
be dominated for the posterior distribution to exist, but it makes the formula simple.)

At this point, some Bayesians are done: the fundamental objects in doctrinaire Bayesian

analysis are probability distributions, and (given the prior) the posterior distribution �(d�jX =

x) is all there is to know about �.

Computing the posterior distribution is much like computing the Gibbs distribution in statis-

tical mechanics, and the di�culties in computing the denominator of the posterior distribution

are akin to those encountered in computing the partition function|both are integrals over high-

dimensional or in�nite-dimensional sets. A considerable amount of computational machinery

has been developed to evaluate such integrals or to compute the posterior without calculating
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the integral explicitly (Markov-chain Monte-Carlo, Gibbs sampling, etc.); see Gelman et al.

[35] for examples and references, and Tenorio et al. [60] for an example in an inverse problem

in microwave cosmology.

Tarantola [58] presents a Bayesian approach to inverse problems, but truncates the problems

to �nite dimensions ab initio; moreover, the prior probability distributions and data error dis-

tributions he treats computationally are limited primarily to Gaussians. Many of the di�culties

of the Bayesian approach vanish if all the distributions are Gaussian and the dimension of the

model is �nite. See below for a few of those problems and references. Backus [7] gives a Bayesian

treatment of an in�nite-dimensional inverse problem in geomagnetism; Backus [10] develops a

framework for inference with quadratic constraints that defers the frequentist/Bayesian decision

by showing that, for his method, the mathematics does not depend on the interpretation.

Some Bayesians and most frequentists are interested in estimating a parameter g(�); the

posterior distribution of � induces a probability distribution for g(�). One can also use the

posterior distribution to �nd point estimates that minimize the posterior risk with respect to

some loss function. For example, the mean of the posterior distribution of g(�) minimizes the

posterior mean squared error. Given a loss function `(�; a) : G � G ! R
+, recall that the risk

at � of the estimator � : X ! G of the value at � of the parameter g is

(4.39) r(�; �) = E �`(g(�); �(X)):

The average risk of � for prior � on � is

(4.40) ��(�) =

Z
�

r(g(�); �)�(d�):

As noted in Section 3, an estimator ��� that minimizes the average risk for prior � is called a

Bayes estimator; its risk is the Bayes risk for prior �. Under suitable conditions, ��� exists; for

example, if there exists an estimator with �nite risk, and if a minimizer ��(x) of

(4.41) E� (`(g(�); �(x)jX = x)

exists for almost all x and depends measurably on x, then �� is a Bayes estimator for prior �

and loss `.

Under appropriate conditions, every admissible estimator is either a Bayes estimator for some

prior, or a limit of such estimators. See Le Cam [44] for details. The maximum risk over � 2 �
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of a Bayes estimator can be quite large. Whatever be the probability measure � on �

(4.42) sup
�2�

r(g(�); �) �
Z
�

r(g(�); �)�(d�) :

the average risk lower-bounds the maximum risk. Because the Bayes estimator minimizes the

right hand side, the maximum risk of any estimator � is bounded below by the Bayes risk. In

particular, the minimax risk

(4.43) inf
�
sup
�2�

r(g(�); �)

(see Section 4.4) is bounded below by the Bayes risk for any prior �. In many circumstances,

the minimax risk is equal to the maximum Bayes risk over all priors � on �; see Le Cam [44]

for precise theorems. Both the Bayes risk and the Bayes estimator depend on the prior �;

comparing the Bayes risk to the minimax risk is a way to quantify the sensitivity of the risk to

the particular prior chosen.

The Bayesian analogue of a frequentist con�dence region is called a credible region or credible

set . A level 1 � � credible region for the parameter g(�) is a set S(X) � G that contains g(�)

with posterior probability at least 1� �:

(4.44) �fg(�) 2 S(x)jX = xg � 1� � for all x 2 X .

There is not a unique S with this property; a criterion often used to obtain a unique S is to take

S to be a level set of the posterior distribution of g(�). Another is to introduce a loss function

associated with a measure of the \size" or \volume" of the con�dence set (as we discussed in a

frequentist context), and to �nd the region that minimizes that loss or the risk subject to the

posterior coverage constraint.

The frequentist coverage probability of a 1�� Bayesian credible region is typically less than

1 � �. For example, we have seen the following misleading procedure used in applications:

De�ne the posterior distribution for � to be proportional to the likelihood function, implicitly

de�ning a uniform prior for the parameter �. Find a 1 � � credible region for � from this

posterior. Finally, report, incorrectly, that the credible region is a 1� � con�dence region.
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4.3.1. Stochastic Inversion. Stochastic inversion (e.g., [32]) is a form of quadratic regularization

equivalent to Bayesian estimation for mean squared error loss under a Gaussian prior probability

distribution for the coe�cients in some �nite-dimensional approximation of the model. The

distinction is philosophical: in stochastic inversion, the model coe�cients are viewed as being

drawn at random from a population with known parameters, while in Bayesian estimation,

the model coe�cients are viewed as unknowns with prior probability distributions with known

parameters. See [7] for more discussion and a comparison of Bayesian estimation and stochastic

inversion in a linear inverse problem in geomagnetism with quadratic prior information.

4.3.2. Di�culties and Pathologies in Bayes Estimation. In both the Bayesian and the frequen-

tist approaches, the choice of � captures some a priori information about appropriate models

for the data. For example, if � represents a physical quantity, such as an absorption coe�cient,

which must be in the interval [0; 1], then it makes sense to take � = [0; 1] even though we may

have a class of models with an analytic form for P� (for instance, X � N(�; 1)) that is de�ned

for all � 2 R.
A frequentist can stop here if there is no more prior information, but a Bayesian must proceed

to choose a prior �. In such situations many Bayesians try to choose a \non-informative" prior

that contains no additional information about � by making all points in � \equally likely." For

example, if � = [0; 1], then it is common to take the prior probability distribution � to be the

U [0; 1] distribution. Although this notion seems appealing at �rst glance, the Bayes risk for a

non-informative prior can be much smaller than the Bayes risk for other priors, indicating that

estimation is easier for the non-informative prior and hence that the non-informative prior does

contain useful information about �.

In the same vein, Backus [6, 8, 7] points out the di�culty of capturing \hard" constraints,

such as k�k � 1, using prior probability distributions in high- or in�nite-dimensional spaces.

Consider, for example, the case � is the subset f� : k�k � 1g of an in�nite-dimensional separable

Hilbert space T (such constraints arise in geomagnetism, for example). Then � is rotationally

invariant, so absent other information, it is reasonable to insist that � be rotationally invariant

in T as well. Backus shows that any rotationally invariant prior on T assigns probability one to

the event fk�k = 0g: it is not possible to capture the constraint k�k � 1 as a prior probability

distribution without injecting additional information (imposing a preference for directions in
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T ). Freedman [33] gives a complete characterization of in�nite-dimensional probability distri-

butions that are rotationally invariant in all �nite-dimensional subspaces: they are mixtures of

independent zero-mean Gaussian random variables.

A rejoinder to such remarks about the di�culty of choosing a suitable prior is that if there

are su�ciently many data, the prior does not matter; the estimator will be close to the truth

no matter what|the estimator is frequentist consistent. Formally, a Bayesian estimator is

frequentist consistent for g(�) if for each � 2 � and each neighborhood � of g(�), the posterior

probability that g(�) 2 � given X converges to one almost surely P� for all � 2 � as n !
1. Under appropriate conditions Bayes estimators in smooth, �nite-dimensional problems

are frequentist consistent. However, Diaconis and Freedman [16] show that in nonparametric

regression, a canonical inverse problem, whether a Bayes estimator is frequentist consistent

depends on the prior. In particular, a hierarchical mixture of uniform priors on nested �nite-

dimensional spaces leads to inconsistency in the problem they study.

4.4. Minimax Estimation. The minimax risk �� is the smallest worst-case risk over � 2 �,

over a class D of decisions:

(4.45) �� = ��(�;P; `;D) � inf
�2D

sup
�02�

E�0 `(�
0; �(X)):

If there exists an estimator �� 2 D that has maximum risk ��, it is a minimax estimator.

The class of estimators D might be all measurable functions of X, or we might limit the

complexity of the estimator, for example, by considering only linear, a�ne (inhomogeneous

linear), or quadratic estimators.

This approach is very appealing to many frequentists, and concrete results for inverse prob-

lems are possible. For example, Donoho [19] studies minimax estimation of a linear functional

g of an element of a convex subset � of T = `2 from linear data K� contaminated by additive

i.i.d. zero-mean Gaussian errors. Donoho considers three loss functions: squared error, absolute

error, and the length of a �xed-length con�dence interval with a speci�ed minimum coverage

probability. He shows for all these measures that the risk of the minimax a�ne estimator is

within a fraction of the risk of the minimax measurable estimator, and shows how to construct

the minimax a�ne estimator. He shows that the risk of the hardest one-dimensional subprob-

lem is equal to the risk in the original in�nite-dimensional problem, which allows him to use
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results about estimating the mean  of a normal distribution subject to the constraint that

 2 [��; � ] to �nd the risk in the original problem. The fundamental entity in the development

is the modulus of continuity of g:

(4.46) !(�; g;K;�) � sup
�1 ;�22�

fjg(�1)� g(�2)j : kK�1 �K�2k � �g:

This quantity also arises in the theory of optimal recovery, and Donoho establishes an equiv-

alence between statistical estimation in Gaussian noise and optimal recovery in deterministic

noise, through a re-calibration of the noise level. The results do not seem to translate to non-

Gaussian noise, nor to estimating the whole object �; however, Donoho [18] addresses minimax

estimation of a function � = �(t) in nonparametric regression and inverse problems, with L1

loss

(4.47) `(�; g) = sup
t
j�(t)� g(t)j;

and Donoho and Nussbaum [26] study minimax estimation of a quadratic functional in a similar

setting.

Donoho's [19] approach has been applied to inverse problems in geomagnetism [55] and

microwave cosmology [60].

4.5. Shrinkage Estimation. In contrast with the problem of estimating a single linear func-

tional of a model � in a convex set �, where, as noted above, a�ne estimators are nearly

optimal, when one seeks to estimate three or more linear functionals, nonlinear estimators

can reap large bene�ts in mean squared error even when there is no prior constraint on �, by

exploiting a bias/variance tradeo�.

Suppose that X has a d-variate normal distribution with independent coordinates: X �
N(�; I), d � 3. Charles Stein proved in 1956 the surprising result that for squared-error loss,

the maximum likelihood estimator of �, namely X, is not admissible for � [57]. He showed that

estimators that \shrink" the observations nonlinearly towards the origin dominate the sample

mean; in particular,

(4.48) �S(x) =

�
1� �

� + kxk2
�
x

has uniformly smaller mean squared error than �(x) = x when � is su�ciently small and � is

su�ciently large. There is no consensus de�nition of shrinkage estimate, but the general avor
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of the term is that the estimate derives from a simpler estimate such as maximum likelihood

by moving the result towards some distinguished set, such as a subspace or the origin.

Stein's original result has been re�ned and extended in a variety of ways. James and Stein

[40] showed that

(4.49) �JS(x) =

�
1 � �

kxk2
�
x

with 0 < � � 2(d � 2) su�ces; � = d� 2 is optimal in this family. For further generalizations

(e.g., to distributions other than the normal) and references, see [31]. The variable

(4.50)

�
1� �

kxk2
�

is called the shrinkage factor. The James-Stein estimator has the slightly unsavory feature that

the shrinkage factor can be negative, yielding an estimator that both shrinks and reects the

data. Indeed, the James-Stein positive part estimator

(4.51) �+JS(x) =

�
1� d � 2

kxk2
�+

x

dominates the James-Stein estimator. The positive-part estimator is not minimax, but it is

hard to improve upon [47].

Stein's result has implications for Backus-Gilbert theory: if there are three or more data,

and one seeks to estimate three or more linear functionals of the model, a shrinkage estimator

sometimes can do better in mean-squared error than the Backus-Gilbert unbiased estimates.

The following theorem is relevant:

Theorem 4.4. Lehmann and Casella [47], Theorem 5.7. Let X � N(�;�) in dimension

d � 3. Let tr(�) be the trace of � and let �max(�) be the largest eigenvalue of �. For squared

error loss `(�; a) = ka� �k2, the estimator

(4.52) �(x) =

�
1� c(kxk2)

kxk2
�
x

is minimax provided

(1) 0 � c(kxk2) � 2tr(�)=�max(�)� 4, and

(2) c(�) is nondecreasing.
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Because the risk of X is constant, it follows that this estimator dominatesX in mean squared

error; moreover, taking its positive part improves it further.

The following argument might provide intuition into the condition on the trace versus the

maximum eigenvalue: suppose that there is one coordinate with very high variance compared

with the rest. Then the risk is driven by that coordinate, and the problem is essentially

one-dimensional|but shrinkage does not help in one dimension (in the absence of a priori

constraints on �). Results about shrinkage are generally derived by positing an ansatz, then

verifying that the resulting estimator dominates another, rather than giving general insight into

the form an estimator must have to dominate.

As noted above in Section 4.2.4, singular value truncation and other regularization methods

can be viewed as shrinkage estimators. If the shrinkage does not depend on the data (for

example, in regularized least squares using a �xed value of the regularization parameter, or

in singular value truncation retaining a �xed number of singular functions), the shrinkage

estimator is linear.

4.6. Wavelet and Wavelet-Vaguelette Shrinkage. Recall from Section 4.2.4 that singular

value truncation and singluar value weighting can be nearly minimax for mean squared error.

The situations in which those estimators work well are those in which the prior information

� 2 � essentially ensures that the coe�cients in an expansion of � as a linear combination

of the singular functions become small quickly with increasing index, so that down-weighting

those components in the reconstruction (to control the variance of the estimator) does not incur

large bias. When that is not the case, singular value truncation or weighting can be far from

optimal.

Donoho, Johnstone, and co-authors have shown that in some estimation problems like non-

parametric regression where the regression function is in a ball in a Besov or Triebel space

and the errors are Gaussian, the following estimator can attain the asymptotic minimax risk

for mean squared error: project the data onto an orthonormal basis of compactly supported

wavelets; shrink the resulting empirical wavelet coe�cients nonlinearly, one component at a

time; reconstruct the function from the shrunk coe�cients [20, 22, 25, 42, 23, 24]. Moreover, no

linear method can attain the minimax rate in some of the problems in which wavelet shrinkage

is asymptotically minimax for mean squared error. The keys to the success of wavelet shrinkage



INVERSE PROBLEMS AS STATISTICS 53

seem to be that expressing the prior information � 2 � is easy in the basis|the representation

of the object is sparse in the basis|and that the basis is unconditional. (An unconditional

basis ftjg1j=1 for a separable Banach space T is one for which if
P1

j=1 �jtj converges in T and

j�jj � 1 for all j, then
P1

j=1 �j�jtj converges in T .)
Donoho [20] extends this approach to inverse problems by introducing the the wavelet-

vaguelette decomposition (WVD), which is analogous to a singular value decomposition. In

contrast to the singular value decomposition, a wide variety of prior constraints can be repre-

sented as rapid decay of coe�cients in the WVD. Donoho [20] �nds the WVD for some ho-

mogeneous linear transformations, including integration, fractional integration (e.g., the Abel

transform), and the Radon transformation; and he shows that the WVD exists for some inho-

mogeneous linear operators, such as one-dimensional convolution. For such operators, if the

noise is Gaussian and the unknown is known to lie in a ball in a Besov space, �nding the empir-

ical WVD of the data; shrinking the coe�cients nonlinearly, one at a time; then reconstructing

from the shrunk coe�cients, is asymptotically minimax for mean squared error loss. See [59]

for an accessible overview. There do not seem to have been many applications of this approach

to real data yet, but see, e.g., [43], for a simulation study of wavelet-vaguelette shrinkage in

tomography.

4.7. Strict Bounds. Let fgg2� be an arbitrary collection of real-valued parameters. Con-

sider a collection fIg2� of non-randomized con�dence intervals for fg(�)g2�. The collection
fIg2� of con�dence intervals has simultaneous con�dence level 1� � if

(4.53) P�

 \
2�

fI 3 g(�)g
!
� 1 � �

whatever be � 2 �.

There are many ways to construct simultaneous con�dence intervals for a collection of pa-

rameters; we examine one, based on choosing a �xed set D � R
n that has probability 1� � of

containing the noise �, transforming D into a con�dence set D � � for the model �, and then

�nding the ranges of values the parameters fgg2� can take on D. This yields conservative

con�dence intervals for the parameters. Unfortunately, the intervals can be much longer than

necessary to attain their nominal con�dence level, and can lengthen when the number of data

increases|see [36]. This seems to stem from choosing D generically, rather than tailoring D
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to the forward mapping K, the particular functionals fgg2� of interest, and the geometry of

the set �, which can reduce the expected lengths of the con�dence intervals.

Consider a linear inverse problem with data

(4.54) X = K� + �:

Let Pbe the probability distribution of � on Rn, and recall that P� is the probability distribution

of X. Suppose D satis�es Pf� 2 Dg � 1 � �. Then

1� � � PfK�+ � 2 D +K�g

= P�fX 2 D +K�g

= P�fX �D 3 K�g

� P�fK�1(X �D) 3 �g:(4.55)

(The last step produces an inequality becauseK may not be one-to-one.) Therefore, the random

set

D = D(X) = K�1(X �D)

= f�0 2 � : K�0 = X � d for some d 2 Dg;(4.56)

the set of all models in � whose noise-free data image is in the set X �D, is a 1�� con�dence

region for the model �.

The collection of intervals

(4.57) Ig(X) =

�
inf
�02D

g(�0); sup
�02D

g(�0)

�
has simultaneous 1 � � coverage probability for all functionals g: the intervals all cover g(�)

whenever � 2 D, which occurs with probability at least 1 � �. The optimization problems to

�nd Ig often can be solved exactly, depending on how the set D is de�ned. This approach

is sometimes called \strict bounds." See [54] for examples in seismology, gravimetry, and

helioseismology; [39] for examples in probability density estimation for earthquake aftershocks.

How can we construct a set D with probability 1�� of containing �? If the joint distribution

of the stochastic errors � is known, constructing D is straightforward: ellipsoids and hyperrect-

angular sets are common choices. For example, if � is zero-mean multivariate Gaussian with
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covariance matrix �, one might take

(4.58) D = fx : x � ��1 � x � �2n;1��g

If the joint distribution of � is not known, but we are given intervals Ij such that Pf�j 2 Ijg �
1� �j individually, we can use the Boole-Bonferroni inequality (Lemma A.1) to conclude that

(4.59) P

(
� 2

Y
j

Ij
)
� 1 �

X
j

�j:

Either of these approaches leads to optimization problems for each Ig that can be solved

by quadratic programming when D is de�ned by (4.58) or linear programming when D is

de�ned by (4.59). Some other choices of D also yield optimization problems that can be solved

exactly; when the optimization problems cannot be solved exactly, sometimes it is possible

to approximate the optimization problems conservatively using conjugate duality. See [54] for

examples and techniques, and an application to an inverse problem in seismology. See [39] for

an application to a problem in seismicity.

The strict bounds approach is fairly general. For example, in many cases no metric or

topology on � is needed, limiting the assumptions one needs to make [54]. It is straightforward

to incorporate systematic errors into strict bounds; [54] gives an example in helioseismology

that includes systematic uncertainty in the functionals measured, as well as the stochastic

uncertainty in the measurements.

4.8. Con�dence Set Inference. Backus [9] gives a method he calls \con�dence set infer-

ence" for constructing a conservative con�dence set for a linear functional g of a model � in

a separable Hilbert space T using a prior constraint on a quadratic functional of the model:

� = f� 2 T : Q(�; �) � 1g. The method decomposes the parameter g(�) into a part controlled

by the prior constraint, and a part controlled by the data. Consider decomposing g into a

component gM in the span of f�jgnj=1 and a component gM? orthogonal to the span of f�jgnj=1.
If sup�02� jgM?(�0)j <1, g(�) can be estimated with bounded bias. When the noise is Gauss-

ian, the problems to which the method can be applied are a subset of those covered by [19],

whose approach generally leads to shorter con�dence intervals. See [55] for a comparison of the

methods on a problem in geomagnetism also treated by [9].
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5. Conclusions

The statistical view of inverse problems di�ers from the applied mathematics view, but the

two are related. For example, identi�ability is related to uniqueness, and consistency is related

to stability and the theory of optimal recovery. The statistical viewpoint is more encompassing:

forward and inverse problems of applied mathematics and physical science are special cases of

statistical forward and inverse problems.

Whether a parameter can be estimated well depends on the prior constraints on the unknown

model, the nature of the forward problem, the probability law of the observational error, and

the de�nition of the parameter. In particular, whether the entire model can be estimated

consistently depends crucially on details of the distribution of the observational error and the

extent to which the observations measure the same features of the model|or almost the same

features|over and over with su�ciently independent errors. Ceteris paribus, estimating the

model is easier when the probability distribution of the error is rougher.

Describing inverse problems in statistical language permits a uni�ed view of standard in-

version techniques, and provides reasonable criteria for choosing among them. For example,

Backus-Gilbert theory concerns estimating linear functionals of an element of a Hilbert space

from linear observations with additive noise. The theory characterizes those linear functionals

that can be estimated without bias, and hence are identi�able. This paper extends Backus-

Gilbert theory to a wider class of problems and of parameters to give necessary conditions

and su�cient conditions for parameters in inverse problems to be estimable without bias from

linear observations contaminated by additive noise. (Generally, the set of functions that can

be estimated without restrictive prior information is rather meager.) Moreover, the statistical

viewpoint shows that in estimating a collection of linear functionals from the same data, such

as a set of weighted averages of the model, the vector of Backus-Gilbert estimates sometimes

can be improved using shrinkage, which introduces bias deliberately.

Regularized methods, such as penalized maximum likelihood, Tichonov regularization, sin-

gular value truncation and weighting, shrinkage estimation, and the method of sieves, exploit

a \bias-variance tradeo�" to reduce some measures of risk, such as mean squared error or the

size of con�dence sets. Tuning the tradeo� so that the resulting estimator in fact performs

well depends on a priori information about the unknown model that is not available in every
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problem. Similarly, Bayes estimates can be thought of as regularized estimates that rely upon

prior information|typically stronger than the constraints required to justify other regularized

estimates|to achieve their performance advantage.

Viewing inverse problems as statistical decisions helps clarify how statistical tools can be

brought to bear on inverse problems, and suggests approaches for developing new methods that

behave well in applications.
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Appendix A. Sundry Useful Results from Probability

Lemma A.1 (Boole's and Bonferroni's inequalities). For any countable collection of events

fFig � F ,

(A.1) P

 [
i

Fi

!
�
X
i

P(Fi)

and hence

(A.2) P

 \
i

Fi

!
� 1 �

X
i

[1�P(Fi)]:

These classical inequalities are immediate from the countable additivity of probability mea-

sures and de Morgan's laws.

Theorem A.2 (Kakutani's Dichotomy). Let � and � be two probability measures on the in�nite

sequence space RN such that � = �1
 �2
 � � � and � = �1
 �2
 � � � for two sequences f�ig1i=1
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and f�ig1i=1 of probability measures on R. That is, if X = fXig1i=1 is a random sequence with

probability distribution � (resp. �), then the Xi are independent random variables and Xj has

probability distribution �j (resp. �j). Suppose for each i that �i is absolutely continuous with

respect to �i with Radon{Nikodym derivative d�i=d�i. Then either � is absolutely continuous

with respect to � or � and � are mutually singular depending on whether

(A.3)

1Y
i=1

Z r
d�i
d�i

d�i

is positive or zero.

See e.g. Theorem 4.3.5 of [30].

Theorem A.3 (Polya's Criterion). Let h : R! R be a function with the properties:

� h is non-negative and bounded,

� h is even (that is, h(z) = h(�z)),
� the restriction of h to the positive half-line is convex and decreasing.

Then there is a �nite measure � such that

(A.4) h(z) =

Z 1

�1

exp(izx) �(dx); z 2 R:

See e.g. Theorem 2.3.10 of [30].

Lemma A.4 (Identi�ability of Shifts). Let Y be a random n-vector. Given a constant a 2 Rn,

a 6= 0, the probability distribution of Y di�ers from that of a+ Y .

Proof. This is most easily seen using Fourier methods. Note that E[exp(iz � (a+Y ))] = exp(iz �
a)E[exp(iz �Y )] for z 2 Rn. The function z 7! E[exp(iz �Y )] is continuous and takes the value 1

at 0, and hence is non-zero in a neighborhood of 0. Hence E[exp(iz � (a+ Y ))] 6= E[exp(iz � Y )]
for some z 2 Rn, and the result follows from Fourier uniqueness. �

Remark A.5. The result covers the case in which E[Y ] is not de�ned. When E[Y ] is de�ned,

the result is trivial.
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Appendix B. Bits of Measure-Theoretic Probability for Statistics

This section presents a few background ideas and some notation from measure-theoretic

probability. The intended audience is applied mathematicians who need a terse refresher of

measure-theoretic probability to read the rest of the paper. For more, see [28, 30].

For a given set 
, a �-algebra is a collection F of subsets of 
 such that

(1) 
 2 F
(2) If F1; F2; � � � 2 F , then

S
j Fj 2 F , and

(3) If F 2 F then F c 2 F .

There is a smallest �-algebra containing any collection of sets, the �-algebra generated by the

collection. The �-algebra generated by the open sets of a topology is called the Borel �-algebra

corresponding to the topology. A measurable space is an ordered pair (
;F) where 
 is a set

and F is a �-algebra F of subsets of 
. The elements of F are called measurable sets.

A measure is non-negative extended-real-valued function m : F ! R
+ [ 1 such that for

every countable collection fFjg of elements of F such that Fj \ Fk = ; whenever j 6= k,

(B.1) m

 
1[
j=1

Fj

!
=

1X
j=1

m(Fj):

A measure m on a �-algebra F of subsets of 
 is �nite if m(
) < 1. A measure m on a

�-algebra F of subsets of 
 is �-�nite if there exists a countable collection of sets fFjg � F
such that 
 =

S
j Fj and m(Fj) <1 for all j. A probability distribution P on a �-algebra F of

subsets of a set 
 is a �nite measure with total mass one (i.e., P(
) = 1). We refer to (
;F ;P)
as a probability triple. The elements of F are called events. If a statement is true on 
 except

on some set F for which P(F ) = 0, the statement is said to hold almost surely (a.s., or a.s.(P)).

For any subset F of 
, the indicator function of the set F is

1F : 
 ! f0; 1g

! 7!
8<: 1; ! 2 F

0; ! 62 F:
(B.2)

Note that 1FG = 1F 1G.
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The function 1F is a special case of a random variable. A random variable X is a mapping

from the set 
 of a measurable space (
;F) into a separable Banach space X such that the

inverse-image under X of Borel sets of X are in F .
The �-algebra generated by the random variable X, �(X), is the smallest �-algebra G such

that X is a random variable on (
;G).
A random variable X is integrable if

(B.3)

Z



kX(!)kdP(!)<1:

If X is integrable, one can de�ne the expected value of X

(B.4) EX =

Z



X(!)dP(!)

as a limit of integrals of suitably de�ned \simple functions" that converge to X, where conver-

gence is in a metric de�ned on functions from a measure space to a Banach space; see Dunford

and Schwartz [29] volume I, Chapter III for details. The metric Dunford and Schwartz use is

(B.5) d(X;Y ) = inf
�>0

arctan (�+Pf! : kX(!)� Y (!)k > �g) :

For any event F 2 F ,

(B.6) P(F )� E1F �
Z
F

dP�
Z



1F dP:

If there is more than one probability measure under consideration, for example a family of

measures P = fP� : � 2 �g, we write

(B.7) EP�X � E�X =

Z



X(!)dP�:

If X is real-valued and integrable, the variance of X, Var(X) is

(B.8) Var(X) � E[X � EX ]2:

In a slight abuse of notation, for a random variable X taking values in a Hilbert space, we

de�ne

(B.9) Var(X) � EkX � EXk2:

Events F , G � F are independent if P(FG) = P(F )P(G). Two �-algebras F and G are

independent if every F 2 F is independent of every G 2 G. If �(X) is independent of F , we say
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X is independent of F . We say that the random variables X and Y are independent if �(X) is

independent of �(Y ).

The conditional probability of the event F given the event G is P(F jG) � P(FG)=P(G) for

P(G) 6= 0. Bayes' Rule is

(B.10) P(F jG) = P(GjF )P(F )
P(G)

for P(F ), P(G) > 0.

Let (
;F ;P) be a probability triple, let X be a measurable, integrable random variable, and

let G � F be a sub-�-algebra of F . The conditional expectation of X given G, E[XjG], is any
G-measurable function Y such that for every G 2 G, E[1GY ] = E[1GX]. If Y is a P-measurable

random variable, E[XjY ] = E[Xj�(Y )]. If X is G-measurable, it follows that E[XjG] = X. If X

is independent of G, it follows that E[XjG] = E[X]. If X is G-measurable, E [XY jG] = XE [Y jG].
The conditional probability of B 2 F given the sub-�-algebra G of F is P[BjG] = E[1B jG].
A measurable random variable X taking values in a separable Banach space X induces a

probability distribution on the Borel �-algebra of X through P(B) = PfX 2 Bg for all Borel

sets B � X . If m is a Borel measure on X such that PfX 2 Bg = m(B) for all Borel sets B,

we write X � m. If two random variables have the same probability distribution (if they take

values in the same space X , and PfX 2 Bg = PfY 2 Bg for all Borel sets B), we write X � Y

and say X and Y are identically distributed. If in addition X and Y are de�ned on the same

probability triple and are independent, then they are independent and identically distributed,

abbreviated i.i.d.

A measure � is dominated by the measure �, or absolutely continuous with respect to �, if �

and � are de�ned on the same �-algebra F , and if �(F ) = 0 implies �(F ) = 0, F 2 F . If � and

� are �-�nite and � is dominated by �, then the Radon-Nikodym Theorem ([52], pp. 129�)

states that � has a unique �-integrable density p : 
! R
+ with respect to �, such that for all

F 2 F ,

(B.11) �(F ) =

Z
F

p(!)d�(!):

If � is absolutely continuous with respect to � and � is absolutely continuous with respect to

�, � and � are said to be equivalent measures. A set F 2 F for which �(F ) = 0 is called a

null set of �. The measures � and � are mutually singular , written � ? �, if they are de�ned
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on the same �-algebra F and there exists a set F 2 F such that �(F ) = �(
) and �(F ) = 0;

that is, if � is concentrated on a null set of �, and vice versa. The Lebesgue decomposition

theorem says that given two �-�nite measures de�ned on the same �-algebra, one measure can

be decomposed into a part that is mutually singular with respect to the other, and a part that

is absolutely continuous with respect to the other: given �, �, de�ned on F ,

(B.12) � = �k + �?

where �k is absolutely continuous with respect to � and �? ? �. The density of �k with respect

to � is called the Radon-Nikodym derivative of � with respect to �.

If S is a bounded Borel subset of Rn, then U(S) is the uniform probability distribution on

S, de�ned by

(B.13) U(B) = �(BS)=�(S)

for all Borel sets B, where � is Lebesgue measure. The special case n = 1, S = [0; 1], is written

U [0; 1], the uniform distribution on the closed interval [0; 1], which is de�ned by

(B.14) P(B) =

Z
B

d�;

where � is Lebesgue measure, for all Borel subsets B of [0; 1].

The covariance matrix of an Rn-valued random variable X is

(B.15) Cov(X) = E
�
(X � EX)(X � EX)T )

�
;

provided EkXk2 is �nite. The d-variate normal distribution with mean � 2 R
d and d � d

symmetric covariance matrix � is denoted N(�;�); if � is positive-de�nite, the density of

N(�;�) with respect to Lebesgue measure on Rd is

(B.16) �(x) = j�1=2j�1(2�)�d=2 exp
�
�1

2
(x� �) � � � (x� �)

�
;

where j�j is the determinant of �.

If X is a real-valued random variable, the cumulative distribution function of X is

FX : R ! [0; 1]

x ! PfX � xg:(B.17)
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The � quantile of a real-valued random variable X is

(B.18) X� = inffx 2 R : FX(x) � �g:
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