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Abstract. A forward diffusion equation describing the evolution of the allele
frequency spectrum is presented. The influx of mutations is accounted for
by imposing a suitable boundary condition. For a Wright-Fisher diffusion
with or without selection and varying population size, the boundary condition
is limx↓0 xf(x, t) = θρ(t), where f(·, t) is the frequency spectrum of derived
alleles at independent loci at time t and ρ(t) is the relative population size at
time t. When population size and selection intensity are independent of time,
the forward equation is equivalent to the backwards diffusion usually used to
derive the frequency spectrum, but the forward equation allows computation of
the time dependence of the spectrum both before an equilibrium is attained and
when population size and selection intensity vary with time. From the diffusion
equation, we derive a set of ordinary differential equations for the moments of
f(·, t) and express the expected spectrum of a finite sample in terms of those
moments. We illustrate the use of the forward equation by considering neutral
and selected alleles in a highly simplified model of human history. For example,
we show that approximately 30% of the expected heterozygosity of neutral loci
is attributable to mutations that arose since the onset of population growth in
roughly the last 150, 000 years.

1. Introduction

The allele-frequency spectrum is the distribution of allele frequencies at a large
number of equivalent loci. The term “site-frequency spectrum” (Braverman et al.,
1995), is equivalent but emphasizes the application to individual nucleotides rather
than alleles at different genetic loci. Here, we will use the frequency spectrum for
both terms.

Although models assuming reversible mutation predict an equilibrium distri-
bution of allele frequencies (Wright, 1931), all recent studies of frequency spectra
assume irreversible mutation. Under that assumption, an equilibrium is not reached
at any locus, but the distribution across polymorphic loci reaches an equilibrium
if both population size and selection intensities are constant. The theory predict-
ing the frequency spectrum under irreversible mutation was developed by Fisher
(1930), Wright (1938), and Kimura (1964). Kimura (1969) noted that this theory
was applicable to nucleotide positions and introduced the “infinite sites model.”
Sawyer and Hartl (1992) incorporated the theory of Fisher, Wright and Kimura
into a Poisson random field model for the purpose of estimating the selection inten-
sity from the observed frequency spectrum in a finite sample of chromosomes. Their
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method has been tested and refined by Bustamante et al. (2001) and Williamson
et al. (2004).

Past population growth affects the frequency spectrum. Nei et al. (1975) showed
that rapid growth resulted in more low frequency alleles than expected under neu-
trality. Tajima (1989) confirmed that conclusion and examined the effect of past
population growth on other aspects of the frequency spectrum. Griffiths and Tavaré
(1998) developed the coalescent theory for the frequency spectrum of neutral alleles
in a population that has experienced arbitrary changes in population size. Nielsen
(2000) implemented the Griffiths and Tavaré (1998) simulation method and applied
it to human SNP data for the purpose of estimating the growth rate of human popu-
lations. Although Nielsen (2000) was not able to reject the hypothesis of no growth,
he noted that his analysis was of a small data set. Wakeley et al. (2001) considered
the same problem and developed a method that allowed for both ascertainment
bias and population subdivision. Wakeley et al. (2001) analyzed a larger SNP data
set and found evidence of recent growth. Wooding and Rogers (2002) and Polanski
and Kimmel (2003) also modeled the coalescent process underlying the spectrum
of neutral alleles and developed analytic theory that allows for exact calculation of
the spectrum for large sample sizes.

Griffiths (2003) reviewed and extended the theory of the frequency spectrum
derived from the backwards diffusion equation, which was the basis for the original
work by Fisher, Wright and Kimura. He generalized that theory in two ways. He
showed that the spectrum in a finite sample could be obtained from the solution
to the backwards equation by assuming sampling with replacement, and he showed
that the frequency spectrum in a population of variable size could be derived from
the spectrum for a population of constant size when a transformation of the time
scale reduces the backwards equation to one for a population of constant size. The
transformation of time scales is always possible for neutral alleles, in which case the
frequency spectrum in a finite population is the same as that derived by Griffiths
and Tavaré (1998). For selected alleles, the frequency spectrum cannot be obtained
by the method of Griffiths (2003) except in the special case in which the selection
intensity is inversely proportional to the population size at all times in the past.

The frequency spectrum of alleles closely linked to selected loci is also of in-
terest. Braverman et al. (1995), Fay et al. (2002), Kim and Stephan (2002), and
others have simulated the effects of selected sites on the frequency spectrum of
closely linked neutral sites, with the goal of finding evidence of background se-
lection against deleterious mutations and genetic hitchhiking caused by positive
selection of advantageous mutations.

Williamson et al. (2005) recently considered the combined effects of population
growth and selection on the frequency spectrum. Their model was of a popula-
tion that was of a constant size until τ generations in the past, at which time it
grew instantaneously by a factor ν and remained at the new size until the present.
Williamson et al. (2005) developed a likelihood method for estimating both τ and
ν from the spectrum of sites assumed to be neutral and for estimating τ , ν and
a scaled selection intensity γ for non-neutral sites. Their method was based on
numerical solutions for the frequency spectrum using both Kimura (1955) series
solution for neutral alleles and numerical solutions to the backwards equation for
selected alleles. Williamson et al. (2005) applied their method to a previously pub-
lished data set of 301 genes in the human genome and found evidence both of
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population growth and of purifying selection at non-synonymous sites. In a related
study, Bustamante et al. (2005) found evidence of differences in selection intensity
among different classes of genes in a data set for more than 6000 loci in humans.

In this paper, we will explore in more detail the allele frequency spectrum in a
population of variable size. Our goal is similar to that of Williamson et al. (2005)
in modeling the combined effects of selection and population growth. We derive the
frequency spectrum from the forward equation, first for a Markov chain and then
for a diffusion approximation to that Markov chain. The forward equation provides
a natural way compute the spectrum as it approaches an equilibrium from an arbi-
trary initial condition and to model the time-dependence of the spectrum resulting
from the time-dependence of population size and selection intensity. Furthermore,
the forward equation provides a way to incorporate the effects of immigration. We
show the equivalence of the forward equation to the backwards equation in an equi-
librium population, both for the Markov chain and diffusion models, and present
some numerical results for an idealized model of recent human populations.

2. Markov chain

The model is of a monoecious randomly-mating diploid population containing
N(t) individuals at time t, which in this section takes integer values representing
discrete non-overlapping generations. We assume a large number of identical and
independent loci. At each locus there are only two alleles A, the derived allele, and
a, the ancestral allele. In generation t, the set of loci is described by the row vector
with jth element fj(t) that is the expected numbers of loci at which A is found on
j chromosomes, 1 ≤ j ≤ 2N(t). Thus f2N(t)(t) is the expected number of loci fixed
for A in generation t. The model assumes that the pool of loci fixed for a is so
large that it can be assumed to be not reduced by the creation of polymorphic loci
by mutation – the infinite sites model of Kimura (1969).

The change in fj(t) because of genetic drift and mutation is described by the set
of difference equations

(1) fj(t+ 1) =
2N(t)∑
i=1

fi(t)pij(t) +Mj(t), 1 ≤ j ≤ 2N(t+ 1).

The first term on the right hand side represents the combined effect of genetic drift
and natural selection on loci that are already polymorphic: in the notation of Ewens
(2004), pij(t) is the probability that a locus with i copies of A in generation t will
have j copies in generation t+1. The pij(t) are easily derived for the Wright-Fisher
and other models (Ewens, 2004).

The second term on the right hand side represents the creation of new poly-
morphic loci by mutation and immigration. The influx of mutations is modeled by
assuming that each of the 2N(t) copies of a at a monomorphic locus mutates to an
A with probability µ per generation. Therefore

(2) Mj(t) = 2N(t)µδ1,j

for mutation alone, where δ1,j = 1 if j = 1 and 0 otherwise. Under the infinite sites
model, the mutation rate is assumed to be so low that the effect of mutation on
loci already polymorphic can be ignored. However, mutation can be incorporated
into pij(t) if necessary.
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Immigration from another population can be accounted for both by modifying
pij to allow for the effect of immigration on loci that are already polymorphic
and Mj(t) to allow for the creation of new polymorphic loci. Immigration, unlike
mutation, can create polymorphic loci for which j > 1 immediately. In this paper,
we will restrict our analysis to the case with mutation only.

Given an initial frequency spectrum, fj(0), Equation (1) can be iterated to obtain
the frequency spectrum at any time in the future. Even if N is constant, there is
no equilibrium solution to Equation (1) because the number of loci fixed for A will
increase each generation. However, an equilibrium solution for fj , 1 ≤ i ≤ 2N − 1,
the spectrum for polymorphic loci, does exist and is found by solving the matrix
equation

(3) f̂ = f̂P +
θ

2
e

where P is the (2N − 1)× (2N − 1) matrix with elements pij for 1 ≤ i, j < 2N , e is
a row vector with the first element 1 and the remaining elements 0, and θ = 4Nµ.
The solution is

(4) f̂ =
θ

2
e(I − P )−1,

where I is the (2N − 1) × (2N − 1) identity matrix.
This result is equivalent to that obtained using the backwards equation for the

Markov chain. The frequency spectrum of polymorphic loci is proportional to the
sojourn times (t̄1,j in the notation of Ewens (2004)). Equation (4) is obtained from
the solution to Equation (2.143) of Ewens (2004) by multiplying by θ/2, which is
the rate of influx of mutations each generation.

The advantage of the formulation presented here is that it also describes the
approach to the equilibrium. The rate of approach depends on the second largest
eigenvalue of P , which for a neutral allele is 1− 1

2N (Ewens, 2004). The number of
loci fixed for A increases by

(5)
2N−1∑
j=1

fj(t)pj,2N

per generation, which reduces to 2NµP1 at equilibrium, where P1 is the probability
of fixation of each mutant.

3. Diffusion approximation and new boundary condition

Let us start by considering the time-homogeneous case with no mutation from
the ancestral type, but where we can start at time 0 with some derived alleles
already present. Because we want to eventually allow varying population sizes,
assume that that the population is described by a time-homogeneous Markov chain
with state-space {0, 1, . . . , 2Nρ}. Suppose that if we shrink space by a factor of
2Nρ and speed time up by a factor of 2N , then this chain converges to a diffusion
process on [0, 1] with generator G = a(x) d

dx + 1
2b(x)

d2

dx2 for appropriate coefficients
(this is the scaling regime that is appropriate for models such the Wright-Fisher
chain with or without selection).

Suppose at time 0 that there are countably many loci at which derived alleles are
present, with respective (non-random) frequencies x1, x2, . . .. Once we have passed
to the diffusion limit, the frequency spectrum at time t is just the intensity measure



NON-EQUILIBRIUM FREQUENCY SPECTRUM 5

(that is, the expectation measure) of the point process that comes from starting
independent copies of the diffusion process at each of the xi and letting them run
to time t. In other words, the intensity measure is obtained by taking the sum
of point masses and moving it forwards an amount of time t using the semigroup
associated with the generator G.

More generally, if the initial configuration of frequencies is random (so that it
can be thought of as a point process on (0, 1)), then the frequency spectrum at time
t is obtained by taking the measure that is the intensity of that point process and
again moving it forwards an amount of time t using the semigroup.

For t > 0 the resulting measure will be absolutely continuous with respect to
Lebesgue measure and have a density fo(y, t) at frequency y ∈ (0, 1). We will also
refer to this density as the frequency spectrum. It is immediate that fo satisfies the
Kolmogorov forward equation equations that go with the generator G (with initial
conditions corresponding to the intensity measure of the point process of initial
frequencies). That is,

(6)
∂

∂t
fo(y, t) = − ∂

∂y
[a(y)fo(y, t)] +

1
2
∂2

∂y2
[b(y)fo(y, t)],

with limy↓0 fo(y, t) and limy↑1 fo(y, t) both finite and appropriate boundary condi-
tions at t = 0 (in particular, if the point process of initial frequencies has intensity
h(y) dy, then limt↓0 fo(y, t) = h(y)).

Now we want to introduce mutation from the ancestral type as time progresses.
In the Markov chain model, this corresponds to new mutants arising in the popu-
lation at rate θ

2ρ per unit of Markov chain time, where θ is independent of N . The
initial number of mutants at a locus is 1. This is equivalent to mutants appearing
at rate 2N θ

2ρ per unit of rescaled time, with the initial proportion of mutants at a
locus being 1

2Nρ .
Imagine now that we pass to the diffusion limit for the allele frequencies, but

for the moment still work with a finite N for the description of the appearance of
new mutants. That is, we think of our evolving point process as having new points
added at location 1

2Nρ at rate θ
22Nρ, and that the locations of these points then

evolve as independent copies of the diffusion with generator G.
We will make substantial use of the theory of entrance laws for one-dimensional

diffusions laid out in Section 3 of Pitman and Yor (1982). Write Pt(x, dy) for
the semigroup associated with G. This is the semigroup of the 0-diffusion in the
terminology of Pitman and Yor (1982). The contribution to the frequency spectrum
from mutations that appear after time 0 is

(7) 2N
θ

2
ρ

∫ t

0

Pt−s

(
1

2Nρ
, dy

)
ds.

Choose a scale function s for the 0-diffusion such that s(0) = 0 (so that s is then
unique up to a positive multiple). As Pitman and Yor (1982) observe,

(8) P ↑
u (x, dy) :=

1
s(x)

Pu(x, dy)s(y), 0 < x, y ≤ 1,

is the semigroup of a diffusion that never hits 0 (this ↑-diffusion is the Doob h-
transform that corresponds to the naive idea of conditioning the 0-diffusion never
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to hit 0). Moreover, this semigroup can be extended to allow starting at 0 by setting

(9) P ↑
u (0, dy) = lim

x↓0
P ↑

u (x, dy).

The resulting extended process can start at 0 but it will never return to 0.
Assume now that s′(0) > 0, which will be the case in the diffusions that are of

interest to us. We can choose the free multiplicative constant in the definition of
the scale function s so that limy↓0 s(y)/y = s′(0) = 1. Then

(10) lim
N→∞

2NρPu

(
1

2Nρ
, dy

)
=
P ↑

u (0, dy)
s(y)

=: λu(dy)

in the notation of Pitman and Yor. Thus

(11) lim
N→∞

2N
θ

2
ρ

∫ t

0

Pt−s

(
1

2Nρ
, dy

)
ds =

θ

2

∫ t

0

λt−s(dy) ds =: Φt(dy),

say.
As observed in Pitman and Yor (1982), the family (λu)u>0 is an entrance law for

the semigroup of the 0-diffusion, and so it has densities that satisfy the Kolmogorov
forward equation associated with the generator G — intuitively, (λu)u>0 describes
that injection of an infinite amount of mass at location 0 at time 0, with this
mass subsequently evolving in (0, 1) according to the dynamics of the 0-diffusion.
Consequently, the family (Φt)t>0 also satisfies the Kolmogorov forward equation
associated with the generator G — again intuitively, (Φt)t>0 describes a continuous–
in–time injection of mass at location 0, with this mass again subsequently evolving
in (0, 1) according to the dynamics of the 0-diffusion. That is, if we write φt for the
density of Φt, we have that

(12)
∂

∂t
φt(y) = − ∂

∂y
[a(y)φt(y)] +

1
2
∂2

∂y2
[b(y)φt(y)].

It remains to work out what the boundary conditions for φt are. Following Pit-
man and Yor (1982), introduce the ↓-diffusion, which is the 0-diffusion conditioned
to hit 0 before 1. The ↓-diffusion has the Doob h-transform semigroup

(13) P ↓
t (x, dy) =

(
1 − s(x)

s(1)

)−1

Pt(x, dy)
(

1 − s(y)
s(1)

)
.

From Williams (1974), the ↑-diffusion started at 0 and killed at the last time it
visits y > 0 is the time-reversal of the ↓-diffusion started at y and killed when it
first hits 0. Write (Q↓

t )t≥0 for the semigroup of this killed process. Since we have
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normalized the scale function s so that s(y) ≈ y for y close to 0,

lim
y↓0

yφt(y) = lim
y↓0

s(y)φt(y)

= lim
y↓0

s(y)
∫ t

0

θ

2
λt−s(dy)

dy
ds

=
θ

2
lim
y↓0

∫ t

0

P ↑
t−s(dy)
0, dy

ds

=
θ

2
lim
y↓0

∫ t

0

P ↑
s (0, dy)
dy

ds

=
θ

2
lim
y↓0

∫ ∞

0

P ↑
s (0, dy)
dy

ds

=
θ

2
lim
y↓0

∫ ∞

0

Q↓
s(y, dy)
dy

ds.

(14)

Note that if (Bt)t≥0 is a standard Brownian motion and T := inf{t ≥ 0 : Bt = 0},
then, by Equation (3.2.1) and Section 3.1 of Knight (1981), and∫ ∞

0

P
y{Bs ∈ dy, T > s}

dy
ds =

∫ ∞

0

1√
2πs

− 1√
2πs

e−(2y)2/2s ds

= lim
λ↓0

1√
2λ

− 1√
2λ

exp(−
√

2λ2y)

= 2y.

(15)

Observe also that a scale function for the ↓-diffusion is

(16) σ(x) :=
s(x)s(1)
s(1) − s(x)

.

By standard one-dimensional diffusion theory, if we compose the killed ↓-diffusion
with σ, then the resulting process is a time-change of standard Brownian motion
killed when it first hits 0, with the time-change given by the corresponding speed
measure (see, for example, V.7 of Rogers and Williams (2000)). Moreover, since
σ(x) ∼ x for x close to 0, the speed measure m for the ↓-diffusion satisfies m(dx) ∼
b(x) dx for x close to 0 (beware that the definitions of the speed measure can vary
from author to author vary by multiplicative constants, we are using the definition
of Rogers and Williams (2000)). Therefore

(17)
θ

2
lim
y↓0

∫ ∞

0

Q↓
s(y, dy)
dy

ds =
θ

2
lim
y↓0

2y
b(y)

= θ lim
y↓0

y

b(y)
.

Write f(x, t) for the frequency spectrum of the model with mutation from ances-
tral type. We have f(x, t) = fo(x, t)+φt(x), where fo is defined for the appropriate
initial conditions at t = 0. If we want to start with all alleles ancestral type, then
the initial conditions at t = 0 are null and fo ≡ 0. Combining what we have
obtained above, we find that

(18)
∂

∂t
f(x, t) = − ∂

∂x
[a(x)f(x, t)] +

1
2
∂2

∂x2
[b(x)f(x, t)].

with appropriate boundary conditions at t = 0 (in particular, limt↓0 f(x, t) =
0 if we start will all alleles being ancestral), and further boundary conditions
limx↓0 xf(x, t) = θ limx↓0 x

b(x) and limx↑1 f(x, t) finite.
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Now consider a time-inhomogeneous diffusion with generator a(x, t) d
dx+ 1

2 b(x, t)
d2

dx2

and suppose also that ρ is now a function ρ(t) of time. By first considering the case
where a, b and ρ are piecewise constant, using the above analysis, and then taking
limits, we get that the frequency spectrum solves

(19)
∂

∂t
f(y, t) = − ∂

∂y
[a(y, t)f(y, t)] +

1
2
∂2

∂y2
[b(y, t)f(y, t)]

with appropriate boundary conditions at t = 0 and further boundary conditions
limy↓0 yf(y, t) = θ limx↓0 x

b(x,t) and limy↑1 f(y, t) finite.
For the purposes of a numerical solution, it is more convenient to consider the

function g(x, t) := x(1 − x)f(x, t) which satisfies

(20)
∂

∂t
g(x, t) = −x(1−x)

∂

∂x

[
a(x, t)
x(1 − x)

g(x, t)
]

+
x(1 − x)

2
∂2

∂x2

[
b(x, t)
x(1 − x)

g(x, t)
]

with appropriate boundary conditions at t = 0 and further boundary conditions
limx↓0 g(x, t) = θ limx↓0 x

b(x,t) and limx↑1 g(x, t) = 0.
As an example, consider the case where a(x) = Sx(1 − x), and b(x) = x(1 −

x)/ρ(t). This is a Wright-Fisher diffusion with selection and varying population
size. The corresponding forward equation is

(21)
∂

∂t
g(x, t) = −Sx(1 − x)

∂

∂x
[g(x, t)] +

x(1 − x)
2ρ(t)

∂2

∂x2
[g(x, t)]

with boundary conditions

(22) lim
x↓0

g(x, t) = θ lim
x↓0

xρ(t)
x(1 − x)

= θρ(t).

4. Equilibrium solution

When ρ(t) ≡ 1 is a constant and the coefficients a and b do not depend on time,
then we expect f(·, t) to converge to an equilibrium f̂ as t→ ∞, so that g(·, t) will
also converge to a limit ĝ. From Equation (20), the function ĝ should satisfy

(23) 0 = −x(1 − x)
d

dx

[
a(x)

x(1 − x)
ĝ(x)

]
+
x(1 − x)

2
d2

dx2

[
b(x)

x(1 − x)
ĝ(x)

]

with the boundary conditions limx↓0 ĝ(x) = θ limx↓0 x
b(x) and limx↑1 ĝ(x) = 0.

For example, when a = 0 and b(x) = x(1 − x) (the neutral Wright-Fisher diffu-
sion), Equation (23) becomes

(24) 0 =
x(1 − x)

2
∂2ĝ

∂x2
,

which has solution θ(1− x) for the given boundary conditions, so that f̂(x) = θ/x,
agreeing with Equation (9.18) of Ewens (2004).

Similarly, when a(x) = Sx(1−x) and b(x) = x(1−x) (the Wright-Fisher diffusion
with selection), Equation (23) becomes

(25) 0 = −Sx(1 − x)
∂ĝ

∂x
+
x(1 − x)

2
∂2ĝ

∂x2
,

which has solution

(26) ĝ(x) = θ
e2S

(
1 − e−2S(1−x)

)
e2S − 1
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for the given boundary conditions, so that

(27) f̂(x) = θ
e2S

(
1 − e−2S(1−x)

)
(e2S − 1)x(1 − x)

,

agreeing with Equation (9.23) of Ewens (2004).

5. A system of ODEs for the moments in a Wright-Fisher diffusion
with varying population size

Suppose in this section that a(x) = Sx(1−x) and b(x) = x(1−x)/ρ(t). This is a
Wright-Fisher diffusion model with constant selection and time-varying population
size and Equation (21) applies.

Put µn(t) :=
∫ 1

0
xng(x, t) dx for n = 0, 1, 2, . . .. Integrating by parts, we get

∫ 1

0

xnx(1 − x)
∂

∂x
g(x, t) dx

=
[
(xn+1 − xn+2)g(x, t)

]1

0

−
∫ 1

0

((n+ 1)xn − (n+ 2)xn+1)g(x, t) dx

= (n+ 1)µn − (n+ 2)µn+1(t)

(28)

Similarly,
∫ 1

0

xnx(1 − x)
∂2

∂x2
g(x, t) dx

=
[
(xn+1 − xn+2)

∂

∂x
g(x, t)

]1

0

−
∫ 1

0

((n+ 1)xn − (n+ 2)xn+1)
∂

∂x
g(x, t) dx

= −
∫ 1

0

((n+ 1)xn − (n+ 2)xn+1)
∂

∂x
g(x, t) dx

= − [
((n+ 1)xn − (n+ 2)xn+1)g(x, t)

]1

0

+
∫ 1

0

((n+ 1)nxn−11{n 6= 0} − (n+ 2)(n+ 1)xn)g(x, t) dx

= [1{n = 0}θρ(t)] + [(n+ 1)nµn−1(t)1{n 6= 0} − (n+ 2)(n+ 1)µn(t)]

(29)

We thus get the coupled system of ODEs

(30) µ′
0(t) =

θ

2
− 1
ρ(t)

µ0(t) + S (µ0(t) − 2µ1(t))

and

µ′
n(t) =

1
2ρ(t)

[(n+ 1)nµn−1(t) − (n+ 2)(n+ 1)µn(t)]

+ S ((n+ 1)µn(t) − (n+ 2)µn+1(t)) , n ≥ 1.
(31)
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When S = 0 (that is, the neutral case) this system is lower triangular and we
can be solved explicitly. The ODE for µ0 has solution

(32) µ0(t) = µ0(0) exp
(
−

∫ t

0

1
ρ(s)

ds

)
+
θ

2

∫ t

0 exp
(∫ s

0
1

ρ(u) du
)
ds

exp
(∫ t

0
1

ρ(s) ds
) .

Given µn−1, the ODE for µn has solution

µn(t) = µn(0) exp
(
−

(
n+ 2

2

) ∫ t

0

1
ρ(s)

ds

)

+
(
n+ 1

2

)∫ t

0
1

ρ(s)µn−1(s) exp
((

n+2
2

) ∫ s

0
1

ρ(u) du
)
ds

exp
((

n+2
2

) ∫ t

0
1

ρ(s) ds
) .

(33)

We can draw some conclusions from these equations about the effect of ρ on
the asymptotic behavior of µn. For example, for any initial conditions and any
ρ such that

∫ ∞
0

1
ρ(t) dt < ∞, the expected heterozygosity 2µ0(t) is asymptotically

equivalent to θt as t→ ∞.

6. Explicit recurrences for the moments in a Wright-Fisher
diffusion with exponentially increasing population size

Suppose in this section that ρ(t) = eRt with R > 0, a(x) = 0, and b(x) =
x(1−x)/eRt. This is a neutral Wright-Fisher diffusion model with constant selection
and exponentially increasing population size. We will obtain an explicit recursive
recipe for the moments µn(t). For simplicity, suppose that f(x, 0) ≡ 0, so that
µn = 0 for all n. A similar development holds for other initial conditions.

Recall that the exponential integral function Ei is given by Ei (x) = − ∫ ∞
−x
t−1e−t dt,

where the principal value is taken if x > 0 (although we are only interested in the
case x < 0). For x < 0, Ei (x) = −Γ(0,−x), where Γ is the usual upper incomplete
gamma function. For x > 0,

Ei (−x) = γ + log(x) +
∫ x

0

e−t − 1
t

dt

= γ + log(x) +
∞∑

j=1

(−x)j

j · j! ,
(34)

where γ is Euler’s constant (Gradshteyn and Ryzhik, 2000).
For n = 0,

(35) µ0(t) =
θ

2R
e

e−Rt

R

(
Ei

(
− 1
R

)
− Ei

(
−e

−Rt

R

))
.

For n = 1, 2, . . . define a linear operator Φn by

(36) Φnf(t) :=
(
n+ 1

2

)∫ t

0 e
−Rsf(s) exp

((
n+2

2

) ∫ s

0 e
−Ru du

)
ds

exp
((

n+2
2

) ∫ t

0 e
−Rs ds

) ,
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so that µn = Φnµn−1 = . . . = ΦnΦn−1 · · ·Φ1µ0. Set

fk(t) = exp
((

k + 2
2

)
e−Rt

R

)

×
[

Ei
(
−

(
k + 2

2

)
1
R

)
− Ei

(
−

(
k + 2

2

)
e−Rt

R

)]
,

(37)

so that µ0 = 1
2Rf0. It follows from a straightforward integration that

(38) Φnfk(t) =

(
n+1

2

)
(
n+2

2

) − (
k+2
2

) [fk(t) − fn(t)].

Hence

(39) µn(t) :=
n∑

k=0

cn,kfk(t),

where c0,0 = 1
2R and the other cn,k are given recursively by

(40) cn,k =

(
n+1

2

)
(
n+2

2

) − (
k+2
2

)cn−1,k, 1 ≤ i ≤ n− 1,

and

cn,n = −
n−1∑
k=0

(
n+1

2

)
(
n+2

2

) − (
k+2
2

)cn−1,k

= −
n−1∑
k=0

cn,k.

(41)

For example,

c1,0 =
1

3 − 1
1

2R
=

1
4R

c1,1 =
−1
4R

(42)

and

c2,0 =
3

6 − 1
1

4R
=

3
20R

c2,1 =
3

6 − 3
(−1)
4R

= − 1
4R

c2,2 = −
(

3
20R

− 1
4R

)
=

1
10R

.

(43)
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Set ψ(x) :=
∑∞

j=1
xj

j·j! . Then

fk(t) = exp
((

k + 2
2

)
e−Rt

R

)

×
[

Ei
(
−

(
k + 2

2

)
1
R

)
− Ei

(
−

(
k + 2

2

)
e−Rt

R

)]

= exp
((

k + 2
2

)
e−Rt

R

)

×
[
Rt+ ψ

(
−

(
k + 2

2

)
1
R

)
− ψ

(
−

(
k + 2

2

)
e−Rt

R

)]
.

(44)

It follows from this that

(45) µ0(t) ≈ θt

2
when R is large (recall the 2µ0(t) is the expected heterozygosity). For n ≥ 1, the
two observations that exp

(
−(

k+2
2

)
e−Rt

R

)
will be very close to 1 for even moderate

values of R and that
∑

k cn,k = 0 show that the contribution to µn(t) from the Rt
term will almost cancel out and the primary contribution will be from the ψ terms.

7. Frequency spectrum in a finite sample

The function f(x, t) approximates the frequency spectrum in a very large pop-
ulation. In a sample of n chromosomes, we can observe only the finite spectrum,
fi(t), which is the distribution of the number of chromosomes at which there are i
derived alleles (0 < i ≤ n). In this context, fi(t) is similar to fi(t) defined for the
Markov chain formulation, but here t is continuous. The finite spectrum is obtained
from f(x, t) by assuming sampling with replacement at each locus independently:

(46) fi(t) =
(
n

i

) ∫ 1

0

xi(1 − x)n−if(x, t) dx

Griffiths (2003). We can express this equation in terms of the moments of g(x, t) =
x(1 − x)f(x, t) about x = 0:

(47) fi(t) =
(
n

i

) n−i−1∑
j=0

(−1)j

(
n− i− 1

j

)
µj+i−1(t)

8. Numerical analysis

If the population size or selection intensity vary only somewhat with time, nu-
merical solutions to Equation (21) can be obtained with standard methods. The
function NDSolve in Mathematica (version 5) and the function pdepe of MATLAB
(version 7) both provide solutions using default settings for those programs. With
extreme population growth, as in the model of human history we consider in Sec-
tion 9, neither of these programs provides accurate solutions, so it was necessary
to write a program tailored to the problem.

Large gradients at the boundary x = 0 make it necessary to introduce a non-
uniform grid with N internal points. With the view toward integrating the numeri-
cal solution in order to compute moments and the finite spectrum we select the grid
with the smallest spacial increment ∆0 = (x1−0) of the order 10−8 and the largest
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∆N = (1 − xN ) ∼ 10−3. The spacing is kept constant for a few nodes xi, ..., xi+k

and then doubled so that

xi+k+1 − xi+k = ∆i+k = 2∆i+k−1 = 2(xi+k − xi+k−1)

. This process is repeated until the spacing reaches the maximum size ∆N ∼ 10−3.
The numerical domain is thus separated into sub-domains where the spacing is uni-
form. This guarantees that centered difference schemes used in the sub-domains
give a second order accurate approximations to the corresponding differential op-
erators. For the right end-point of the uniform sub-domains, xi+k, (referred to as
the edge-node) the values at xi+k−2 and xi+k+1 can be used, since xi+k −xi+k−2 =
xi+k+1 − xi+k.

If t = ∆tk and x = xi we denote the numerical approximation to g(x, t) by Gk
i .

A standard centered second order differencing is used to approximate the diffusive
term and one-sided first order difference with the direction depending on the sign
of S (so-called upwinding) is used for the advective term. For the time-stepping
an implicit Backward-Euler scheme with a fixed step-size ∆t = ∆N is used. The
following system of algebraic equations is obtained:

(48) Gk+1
i = Gk

i + ∆t

(
xi(1 − xi)
2ρ(t)(∆i)2

[
Gk+1

i−Edge − 2Gk+1
i +Gk+1

i+1

])

−S∆t

(
xi(1 − xi)

∆i

[
Gk+UwR

i −Gk+UwL
i

])
,

where Edge = 2 if xi is and edge-node and Edge = 1 otherwise; UwR = 0,UwL =
−1 if S > 0 and UwR = 1, UwL = 0 if S < 0. The boundary conditions are
Gk

0 = g(∆t ∗ k) and Gk
N+1 = 0.

Overall the truncation error is of the order ∆N . In each time step, in order to
solve the system (48 ) it is necessary to invert a sparse matrix with a large condition
number (cN ≈ 108), hence a gain in accuracy that would come from decreasing the
time step is offset by the loss of precision in the inversion of such a matrix.

9. Model of recent human population growth

We considered a highly simplified model of the history of population sizes of
modern humans similar to that used by Reich and Lander (2001) and Williamson
et al. (2005) but not requiring the assumption of an instantaneous change in pop-
ulation size. We assumed a stable population of effective size N0 = 10, 000 until
150, 000 years ago (t = 0) and a generation time of 25 years. We measured time in
units of 2N0, so the present is at t = 6000/20000 = 0.3. At t = 0 the population
began to increase in size exponentially at a scaled rate R = 2N0r, where r is the
exponential rate per generation. We assumed additive selection with heterozygous
fitness 1 + s relative to aa homozygotes, with the selection coefficient is also scaled
by N0: S = 2N0s. If R = 40, then the current effective size is 1.63 × 109. Reich
and Lander assumed a current size of 6× 109, but that did not take account of the
fact that the effective size of human populations is roughly 1/3 of the census size
(Hill, 1972).

We assume that the spectrum at t = 0 is the equilibrium spectrum:

(49) g(x, 0) = θ(1 − x)



14 STEVEN N. EVANS 1, YELENA SHVETS 2, AND MONTGOMERY SLATKIN 3

for S = 0 and

(50) g(x, 0) = θ
e2S

(
1 − e−2S(1−x)

)
e2S − 1

otherwise. The numerical solutions for f(x, t) at times t = 0 and t = 0.3 are plotted
in Figures 1–3 for the respective choices 0,+2,−2 of the selection parameter S (the
mutation parameter is taken to be θ = 1 – a different choice of θ merely rescales
the spectrum).

FIGURE 1 HERE
FIGURE 2 HERE
FIGURE 3 HERE

For neutral alleles, the equation for the 0th moment of g(x, t), which is half the
expected heterozygozity, can be solved exactly. It is of interest to separate the
solution into two parts, one representing alleles present at t = 0 (old alleles) and
the other representing alleles that arose by mutation after t = 0 (new alleles). For
old alleles,

(51)
dµ0,o

dt
= −e−Rtµ0,o

with initial condition µ0,o(0) = θ
2 and for new alleles

(52)
dµ0,n

dt
=
θ

2
− e−Rtµ0,n

with initial condition µ0,n(0) = 0. Equations (51) and (52) can be solved in
terms of exponential integrals. With R = 40, we find µ0,o(0.3) = 0.49θ and
µ0,n(0.3) = 0.15θ, which implies that under this model, roughly 30% of the ex-
pected heterozygosity at neutral sites is attributable to mutations that arose in the
past 150, 000 years.

For selected alleles (S 6= 0), the system for the moments is not closed. An ap-
proximation to the moments can be obtained by truncating the system and setting
the first neglected term to it’s initial value. Alternatively, the moments can be
computed by first solving for g(x, t) and numerically integrating. Both approaches
present certain numerical difficulties. The plots in Figure 4–6 were obtained for
a sample of size n = 20 by obtained by numerically solving the truncated system
with 160 equations using MATLAB’s ode45 (for S = 0) and ode15s (for S = ±2)
routines. For the neutral case S = 0 there is a simulation algorithm due to Griffiths
and Tavaré (1998) for approximating the finite spectrum, and we compare that ap-
proximation with the results from the numerical solution of the the system of ODEs
in Figure 7 for a sample of size n = 40. The mutation parameter for Figures 4–7 is
taken to be θ = 1. A different choice of θ merely rescales the finite spectrum.

FIGURE 4 HERE
FIGURE 5 HERE
FIGURE 6 HERE
FIGURE 7 HERE

References

Braverman, J., Hudson, R. R., Kaplan, N. L., Langley, C. H., Stephan, W., 1995.
The hitchhiking effect on the site frequency spectrum of DNA polymorphisms.
Genetics 140, 783–796.



NON-EQUILIBRIUM FREQUENCY SPECTRUM 15

Bustamante, C. D., Fledel-Alon, A., Williamson, S., Nielsen, R., Todd Hubisz, M.,
Glanowski, S., Tanenbaum, D. M., White, T. J., Sninsky, J. J., Hernandez, R. D.,
Civello, D., Adams, M. D., Cargill, M., Clark, A. G., 2005. Natural selection on
protein-coding genes in the human genome. Nature 437 (7062), 1153–1157.

Bustamante, C. D., Wakeley, J., Sawyer, S., Hartl, D. L., 2001. Directional selection
and the site-frequency spectrum. Genetics 159 (4), 1779–1788.

Ewens, W. J., 2004. Mathematical Population Genetics: I. Theoretical Introduc-
tion, 2nd Edition. Interdisciplinary Applied Mathematics. Springer.

Fay, J. C., Wyckoff, G. J., Wu, C.-I., 2002. Testing the neutral theory of molecular
evolution with genomic data from Drosophila. Nature 415 (6875), 1024–1026.

Fisher, R. A., 1930. The distribution of gene ratios for rare mutations. Proceedings
of the Royal Society of Edinburgh 50, 205–220.

Gradshteyn, I. S., Ryzhik, I. M., 2000. Table of integrals, series, and products,
sixth Edition. Academic Press Inc., San Diego, CA, translated from the Russian,
Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger.

Griffiths, R. C., 2003. The frequency spectrum of a mutation, and its age, in a
general diffusion model. Theoretical Population Biology 64 (2), 241–251.
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Figure 1. Frequency spectrum f(x, t) = g(x, t)/(x(1 − x)) at
times t = 0 and t = 0.3 with parameter values R = 40 and S = 0.
Obtained by numerically integrating the PDE. The values of f are
restricted to the interval [0, 100].
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Figure 2. Frequency spectrum f(x, t) = g(x, t)/(x(1 − x)) at
times t = 0 and t = 0.3 with parameter values R = 40 and S = +2.
Obtained by numerically integrating the PDE. The values of f are
restricted to the interval [0, 100].
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Figure 3. Frequency f(x, t) = g(x, t)/(x(1 − x)) at times t = 0
and t = 0.3 with parameter values R = 40 and S = −2; Obtained
by numerically integrating the PDE. The values of f are restricted
to the interval [0, 100].
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Figure 4. Finite spectrum for a sample size n = 20 at times t = 0
and t = 0.3 with parameter values R = 40 and S = 0. Obtained
by numerically integrating the system of ODEs for the moments
of g(·, t).
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Figure 5. Finite spectrum for a sample size n = 20 at times t = 0
and t = 0.3 with parameter values R = 40 and S = +2. Obtained
by numerically integrating the system of ODEs for the moments
of g(·, t).
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Figure 6. Finite spectrum for a sample size n = 20 at times t = 0
and t = 0.3 with parameter values R = 40 and S = −2. Obtained
by numerically integrating the system of ODEs for the moments
of g(·, t).
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Figure 7. Finite spectrum for a sample size n = 40 at times t = 0
and t = 0.3 with parameter values R = 40 and S = 0. Obtained
by numerically integrating the system of ODEs for the moments of
g(·, t). Compared at time t = 0.3 with results from the simulation
algorithm of Griffiths and Tavaré.


