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Abstract

Amongst the 36 spectral radiances available on the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) seven of them are used operationally for detection of
clouds in daytime polar regions. While the information content of clouds inherent in
spectral radiances is familiar, the information content of clouds contained in angular
radiances (i.e., radiances emanating to space from the same object but in different di-
rections) is not. The Multi-angle Imaging Spectroradiometer (MISR) measures angular
radiances to space and its collocation on the NASA Terra satellite with MODIS allows
for a comparative analysis of its cloud detection capabilities with those of MODIS.

Expert labels from an extensive amount of data are used to compare arctic cloud
detection efficiencies of several methods based on MISR radiances and radiance-based
features, MODIS radiances and radiance-based features, and their combinations. The
accuracy of cloud detections is evaluated relative to 2.685 million 1.1-km resolution
expert labels applied to 3.946 million pixels with valid radiances from 32 scenes that
contain both clear and cloudy pixels. Fisher’s quadratic discriminate analysis (QDA)
with expert labels is applied to MISR radiances, MISR radiance-based features, MODIS
radiances, and MODIS radiance-based features. The resulting classification accuracies
are 87.51%, 88.45%, 96.43%, and 95.61%, respectively. The accuracies increase to
96.98% (96.71%) when QDA with expert labels is applied to combined radiances (fea-
tures) from both MISR and MODIS. These results are indicative of the information
content inherent in spectral and angular radiances, but these classifiers are impossible
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to obtain in practice due to their reliance on expert labels. A second group of classi-
fiers, also QDA-based, used automatic training labels from thresholding on combined
MISR and MODIS radiance-based features. Training the QDA classifier on the auto-
matic labels using MISR radiances, MISR radiance-based features, MODIS radiances,
and MODIS radiance-based features led to accuracies of 85.23%, 88.05%, 93.62%, and
93.55%, respectively. For combined radiances (features) from both MISR and MODIS
accuracies are 93.74% (93.40%) for the 32 scenes. A scheme that combines training a
QDA classsifier with MISR and MODIS automatic labels for the 32 mixed scenes and
thresholding of MISR features for classification (with 95.39% accuracy) of an additional
25 pure clear or cloudy scenes produced an accuracy of 94.51% for the 57 scenes, the
highest classification rate of any automated procedure that was tested in the study.
The accuracy of the MODIS operational cloud mask is 90.72% for the 32 mixed scenes
and 93.37% for the 25 pure scenes. Training a QDA classifier on the MODIS mask did
not improve classification accuracy.

These results suggest that both MISR and MODIS radiances have sufficient in-
formation content for cloud detection in daytime polar regions. Together they have
slightly more information than separately. The use of an automated, but adaptable,
QDA classifier built on a combination of MISR and MODIS data improved classifica-
tion accuracy to ∼94.5% relative to single-value threshold classifiers, based on either
sensor separately, with accuracies of ∼92.0% over all 57 scenes in the study. Classifica-
tion accuracy attained by the automated, adaptable QDA classifier is only 2–3% short
of the best test accuracy achieved from expert training labels. These results imply that
analysis of daytime polar cloud masks obtained from MISR and MODIS radiances over
much larger spatial and temporal scales is a worthwhile endeavor.

1 Introduction

Nadir radiances at different wavelengths (i.e., spectral radiances) across the shortwave (pri-
marily solar) and longwave (primarily terrestrial) electromagnetic spectrum have served as
the cornerstone of cloud detection from satellites from the advent of satellite meteorology
(e.g., Saunders and Kriebel, 1988; Wielicki and Green, 1989; Wielicki et al., 1996; Rossow
and Garder, 1993; Stowe et al., 1999). The launch of the Moderate Resolution Imaging Spec-
troradiometer (MODIS) onboard NASA’s Earth Science Enterprise Terra and Aqua satellites
represented the culmination of deliberate scientific planning to place on a single sensor all of
the spectral channels necessary for global cloud detection. Amongst the 36 spectral channels
available on the MODIS sensor seven of them were chosen for detection of clouds in daytime
polar regions (Ackerman et al., 1998).

To illustrate the information content within the seven spectral radiances of MODIS used
for cloud detection in daytime polar regions consider Terra path 26 over the Arctic Ocean,
northern Greenland and Baffin Bay on May 30, 2002 (Figure 1). The seven MODIS radiances
for the scene in the third box from the top, with icebergs, open water, and coastal hills, are
illustrated in Figure 2a-g. Comparing MODIS radiances in Figure 2a-g with expert labels
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in Figure 2h, each set of radiances is seen to characterize different aspects of the surface
and cloud objects across the scene. Ackerman et al. (1998) clearly describe the information
content within the MODIS radiances useful for detecting clouds. To develop single-value
thresholds that separate clear from cloudy pixels, transformation of combinations of radiances
for a pixel is often useful. The MODIS operational cloud mask algorithm makes use of five
such features in daytime polar regions (Ackerman et al., 1998).

The information content of clouds inherent in spectral radiances is familiar, but the in-
formation content of clouds in radiances emanating in different directions to space from
the same object (i.e., angular radiances) is not (Diner et al., 1999). Studies of radiances
from scenes simultaneously viewed by two geostationary satellites have been possible his-
torically, but such investigations are not straightforward and are not easily extended to
extensive data sets (Muller et al., 2002). The conical scanning patterns of the Along Track
Scanning Radiometers, ATSR-1 on the ERS-1 satellite and ATSR-2 on the ERS-2 satellite,
as well as the Advanced Along Track Scanning Radiometer (AATSR) on the ENVISAT
satellite, have provided two different views of the same scene, which have proven useful in
detecting clouds (Zavody et al., 2000). The Polarization and Directionality of the Earth’s
Reflectances (POLDER) radiometer-polarimeter launched on the Japanese ADEOS-I and
ADEOS-II satellites provided information on cloud particle properties through coupled po-
larization and multi-directional measurements at up to 14 along track viewing directions
(Parol et al., 2004). The Multi-angle Imaging Spectroradiometer (MISR; Diner et al., 1998)
launched with the MODIS sensor on the NASA Terra satellite measures the radiances from
an object to space in nine different directions.

Early investigations of images from each of the nine MISR view directions clearly indi-
cated that angular radiances contained information on surface and cloud properties (e.g., Di
Girolamo et al., 2000; Nolin et al., 2002). The scene presented in Figure 2 with MODIS spec-
tral radiances is illustrated in Figure 3 with MISR 0.685 µm nadir and 70.5◦ forward-view
radiances. Not surprisingly, MODIS 0.865 µm and MISR 0.685 µm nadir radiances appear
similar. However, the MISR 70.5◦ forward-view radiances are distinctly different from the
nadir spectral radiances for cloudy scenes (Stephens et al., 1981). It is these differences
between the nadir and forward-view radiances for clear and cloudy scenes that make the
forward-view radiances of value for cloud detection.

To make maximum use of MISR’s nine angular radiances for science applications, MISR
operational processing registers the radiances from each of its nine view directions to the ex-
act same (space-oblique mercator) grid of points on an ellipsoid surface (the World Geodetic
System 1984, or WGS84, ellipsoid surface) at sea level and underlying terrain (Jovanovich
et al., 1998, 2002). In one registration approach, the ellipsoid projection approach, terrain is
neglected and the radiances are projected and re-sampled directly to the space-oblique mer-
cator grid of points on the ellipsoid surface. In the second approach the radiances are first
projected to the terrain and then re-sampled to space-oblique mercator grid points on the
ellipsoid surface underlying the terrain (Figure 4). Each time MISR orbits over one of its 233
distinct paths relative to the surface, the nine sets of MISR camera radiances are registered
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to the exact same grid point locations as for all of the past, as well as future, MISR orbits
over this path. If the registration were perfect, and the illumination, surface and atmosphere
the same, for two orbits of MISR over the same surface location (i.e., the same path) the
two images for each MISR view direction would be identical. This operational registration
process, more formally called georectification, allows for unique features to be produced by
MISR for detection of clouds.

In this study spectral radiances and spectral radiance-based features from MODIS are
co-registered with angular radiances and angular radiance-based features from MISR. Com-
binations of MISR and MODIS radiances and features, in conjunction with training labels
of clear and cloudy pixels, are used to train Fisher’s quadratic discriminate analysis (QDA)
classifiers. For one set of experiments training labels are from experts and in another from
an automated algorithm based on a decision tree applied to MODIS operational cloud mask
results and results from a second automated algorithm applied to MISR features. The QDA
classifiers are applied to the MISR and MODIS radiances and features to classify pixels as
clear or cloudy. Performances of the QDA classifiers in separating clear from cloudy pixels
are subsequently assessed with the expert labels. In training of the classifiers with expert
labels only half of the expert labels, chosen at random, are used and the remaining half
are withheld for testing. All of the expert labels are used to assess the performances of the
automated algorithms.

2 Methods

The accuracy of cloud detections based on MISR angular radiances, MODIS spectral radi-
ances, and combinations of the two are evaluated relative to 2.685 million 1.1-km resolution
expert labels applied to 3.946 million valid sets of radiances from 32 scenes, all of which con-
tain both cloudy and clear regions, from 10 orbits of Terra path 26 over the Arctic, northern
Greenland and Baffin Bay (Figure 1). The repeat time between two consecutive orbits over
the same path is 16 days, so the 10 orbits span approximately 144 days from April 28 through
September 19, 2002. Path 26 was chosen for the study because of the richness of its surface
features, which include permanent sea ice in the Arctic Ocean, snow-covered and snow-free
coastal mountains in Greenland, permanent glacial snow and ice, and sea ice that melted
across Baffin Bay over the 144 days.

2.1 Three MISR Radiance-based Features

The MISR radiance-based features for this study require radiances originating from land and
sea-ice surfaces to have the same grid point locations in the maps from all MISR cameras.
Because the ellipsoid and terrain projections are equivalent for ocean scenes – that is, the
ocean surface lies close to the reference ellipsoid and hence the ellipsoid and terrain pro-
jections map the radiances for all MISR cameras to the same grid point locations (Figure
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4) – MISR operational processing does not produce terrain-projected radiance maps for the
oceans. As a result, for ocean scenes with sea ice MISR ellipsoid-projected radiances are used
and for land terrain-projected radiances. With this choice radiances from all MISR cameras
that originate from the same land and sea ice surfaces have identical grid locations in the
maps that are used. This attribute of MISR imagery allows for a unique cloud detection
feature.

If a cloud is well above the underlying ocean or land surface, the radiances associated with
the cloud will have different locations in the ellipsoid- and terrain-projected radiance maps
for all nine MISR cameras. Now assume that the spatial pattern of radiances associated
with a surface or cloud object is similar for two of the nine MISR camera views. Further
assume that the spatial patterns of radiances from two different clouds, or different parts of
the same cloud, have no correlation with each other between the two MISR views. If these
assumptions are valid, which they appear to be, the spatial correlation of radiances from
the same grid locations in the two MISR views will be high for clear (cloud-free) oceanic
regions in the ellipsoid-projected map and land-surface regions in the terrain-projected map.
The spatial correlation will be low when clouds well above the ocean or land surface obscure
either one or both of the two MISR views.

The 1.1-km resolution feature that is used to test spatial correlation of radiances from
the same projected locations in two different views is the linear correlation (LC) of eight by
eight groups of 275-m resolution MISR radiances centered on one 1.1-km resolution pixel
indexed by (i, j):

LCij =

4i+2
∑

k=4i−5

4j+2
∑

ℓ=4j−5

(Ifb, kℓ − Ifb, ij)(In, kℓ − In, ij)

√
σfb, ij σn, ij

, (1)

where Ifb, kℓ and In, kℓ are the MISR forward-, or backward-, and nadir-view 275-m resolution
radiances at location (k, ℓ), Ifb, ij and σfb, ij are the mean and standard deviation of the 64
forward-, or backward-, view radiances associated with location (i, j) with 1.1-km resolution,
and In, ij and σn, ij are similarly defined for the nadir-view radiances. Note that the linear
correlation is computed from 64 275-m resolution radiances covering 2.2 km by 2.2 km of
area and is attributed to the 1.1 km by 1.1 km area at the center of the 2.2 km by 2.2 km
area in order to match the spatial resolution of the expert labels and MODIS data. The
means are arithmetic averages and the standard deviations are given by

σfbn, ij =

√

√

√

√

√

(

1

64 − 1

) 4i+2
∑

k=4i−5

4j+2
∑

ℓ=4j−5

(Ifbn, kℓ − Ifbn, ij)2. (2)

The linear correlation feature is assumed to return a high value for surface objects and a low
value for clouds. Smooth surface objects, in this study always glacial ice and snow regions,
and extremely low altitude clouds and fog are problematic. For extremely smooth surface
objects the spatial variations of nadir-, backward-, and forward-view radiances are so small
that the linear correlation between them is low as a result of small, random variations in
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the radiances that originate from instrument noise. To test for smooth surface features the
standard deviation of the nadir-view radiances (σn, ij) is a useful feature.

The third, and final, MISR cloud detection feature is motivated by Figure 3 and Nolin
et al. (2002). Surface-leaving (scattered) radiances at visible wavelengths are more isotropic
from surface snow and ice than they are from low-altitude clouds (Stephens et al., 1981).
This finding motivates use of the ratio

NDAIij =
If, ij − In, ij

If, ij + In, ij
(3)

as the third, and final, 1.1-km resolution feature, obtained by averaging 16 275-m resolution
radiances over a 1.1 km by 1.1 km area. In the current implementation over the Arctic the
MISR 70.5◦ forward-view radiance is compared with the radiance from the nadir camera.
More details about the properties of the three features can be found in Shi et al. (2004).

2.2 Data for the Classifiers

The four spectral radiances available from each of the nine MISR cameras are similar to
four of those on MODIS. They do not contain significantly different information of clouds
over snow and ice surfaces. As a result, only MISR 0.672 µm (red) radiances with 275-m
resolution, which are reduced to radiances and features with 1.1-km resolution, from all
nine MISR cameras are used. At least four MISR radiance data sets, where a data set is
a collection of MISR ellipsoid- or terrain-projected red radiances from a specific camera,
are necessary to implement the three MISR features for cloud detection: ellipsoid- and
terrain-projected radiances for the MISR nadir and 70.5◦ forward viewing cameras. For
the linear correlation feature the MISR 70.5◦ forward view is not optimal so MISR camera
views closer to nadir are used in the test. In practice linear correlations of MISR nadir and
26.1◦-forward views, as well as MISR nadir and 45.6◦-forward views, were computed and
averaged. As a result, eight ellipsoid- and terrain-projected radiance radiance data sets are
used to implement the three MISR features. In lieu of the three MISR features one of the
classifiers was trained with ellipsoid (for ocean) and terrain (for land) projected red radiances
from all nine MISR cameras, which required all 18 MISR red radiance data sets.

The MISR angular-radiance data sets are in the files

MISR AM1 GRP ELLIPSOID GM P— O—— C– F02 0017.hdf
MISR AM1 GRP TERRAIN GM P— O—— C– F02 0017.hdf

where, for the current study, P— represents P026 (i.e., path 26), O—— represents the orbit
(i.e, one of the following 10 orbits: O12558, O12791, O13024, O13257, O13490, O13723,
O13956, O14189, O14422, O14655), C– represents one of the nine MISR cameras (DF/DA:
70.5◦ forward/aft view; CF/CA: 60.0◦ forward/aft view; BF/BA: 45.6◦ forward/aft view;
AF/AA: 26.1◦ forward/aft view; AN: 0.0◦ nadir view), and F02 0017 is the version identifier
of the file. The 18 sets of red radiances were extracted from the MISR files and used in
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the space-oblique mercator projection in which they come. Terrain-projected radiances were
used over land and ellipsoid-projected radiances over ocean. All images of MISR data in this
paper are for the data in their native space-oblique mercator projection.

For the MODIS single-value threshold results with supporting decision tree, cloud de-
tection results from the MODIS operational cloud mask algorithm were used (Ackerman et
al., 1998). For this reason MODIS radiance and cloud mask files were necessary. All 36
1-km resolution radiances were extracted from collection 4 MOD021KM files, whereas the
1-km resolution cloud mask results were extracted from collection 4 MOD35 L2 files. The
36 spectral radiances, cloud mask results, and latitude and longitude for each pixel were
extracted from the files. The latitude and longitude were subsequently used to project the
MODIS 1-km resolution radiances and cloud mask results into the 1.1-km resolution space-
oblique mercator projection of the MISR data. A nearest-neighbor algorithm assigned one of
the projected MODIS values to each grid point location in the MISR projection. Images of
MODIS data in Figure 2 are for MODIS data in MISR’s space-oblique mercator projection.

In the last step MISR and MODIS radiances were transformed into the three MISR and
five MODIS features for cloud detection. The MISR 275-m resolution angular radiances
were also averaged to 1.1-km resolution for all nine cameras. The radiance and feature data
were divided into scenes composed of 3 of MISR’s 180 blocks along the Terra satellite orbit
(black boxes in Figure 1). Each three-block scene of MISR and MODIS data consists of
approximately 384 across track by 384 along track pixels, all with nominal 1.1-km by 1.1-km
resolution.

2.3 The Expert Labels

For each three-block scene images were made of all 36 spectral radiance data sets from
MODIS and 9 angular ellipsoid-projected radiance data sets from MISR. Images of the 36
spectral radiance data sets were cataloged into a file in which switching between images was
relatively easy. Images of the 9 angular radiance data sets were made into an animated
movie that enabled scanning through the 9 images, starting from the DF-camera image and
ending with the DA-camera image. The labelling process started with inspection of the
MISR movie played at varying scan rates; the apparent motions of clouds in MISR movies
that result from changing cloud projection locations from one camera to the next are a
powerful feature for manual cloud detection. This process, coupled with inspection of the
MODIS radiances as necessary, enabled unambiguous identification of optically thin clouds
over any surface and optically thick clouds over extremely bright, white surfaces, such as
glacial ice flows in the valleys of the coastal mountains of Greenland. Tools developed by the
Jet Propulsion Laboratory, called “misrdump” and “misrlearn” (Dominic Mazzoni, personal
communication), were subsequently used to label the pixels in MISR nadir camera images
as clear or cloudy.

The subjective impression of one of the two co-authors involved in the labelling process
was that the information content in the MISR and MODIS radiances was sufficient to label
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as clear or cloudy all of the pixels in each three-block scene. To do so, however, would take an
inordinate amount of time. Most of the arctic clouds in the 10 orbits processed for this study
were laminar in nature. In the labelling process the extensive cores of the clear and cloudy
regions were labelled, usually up to, but not including, cloud edges. Labels were applied
across the breadth of each scene in order to avoid unexpected problems with illumination
and view geometries, as well as unintended biases towards labelling one surface type versus
another.

The two co-authors involved in the labelling worked independently, with one having
experience in atmospheric radiative transfer and the other just beginning to learn the subject
matter. Apart from initial discussions about the scope of the project and the information
content of clouds within the MODIS spectral radiances, there was no communication between
them as they labelled the pixels in the 32 mixed scenes and another 27 scenes with only clouds
or clear sky in them. Agreement between the two sets of labels was 93% with most of the
differences attributable to readily apparent blunders. These blunders made in the labelling
process were easily identified and corrected. Statistical analysis of the two sets of expert
labels by the remaining three co-authors found interesting tendencies in the expert labels,
but none of these findings cast significant doubt, apart from a few remaining blunders that
were discovered, on the overall quality of the labels. The labels with the fewest apparent
blunders were used to train and test the classifiers.

Until launch into space of Earth-viewing active remote sensing lidars and radars, binary
clear/cloud expert labels for the pixels in a scene remain as one of the few data sets avail-
able for assessing automated cloud detection algorithms that rely on passive satellite-based
radiance measurements. Ground-based data from active sensing systems are too sparse to
assess rigorously such algorithms over regional to global spatial scales.

2.4 Classifiers for MISR and MODIS Radiance-based Features

To label clouds or surfaces using MISR radiances, MISR radiance-based features, MODIS ra-
diances, and MODIS radiance-based features, quadratic discriminate analysis (QDA), which
requires training labels, is employed. For one set of experiments training labels are from
experts and in another from those pixels for which results from the MODIS operational
cloud mask and a second automated algorithm applied to the three MISR features agree.
Results from the first set of experiments represent the best possible in our current set-up,
whereas the second set of experiments represent automatic labelling schemes to be used in
practice, i.e., operationally, for cloud mask generation. Performances of the QDA classifiers
in separating clear from cloudy pixels are always assessed with expert labels. In training of
the classifiers with expert labels only half of the expert labels (chosen at random) are used
and the remaining half are withheld for testing. All of the expert labels are used to assess
the performances of the automated algorithms.

Single-value threshold labelling methods, i.e., single-value thresholds applied separately
to each feature and reduced to a single clear/cloudy classification using a decision tree, are
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evaluated relative to the expert- and automatic-trained QDA classifier results. To make
the study relevant to MODIS operational processing MODIS cloud mask results were used
directly rather than developing independent single-value thresholds to be applied to each
MODIS feature. The rationale for the MODIS single-value thresholds and decision tree is
clearly described by Ackerman et al. (1998) and is not reproduced here.

MISR Single-value Thresholds

Stable and robust thresholds for LCij and σn, ij were found by analyzing sets of the three
MISR features from a variety of scenes across different orbits and visually inspecting clear
and cloudy pixel classification results obtained from them. For this study the threshold tLC

on LCij was set to 0.75 and the threshold tσ on σn, ij was set to 2. However, the appropriate
threshold tNDAI for NDAIij changed from scene to scene.

The method adopted to select tNDAI was based on modelling NDAIij values for three-
block scenes as a mixture of two Gaussian distributions, one for the cloudy pixels and the
other for the clear pixels. The choice of two Gaussian distributions to model NDAIij val-
ues was made for two reasons. Two Gaussian distributions fit the three-block histograms
of NDAIij well and the computation of mixed Gaussian fits to NDAI values is relatively
straightforward. Three blocks of MISR data were modelled together, representing a com-
promise between ensuring both cloudy and clear areas within the region and separability of
NDAIij values for cloudy and clear areas. Modelling more than three MISR blocks of data
together provides a greater probability of having both clear and cloudy pixels. However,
histograms of NDAIij for cloudy and clear areas in an extended block range often broaden,
leading to poorer separability.

The minimum, or dip, between the peaks of the two Gaussian distributions is taken as
tNDAI, assuming, of course, that there is a minimum in the distribution. With this procedure
thresholds tNDAI generally fall between 0.08 and 0.40. When no minimum is found within the
expected range of threshold values from 0.08 to 0.40, the threshold from either the previous
orbit or the next orbit is selected if one of the two is available. If neither of these two
thresholds exists, the average of all available thresholds for this three-block scene over all 10
orbits is used.

The decision tree for reducing the three MISR features to a single clear/cloud classi-
fication, called the MISR Enhanced Linear Correlation Matching (ELCM) algorithm, is
straightforward (Shi et al., 2004). The 1.1-km by 1.1-km resolution pixel (i, j) is classified
as clear if σn, ij < tσ or if LCij > tLC and NDAIij < tNDAI. When the above tests fail, the
region is labelled as cloudy.

Quadratic Discriminate Analysis Classifier

Single-value thresholds divide a multi-dimensional feature space into rectangular regions.
However, the boundary between clear and cloudy pixels may be nonlinear and may not
particularly follow any one of the three coordinate axes (Shi, 2005). Fisher’s quadratic
discriminate analysis supplies a quadratic classification boundary that is expected to be more
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accurate than single-value thresholds applied to each feature separately. Implementation
of quadratic discriminate analysis requires training data to construct the boundaries (e.g.,
Mardia et al., 1979; Ripley, 1996).

In a two class (i.e., clear and cloudy) classification problem, quadratic discriminate anal-
ysis models each class probability density as a multivariate Gaussian distribution:

fk(x) =
1

(2π)p/2|Σk|1/2
e−

1

2
(x−µk)T Σ−1

k
(x−µk), (4)

where k = 1, 2 denotes the class label (i.e., clear or cloudy), fk(x) is the probability density
function of the multi-dimensional feature vector x belonging to class k, p is the dimension of
x, µk – a multi-dimensional vector – is the population mean of the multi-dimensional feature
vectors, and Σk – a multi-dimensional square matrix – is the population variance amongst
the feature vectors. Let πk be the prior probability of class k, which is simply the probability
of class k in the training data. A posterior distribution for x belonging to class k is then
given by

P (x ∈ Class k|X = x) =
fk(x)πk

f1(x)π1 + f2(x)π2
. (5)

The classification rule of quadratic discriminate analysis is to place x in the class that has
the largest a posterior probability for x.

In summary, the parameters πk, µk, and Σk are estimated by the empirical class pro-
portions, means, and variances in the training data and subsequently substituted into the
above two equations to form the classifier. Equation (5) for a novel feature vector x is eval-
uated for the clear and cloudy classes and the novel feature vector is assigned to the class
with the highest probability. There are two ways to obtain training labels: one way is from
expert labelling of scenes and the other makes use of the automated MODIS operational
cloud mask and MISR ELCM algorithms. Use of expert labels in an operational algorithm
is not practicable, but results of such an approach for a limited amount of data are useful
for evaluation of automated algorithms.

Radiance- and Feature-based Classification Tests

As a test of the information content in the MODIS and MISR radiances quadratic dis-
criminant analysis classifiers were trained on half the expert labels using five MISR radiances
from nadir and four forward-view camera, three MISR radiance-based features, seven MODIS
radiances for daytime cloud detection in polar regions, five MODIS radiance-based features,
five MISR angular radiances combined with seven MODIS spectral radiances, and three
MISR radiance-based features combined with five MODIS radiance-based features as the
classifier feature vectors. These six classifiers were subsequently tested on the remaining half
of the expert labels to assess the information content within MISR and MODIS radiances.
To assess the effectiveness of single-value threshold classifiers the MODIS operational cloud
mask results are evaluated relative to all of the expert labels, as are results from the MISR
ELCM algorithm.
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In the last classification test an attempt is made to develop an automated algorithm that
improves upon the results from the single-value threshold algorithms applied separately to
MISR and MODIS data. The approach adopted here treats as training data those pixels
for which the MODIS operational cloud mask and MISR ELCM algorithm agree. These
automatically generated training data, which cover only a subset of pixels in a scene, were
then used to train one quadratic discriminant analysis classifier based on five MISR and seven
MODIS radiances and a second classifier based on three MISR and five MODIS features.
Once the quadratic discriminant analysis classifiers were trained using the automatic labels,
they were used to classify all of the pixels in a scene as either clear or cloudy and their
performances were evaluated using all of the expert labels.

3 Results

In the first set of classification tests, the information content in the MISR and MODIS radi-
ances is quantified relative to expert labels using a quadratic discriminant analysis classifier.
The quadratic discriminant analysis classifier is trained using one half of the 2.685 million
1.1-km resolution expert labels from the 32 mixed scenes. For this classifier training is equiv-
alent to computation of πk, µk, and Σk in Eq. (4) using the different sets of input data –
MISR angular radiances, MISR radiance-based features, MODIS spectral radiances, MODIS
radiance-based features, MISR angular radiances combined with MODIS spectral radiances
and MISR radiance-based features combined with MODIS radiance-based features. Once
the classifier was trained with clear and cloudy pixels from scenes with both, the two-class
(i.e., clear and cloudy) probabilities were computed via Eq. (5) for the remaining half of
the pixels with expert labels and used to classify each pixel as either clear or cloudy. The
percentage of correct classifications relative to the expert labels for the test set was then
computed.

Figure 5a–c illustrates scene-by-scene results from this analysis. Overall, the MISR ra-
diance, MISR radiance-based feature, MODIS radiance, and MODIS radiance-based feature
classifiers were found to be correct for 87.51%, 88.45%, 96.43%, and 95.61% of the expert
labels, respectively (Table 1, top row). For combined MODIS and MISR radiances (fea-
tures) accuracy rates of 96.98% (96.71%) were found (Table 1, top row). For the current
analysis approach these results represent the best possible, although impossible to obtain
operationally, and are the ones against which other classification methods are compared.

Classification results for the single-value threshold classifiers applied to the 32 mixed
scenes are illustrated in Figure 6a (Table 2, middle row). The overall accuracy rates for the
MISR ELCM and MODIS operational mask algorithms for these scenes were 88.63% and
90.72%, respectively. For the 25 pure scenes the overall accuracy rates for the MISR ELCM
and MODIS operational mask algorithms were 95.39% and 93.37%, respectively (Figure
6c; Table 2, bottom row). Quadratic discriminant analysis classifiers cannot be trained on
scenes with pixels of only one type (i.e., clear or cloudy) because implicit in the approach
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is a two-class model. For pure scenes values for πk, µk, and Σk obtained from other mixed
scenes were used. Extracting values for these three parameters from the locations of the
pure scenes, but from orbits that occurred 16 days prior to the pure scenes and contained
mixed scenes, led to classification accuracies of approximately 94% for the 25 pure scenes.

The subset of MISR ELCM and MODIS operational cloud mask results that agree with
each other have classification accuracies, relative to the expert labels, of 96.53% (Table
2, middle row) and 99.05% (Table 2, bottom row) for the 32 mixed and 25 pure scenes,
respectively (Figure 6b,d). The percent coverage of this subset of pixels is 74.91% of the
mixed scenes (Table 2, middle row) and 78.44% of the pure scenes (Table 2, bottom row).
These results suggest that this subset of pixels, which is generated by two automated cloud
detection algorithms, may be suitable for training a quadratic discriminant analysis classifier.
To test this idea quadratic discriminant analysis classifiers were trained on this subset of
pixels on a scene-by-scene basis for the 32 mixed scenes and evaluated against expert labels
for the scenes. Overall classification accuracies were 85.23% for MISR radiances, 88.05% for
MISR features, 93.62% for MODIS radiances, 93.55% for MODIS features, 93.74% for MISR
radiances combined with MODIS radiances, and 93.40% for MISR radiance-based features
combined with MODIS radiance-based features (Table 1, middle row). Scene-by-scene results
are illustrated in Figure 5d–f.

MODIS radiance (feature) input vectors with expert label training of a QDA classifier pro-
duce classification accuracies of 96.43% (95.61%). These results might suggest that MODIS
radiance data alone in a QDA classifier might be optimal. However, without scene-by-scene
expert labels these accuracies are not possible. Training a QDA classifier on MODIS oper-
ational cloud mask results leads to classification accuracies of 89.02% for MODIS radiance
input vectors to the QDA classifier and 88.88% for MODIS feature input vectors (Table 1,
bottom row).

4 Discussion

With quadratic discriminant analysis as the classifier and expert labels as assessment data
MODIS radiances, with a 96.43% classification accuracy, and features, with a 95.61% clas-
sification accuracy, contained more information for detecting clouds in the 32 mixed scenes
than MISR radiances, with a 87.51% classification accuracy, and features, with a 88.45%
classification rate (Figure 5a,b; Table 1). These differences are significant at the 1%-level
using a t-test. Combining MISR and MODIS radiances (features) in a quadratic discrimi-
nant analysis classifier slightly improved classification rates to 96.98% (96.71%; Figure 6c,
Table 1). These differences are insignificant at the 1%-level using a t-test. None of these
classification accuracies can be obtained operationally because they rely on the availability
of expert labels for all scenes to which they are applied. They do lead to the important
observation on how well cloudy and clear pixels are separable in the different feature spaces.

Shi et al. (2004) investigated the performance of classifiers more sophisticated than
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quadratic discriminant analysis, including a range of support vector machine approaches, but
with little improvement in performance relative to quadratic discriminant analysis classifiers.
These results suggest that the nonlinear classification boundaries of quadratic discriminant
analysis classifiers are sufficiently rich to separate clear and cloudy pixels in daytime polar
regions using MISR and MODIS data as feature vectors.

One of the more interesting findings of this study is the classification accuracies (i.e.,
96.53% and 99.05% for the mixed and pure scenes) and scene coverages (i.e., 74.91% and
78.44% for the mixed and pure scenes) of those pixels for which the automated MODIS
operational cloud mask and MISR ELCM algorithms are in agreement. Having spectral- and
angular-based single-value threshold results in agreement is almost an error free indicator of
the class type (i.e., clear or cloudy) for a pixel (Figure 6b,d). These two sets of results are in
agreement for approximately three-fourths of the pixels in this study. This fortuitous result
allowed for training a quadratic discriminant analysis classifier scene-by-scene using those
pixels in a scene for which the MODIS operational cloud mask and MISR ELCM algorithms
agreed. Using the three MISR ELCM features and the five MODIS operational cloud mask
features in a quadratic discriminant analysis classifier with training data produced by the
two automated algorithms produced a classification accuracy of 93.4% with 100% coverage
for the 32 mixed scenes. With the five MISR angular radiances and seven MODIS spectral
radiances as input to a quadratic discriminant analysis classifier a classification accuracy of
93.74% was attained. These results represent a significant improvement (at the 5%-level of
the t test) compared to single-value threshold results. This improvement is a result of a
combination of automatically generated, accurate training data and a flexible and adaptive
classifier.

The two-class approach adopted for the quadratic discriminant analysis classifier is not
appropriate for pure scenes with only one class type. For the 25 pure scenes, though, the
MISR ELCM and MODIS operational cloud mask algorithms produced classification accu-
racies of 95.39% and 93.37% with almost 100% coverage. These results are comparable to
those from the automatically trained quadratic discriminant analysis classifier, implying that
an automated algorithm that combines single-value threshold results for pure scenes with
quadratic discriminant analysis results for mixed scenes will have classification accuracies
of approximately 94.5%. This represents a significant (at the 5%-level of a t-test) improve-
ment over current MISR ELCM and MODIS operational cloud mask algorithm classification
accuracies of 91.80% and 91.97%, respectively, for all 57 scenes.

The MODIS spectral-radiance and MISR angular-radiance features are relatively stable
for clear and cloudy pixels from scene to scene. However, the optimal thresholds that separate
clear from cloudy pixels do change from scene to scene and this scene dependence is the
source of errors in the single-value threshold classifiers. The high classification accuracies
of pixels for which the MODIS operational cloud mask and MISR ELCM algorithms agree
demonstrate that tests using both spectral and angular information are filters for incorrect
classifications in either of the two approaches alone. Training a QDA classifier scene-by-scene
using pixels for which the MODIS operational cloud mask and MISR ELCM algorithms agree
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produces a classifier with thresholds that are also scene dependent. For such a classifier
stability of input feature vectors from scene-to-scene is no longer an issue and one would
expect similar results for radiances or features as the input vector elements. As Figure 5c,f
demonstrates, this is the case.

5 Conclusions

In isolation MODIS spectral radiances contained more information for cloud detection than
MISR angular radiances. However, the most salient finding in the study was the extremely
small classification error rates (3.5% in mixed clear/cloud scenes and 0.9% in pure cloud/clear
scenes) when MODIS and MISR radiance-based features were combined in an automated
cloud detection scheme. The relatively large (about 75%) spatial coverage of these combined
results permitted automated training of scene-dependent classifiers whose error rate, when
applied to all of the pixels in every scene, was about 5%. The information content in MISR
and MODIS radiances for operational detection of clouds in daytime polar regions is quite
good, with good meaning an error rate less than approximately 5% for the 57 scenes tested
in this study.

These results imply that further analysis of daytime cloud masks obtained from MISR
and MODIS radiances over much larger spatial and temporal scales is a worthwhile endeavor.
That such an analysis will not be overwhelmed by unknowable errors that result from lack of
cloud information in the measured radiances is a strong possibility. With reasonable cloud
mask results, analysis of cloud-top height retrievals from MODIS and MISR will not be
dominated by errors in cloud detection. With more reliable cloud detections and cloud-top
height assignments in daytime polar regions improvements in the top of atmosphere and
surface energy budgets are feasible.
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Training Labels MISR-R MISR-F MODIS-R MODIS-F All-R All-F
Expert Labels 87.51% 88.45% 96.43% 95.61% 96.98% 96.71%
Agreed pixels 85.23% 88.05% 93.62% 93.55% 93.74% 93.40%
MODIS Mask NA NA 89.02% 88.88% NA NA

Table 1: Accuracy rates of QDA classifiers trained on (top row) expert labels, (middle row)
those pixels for which the MODIS operational cloud mask and MISR ELCM algorithms
agreed, and (bottom row) only MODIS operational cloud mask results. The QDA-based
input feature vectors are (first column) MISR radiances, (second column) MISR features,
(third column) MODIS radiances, (fourth column) MODIS features, (fifth column) five MISR
and seven MODIS radiances, and (sixth column) three MISR and five MODIS features.

Number MISR MODIS Agreed (Coverage) QDA-R QDA-F

All Scenes 57 91.80% 91.97% 97.75% (76.58%) 94.51%(1) 94.32%(1)

Mixed Scenes 32 88.63% 90.72% 96.53% (74.91%) 93.74% 93.40%
Pure Scenes 25 95.39% 93.37% 99.05% (78.44%) NA NA

Table 2: Accuracy rates of operational classifiers for (top row) all 57 scenes, (middle row) the
32 mixed clear and cloudy scenes, and (bottom row) the 25 pure cloud or clear only scenes.
The operational classifiers are (second column) the MISR ELCM algorithm, (third column)
the MODIS operational cloud mask algorithm, (fourth column) those pixels for which the
MISR ELCM and MODIS operational cloud mask algorithms agree, (fifth column) a QDA
classifier with five MISR and seven MODIS radiances as the input feature vector and trained
on those pixels for which the MISR ELCM and MODIS operational cloud mask algorithms
agree, and (sixth column) the same as the fifth column but with three MISR and five MODIS
features as the input feature vectors. Note: (1) MISR ELCM algorithm results from pure
scenes are combined with automatic-trained QDA classifier results for partly cloudy ones to
obtain the accuracy rate.
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Figure 1: MODIS 0.659-µm radiance image of the Arctic Ocean, northern Greenland, and
Baffin Bay on May 30, 2002. White represents large radiance values and black represents low
radiance values. Black boxes within the image show the approximate locations of consecu-
tive three-block groups of MISR nadir radiances obtained at the same time as the MODIS
radiances.
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(a) 0.865 mm (b) 0.936 mm

(c) 3.750 mm (d) 1.375 mm

(e) 6.715 mm

(f) 11.030 mm

(g) 13.935 mm (h) Expert Labels

Figure 2: MODIS a) 0.865 µm, b) 0.936 µm, c) 3.750 µm, d) 1.375 µm, e) 6.715 µm, f)
11.030 µm, and g) 13.935 µm radiance images for the third (from top) three-block MISR
scene illustrated in Figure 1. The scene contains icebergs, open water, coastal hills, and a
variety of cloud types. The radiances in a)–g) have been histogram-equalized for contrast
enhancement with white representing large radiance values and black small radiance values.
h) Expert labels of clear (black) and cloudy (white) pixels for the scene together with pixels
that were not labelled (grey).
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(a) Nadir View (b) Forward View

Figure 3: MISR a) nadir and b) 70.5◦ forward view radiance images for the third (from
top) three-block MISR scene illustrated in Figure 1. The radiances in the two images are
presented on the same linear scale for comparative purposes with white representing large
radiance values and black small radiance values.
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Figure 4: Cartoon illustration of MISR radiance space-oblique mercator grid point locations
in the ellipsoid- and terrain-projected maps. In the ellipsoid projection terrain zenith ra-
diances from location 1 that contribute to the MISR nadir view and terrain 70.5◦ forward
scattered radiances from location 2 that contribute to the MISR forward view are mapped to
the same grid location at 3. In the terrain projection terrain zenith radiances from location
2 that contribute to the MISR nadir view and terrain 70.5◦ forward scattered radiances from
location 2 that contribute to the MISR forward view are mapped to the same grid location at
4. In the absence of clouds the nine MISR radiances from a specific surface feature have the
same grid point locations in the terrain projection but they have different grid point locations
in the ellipsoid projection. As a surface feature lies closer to the ellipsoid surface containing
the grid points, the differences in the locations of the nine MISR radiances from it in the
ellipsoid projection become smaller. The nine MISR radiances from a specific cloud element
well above the terrain are mapped to different grid point locations in both the ellipsoid and
terrain projections.
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Figure 5: Percentage of MODIS- versus MISR-based classifications that are correct relative
to one-half of the expert labels for a quadratic discriminant analysis classifier trained on the
other half of expert labels using a) either nine MISR or seven MODIS radiances as input to
the classifier, b) either three MISR or five MODIS features as input to the classifier, and c)
either combined MISR and MODIS radiances or features as input to the classifier. Percentage
of MODIS- versus MISR-based classifications that are correct relative to all of the expert
labels for a quadratic discriminant analysis classifier trained on those pixels for which the
MISR and MODIS single-value threshold classifiers agree using d) either nine MISR or seven
MODIS radiances as input to the classifier, e) either three MISR or five MODIS features as
input to the classifier, and f) either combined MISR and MODIS radiances or features as
input to the classifier.
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Figure 6: Percentage of MODIS operational cloud mask versus MISR ELCM algorithm
classifications that are correct relative to expert labels for a) the 32 mixed clear and cloudy
scenes and c) the 25 pure clear or cloud only scenes. Percentage of correct classifications
relative to the expert labels for those pixels for which the MODIS operational cloud mask
and MISR ELCM algorithms agree versus the three-block scene coverage of those pixels for
which the two algorithms agree for b) the 32 mixed clear and cloudy scenes and d) the 25
pure clear or cloud only scenes.
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