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ABSTRACT 
Motivation: A classification algorithm, based on a multi-chip, multi-SNP approach is proposed for 
Affymetrix SNP arrays. Current procedures for calling genotypes on SNP arrays process all the features 
associated with one chip and one SNP at a time. Using a large training sample where the genotype labels are 
known, we develop a supervised learning algorithm to obtain more accurate classification results on new data. 
The method we propose, RLMM, is based on a robustly fitted, linear model and uses the Mahalanobis 
distance for classification. The chip-to-chip non-biological variance is reduced through normalization. This 
model-based algorithm captures the similarities across genotype groups and probes, as well as across 
thousands of SNPs for accurate classification. In this paper, we apply RLMM to Affymetrix 100K SNP array 
data, present classification results and compare them to genotype calls obtained from the Affymetrix 
procedure DM, as well as to the publicly available genotype calls from the HapMap project.  
Availability: The RLMM software is implemented in R and is available from the first author at 
nrabbee@stat.berkeley.edu. 
 
1 Introduction 
Genomic research using SNP microarrays is attempting to identify DNA sequence variants in specific genes 
or regions of the human genome that are responsible for a variety of phenotypic traits, such as disease risk or 
variable drug response. The Affymetrix genotyping platforms are providing thousands of SNPs from the 
human genome on a single chip, to this end. The GeneChip® Human Mapping 10K array interrogates well 
over 10,000 SNPs by probe sets on one chip, the GeneChip® Human Mapping 100K array is available on 
two chips and the Mapping 500K array is planned for release in the near future. Once the SNPs are accurately 
genotyped, the interesting, high-level, biological questions can be more reliably answered.  
 
Kennedy et al., 2003 describe the technology behind building SNP arrays, which is known as Whole Genome 
Sampling Analysis (WGSA). The arrays contain probe sets to interrogate the two alleles for all the SNPs. The 
alleles are conventionally  referred to as allele A and allele B. The technology  involves synthesizing 25-mer 
oligonucleotide probes corresponding to a perfect match for the allele A sequence (PMA) and to a perfect 
match for the allele B sequence (PMB). In addition, a mismatch probe is synthesized for each allele (MMA 
and MMB) to detect non-specific binding.  This probe quartet is the basic unit for detecting different 
genotype groups: AA, AB or BB (see Affymetrix Data Sheet for details). For the Mapping 10K array, the 
MPAM genotyping algorithm is based on clustering chips for each SNP by modified partitioning around 
medoids (see Liu et al., 2003). Only SNPs with 2 or 3 clearly separated clusters are selected by MPAM and 
SNPs exhibiting a high degree of misclassification were discarded from the 10K array. This was possible since 
Affymetrix started with more than 3,000,000 SNPs from the Perlegen database. As the demand for higher 
density SNP arrays increased, MPAM faced challenges in making correct calls for SNPs with missing 
genotype groups or low minor allele frequency and required large sample sizes for clustering. Therefore, 
Affymetrix released a new dynamic model-based algorithm DM for the Mapping 100K array (see Di et al., 
2005). The DM method assumes normality for the pixel intensities for a given feature and calculates a log-
likelihood for each probe quartet independently, under 4 different models: Null, AA, AB and BB. For each 
probe quartet, the likelihoods are combined to produce a score. Next, these scores on different probe 
quartets are combined and the Wilcoxon signed rank test is applied to test each model likelihood to produce 
four p-values. The algorithm then decides which model is best supported by all the 10 probe quartets based 
on the minimum p-value, for each SNP and each chip. DM is generally very accurate, but exhibits a higher 
degree of misclassification for known heterozygous bases than for known homozygous bases.  



Neither DM and MPAM algorithms explicitly uses the available truth for training purposes, even though a 
large number of reference genotype calls are available on more than 3 million SNPs. The algorithms instead 
use this data for verification, SNP selection and tuning purposes. Furthermore, DM does not make use of the 
available data from multiple chips. Neither algorithm exploits the similarities across thousands of SNPs. Here 
we propose a classification algorithm which uses the robust, multi-chip average (RMA) method to combine 
the intensities across  probes and  chips (Irizarry et al., 2003) and produce allele-based summaries. This is a 
supervised learning procedure, which takes advantage of the large number of publicly available calls on the 
SNPs in defining regions for each genotype group. These improvements lead to more accurate classification 
results on a subset of SNPs from the Mapping 100K array – Xba set. For this subset of SNPs, genotype calls 
are publicly available for 90 Centre du Etude Polymorphisme Humain (CEPH) individuals, from the HapMap 
project (see HapMap, 2003). These HapMap reference genotypes were derived from sources other than 
Affymetrix, Inc. or Perlegen, Inc., to make the comparisons as independent as possible. 
 
2 Algorithm 
The RLMM algorithm, based on a multi-chip model with the Mahalanobis distance classification, consists of 
three parts: (i) robustly fitting a linear model –  which reduces non-biological variability from the probe data, for 
each allele (ii) forming decision regions for each genotype class – which are bivariate Gaussian or Mahalanobis regions 
and are formed by making efficient use of training data available to inform the algorithm of the centers and 
spread of the intensities for each genotype groups of every SNP; (iii) classifying new data – which calls genotypes 
on samples on new chips according to their Mahalanobis distances to the three groups formed for that SNP.  
 
Multi-chip Robust Linear Model  
First, we pre-process the data by applying quantile normalization to the probe intensities  
(see Bolstad et al., 2003), in order to minimize chip-to-chip non-biological variability. Normalization is 
essential for implementing a multi-chip model to the probe intensities. This normalization method assumes 
the same underlying distribution of intensities across chips.   
 
Second, we log2 transform the normalized intensities and robustly fit a linear model to estimate the chip and 
probe effects. The details and benefits of the robust multi-array average model (RMA) of probe intensity 
measures have been discussed by Irizarry et al., 2003. Let I denote the total number of chips present either in 
the training or test sample and J denote the number of allele A or allele B perfect-match probe intensities in 
the data set.  
 
For SNP n, the model we fit to the allele A probe intensities is: 
 

log2(yA,ijn) = θA,in +β A,jn + eij             where i=1,…,I;  j=1,…,J 
 
where yA,ijn is the normalized probe intensity for chip i, allele A probe j and SNP n, and θA,in  is the chip effect 
determined from the A probes, and β A,jn is the probe effect, and eij is an error term with mean zero, assumed 
independent, identically distributed. We repeat this step by fitting the above model separately to the allele B 
probes. 
 
For each SNP n, the multi-chip model reduces produces 2-dimensional estimates of θ in = (θA,in, θB,in), which 
are summary measures of the allele A and B intensities for chip i. The model is applied to the training set and 
test set separately. Note that RLMM only uses the perfect-match intensities for the model. Preliminary 
investigation showed that including the mismatch probes in the model did not yield better (i.e., more readily 
separated) estimates for θ. We are continuing to explore the topic of using mismatch probes in our analysis. 
 
Mahalanobis regions 
The second central part of our algorithm takes the summary A and B intensities as input and forms the 
decision regions. The regions for RLMM are characterized by bivariate, Gaussian distributions.  Since the θA 



and θB values are correlated, the regions formed by these 2-dimensional points are ellipses and the 
Mahalanobis distance will be used as the decision metric. 
 
SNPs with well-defined Genotype Groups 
First, for each SNP n, we obtain the mean vectors and covariance matrices for the 2-dimensional points 
(θA,θB),  in each of the three-genotype groups (i.e., AA, AB and AB), from the chips in the training set. Let 
m=(mAAA, mAAB, mABA, mABB, mBBA, mBBB) denote the 6x1 vector of group centers and  S=((s2A)AA , 
(s2B)AA,(r)AA, (s2A)AB , (s2B)AB , (r)AB , (s2A)BB , (s2B)BB, (r)BB) denote the 9x1 vector of group dispersion 
parameters. For SNPs with sufficient sample size in each genotype group, the parameters of these two 
vectors can be easily estimated from the training data and the three decision regions formed. The decision 
region for genotype group g is characterized by mg, the 2x1 row vector of means and Sg, the 2x2 covariance 
matrix. 
 
Next, we robustly fit the linear model described in section 2.1, to the test data set and obtain estimates of 
θ=(θA,θB) for each chip in this set. Using the decision regions formed above by the training set, we compute 
the Mahalanobis distance of each chip in the test set, from the center of genotype group g:  
D2

g(θ) = (θ – mg)S-1
g(θ – mg)

T. Subsequently, each chip with allele estimate, θ, is assigned to a genotype 
class using the Mahalanobis distances as a minimum distance classifier. 
  
SNPs with low minor allele frequency 
When a SNP has a low minor allele frequency or a missing genotype group, the m and S parameters cannot 
be estimated reliably from the training set for that SNP. In this case, we use the multivariate normal (MVN) 
distribution theory to estimate these parameters from thousands of SNPs, where the groups are well-defined. 
Since the elements of m are correlated with each other, we use regression to predict the center of each 
genotype group for the SNPs where the training data do not provide sufficient information. We take a similar 
approach to estimating the elements of S, although we use normalizing transformation for the elements.  
 
We assume that for each SNP n, the vector m is normally distributed with mean µ and variance-covariance 
matrix Σ. First, the vector parameters, µ and Σ, are estimated from a random sample of 5,000 SNPs present 
in the 100K data set with well-defined groups. Let g denote the missing or sparse genotype group and g’ and 
g’’ denote the other two groups. Second, we compute the parameters for the conditional distribution of the 
center of group g, mg|(g’,g’’), given the other two groups centers, by estimating the mean vector µ g|(g’,g’’) and 
partial covariance matrix, Σ g|(g’,g’’),. Here, we assume that mg|(g’,g’’)~MVN(µ g|(g’,g’’) , Σ g|(g’,g’’)). Third, the matrix of 
regression coefficients, B, is formed,  where B = ΣTg,(g’,g’’) Σ-1(g’,g’’), (g’,g’’)  , from the multi-SNP data.  Finally, the 
predicted value of mg|(g’,g’’)  is calculated as Bm(g’,g’’) +α,  where α = µ g- Bµ(g’,g’’) . We repeat the process for S, 
where each group’s variance-covariance matrix is predicted, in a manner similar to the group’s center, from 
the other two groups’ variance-covariance matrix. Once the matrices of regression coefficients are calculated 
from the multi-SNP data for each group’s center and covariance, RLMM uses these estimated parameters to 
predict a group’s center or covariance matrix, when that group is missing or sparse.  
 
Classification 
Once the group centers, m, and the dispersion parameters, S, are determined either from the training data or 
by prediction, RLMM is ready for classification. For each chip in the test set, the allele summary estimate, θ 
=(θA,θB), is assigned genotype group g*, if the minimum Mahalanobis distance D2

g occurs for g=g*. The 
minimum distance, min(D2

g), also provides a quality score δ, for each call. Since under bivariate normality, the 
distances in each group g follow a χ2 distribution with 2 degrees of freedom, we computed the quantiles of 
the empirical distribution of the distances (δ) to determine cutoffs for the quality score. Decreasing the cutoff 
value for making calls, usually increases accuracy of the calls. Thus, RLMM is able to adjust the percentage of 
calls it makes at a user-specified level, thereby increasing its accuracy level. 
 



3 Results 
Multi-Chip Model 
The first step in the RLMM algorithm is to normalize the probe intensities and apply the robust, 
linear model to the transformed and normalized probe-level intensities, in order to obtain the 
estimated θ =(θA,θB) values for each chip, for any given SNP. Plotting the 2-dimensional θ vector for 
each chip shows the clear ellipses  formed for the three different genotype classes in the following 
figure.  The estimated θ values are referred to as allele A and allele B values. The ellipse in the bottom 
right is for genotype group AA , the one in the center is for genotype group AB, and the one in the top left is 
for group BB. The residual plots indicate that the linear model fits the data reasonably well. 
 

 
Figure 1 – Side-by-side Allele Summary 
Plot and Residual Plot for two typical 
SNPs in the Mapping 100K - Xba set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Decision Regions from Training Data 
The second step in RLMM is to compute the mean and covariance matrix of points from each of the three 
genotype groups from the training data, provided there are no missing groups or very sparse groups (number 
of observations in a group  ≤ 5). Then the algorithm proceeds to call the genotype on each  (θA,θB) pair of the 
test data based on the minimum Mahalanobis distance from each group mean. The minimum Mahalanobis 
distance also serves as a quality score for each call made on the test set. The algorithm can reduce the desired 
percentage of calls (e.g., 90%) in order to possibly increase the accuracy of calls.  The appropriate thresholds 
are easily obtained from the empirical distribution of the minimum Mahalanobis distances. We note that the 
empirical distribution closely follows the theoretical distribution of χ2 with 2 degrees of freedom, as shown in 
the following figure.  
 

 
 
 
Figure 2 – Histogram of 
minimum Mahalanobis 
distances pooled over 5,000 
 SNPs 

 
 
 



Decision Regions by Prediction 
The third step in the RLMM procedure is to estimate the mean and covariance matrix (m,S) either when 
there is a missing genotype group or when there are very sparse genotype groups in the training sample. 
RLMM predicts the missing or sparse group mean and covariance matrix by regression, from the other two 
groups with sufficient data. The regression parameters are obtained from the multi-SNP, multivariate normal 
model of the group means and covariance matrix elements. We illustrate the motivation behind the regression 
approach by plotting the different group means against each other, across a random sample of 5,000 SNPs 
(supplemental figure A), which shows a strong correlation between the group means. We do a principal 
component decomposition of the sample covariance matrix, V, of the 6x1 vector of the group centers, m. 
The percentages of variance explained by the 6 components were, in decreasing order: (88, 7, 3, 1, .2, .04 ). 
While the first principal component is considered a measure of the size of group centers, our empirical 
investigation revealed that the second principal component reflects the position of the group centers, and the 
third reflects the relative position of the AB group center from the closer homozygous group. 
. 
 
Figure 3 – Allele summary plots 
of SNPs whose means have 
difference combinations of 
HIGH and LOW values of the 
second and third principal 
components of the mean vectors 
 
 
 
 
 
 
 
 
 
 
 
 
 
We have thus found the features derived from the second principal component (.35mAAA -.61mAAB +.2mABA -
.12mABB -.62mBBA+.26mBBB) and the third principal component (-.51mAAA -.24mAAB -.41mABA +.43mABB 
+.13mBBA+.56mBBB),  to be useful indicators for assessing SNP-level classification quality.  
 
Comparison with HapMap calls 
Comparison to HapMap calls are made for both RLMM and DM to determine accuracy of 
 the two algorithms. Of the 15,910 SNPs where both DM and HapMap calls were available from the Xba set, 
we excluded all the monomorphic SNPs (SNPs with 0 or 1 members in two of the genotype groups). Tables 
1 and 2 show the concordance between HapMap calls (column) and RLMM calls (rows) or DM calls (rows) 
for a  total of 11,446 SNPs. For each SNP, calls are made for 90 individuals from the 30 CEPH family trios.  

 
 
Table 1 – RLMM Comparison with HapMap 
(99.86%concordance; discordant calls, excluding 
NoCalls=1,398) 
  
Table 2 – DM Comparison with HapMap ( 
99.67%concordance; discordant calls, excluding 
NoCalls=3,416)  

HapMap  
RLMM  

AA AB 
 

BB NC 

AA 339,756 476 12 1440
AB 196 356,575 184 1699
BB 32 498 327,772 1478

HapMap  
DM  

AA AB BB NC 

A 339,502 1249 9 1420
AB 457 355,168 544 1745
BB 25 1132 327,415 1452



For Table 1, RLMM used the HapMap calls for training itself via a leave-one-out cross-validation approach. 
Note that the HapMap calls include some NoCalls(NC), whereas RLMM and DM are making calls for every 
chip. DM does not explicitly avail itself of the known HapMap calls for training. However, the 100K arrays 
are comprised only of SNPs which show a high degree of concordance with available calls from HapMap or 
Perlegen. For RLMM, most of the 1,398 calls discordant with HapMap varied only for one or two chips per 
SNP. In fact, the 1,398 discordant calls were spread across 656 SNPs, with 412 SNPs having only 1 
discordance, 117 having just 2, and so on, while a few SNPs had a high number of discordances (22,23,49). 
We visually investigated 50 random SNPs from the 656 SNPs, where the RLMM and HapMap calls had any 
discordance. It appears that in 36 of those SNPs, RLMM calls were correct; calls were ambiguous in 9; 
RLMM calls were incorrect in 3; and RLMM was likely trained with wrong labels in the remaining 2. 
 
We also compared RLMM with DM directly for the SNPs above and obtained a 99.7% concordance. In fact, 
the diagonal entries are larger than the corresponding entries in the previous two tables. However, this is 
attributable to the fact that neither RLMM nor DM are making NoCalls. Therefore, there are more chips to 
make calls on. The overwhelming majority of the calls are in agreement between the two algorithms. 
 
RLMM achieves higher accuracy in genotype calling, when compared with DM in the set of SNPs we 
investigated, using the leave-one-out test on HapMap calls. In supplemental Figures B and C, we show 
instances of RLMM correctly making genotype calls, whereas the calls produced by the DM and sometimes 
by the HapMap algorithm appear 
to be incorrect. In the figure below, 
we show an overall accuracy curve. 
 
 
 
 
 
 
Figure 4 – Percentage of Calls 
versus Percentage of Discordance 
with HapMap calls for RLMM and 
DM (n=11,446 SNPs). 
 
 
 
 
 
 
 
Figure 4 shows the effect of decreasing the call rate on the quality of calls for RLMM and DM. RLMM 
cutoffs are determined for each call rate % from the empirical distribution of the minimum Mahalanobis 
distances. DM cutoffs are obtained from the minimum p-values distribution under each of the three models: 
AA, AB and BB. Overall, the RLMM procedure is less discordant with HapMap for all call rates. For a fixed 
discordance rate, RLMM achieves much higher call rate than DM. 
 
4 Discussion 
Probe-level, multi-chip models enable RLMM to obtain accurate summaries of allele A and allele B intensity 
measures from only the 20 perfect-match A and B probes. The model, together with quantile normalization, 
reduces chip-to-chip variability and probe-to-probe variability. Since RLMM has the power to classify SNPs 
with only the perfect-match probes, we note that a halving the number of probes is possible on the arrays. 
Since unambiguous decision regions are formed for most of  the SNPs we investigated from the Mapping 
100K – Xba set, an unsupervised algorithm could be used successfully to classify the θ vectors. The 
Mahalanobis distances provide a chip-level quality score for each call. We also extract two important features 



from the principal component decomposition of the group centers, which will help identify a priori, the SNPs 
on the array, for which the probe-level data do not adequately discriminate between the alleles. 
 
Multi-SNP aggregation provides a regression mechanism to predict the group mean and covariance matrix, 
when a group is absent or sparsely represented in the training data. RLMM uses the correlation present in the 
group means, across genotype groups, to predict the missing group’s center. This gives RLMM increased 
classification accuracy for making calls in these SNPs. RLMM achieves a higher overall accuracy rate than 
DM, as shown in Tables 1 and 2 in the previous section, when compared with the HapMap calls on a given 
set of SNPs from the Mapping 100K array. At call percentages, RLMM also shows reduced discordance with 
HapMap calls, relative to DM (see Figure 4). RLMM achieves higher call rate than DM for the same level of 
accuracy. For example, for the same level of accuracy , RLMM achieves above 98% call rate, whereas DM 
achieves about 90%.  
 
RLMM, which is based on a proven, probe-level statistical model (RMA) and standard classification theory 
gains considerably in accuracy in making calls on new data, by making efficient use of the training data. In the 
case of SNP arrays, a large amount of training data is available from the public domain. In the near future, we 
plan to extend this algorithm to work with SNP data where no training data is available, as well as to identify 
copy number polymorphisms.  
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