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Abstract

In this paper we study the statistical properties of a characteristic-function based
algorithm for independent component analysis (ICA), which was proposed by Eriksson
et. al. (2003) and Chen & Bickel (2003) independently. First, statistical consistency
of this algorithm with prewhitening is analyzed, especially under heavy-tailed sources.
Second, without prewhitening this algorithm is shown to be robust against small addi-
tive noise. Finally, 1/n consistency and asymptotic normality of this method are also
established.

1 Introduction to independent component analysis
Suppose that a m x 1 random vector X can be modeled by
X = AS, (1)

where A is a m x m nonsingular matrix and S = (Sy,---,S,,)” is a m x 1 random vector
with mutually independent components. Given n independent copies of X, say {X (i) : 1 <
i < n}, the objective is to estimate W = A™' and to recover each component of S (or their
distributions). This is called independent component analysis (ICA), a typical blind source
separation problem (Hyvarinen et. al. 2001). The X is usually called mixed signals obtained
by multi-channel sensors, the components of S are hidden sources of interest and the A is
called the mixing matrix. When S has at most one Gaussian component, W (called the
unmixing matrix) is identifiable up to ambiguity of scale and order (Comon, 1994). There
has been lots of work in estimating the unmixing matrix W (see for example, Hyvarinen et.
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al. 2001 and references therein). Recently a new estimator of the unmixing matrix by using
characteristic function (CHFICA) has been proposed and proved to be consistent under the
identifiability conditions and to be y/n-consistent under second moment conditions (Chen &
Bickel, 2003, Eriksson et. al. 2003). Unfortunately, the implementation of CHFICA requires
O(n?) operations, which is computationally impossible for a large sample size. Chen & Bickel
(2004) proposed a novel algorithm to implement the CHFICA method by using prewhitening
and incomplete Cholesky decomposition, which is computationally favorable. In this paper,
we study the statistical properties of the prewhitened CHFICA method. We also analyze
the robustness of CHFICA with respect to small additive noise.

In the following, we introduce the prewhitened CHFICA method (PCFICA) in Section
2; the consistency property of PCFICA is established in Section 3; and Section 4 contains
the analysis of robustness of CHFICA in existence of small additive noise. Some technical
details are included in the Appendices.

Notations: for a matrix W, we use Wy, W* and Wy, to denote its kth row, kth column
and (k, 7)th entry separately. O,, denotes the set of all m x m orthogonal matrices and i
denotes the square root of —1. I,,,»,, denotes the m X m identity matrix and we often omit
the subscript.

2 Prewhitened characteristic-function based ICA method

To reduce the ambiguity of identifiability, we need some constraints on the scale and order
either on the components of S or on the rows of W. Without loss of generality, we may focus
on W and assume that :

(I). each row of W is normalized;

(IT). the element with maximal modulus in each row is positive;

(III). the rows are sorted according to the partial order “<” (that is, for Va,b € R™, a < b
if and only if there exists k € {1,---,m} such that aj; < b; and a; = b; for Vj < k).

We call Q as the set of matrices which satisfy the above conditions (I)-(III). It is clear
that on €2, the unmixing matrix can be identified uniquely. Further, for any nonsingular
m X m matrix, by rescaling and permuting rows appropriately, the transformed matrix will
belong to 2. In the following we will denote such rescaling-permuting transformation by
[]o. Let P be the law of X under model (1) and Wp € Q2 be the true unmixing matrix of
interest.

2.1 Introduction to prewhitening

Most ICA algorithms in estimating Wp can be unified under the framework of minimizing
some contrast function with respect to (w.r.t) the unmixing matrix with inputs {X(i) : 1 <
i < n}. Since the unmixing matrix for model (1) can be essentially arbitrary, naively we
have to optimize some contrast function, over all m x m matrices to obtain an estimate. But
prewhitening can project the optimization onto the Stiefel manifold of orthogonal matrices.
Optimization on a Stiefel manifold can be solved efficiently (Edelman et. al. 1999). Let
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Yx be the covariance matrix of X and let X% be the square root matrix of ¥, obtained



by Singular Value Decomposition (SVD), i.e., let ¥, = UDUT be the SVD decomposition
such that UUT = I,,,,, an identity matrix, and D is a diagonal matrix comprised of ¥,’s
1 1

cigenvalues, then 2 = UD2UT. Let Y = ¥x2X. Then cov(Y) = I and (1) is equivalent
1

to S = WX2Y. Without loss of generality, we may assume that each hidden source in S
has unitary variance (so far assume each source has finite variance). By considering the
covariance matrix, we have W, W? = I,,,».,, and thus

0 = wxi 2)

must be an orthogonal matrix. Notice that Y = O'S, so it is still an ICA model but
restricting to orthogonal matrices is computationally very advantageous. Since Xy can be
estimated directly by the sample covariance matrix of X

)" (X(7) = X),
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where X = £ 370, X(k), thus a prewhitened ICA algorithm first estimates an orthogonal
. . (1
unmixing matrix O (say O) by fitting the ICA model with inputs Y(j) = Xx 2X(j) in some

. N
way, and then estimate W by W = OXx 2 because of (2). This is the so-called prewhitening
technique.

2.2 Prewhitened characteristic-function based ICA method

An estimate of Wp, based on empirical characteristic function (e.c.f.), called CHFICA, has
been shown (Chen & Bickel, 2003) to be consistent under identifiability conditions. It is
defined by

A ~

W = argminy oAx(W), (3)
where
AWy = [ Jewx(®) = I] éw,x (1) PAn(b)dt: (4)
teR™ j=1 J

Here ¢ (-) stands for the e.c.f. of a random variable/vector £ and A, (t) is an m-dim probabil-
ity density function. In the following we fix A as the probability density function of A(0,1)
and define A, (t) = [1j; A(t;) for t = (t1,---,tm)" € R™. For simplicity we often write A,
as A whenever it does not cause confusion.

For practical use, it is more convenient to work on prewhitened CHFICA (PCFICA). The
procedure is as follows. First estimate O by

A

O = argminOEO(m)AY(O)a (5)

where AY is the same as A, defined in (4) except that {X(j)} is now replaced by {Y(5)};
Second let

A —

W = 0852, (6)



and obtain an estimate of Wp by [W]Q By applying the technique of incomplete Cholesky

decomposition, AY(O) can be approximated efficiently (Chen & Bickel, 2004).

3 Consistency of Prewhitened CHFICA

It is known that the acting parameter space of any prewhitened ICA algorithm can be used
to approximate the unmixing matrix without assuming finite second moments on hidden
sources (Chen & Bickel, 2004). And it was conjectured there that PCFICA could provide
consistent estimates for the unmixing matrix under certain conditions. We have the follow-
ing result.

THEOREM 1. Suppose that the model (1) holds and at most one of S’s components is
Gaussian. Let Wp € Q) be the true unmizing matrixz under P. Then the estimator defined
in (5) and (6) is consistent, i.e., ||[W]o — Wp|| —=p 0, in the following cases :

[1]. m > 2, all components of S have finite second moments;

[2]. m > 2, all components of S except one have finite second moments;

[3]. m = 2, both sources have infinite variances and have stable distributions with expo-
nents o € (0,2) (1 =1,2).

PROOF. Let ¥, be the sample covariance matrix of S. Let &; = (f]s% )j; be the sample

!
standard deviation of S; (j =1,---,m) and let I = 35 *diag{6;}. By Theorem 5 of Chen &
Bickel (2004), we have

o=

~ ~ ~_ ~ L
From (1) we have ¥, = AY,A”. Let O, = %5 2A7'%2. Then 0,07 = I and

[0,5x%]q = [8s2Wplg = [["Wplg —p Wp.

Recall the definition of W given in (6), thus to show [W]q —, W,, it is sufficient to show
that

00;! —, I (or its permutation).

n

. - ~ - N Al
Define S; = S;/6; and S = (S1,-+,S,)Y. Recall that Y = 342X and X = AS, then
for O € O,, we may write

OY = O0$3%AS =00.'$;7S = 00, ']8.

Define

5,0) = [1( 05,12 — T] & (1,05, ) PA@ (®)
j=1



where ¢, is the e.c.f. of S. It is obvious that A,(00, ') = A¢(O) and OO, is orthogonal
for O € O,,. Let O = 00, ! and then

0O = argming A(0).

It is sufficient to show that O (or [O]g) converges in probability to I.

Case [1] : all of S’s components have finite variances.

After algebraic expansion, [ [¢,(t"0) — II7%; é(t;0;)[*Am(t)dt can be expressed as a
bounded U- statlstlc whose kernel function is continuous w.r.t O. Since O,, is compact and
f]; —p X5 2, by Uniform Law of Large Numbers (ULLN) for U- processes (Arcones & Gine,

1993), we have suppco  |A,(0) — A,(OI)| = 0p(1), where I =335 222 and

m

AL0) = /\cs(tTOEs H (£,0,55 ) [PAm(t) dt 9)

Notice that A;(O) is uniformly continuous w.r.t. O on O,, (compact) and I —p I, then
SUPpco,, |As(0I) — Ay(O)] = op(1). Thus suppep,, |[As(0) — Ay(O)] = op(1). Since
A;(O) > 0 and the equality holds if and only if OS has mutually independent compo-
nents, which by Comon (1994) implies that O must be a rescaled permutation matrix, i.e.
[O]lq = I. By compactness and continuity we have that as the minimizer of A,(O) over
O€Op, [Olg—pl

Case [2] : One of S’s components has infinite variance and all others have finite variances.
W.L.O.G, let E|S,,? = oo.

1 -

Following the arguments in Case [1] except that (X5 *),m = 0, we have suppcp,, |As(O)—
Ag(0)| = op(1). Again A (O) > 0 and it is enough to show that for some O orthogonal,
A4(O) =0 if and only if O is a permutation matrix. Let o; be the standard deviation of S;

1
and let &; = j— (j=1,---,m) . Then ¥ 2S = [&, - -, &m1, 0]

Write O = [01,02], where O; contains the first m — 1 columns of O and O2 con-
tains the last column of O. It is clear that Ay(O) = 0 if and only if all the components

of O35 %S = 01&;.,,—1 are mutually independent. Since &;.,,_1 has at most one Gaussian
component, any m — 1 components of 01§, | are still mutually independent and thus by
Comon’s (1994) Theorem 1, any matrix comprised of m — 1 rows of O1 must be a rescaled
permutation matrix (or degenerated). Hence O1 must be a sub-matrix of a m x m rescaled
permutation matrix and O must be a permutation matrix due to its orthogonality.

Case [3] : m = 2, both sources have infinite variances and have stable distributions with
exponents «; € (0,1) for j =1,2.

Notice that both supp, |A,(0) — A,(O)| = op(1) and A,(O) = 0, thus the arguments in
Case 1] and Case |2]| do not apply here any more. Instead of using A;(O), we define a new
intermediate function Az(O) as follows :

m

As(0) = / s (PO F) H (£,0,577) PA(t)dt (10)



Let ¢; be the c.f. of S;, for (z,y) € R? and t > 0,

Fi(t;z,y) = i((z +y)t"™) — d;(wt"®)g;(yt"™) (11)

and define Fj(t;z,y) = %Fj(t; z,y). Then by Proposition 1 and Proposition 2 in Appendix
A, we have for d, = 1/(35_,6; “)? and hj, = 6; “Vd, (j =1,2) :
(Identifiability) : suppce, |dnAs(0) — 9(O, hln, han)| = 0p(1), where g is defined by

9(O; hip, hey) = /‘F{(O;tlollatQOQI)hQ’n+FQI(O;t10127t2022)h1n‘2/\(t)dt

(Convergence) : d,, Supgeo,. |A5(0) — Az(0)] = ( ).

Let B, = d, suppeo,, |As(0) — A3(0)| = op(1), e, = suppep, |dnAs(0) — (O, hni, hna)|.
Then E,, = 0,(1) and e,, = 0,(1).

Let Zo = {O € O, : [Olq = I}. It is obvious that Zg has 8 elements. For V1 > ¢ > 0,
let O, = {0 € Oy : ||O—1Iy|| > €}. Here ||O —I|| = min{||O — Q|| : Q € Zg}. Notice that
A4(0) is invariant to the row permutation of O, then by (Identifiability) and (Convergence)
we have

A\
e,

P(||0—Ig|| > ¢)

0€e0,

Ay(I) > sup A,(0))
d,As(I) + E, >Osup d,A;(0)) — E,)

IN A
AR

2En + 2en Z sup g(O: hnla h’n2))
0€O,

IN

P(2E, + 2, > inf O, hi, hy)).
W+ e"—oeoe,%ﬁ,m)eag( 1, h2))

By continuity and compactness there exists O© € O, and (A h{”) € H = {(hy, ho) €
[0,1)? : hy + hy = 1} such that

: _ (0) 2,(0) 1(0)
Oeoﬂ%}zllf,hz)eﬂg(O,hl,hz) 9(O®, hi” hy”).

Since O ¢ T, thus no entry of O© is zero. By Lemma 1 in Appendix B, g(O©, h{?), p{¥) >
0. Thus P(2E, + 2e, > g(O, O h(o))) — 0 and P(||O — Ia}|| > €) — 0. This concludes
Case [3] in Theorem 1.

4 Robustness of the Characteristic-Function based ICA
method

In practice, the model (1) rarely holds exactly. A more realistic situation allows some additive
noise in model (1). That is, the observation X can be modeled as

X = AS+rn, (12)



where A, S are the same as in the previous sections, n is a m X 1 random vector, indepen-
dent of S, standing for an additive noise vector (for example, sensor noise), and r is the
magnitude of additive noise. This is usually called the noisy ICA model. Hyvarinen et. al.
(2001) have a good review of studies of this type of models. Our objective here is to study
how the c.f.-based ICA method behaves in presence of noise. We borrow Bickel and Doksum
(1981)’s setup in their study of robustness of Box-Cox transformations. To be more precise,
we assume a large sample size n, and further » = r(n) — 0 as n 1 oo, an interesting question
is how the additive noise affects the performance of the estimator W of Wp defined in (3) in
the absence of additive noise. Intuitively, when the noise is too small, the estimate should
be close to the true value. Our following theorem confirms and goes beyond this conjecture
a little bit.

THEOREM 2. Let W be given by (3). Suppose that Wp is nonsingular and S has at
most one Gaussian component. If r(n) =o(1). Then

(). [[W—Wp[| = op(1).

(11). If further E|[S||? < co and E|[n||?> < oo, then

IIW = Wp|| = Op(n"2 +r(n)). (13)

The complete proof of Theorem 2 (i) and (ii) are provided in Appendix C and D, sepa-
rately.

Theorem 2 says that even if there is small additive noise, the c.f.-based ICA methods can
provide fairly good estimates for the unmixing system. Thus the c.f.-based ICA method can
serve as a good starting point for further separation enhancement.

From Theorem 2, we have the following corollary.

COROLLARY 3. Suppose that the conditions of Theorem 2 (ii) hold except that r(n) = 0.
Then /n(WWp' — 1) is asymptotically normal, with variance-covariance matriz Lp given in
Appendiz E.

The calculation of the variance-covariance matrix is provided in Appendix E. Since the
parameter W(P) defined by minimum contrast is Hadamard differentiable at P, the boot-
strap distribution of \/n(W — W(P)) has the same limit with probability 1 (See Theorem
4.1 of Bickel and Freedman (1981)).

5 Conclusion

In this paper we have proved two theorems about the characteristic-function based ICA
method (CHFICA). We first showed that prewhitened CHFICA can be consistent even when
there exists heavy-tailed sources. But this result is in no sense complete and we conjecture
that it could be inconsistent in some cases when several very different heavy-tailed sources
and one or more not heavy-tailed sources are mixed together. Further studies of consistent
estimators are needed under such situations. Second we showed that CHFICA is robust
against small additive noise, \/n-consistent and asymptotically normal.



6 Appendix

6.1 Appendix A

Proposition 1. Suppose that S; has a stable distribution with exponent a; € (0,2), j =
1,2. Let 0; is the sample standard deviation of S; based on n i.i.d. samples and d, =

1/(X5-16; ). Let ¢; be the c.f. of S;. Fort > 0 and (x,y) € R?, let Fj(t;x,y) and

Fi(t;m,y) be defined by (11). Let Az be the same as in (10). Then for YO € O,,
sup ‘dnAg(O) - g(O, hin, h2n)| = Op(l)a
0€0;

where hjn, = 6]-_%\/@ and g(O; hiy, hay) is defined by

9(O; hin, hon) = /|F1,(0;t1011>t2021)h1n+FQI(O;t1012;t2022)h2n|2)\(t)dt
PRrROOF. The characteristic function of S; can be expressed as

¢j(t) = exp{ite; — b[t|* (1 + iksgn(t)wa, (1))}, (14)

where b; > 0, ¢;,—1 < k; < 1 are constants and w,(t) = tan(ma/2) if o # 1 and w,(t) =
(2/m)log |t| if & = 1. (c.f. Durrett, 1996). Let I = %7/2diag{6; : 1 < j < 2}, where % is
the sample covariance matrix of S. Let O = OI. Then

tT0”

op

A;(0) /|{F1 61511011, 62091) o

)
t101;

o = _ t,0.
+F5(65°:t1012,t9099) 1 ( P )9 (2 =
1

VHEA()dt

Notice that g(O; hin, hon) is continuous w.r.t. (O, i, he,) and thus is uniformly con-
tinuous on a compact set. Since I — Ir.o by Theorem 5 of Chen & Bickel (2004), O, is
compact and (hip, hon) € {(h1, ho) € [0,1]% : by + hy = 1} (compact), we have

sup ‘g(@, hlna h2n) - g(O, hlna h2n)| = OP(l)-
0€0y

Thus it is sufficient to show that

sup |d,Az(0) — g(O, hin, han)| = 0p(1). (15)
0c0>

In the following we prove the sufficient conditions for (15) :

N %
sup |/|@F1(3fal;t1011,t2021)¢2( 5

0€0y

) — F{(0; 1011, 12091 ) hon|*A(t)dt = 0,(1) (16)



and

J t,.0 t,0.
sup | |\/£F2(02 ?; 41012, t202) 1 (—— ) 1 (=

0€0, 01 o1

) — F3(0; 1012, t2020) hin|*A(t)dt = 0,(1).
(17)

Since |¢po| <1 and 0 < hy, < 1, we have

2

tTO

ep)

|@F1(5fal; £1011, 120421 ) o ) — F1(0; 1011, 62021 ) hoy |
< |\/£F1(5fal; t1011,t2091) — F{(0; 11011, 15091 ) hoy |

o) (18)

ep)

+|F1 (054,011, t9091) | - |1 — o

By Lemma 1 in Appendix B, [|F](0;£,011,102)[*A(t)dt < oo and is continuous w.r.t
(011, 021) and thus

Sup |F1(0;t1011,6:02) |*A(t)dt = O,(1). (19)
€02
By using |¢s] < 1, 1 — cos(z) < 32° and 1 — exp(—|z|) < ||, we have for O € O,
TO? Yok
1= do(——)I" 81 — Re(da(——))*

<
< 5

< O +LOF +1L@OF}, a1

< {1 + ()| + | fa(8)|* - [1og [t]] + log ||1]| — log 6])%}, if @z =1,

where f,(t) = &5 %||t|| - ||I|| and the right hand side (RHS) of the above does not depend on
O. Since 65 ' log &y —, 0 and [|[¢]|?(log||t||)?A(t)dt < oo, we have

02

70’
sup [ |1 — ¢o(——)[*A(t)dt = o,(1). (20)
0€02 %)

By Lemma 1 in Appendix B, we have

|@F1(5fal;t1611, t2091) — F1(0;1011, 15021 ) by
< Chin{B1(t1011,1091)67" + By(t1011,1201)67 “log 61}, (21)

where

Bi(z,y) = (lz[+[yl)- (2[* +[y|*) + (]2]** + [y**)?, if @z # 1
= el + [yl + [lx)] + [LW)] + [z +y)], if az =1

By(z,y) = 0, ifag #1
(lz[ + [y]) - (= + [y[ + Uz +y) = U(z) = U(y)]), fax =1

9



and l(z) = xzlog |z|. When ay # 1, it is obvious that the RHS of (21) is a polynomial function
of ;011 and t,04; multiplied by 67 * = 0,(1) and thus by compactness and continuity

083(19)2 / |\/£F1(6';a1;t1011, t2021) — FII(O, t1011, t2021)h1n|2)\(t)dt = OP(l). (22)
When Qo = 1 the RHS of (21) 1s two polynomials of t1611,t2621 and l(t1511),l(t2621)
multiplied by a 6; ** and 6, “* logd; separately, since a polynomial function of /(x) and X
is still integrable w.r.t A(z), by compactness and continuity (22) still holds.

Then (16) is implied by (18)(19)(20)(22). Similarly (17) can be proven.

Hence Proposition 1 holds.

Proposition 2. Let S; (j = 1,2) and d,, be the same as in Proposition 1 and § =
(S1,89)T. Let Ay, A; be defined by (8) and (10), separately. Then

dngg&IAs(O)—Ag(O)\ = op(1). (23)

PRrooF. Using the fact that for any complex functions f, g we have
[17Rdu= [lgiPaul = | [11f = g +2Re(9"(f — g))ldpl < |1 = gl +21.f = gll - g,

where ¢ is the conjugate function of g. If |[f — g||> = o(||g||?), then | [(|f]? — |g|*)du| =
o(||g|[?)- Recall the definition of

m

A0) = | / 2,(1T0%5 ?) H (£,0,55 ) 2A(t)ds
and
AO) = | / e, (7O ?) H (£,0:55 ) 2A(t)dt.

By Proposition 1, d,, suppcp, As(O) = Op(1), thus to show that (23), it is sufficient to show
that (after omitting the arguments of the corresponding functions in A; and Aj)

2

2
do sup [ les —é+ [[es — [[ &PA(R)dt = op(1).
=1

Oem jl

Hence it is sufficient to show that

Al AL
dp sup [ |c,(tTO%s?) — &,(t" 0% )’ A(t)dt = op(1), (24)
0€0,
and for j =1, 2,
dn sup |Cs(tj0jis_%) - és(thji;%)P)\(t)dt = Op(l). (25)
0€O0,

10



1
Let 6; = (X3);; be the sample standard deviation of S;. Then by Theorem 5 of Chen

& Bickel (2004), i?s_%diag{&j} — I. Let 8, such that 65 = n®/>7 1% for 0 < e < 1 —
max(c;)/2. By Lemma 2 in Appendix B, P(6,0;, < 1) = o(1). Then we have for T}, 1 oo,

dy sup [ e (P05 ) — &, (#7055 ) PA(t)dt

0€e0,
1 !
< d, sup |&(tTO%s?) — cs(tTOXs ?)|? + 4d,, A(t)dt
O€0,,||t||<Tn [[t][>Tn
< dy, sup |¢,(t"diag{6;'}) — c,(t"diag{6; '})|* + 8dy exp(—T;/4) + op(1)
[[t]|<2T
< d, sup 6s(t") — es(t1)|? + 8dy, exp(—T2/4) + op(1)
{It1<2T8:1<j <2}
< du{ sup \ /(1 — cos(t7'8))d(P, — P)|* + | /sin(tTS)d(Pn - P)[*}

{1tj1<2Tn 6, :1<j <2}
+8d,, exp(—T2/4) + op(1).

Thus by using Lemma 3 in Appendix B, we have

d, sup [ [e,(tTOST?) — &,((TOSTHPAD)dE = O,

n
0€e0y n
By using Lemma 2 in Appendix B, we have

\/a _ (Z 6j—aj)—1 — 0P((z naj/27175)71)_

Jj=1 Jj=1

Thus v/d, ¥5_, 05, = op(n*) and Vin — 0p (X5, n®/?7¢)71). By choosing T’ = n and

n

e > 0 such that € < min(%) and € < 1 — max(3), the RHS of the above is of order op(1).
Thus (24) holds. Similarly (25) can be proven. Hence Proposition 2 holds.

6.2 Appendix B

Lemma 1. Let ¢ be the c.f. of a stable distribution with exponent « given in (13) by
omitting the subscript j. For ¢ > 0 and z,y € R, let

F(tzy) = ¢tz +y) — ot/ w)p(t/*y), (26)

and F'(t;z,y) = 2F(t;2,y). Then F(0+;x,y) =0 and for V0 < t < e ! we have
(i). if & # 1, then

F'(0+;z,y) = b(lz*+[y|* — [z +y[*)
+ibka(|z[*sgn(z) + [y|*sgn(y) — |z + y[*sgn(z +y)),

11



S?Opt)\F’(t;x,y)—F’(0+;x,y)l < c(@{lz +yl(J2|* + y1*) + (|2]* + [y]*)*}t,
se(0,

where k, = ktan(ma/2) and ¢(«) only depends on the constants which decides ¢.
(ii). if @ = 1, then

F'(0+52,y) = bz + |y — |z +y]) + ibk(l(z) + U(y) — l(z + y)),

P [F'(2,y) = F'(0+52,9)] < ela){(Jz] + |y[) (=] + y| + [l(z + y) — I(z) — U(y)]) }¢ log

+e(e){[z] + |y + 1) + 1) + |i(z + ) [},

where k£ = 2 and c¢(c) only depends on the constants which decides ¢, and I(z) = z log |z|
for z # 0 and [(0) = 0.

(iti). [FE2D—F(0+4; 2,9)| = |3 [5[F'(s; 2, y)—F'(0+; 2, y)]ds| < By (x,y)t+Bs(z,y)|tlogt],
where By (x,y) and By(z, y) are defined obviously by (i) and (i) and [ B (z, y)A\(z)A(y)dzdy <
oo for j = 1,2, where \(z) = ﬁ-ﬁexp(—%aﬁ).

(iv). For Vhy, hy € [0,1] such that hy +he > 0, oy, a0 € (0,2), and a, b, ¢,d € R such that
be — ad # 0. If hy F), (0;az, by) + hoF, (0; cz,dy) = 0 for all (z,y) € R?, then abed = 0.

PrROOF. Notice that when a # 1, let k, = ktan(ra/2), we have (for simplicity we
abbreviate F'(t;z,y) as F(t))

F(t) = eitC(w+y){e*bt(|w+y\°‘+ika|w+y\°‘sgn(w+y))
_e—bt(lzl"‘+|y|"+ika(\z\"‘SgH(z)Hyl‘*Sgn(y)))}_

and when oo =1, let k = =%, we have

F (t) — eztc(m—l—y) { e—bt(\m+y\+zk(z+y) log |z+y|+ik(z+y) logt)
— ¢ billal gl +ik(elog|al +ylog lyl) +ik(e+y) logt) )
_ ei(ct+1}bt log t)(z+y) { e—bt(|z+y\+iﬁ(z+y) log |z+y|)

— e btlz|+y|+ik(zlog |z|+ylog [y])) }.

Then the results of (i) and (ii) follows by analytic calculation, where |e®® — e¥| < |z — y],
le~lzl —e=WI| < |z — y| (for all z,y € R) and the fact that the function |tlogt| is monotone
increasing w.r.t ¢ € (0,e™!) are used for the inequalities.

Next for any real function with derivative f’ we have W —f'(z) = ifé’ [f'(x+t)—
f'(x)]dt, since Bi(x,y) and By(z,y) are both Ly-integrable w.r.t A(z)A(y) due to the facts
that [ |z|°A(z)dr < oo for all ¢ > 0 and [(xlog|z|)?(z)dr < oo, then (iii) follows directly
from (i) and (ii).

Now we prove (iv) by only using Re{h, F}, (0; ax, by)+hoF, (0; cz,dy)} = 0 for all (z,y) €
R?. When one of {hy, hy} is zero, say hy = 0. Then |cz|*? + |dy|*? — |cz + dy|** = 0 for all
(z,y). Suppose that abed # 0, then by letting y = —x we have ¢ = d = 0, contradiction.
Thus abed = 0. In the following, we assume that h; > 0 and hy > 0. Again suppose that
abed # 0.

12



If ay # ap, say @y < ap. By letting y = — {2 and factoring |z|*!, we have a = 0 and have
contradiction.

If &y = an, say equal to some o € (0,1]. When 0 < « < 1, by using the fact that
|z|* + |y|* > |z + y|* where the equality holds if and only if zy = 0 for & < 1 and zy > 0
for a = 1, it is easy to obtain that abcd = 0, thus contradiction. When « € (1, 2), by taking
partial derivative %, we have hiablax + by|* 2 + hocd|cx + dy|*~2 = 0 for all (z,y) with
(ax+by)(cx +dy) # 0. Since bc — ad # 0, by taking different values of (z,y), we have ab = 0
and cd = 0 and thus contradiction.

Thus in all cases we have abcd = 0 and (iv) holds.

Lemma 2. Suppose that & has a stable distribution with exponent o € (0,2). Let & be
the sample standard deviation of & based on n i.i.d. copies of £&. Then for Ve > 0, we have

n="1/5 = op(l), (27)
and

&/na—2te = op(1). (28)

PROOF. Let {& : 1 < k < n} be iid. copies of £ and [{|,) = maxi<r<n |- Since
E&? = oo, by Lemma 1 of Chen & Bickel (2004), there exists a sequence of random variables
€n, = op(1) such that

2
Chapter XVIL5 of Feller (1971), there exists a sequence of numbers 7, — 1 such that its tail

probability P(|¢| > z,) = Cr,x;,* for z,, — oco. Hence (27) follows from

Then & > 92)(1 + ¢,). Let T, = nd~#~ (0 < ¢ < £ — 1) and § > 0. By Theorem 3 in

IA

P

Q>|§'ﬂ

- 2\/?%

1
P(|€lm) < )+ P(len| > 5)

2 -, — QaEeENN 1
= (1= Cr(G) )" + Pl > )
0.

By Lemma 2 in Chapter XVIL5 of Feller (1966), for V0 < a < a we have F[{|* < oo.
Thus by Gine and Zinn (1992) we have

1 & 2 2 _14e
n Z |§j| = op(ne )-
k=1

Thus (28) follows.
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Lemma 3. Suppose that ¢ has a stable distribution exponent o € (0,2). Let ¢ be the
c.f. of & For any sequence of positive numbers §,, = (1), we have 1 — Re(¢(d,,)) = O(52).
PROOF. Since ¢ can be expressed by (13) by omitting the subscript j, then

1 —Re(¢(0,)) = 1—exp(=b|0,|*)cos(dnc+ b6Skwy(0,))
< [1 —exp(=bd)] + (1 — cos(dpc + bkdgwa(0,))
= 0(67) + O((dnc + bkdywa(0,))*)

0(5,)-

Lemma 4. Let S = (S}, 5,)7 be the same as in Proposition 1. Denote t = (t1,%,). For
any sequence of positive numbers d,, = o(1), we have

sup | [ (1= cos(tTS)(P, — P)| = Opn F(L80)%), (29)
1 S05n j=1
sup | [ sin(¢"S)d(P, — P)| = Op(n (3. 553)%). (30)
[t1<djn j=1

ProoF. We first calculate the generalized bracketing entropy of the above empirical
processes and then by using Theorem 5.11 of van de Geer (2001) we can obtain the desired
results.

Denote s = (s, s2)7. Let

Q'n = {g(tl,tQ)(s) =1- COS(t181 +t282) : ‘t]‘ S 5]n}
and

w(s; p1, p2) = _sup | cos(t151 + tasg) — cos(t1s1 + tas2)].
{1t —t[<p;:1<5<2}

Since
| cos(t181 + tasy) — cos(t181 + t2se)| < |exp(i(t181 + t2s)) — exp(i(t181 + t252))]
2
< Y1 —explis;(t; — ;)]

=1

We have w(s; p1, p2) = i SUpy,;<,, |1 — exp(is;t;)|. Notice that for any 61,0, € (—m, )
with |61 > |6s|, |1 — exp(260;)| < |1 — exp(ifs)|. Thus

. m .

E(sup [1—exp(is;t;)]) < 4P(|S;] > —) + E[1 - exp(iS;p;) >
Iti1<p; Pj

Let ¢; be the c.f. of S;. Then for p; > 0 close to 0, E|1 —exp(iS;p;)|> = 2(1 — Re(¢;(p;)))

Cp;’ by the above Lemma 3, and by Theorem 3 in Chapter XVILS5 of Feller (1966), P(|S;|

plj) < Cp;’. Thus

<
>

E(sup [1—exp(iSitj)|’) < Cpj’.
Itj|<pj

14



So

2
Ew?(S;p1,p2) < CY pj.
=1

Thus the §-entropy with bracketing of G, with d = /C >5_, p;’ is bounded by log 91nd2n

P1P2

for py, po sufficiently small. Since sup,cg, |g| < 1. By choosing p; such that p;’ = 20’ the

§-generalized entropy with bracketing is bounded by log(dy,8,) —C log § for § < (81,02, )"/€.
It is not hard to verify that

2
E|1 —cos(t1S1 + t29)]* < 22E|1 — exp(it;S;) Z (1 — Re(¢;(t;)))-

j=1

Then

2
sup Fg*(S) < CZ(S;Z

gegn

By Theorem 5.11 of van de Geer (2000), we have

NJI»—I

2
sup | [ gd(P, — P)| = Z

g€Gn

i.e., (29) holds. Similarly (30) can be proven. Hence Lemma 4 holds.

6.3 Appendix C

PROOF OF THEOREM 2(I).

We consider the model (11). Let X°(j) = AS(5). Then WX(j5) = W[X°(5) + r(n)n(j)]
for 5 = 1,---,n. We may assume that r(n) € [0,,1]. Define Z(j) = (X°(5),n(5))" and
z = (x,n) € R™ x R™.

The objective function Ay(W) in fact depends on 7(n)-the magnitude of noise. After
expansion and some algebraic organization, we have

A,\(W)
Z {p(W[X(i1) — X(ig)])

11 *82m

-9 1:[ p(Wi[X (k) — X(ims1)])

+ [T p(WiX (i) = X(imi)])}- (31)

k=1

Define a class of functions F : &,,,R™ — R by : f € F; if and only if there exists W € Q2
and 7 € [0, 1] such that

f(z(in, - dam)) = p(WXn(iy,d2))

15



m

=2 [[ p(Wixm (i, im+1))
k=1

+ I p(Wixn(ik, imr)), (32)
k=1
where xn(s, j) = x(i) = x(j) + r(n(i) —n(7)).

Since [f| < 4, f(2(1 : 2m)) is continuous with respect to (W, r) for any fixed x(1
2m), n(1: 2m), and F’s index set Q x [0, 1] is compact, van de Geer (2000)’s Lemma 3.10
tells that the bracketing entropy H; p(d, F,P) < oo for § > 0. Thus by Uniform Law of
Large Numbers (ULLN) for U-processes (see Corollary 3.5 of Arcones & Gine (1993)), we
have for Ef = E[f(Z(1:2m))],

Sup [=———~

feF C(n 2m) > J(Z(, - iam) — Ef] = 0p(1),

Z(2m;n)

where C(n,2m) = n---(n — 2m + 1) and Z(2m;n) = {(i1,-- -, i2m) € (1 : n)*™ : i; #
i, for j # k}.
Let

M) = [ Tewt) = TT ey, x() PA®)e (33

By algebraic expansion we have

Aur(W) = Ep(WX(1) — WX(2))

—2F ﬁ p(WX(k) — WiX(m+ 1)

+ 1 BoWiX (1) - WX (2)).

In (31), the sum of terms with (i, - - -, i2,) ¢ Z(2m;n) is bounded by 12n—m2 J0asn 1 oo. So

sup [Ay(W) = Ay,)(W)| = op(1).
Wen

Since Ay,(W) > 0 is continuous with respect to (W,r) and limit,_0Ax,@n) (W) = 0 for
W € Q if and only if W = Wp, thus for any € > 0, there exists §(¢) > 0 such that for n
large enough minyy o 4w, o) Arrm) (W) = 6(€), where

d(Wp,e) = {(WeQ: [|[W—-Wp||>e}

Hence for n large enough,

16



Pr([[W — Wp[| > ¢)

< Pr min A (W) < Ay(W
< (Weﬂ/d(wpﬁ) A(W) < A\(Wp))

< Pr(Q/dI(nViVnP,E)(AA(W) — Ay (W)
< A\(Wp) = 6(2))
< Pr(2sup [Ax(W) = Aorin) (W)] 2 0(e))

— 0, as n 1 oo.

This completes the proof of Theorem 2(i).

6.4 Appendix D

PROOF OF THEOREM 2 (1I).

We need to make use of the manifold structure of €.

First consider a m-dim unit ball with its center O, on which P and Q are two points and
define their angle # > 0 by the smallest value such that cos(f) =< OP, OQ >, the Euclidean
inner product. If we parameterize the path from OP to OQ by (t) = cos(t)OP + sin(t)OR
for t € R, where OR is one of the unit tangent vectors at P such that OP, OQ and OR are
on the same hyperplane, then y(0) = P, v(f) = @ and ||¥'(¢)|| = 1, i.e., 7 is a 1-dim arc
curve from P to Q on the m-dim unit ball. Obviously ||r(¢;) — v(t2)|| < [t1 — t2.,

Since each row of W € () is on an m~-dim unit ball, we may parameterize it row by row as
above. Let the angles between kth row of W, and W be by, k=1,---,m, and N =/>m, 0%

Since ||W — Wp|| = 0p(1), 71 = 0p(1). W.lo.g, assume that W # Wy, then /) > 0. Let
v : R — Q such that y(0) = Wy and () = W, where 7(.) is parameterize like above on a

m-dim unit ball, but rescale it by %’“. It is easy to see that ||7'(¢)|| = E;cnzl(z—',:)Q =1, and
[[v(ta) —v(t1)[| < [t2 —¢1]. It is obvious that ~(¢) € 2 for small ¢ > 0 and W — Wp|| <.

Now we can express Ay(W) by Ax(v(7)), which can be seen as the value of A,(vy(?))
(a function of t) at t = 7. Also we rewrite Ay(y(t)) = Axo(W) for W = ~(¢). Using the

first-order Taylor expansion, we have for a 0 < ¢ < 7 such that

0 4 . 0 0*

Thus
. _5M00)
T TR () o

In the proof of Theorem 2(i), we have used the fact that A,(W) can be expressed in
terms of a U-statistic in (31) and thus ULLN for U-processes can be used. Again, it is not
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hard to verify that %A)\(fy(O)) can also be expressed in terms of a U-statistic. By algebraic
calculation, we have precisely

0 » 1 . .
FIOO) = o 3 920 i) (0),7(n),
it o
where ¢ is given by
g(z(il, ot ,7;2m); 71(0): T)
= (VI(O)ﬁ(ilv i2))TP;1,z'2

m
—2 Z 7 (0)xm (i, im+1)/«’;k,z’m+1 H Pi jim+1
k=1

i#k
+ D W O)KA ik, Gnk) Pl i L1 P (35)
k=1 2k

with pf ;. = o (v(0)X0(i1,42)), pirin = p(7(0)XM(i1,42)), and
Xn(iy,i2) = [x(i1) — x(i2) + r(n(n) — n(i))].

Let f(il, 7,2) = X(il) - X(Z‘Q) and ﬁ(il, 12) = n(il) — n(i2).
Since r(n) — 0, by taking a first-order Taylor expansion of g at = 0, we have

g(z(il, ) Z.2m); ’YI(O)a r(n))

= g(Z(Zl, e a/[;Qm; 7,(0)a 0)
+T’(TL) {ﬁ(’il, ig)le + i(’l'l, /L'Q)TdQﬁ(/L'l, ZQ)

m
—2 > " [(ik, imt1) " dak + X(iks tmi1) " darB(ik, imi1)]
k=1
m
+ > ik, imsk) dok + Xk imrk)” dex(ik, ik )]}
k=1

where dq, ds, ds; are totally bounded random vectors, and ds, dy, dgr are totally bounded
random matrices (since p, p’ and p” are all bounded).
Furthermore, it is not hard to see that

g(z(il, e aiQm; 71(0)5 0)

can be written as Y jr; 7:(0)hg(x(1 : 2m)), where hy, is a function of (x(1),---,x(2m)) and
does not depend on +'(0), and Ehy(X°(1 : 2m)) = 0. By the central limit theorem, we have
e iy i, (X012 2m)) = Op(ﬁ). By applying ULLN on the bounded U-statistics, the

remaining term in %AA(fy(O)) is Op(r(n)). Thus

+7(n)). (36)
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Finally let us consider the magnltude of 25 > AL(7(?)). Using the fact that "(¢) = —y(t).
Thus the sets for all (), 7/(¢) and +"(¢) are compact. Let T(iq,i2) = x(i1) — x(i2).

ZMOM) = o X MG iamin @7 020 (37)

Il
—
—

+
—~~
gl &l
8 8
>
<
&
o ~—

o
——
NE
gl
g

(it tma1) Py 11 Pin
i#k
+ > (@E ik, im11)) i [ pin
k=1 J#k
+Z H WZ (11, tmt1) le H P}

J#k le{j.k} 1¢{5.k}

3

{3 W iy ims) P L Pjsm

k=1 j#k
+ > (@kT (ks imik))* P [ P
k=1 i#k
+> I @@ imi) ol 11 P}
J#k le{j,k} 1¢{4,k}
with pjm = p(wﬁ(z’], 7;m-H) p] m = P W ( (7’]: im+3) p;'l,m = p”(wjf(ij, im—|—j), Pj1 = P(ij(ij, 1)
:0], =p (wj (lja Zm+1) and p] 1= ,0 ( (Z]a Zm—l—l)

Notice that since w, @, W, p, p, p" are all bounded, then h(z(iy, - - -, i9m); w, W, W) is bounded
by Cil[Z(i1,12)]| + C2 35, ||$(lk, bmi1)|| 4+ Cs 8y [|Z (ks imy)||? 4 Ca 8y (1T (ks k) [
Further the U-process defined by the kernel function A is indexed by a compact set defined
by (v(t),7'(t),+"(t),r(n)), thus ULLN can be applied and we have

tmtp)‘%m( (1)) = BR(X(1:2m);7(2),'(2),7" (@) = op(1).

Since t —p 0 and r(n) — 0, by continuity we can replace (¢,7(n)) with (0,0) for the limit
of Eh(X (1 : 2m);~(t),~'(t),~7"()). After some algebraic calculation, the limit is equal to
aﬂ’A/\( (0)). Thus

* . 0?

—A\(y() > —A 0 1).

SA0m) 2 min S A6(0) +op(1)
Since Wp = 7(0) is the unique local minimizer due to identifiability, by differentiability we
have 23 A,(7(0)) > 0 in any direction (7/(0),7”(0)). Again by compactness,

62
min —A 0)) > 0.
ko a2 0
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Hence from (34)(36) we have

This completes the proof of Theorem 2(ii).

6.5 Appendix E

In the following, we formally calculate the variance-covariance matrix for \/n (WW3! —1),
Where Lis the m x m identity matrix. Denote 5= WWP -1 ie. W, = 6kWp + Wpy. Since
W, Wp € Q, we have ||0sWp + Wpy||> = 1. By Theorem 2 (i ) 5= 0p(1) By taking partial

6 W W +
derivative w.r.t 0y, for 1 < £k # j < m, we have GLV& = W+ Wpy 2k i ggki _ _(sk\?&i—w}%ﬁ]
and 33552"’"’ |5k =0 — (wk‘]) - 17 Where wk}j = WPkWP] Then

aékk| —wg; and %\ —w -1
8(5 o,=0 — J 6521 6,=0 kj .

Thus 5kk = — Elgjgm,j;élc wkjdkj + OP(Ej;ék 5lcj)-

We choose p such that it is an even function and define p(t) = 8g(t)’ p(t) = 82’;9. Let
P(2m) denote the set of all possible permutation of (1,---,2m). A(W) is a function of &
through W = 6Wp + Wp. Denote A(5) = A((6 + )Wp).

Let

m

K(W;X (i1, iom)) =[] p(Wi[X(i1) — X(i2)])

=1

Bl

-9 p(Wk[X(Zk) - X(Zm+1)])

s

1

P(Wi[X (i) — X(im+)]),

:1577

k=1

Il

which should be considered as a function of § through W = §Wp + Wp. Then

A\(0) = — Z K((6+DWp; X (i1, -, iom)),

il,"',i2m

Where X(h,_ . ,'[:Qm) = (X(Zl), ey, X(’Lgm))
Denote X(il, ’1,2) = X(Zl) — X(ZQ), Yk(l.l, ’1,2) = Xk(ll) - Xk(ig), similarly for g(il, 7,2) and
Sk (i1,12). Since we have, for 1 < k # j < m,
A (6)
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by using Taylor expansion and ignore the OP(\/H&C]-) terms, the left-hand side approximately
equals

dA(0) N AN(0)
n + no. ,
\/_ a6kj 1§p%§m\/_ r aékja6pq
where
dA(0) 1 : . .
061, = n2m il,gzm Kkj(s(zla"':ZZm))v
O 5 82K(((5+I)WP;X(Z'1,---,igm))‘
00kj00, — mPm, 361,00, =0
and
: . . OK((§ + D)W p: X (ig, - - -, jom
Kig(S(in, i) = 2O ED r o)
kj
= (S;(i1,ia) — wk;jSk(i1,12)) P(Sk (i1, 12)) [T p(Si(in, i2))
Ik
—2(S;(ik, im+1) — WijSk (ks tmt1)) A(Sk (ks tms1)) [T (Si ity tmt))
Ik
+(Sj (ks imtk) — WriSk ik, imr£)) P(Sk (ks im1x)) TT p(Si(its ima))-
Ik
By using the Hajek decomposition,
0A0) 1
NG 5 %/hkj(S)dPn+op(1),
where after simplification
1 . . .
Moe) = Gy X ElKg(S(, i) S(0) =

(il ,,zzm)EP(Zm)

1 .
= —cov(S; = 55, p(S; = 5;)) E[p(Sk = s6) T p(Si = s1)]
(k)

does not depend on Wp.
Since p and tp(t) are odd functions and {Sy : 1 < k£ < m} are mutually independent,
by using the Law of Large Numbers for U-statistics, we have for 1 < p # ¢ < m with

(p,q) & {(k,7), (4, k)},

82A(0)
061;00,q

—p Oa

21



forp=~k,q =7,

9?A(0)
Don00,, 7 LHi
where
Fyy = {E[(_( 2))20(5( ))] 2E[S;(1,2))*p(S;(3,2))] + E[(S;(1,2))*|E[p(S;(1,2))]}
xE[p(Sk(1,2))] 1] Ep(Si(1,2))
I£k,j

and for (p, q) = (J, k),

A
on,00, 7 G

where

{ II ES:(1,2)p(5:(1,2)1 -2 ] ElSi(2,3)4(Si(1,3))]}

le{k,j} le{k,j}

< T1 Elp(Su(1,2)]

I#k,j

Hence we have for 1 < k # j < m,

VIH(, )" = V[ (g (S), hie(S)) AP, + 0p (1),
where H = [Fy;, Gj; Fjk, Gji]. Thus by the central limit theorem, we have

Vb =4 N(0,5p),

where Yp = cov(e). Here ¢ is an m X m matrix of random variables and its elements are
decided by the following equations: For 1 < k # j < m,

o Gl ] =[]

Ekk = — Z WEj€kj-
1<j<m,j#k

Note that {e;; : 1 < k # j < m} do not depend on Wp.

and
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