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 Abstract 

 
A major task in understanding biological processes is to elucidate relationships between 
genes involved in the underlying biological pathways.  Microarray data from an increasing 
number of biologically interrelated experiments now allows for more complete portrayals 
of functional gene relationships in the pathways.  In current studies of gene relationships, 
the existence of expression dependencies attributable to the biologically interrelated 
experiments, however, has been widely ignored.  When not accounted for, these 
(experimental) dependencies can result in inaccurate inferences of functional gene 
relationships, and hence incorrect biological conclusions.  This article contributes a 
framework to provide a model and an estimation procedure for inferring gene relationships 
when there are two-way dependencies in the gene expression matrix (the gene-wise and 
experiment-wise dependencies).  The main aspect of the framework is the use of the 
Kronecker product covariance matrix to model the gene-experiment interactions.  The 
resulting novel gene co-expression measure, named Knorm correlation, can be 
understood as a natural extension of the widely used Pearson coefficient.  Compared to 
Pearson approach, the Knorm correlation has a much smaller estimation variance and is 
asymptotically consistent with the Pearson coefficient.  We demonstrated the advantages 
of the Knorm correlation in both simulation studies and real datasets applications.  The 
Knorm correlation estimation procedure is implemented in the R package Knorm that is 
freely available from the Bioconductor website. 
 
KEY WORDS: Co-expression measure; Experimental dependency; Functional gene 
relationships; Gene-experiment interactions; Kronecker product. 
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1  Introduction 
 
 A major task in understanding biological processes is to elucidate relationships between 
genes involved in the underlying biological pathways.  Of particular interest are the 
functional gene relationships that arise as genes respond variedly to different but biologically 
interrelated experiments.  These experiments are typically designed to trigger cellular 
changes by the use of different reagents, physiological conditions or their combinations with 
different time points (e.g. Sabet et al., 2004; Wu et al., 2005; Cromer et al., 2004; Lund et. 
al., 2005).  As such, the gene relationships are context-specific. 
 In this article, we address a lesser studied but critical issue in the gene relationship 
inference: the presence of experiment dependencies in gene expression data.  We define 
experiment dependencies as dependencies in gene expressions between experiments due to 
the similar or related cellular states induced by the experiments.  The presence of 
experiment dependencies is natural, and they co-exist with the gene relationships (or gene 
dependencies).  Evident in a yeast dataset, Figure 1 shows stronger dependencies in 
normalized gene expressions between experiments 3, 4 and 7 than that between experiment 1 
and the remaining experiments.  This is due to similar cellular changes induced by histone H3 
mutations in experiments 3, 4 and 7 but not in experiment 1. Figure 1 also illustrates the 
varied levels of dependencies in gene expressions between the experiments, depending on the 
extent and type of histone mutations being introduced.  These experiment dependencies have 
been similarly observed in other real datasets used to study context-specific gene 
relationships, e.g. Cromer et al. (2004), Lund et. al. (2005) and Wu et al. (2005).  The 
negative impact of having experiment dependencies is that they introduce redundancies in 
data that can overwhelm the important signals and thereafter lead to inaccurate estimates of 
gene dependencies.  In particular, the correlation coefficient measure (Pearson coefficient), 
widely used to infer gene relationships in many important studies (e.g. Eisen et al. 1998; 
Hanisch et al., 2002; Kim et al. 2001; Li, 2002; Zhou et al. 2005), suffers from an increased 
estimation variance and almost a random sign as experiment dependencies go unaccounted 
for (see Figure 2).  This undesirable effect consequently contributes to a higher false positive 
rate of functional gene relationships identified by the Pearson coefficient in real datasets (see 
Tables 1 and 2).  Therefore there is a need to adjust for these experiment dependencies to 
increase accurate inferences and improve biological conclusions, especially in data from 
biologically interrelated experiments where experiment dependencies are naturally strong. 
 Another fundamental issue we face in inferring gene relationships is the complex data 
structure in real datasets.  A typical dataset used in pathway studies consists of replicates of 
gene expressions in each experiment and not expression matrix replicates.  The number of 
replicates is often small (e.g. 2–3) and can be different for each experiment.  The data 
structure is further complicated by the presence of both biological and nuisance variations in 
a gene expression.   
 Motivated by the above issues, this article attempts to address the following important 
questions: How do we model and estimate the experiment dependencies from the complex 
data structure?  How would the gene correlation measure be adjusted for experiment 
dependencies?  For the first question, we present a framework consisting of a statistical 
model, and a practical estimation procedure. This model uses a linear additive model with 
random gene, experiment and gene-experiment interaction effects, and a Kronecker product 
covariance matrix to model both experiment and gene dependencies in gene expressions.  
The model also delineates biological and nuisance variations in gene expressions.  For the 
second question, we derive a new measure (named Knorm correlation) that adjusts for 
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experiment dependencies by weighting the gene expression in each experiment proportional 
to the partial correlation of that experiment.  The Knorm correlation has a smaller estimation 
variability than the Pearson coefficient, especially when there are only a few replicates 
available for each experiment.  The Knorm correlation simplifies to the Pearson coefficient 
when experiments are uncorrelated (i.e. experiment dependencies are absent).  In addition to 
the model in our framework, we further provide a practical estimation procedure to mitigate 
issues in real dataset applications.  This procedure uses bootstrapping to re-construct gene 
expression matrices from the replicates observed in each experiment, and a gene sub-
sampling and covariance shrinkage technique to stabilize and reduce estimation errors in 
Knorm correlations due to the high dimensionality of real datasets. 
 We note that although two-way dependencies in matrix data has been studied in areas like 
repeated measurements (e.g. Timm, 1980; de Munck et al., 2002), the modeling of co-
existing gene and experiment dependencies is still relatively unexplored in conjunction with 
the complex and high dimensional gene expression data in pathway studies.  Other existing 
works that model specific spatial dependencies between experiments, e.g. fourier series 
approach by Spellman et al. (1998) and autoregressive models by Ramoni et al. (2002),  
require specific assumptions that may not be generally satisfied by typical datasets in 
pathway studies (e.g. as illustrated in Figure 1).  Our work, on the other hand, is motivated to 
model the generally monotonic and varied experiment dependencies from the complex data 
structure observed in many real datasets used in pathway studies.  We demonstrate the 
advantages of Knorm correlation over the existing methods by both analytically discussing its 
properties and numerically comparing it with other methods in applications (to simulation 
and real datasets). 
 The article is organized as follows.  Section 2 introduces and elaborates on our 
framework, Knorm correlation and practical estimation procedure.  Real datasets used in our 
analyses are described in Section 3.  Section 4 presents the application results of Knorm 
correlation in simulation studies and real datasets.  The Knorm correlation reports higher 
percentages of functionally related GO (Gene Ontology) annotated gene pairs in real datasets.  
Using the yeast dataset as an illustrative example, Section 5 provides an empirical 
justification of an assumption in our model.  Finally, Section 6 discusses some practical and 
technical issues encountered in practice. 

 

2  Statistical Framework 
 
2.1 Statistical Model 
 

Let ijkX  represents the gene expression for gene i in the kth replicate of experiment j, 

1, , , 1, , ,  1, , ji p j n k n= = =… … …  where jn  represents the number of replicates for 
experiment j.  Following the data structure, we introduce two random effects: gene effect and 
experiment effect.  We postulate that a gene effect is a random effect that consists of three 
components:  

(i) a fixed component G that measures the average gene expression level. This 
component depends on the gene only and is independent of the experiments.   

(ii) a random component that accounts for the nuisance variations arising from 
sources such as measurement errors.  This component explains changes in gene 
expressions that are independent of the experiments.  
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(iii) a random component that accounts for biological variations in gene expressions. 
These variations are triggered as the gene responds to the various experiments.  
This component then represents the “gene-experiment interaction effects” and 
would dominate the random component in (ii) if the gene expresses differently in 
the experiments.    

 
 The postulation also applies to the experiment effect.  Putting together the above 
components, a linear additive model of gene and experiment effects simplifies to: 
 ,    1, , , 1, , ,  1, , ,GE

ijk i j ij ijk jX u v i p j n k nγ ε= + + + = = =… … …  (1) 

where ui and vj are fixed components representing the individual gene and experiment effects 
respectively, GE

ijγ  denotes the random gene–experiment interaction effect, and ijkε  is a 
random term representing all nuisance variations in Xijk.  The nuisance terms εijk are i.i.d. with 
zero means and are independent of the interaction terms ,GE

ijγ  i=1, …, p, j=1, …, n, k=1, …, 
nj.   For an appropriately constructed p n×  gene expression matrix X (further elaborated in 
Section 2.3), we can rewrite our model in the following matrix representation 
 GE ,= + + +X G E Γ ε  (2) 
where 1( )T T

pu u= ⋅G 1…  (1 is the unit column vector), 1( )nv v= ⋅E 1 … , GE 1,...,
1,...,( )GE i p

ij j nγ =
==Γ  

is a zero-mean random matrix with elements representing the gene-experiment effects, ε  is a 
zero-mean random matrix with elements representing i.i.d. normal noises, and ΓGE and ε  are 
independent of each other.   
 Using covariance matrices GΣ and EΣ  to represent gene and experiment 
dependencies respectively, we represent the covariance matrix of ΓGE  by G E⊗Σ Σ : the 
Kronecker product of GΣ and EΣ .  With negligible nuisances, ( )Tvec X  follows a 

multivariate normal distribution with mean +G E  and a covariance matrix G E⊗Σ Σ .   
The use of the Kronecker product covariance matrix can be understood in the 

following ways.  First, G E⊗Σ Σ can be interpreted as a natural extension of the covariance 
matrix G I⊗Σ Σ , where IΣ  denotes the identity matrix.  The covariance matrix G I⊗Σ Σ  is 
the current widely used dependency structure for multivariate normal models that leads to the 
Pearson coefficients between genes.  Secondly, G E⊗Σ Σ can be interpreted as a dependency 
structure between the interaction terms caused by a dual projection of a matrix of i.i.d. 
random variables with unit variances onto the eigenspaces determined by GΣ and EΣ .  That 
is, ΓGE can be represented as 
 ( ) ( )GE   = 1/2 1/2 TUD Λ P VΓ , (3) 
where Λ is a matrix of i.i.d. random variables with unit variances, P is a diagonal matrix with 
diagonal elements being the eigenvalues of EΣ , and the eigenvectors of EΣ make up the 
columns of V (i.e. EΣ =V P VT), D is a diagonal matrix with diagonal elements being the 
eigenvalues of GΣ , and the eigenvectors of GΣ make up the columns of U (i.e. GΣ =U D UT).  
In brief, P, V, D and U are from the singular value decompositions of EΣ and GΣ .  
Consequently the covariance matrix of ΓGE  is G E⊗Σ Σ .  Therefore, ΓGE can be understood 
as a random matrix derived by “projecting a matrix of i.i.d. random variables with unit 
variances onto the eigenspaces determined by GΣ and EΣ ”.  Following equation (3),  
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 ( ) ( )( )   E= + +1/2 1/2 TX X UD Λ P V ε . (4) 
 That is, with negligible nuisances,  
 ( )( )   ,E= −-1/2 T -1/2Λ D U X X V P  (5) 
which implies that after removing the fixed components E(X)=G+E from X, projecting (X–
E(X)) onto the gene and experiment eigenspaces (determined by GΣ and EΣ  respectively) 
removes the two-way dependencies among the elements in X and results in a matrix of 
independent random variables.  When the covariance matrices are singular, the pseudo-
inverses of P and D can be used for projection (Penrose, 1995).  This will achieve a similar 
projection effect; the elements in the resulting matrix Λ are either independent random 
variables or zeros, with the number of zeros determined by the ranks of GΣ and EΣ .   
 Thus when the elements in Λ  are i.i.d. N(0,1) random variables, from (4) with negligible 
nuisances, ( )Tvec X  would be multivariate normally distributed with mean +G E  and 

covariance matrix G E⊗Σ Σ .  A detailed proof is provided in the Appendix. 
 
2.2 Parameter Estimation and Knorm Correlation 
 
 For model (2) to be identifiable, we assume (E)ij=Ej = 0 and that each experiment effect 
is associated with mean zero and a unit variance.  These assumptions are reasonable with 
gene expression datasets as the normalized gene expressions have the same mean and 
variance in each experiment (e.g. RMA by Irizarry et al. 2003).  Without loss of generality, 
we set these parameters to 0 and 1 respectively.  These identifiability conditions, however, 
can be different when different datasets are considered and should be determined based on 
the nature of the data and the purpose of analysis.    For the remaining part of the article, we 
will use the experiment correlation matrix RE to represent the experiment dependencies. 
 Following from the distribution of ( )Tvec X , the Maximum Likelihood Estimators 

(MLEs) of GΣ , RE, and µ , conditional upon the remaining parameters, can be shown to be 

 ( ) ( ) ( )1G 1ˆ   
TT T

n
−

= − −EΣ X µ1 R X µ1 ,  (6) 

 ( ) ( ) ( )1E 1ˆ   
TT T

p
−

= − −GR X µ1 Σ X µ1 ,  (7) 

 
-1

-1

( )  ˆ
( )  T=

E

E

X R 1µ
1 R 1

,  (8)  

where 1  is a unit column vector.  The gene correlation matrix RG can be estimated as  

 ( ) ( ) ( )1G G 1ˆ ˆ    ,
TT T

n
−

= = − −-1/2 -1/2 -1/2 E -1/2R W Σ W W X µ1 R X µ1 W  (9) 

where W is a diagonal matrix with the same diagonal elements in ˆ GΣ .  The MLE of µ  in 
equation (8), conditional on GΣ  and RE, is unbiased and consistent.  Similarly, the MLEs of 

GΣ and RE , conditional upon the remaining two parameters, are also consistent estimators.  
The reader is referred to the Appendix for detailed derivations of equations (6)–(8). 
 
 Knorm correlation.  The Knorm correlation is defined by equation (9).  The Knorm 
correlation has the several appealing interpretations:  
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(i) When experiments are uncorrelated, i.e. E IR = Σ  , the Knorm correlation reduces 
to the Pearson coefficient.  This follows from the previous argument that the 
covariance matrix G E⊗Σ Σ  is a natural extension of G I⊗Σ Σ .   A model with the 
latter covariance matrix assumes absence of experiment dependencies (i.e 
uncorrelated experiments), and leads to the Pearson coefficient. 

(ii) The Knorm correlation is the simple correlation between transformed gene 
expression profiles.  The transformation is achieved through a projection onto the 
eigenspace of RE that removes the dependencies in gene expressions between 
experiments.   

(iii) The Knorm correlation is a weighted Pearson coefficient of gene expressions with 
weights proportional to the partial correlation of the experiments.  This 
interpretation comes from that the (i,j)th element in the precision matrix (RE)-1 is 
proportional to the partial correlation between experiments i and j conditional on all 
other experiments.   

 
2.3 Practical Estimation Procedure For Real Dataset Applications 
 
 The high dimensionality of real datasets can result in large estimation errors and unstable 
covariance matrix estimates, especially when GΣ  and ER  are not sparse.  To mitigate this 
impact, we develop a practical estimation procedure consisting of a row (i.e. gene) sub-
sampling and a covariance shrinkage technique that iteratively estimates the covariance 
matrices from equations (6)–(8). 
 This procedure consists of three main steps.  The first step provides a sample of data 
matrices for parameter estimation as there is no actual observed expression matrix in 
practice; only replicates of each column (i.e. experiment) in X  are observed instead of 
matrix replicates.  Following the model in equation (2), a parametric bootstrapping technique 
is used to construct the data matrices by bootstrapping the nuisance residuals bε  in the data.  

The second step focuses on obtaining a reliable estimate of  ER  from the sample by reducing 
estimation errors in ˆ ER .  This is achieved by an iterative procedure of equations (6)–(8) with 
a row sub-sampling technique (to enable a comparable number of rows and columns in 
estimation) and a covariance shrinkage technique (to stabilize the estimated covariance 
matrices).  The third step then uses the ˆ ER  obtained from the previous step to estimate GΣ . 
 
Practical estimation procedure 
Step 1: Obtain a sample of data matrices 1,  , BX X…  by placing in the jth column of each 

bX  a randomly selected replicate observed of the jth column in X , 1,  ,b B= … .  
 
Step 2: For each matrix bX , 1,  ,b B= … , obtain a sub-matrix 

b

subX  by sub-sampling the 

rows with the number of rows comparable to the number of columns in bX .  Apply equations 

(6)–(8) iteratively to obtain ˆ
b
ER .  In each iteration, apply a covariance shrinkage method to 

,ˆ
b

G sub∑  to obtain , , keˆ
b

G sub shrun n∑  which goes back into the next iteration as the “new” ,ˆ
b

G sub∑ .  
,ˆ

b

G sub∑  is the estimate of the row covariance matrix of 
b

subX .  This iterative procedure is 

initialized with a Pearson correlation matrix for ER , and terminates when the difference in 
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log likelihood of Λ̂  in the last two iterations do not exceed a specified threshold.  The final 

estimate of ER  is given by the bagged estimate  

1

1ˆ ˆ
b

BE E
bB =

= ∑R R . 

 
Step 3: Using ˆ ER  obtained in Step 2, for each bX , estimate 

b

G∑  using equation (6).  Apply a 

covariance shrinkage method to ˆ
b

G∑  to obtain , keˆ
b

G shrun n∑ .  The final estimate of G∑  is given 

by the bagged estimate ,
1

1ˆ ˆ
b

BG G shrunken
bB =

= ∑∑ ∑ .     

 
 In the real dataset analyses in Section 4, the log likelihood difference threshold is set to 
0.01 and B is 500.  The covariance shrinkage method by Schafer  and Strimmer (2006) was 
used in the estimation procedure.  This method obtains a shrunken covariance matrix with 
optimal mean squared error within the class of linear combinations of the unbiased 
covariance estimator and a pre-specified target matrix, does not require specifications on the 
underlying distribution, and it is computationally efficient.  The diagonal matrix with unequal 
covariances was selected as the target matrix to represent the simplest parsimonious structure 
of the gene covariance matrix.  We note that other shrinkage methods can be explored based 
on which set of assumptions one believe is appropriate for the dataset and its analysis. 
 

3 Real Datasets And Data Processing 
 
3.1 Real Datasets 
 
 We use two publicly available microarray datasets to evaluate our method in inferring 
functional gene relationships.  
 Yeast dataset.  This dataset comes from a study by Sabet et. al. (2004) to investigate the 
influence of histone modifications on gene regulation.  It consists of gene expressions from a 
wild type yeast and seven histone mutation experiments.  There are two to three replicate 
arrays for each experiment.  The descriptions of the experimental conditions can be found in 
the Appendix, and the dataset is accessible through the NCBI Gene Expression Omnibus 
Database by the accession number GDS772. 
 Human Th cell dataset. This dataset is generated by Lund et. al. (2005) to identify the 
immediate genes that are differentially regulated in response to activation and Th1- or 
Th2-inducing cytokine (IL-12 or IL-4, respectively) at 2 and 6 h after initiation of 
polarization.  The dataset consists of 16 experiments conducted using 5 related treatments at 
three time points besides the untreated cells.  There are two to four replicated arrays for each 
experiment, with a total of 34 microarrays.  The descriptions of the experimental conditions 
can be found in the Appendix. 
 
3.2 Data Processing 
 
 Raw data from each dataset are first normalized using the robust multi-array average 
(RMA) method developed by Irizarry et al. (2003).  To enable a verification of inferred 
context-specific gene relationships, we use a set of Gene Ontology (GO) annotated genes 
with a strong specificity of response to the experiments in each dataset.  Genes with the same 
GO category can be considered as being functionally related.  As each dataset consists of 
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both wild type (i.e. control) and treatment experiments, genes with a strong specificity of 
response can be identified as genes that respond differently across the experiments.  Similarly 
motivated by Li and Wong (2001), we identify these genes as follows: (i) for each 
experiment, rank the genes by their average expression over replicates, (ii) for each gene, 
obtain the difference between the maximum and minimum ranks across the experiments, (iii) 
a gene is identified as highly variably expressed if this rank difference exceeds a specified 
threshold.  We chose the top 20% of such genes (~530 genes) for the yeast dataset, and the 
top 10% of such genes (~600 genes) for the human datasets. 
 

4  Results 
 
 In this section, we report the performance of Knorm correlation in an illustrative 
simulation dataset, a yeast dataset, and a human dataset.  We use the GO functional 
annotations to biologically evaluate the validity of inferred functional gene relationships.  
Since there is no gold standard measure for gene relationships, we will use the Pearson 
coefficient as a comparison benchmark because of its similar interpretations to Knorm 
correlation in terms of gene relationships and also its widespread use.  The results 
demonstrate the success of our proposed method in inferring functional gene relationships. 
 
4.1 Simulation Dataset 
 
 In this simulation study, we demonstrate the need to take into account the column-wise 
dependencies when estimating the row dependencies in X  in the case when the column 
correlation matrix is known.  Using two correlated row vectors (i.e. genes), this study 
illustrates improved accuracies of Knorm correlation estimates over that of the Pearson 
coefficients even with increasing column (i.e. experiment) dependencies.  At each p% 
dependency level (with p=1,…,100), we first generate 1000 i.i.d. column vectors of 
dimension two, each from a bivariate normal distribution with zero means, unit variances and 
a correlation of 0.17.  We then assign the first 1000p% vectors to be the same as the first 
vector, with the remaining 1000(1-p)% independent vectors remain unchanged.  Putting these 
1000 column vectors of dimension 2 into a matrix, we now obtain two row vectors of 
dimension 1000 with a true row correlation of 0.17, and p% of the vector components being 
identical.  We next compute both Pearson coefficient and Knorm correlation of the two row 
vectors, and plot the estimates in blue and red respectively in Figure 2.  The Knorm 
correlation was computed using equation (9) with the column correlation matrix known by 
the construction procedure of the row vectors at the p% dependency level.   
 Figure 2 shows the improved estimation accuracy of Knorm correlation over that of 
Pearson coefficient.  The Knorm correlation estimate is closer to the true correlation of 0.17 
and has a much smaller variance until we reach about an 80% dependency.  The Pearson 
coefficient, on the other hand, fails rapidly in accuracy after an approximate 5% dependency 
between the row vector components.  We also have similar observations for simulation 
studies with different values of true correlations, both negative and positive (besides the 
value 0.17), and we only present the simulation study with a true correlation of 0.17 here as 
an illustrative example. 
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4.2 Real Datasets 
 
 We use the Gene Ontology (GO) to evaluate the biological accuracy of the inferred 
functional gene relationships.  Two genes are said to be annotated as functionally related if 
they share the same GO category.  Using the correlation measure, functional relationships 
between any two genes are predicted based on the sign and magnitude of their correlation 
estimates.  The magnitude reflects the extent of a gene pair’s synchronous response to the 
experiments, whereas a positive sign indicates a parallel response and a negative sign 
suggests an opposite response.   
 For each dataset we compare the percentages of GO annotated functionally related gene 
pairs among the top ranking genes ordered by the absolute Pearson coefficient and the 
absolute Knorm correlation.  The Knorm correlation is computed using the estimation 
procedure described in Section 2.3 and the Pearson coefficient is computed on expressions 
that are averaged over the replicates within each experiment (a common approach in 
practice).  We further provide examples of gene pairs to explicitly illustrate the improvement 
in inferring gene relationships by the Knorm correlation.  However, the overall performance 
of each correlation measure in inferring gene relationships should be assessed by the number 
of gene pairs found to be functionally related by GO annotations.  Note that a good 
correlation measure would put functionally related gene pairs high on the list and thus report 
higher percentages.   
 
4.2.1 Yeast dataset 
 The Knorm correlation reports consistently higher percentages of GO annotated 
functionally related gene pairs than those obtained by the Pearson coefficient, see Table 1.  In 
the top 10, 30, 50 and 100 gene pairs in estimated correlations, the Knorm correlation 
identified respectively 30.0%, 43.3%, 38.0% and 34.0% gene pairs that are known to be 
functionally related by GO annotations whereas the Pearson coefficient only identified 
respectively 10%, 20%, 26% and 21% gene pairs to be functionally related gene pairs.  The 
distinction is especially strong for the gene pairs with highly ranked correlations.  It is 
worthwhile to note that the percentages of functionally related gene pairs from both the 
proposed method and Pearson approach in Table 1 decrease generally and the percentage 
differences become stable as more top gene pairs are considered.  This occurs since the 
presence of more gene pairs with weaker gene relationships would dilute and consequently 
stabilize the percentages of functionally related gene pairs found. 
 Gene pairs with biologically validated gene relationships.  We have discovered gene 
pairs whose functional relationships are correctly predicted by the Knorm correlations.  We 
provide some examples of such gene pairs as follows.  These gene pairs have a high Knorm 
correlation estimate but a low Pearson coefficient.  (MCM1, SWI5).  This gene pair has a 
Knorm correlation of 0.52, but a Pearson coefficient of only –0.08.  The positive correlation 
of 0.52 is supported by experimental studies showing that MCM1 is a direct regulator of 
SWI5 (Kumar et al., 2000; Lee et al., 2002) and also that a reduced acetylation of histone 
amino termini is associated with reduced transcription levels of SWI5 (Deckert and Struhl, 
2002; Shimizu et al., 2003).  Therefore expressions of SWI5 and MCM1 are expected to 
show positive correlation in this dataset where histone amino termini have been deleted or 
modified, and the Knorm correlation confirms this expectation.  (CKA1, PMC1).  Both 
genes are known to be involved in maintaining cell ion homeostasis and yeast growth.  
Knorm correlation provides a positive estimate of 0.53 that reflects their related roles, while 
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the Pearson coefficient gives an estimate of only –0.02.  (HSF1, CTK3). These genes are 
biologically expected to be synchronously involved in the regulation of transcription from 
RNA polymerase II promoter.  This is revealed by a positive Knorm correlation of 0.49, but 
not by the Pearson coefficient (–0.03). 
 
4.2.2 Human Th cell dataset 
 We see from Table 2 that the Knorm correlation reports favorably higher percentages of 
gene pairs found to be GO annotated as functionally related than those obtained by the 
Pearson coefficient, especially for the very highly ranked gene pairs.  We note that the 
percentages in human dataset are generally lower than those in the yeast dataset, which can 
be attributed to the current incomplete annotations in human genome. 
 Gene pairs with biologically validated gene relationships. We have again discovered 
gene pairs, as follows, whose functional relationships are correctly predicted by the Knorm 
correlations.  (APEX1, MSH6).  The negative correlation of -0.44 by Knorm correlation is 
supported by a recent study reporting that the expression of APE protein leads to the 
suppression of DNA mismatch repair and that the MSH6 protein was markedly reduced in 
the APE–expressing cells (Chang et al., 2005).  The Pearson coefficient, on the other hand, 
fails to capture this relationship with a value of –0.18 (34th percentile).  (RB1, CDKN1A).  
The positive correlation of 0.40 by the Knorm is supported by a recent study reporting that 
the retinoblastoma protein RB1 is a cooperating factor for the transcription factor MITF to 
activate the expression of the cyclin–dependent kinase inhibitor gene CDKN1A, that 
contributes to cell cycle exit and activation of the differentiation program (Carreira et al., 
2005).  Contrary to this fact, the Pearson coefficient yields a value of –0.05. 
 

5  Emprical Model Justification 
 
 A key assumption in our probability model is the i.i.d. standard normal assumption on the 
elements in Λ  in equation (5).  In this section, we provide an empirical justification of this 
assumption using the yeast dataset as an illustrative example.  We examine the qq-plot of the 
elements in Λ̂ , estimated from the yeast dataset, against a standard normal distribution, in 
addition to  performing a Kolmogorov-Smirnov (K-S) test on the elements in Λ̂ .  Λ̂  is 
computed by equation (5) using the mean and covariance matrices estimated for the yeast 
dataset.   
 Figure 3 shows a randomly selected qq-plot among those obtained from 300 replicated 
expression matrices constructed through the bootstrapping procedure. This qq-plot is 
suggestive of a standard normal distribution for the elements in Λ̂  with a p-value of 0.2 for 
the K-S test.  Overall we observe good qq-plots with an average p-value of 0.68 for the K-S 
tests. 
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6  Discussion 
 
We discuss some practical considerations when applying the approach to real datasets.  

First is the gene selection performed in the real data analyses.  Genes that respond to the 
underlying biology of the experiments can be regarded as genes of higher specificity than 
those that do not respond; they carry larger biological variations than the nuisance variations.  
As such, our real dataset analyses focus on genes with high variable expressions across the 
experiments.  We recognize that while there are genes that respond to the experiments but do 
not exhibit varied expression changes, it would be difficult to distinguish them from non-
responsive genes due to the microarray technology limitation.  Using genes highly specific to 
the biological process under study is crucial for a meaningful interpretation of inferred gene 
relationships.  Next is the inference of causal relationships from the Knorm correlation.  
Microarray data is limited in its capacity to infer causal gene relationships because it only 
provides of snapshot of gene activities, and a gene expression is an overall measure of a 
gene’s responses in multiple interactions with other genes.  Measures like correlation only 
seek to provide a first step in inferring functional gene relationships and whether the genes 
are associated with one another in the biological process under study.  After gene 
relationships have been established, and if of further interest, other technologies may be 
employed to specifically determine their directional relationships. 

Although our method works well in practice, we bear in mind that it comes with two 
main assumptions: the normal distribution and the Kronecker product covariance matrix.  
The normal assumption is not unique to our work but is a commonly accepted assumption in 
numerous microarray studies.  Besides the justification provided in Section 5, we also 
investigated the robustness of the Knorm correlation against the normality assumption using 
simulated poisson distributed “gene expressions”.  Results indicated the Knorm correlation is 
rather robust, yielding comparable mean square errors to those computed on the normally 
distributed “expressions” (more details and results in Appendix).  We note that there are 
inherent difficulties in the data structure posed by study design (often by decisions beyond 
our control) that make developing direct model justifications less straightforward.  The 
singularity of the high dimensional (estimated) gene covariance matrix poses difficulties in 
using statistical tests involving likelihoods that require a determinant of the singular high-
dimensional covariance matrix.  A complete statistical justification for the Kronecker product 
covariance matrix from such data turn out to be a very challenging problem. 

We note that it is not the main aim of the article to suggest that the Knorm correlation is 
the best measure for inferring gene relationships.  Rather, this work suggests that a measure 
adjusted for dependencies between the experiments is a better measure than one not adjusted 
for them, e.g. Knorm correlation versus Pearson coefficient.  Therefore, a comparison 
between various measures of gene relationships would not be meaningful as each measure is 
defined to capture different aspects of a relationship.  We have, however, provide a 
comparison between the Euclidean distance (one that ignores experiment dependencies) and 
the Mahalanobis distances (one that takes into account experiment dependencies) using the 
yeast dataset to further illustrate that the latter is a better measure than the former; the 
Mahalanobis distance is computed using the experiment covariance matrix estimated by the 
procedure in Section 2.3.  Results are provided in the Appendix. 
 In conclusion, this work demonstrates that considering experimental dependencies is 
important in making more accurate inferences on functional gene relationships and its 
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practical usefulness in real datasets.   Since assumptions in our method are largely motivated 
from the nature of the dataset and the purpose of analysis, this work could serve as an initial 
point to develop other models with appropriate modifications. 
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Table 1.  Percentages of gene pairs found to be GO annotated as functionally related 
from among the top ranking gene pairs identified by Knorm correlation and the Pearson 
approach for the yeast dataset. 
 

Yeast microarray dataset No. of top ranking gene pairs 
Knorm correlation Pearson coefficient 

Top 10 30.0 10.0 
Top 30 43.3 20.0 
Top 50 38.0 26.0 
Top 100 34.0 21.0 
Top 500 26.4 21.8 
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Table 2.  Percentages of gene pairs found to be GO annotated as functionally related 
from among the top ranking gene pairs identified by Knorm correlation and the 
Pearson approach for the human Th cell microarray dataset. 
 

Human Th cell microarray dataset No. of top ranking gene pairs 
Knorm correlation Pearson coefficient 

Top 10 10.0 10.0 
Top 30 10.0 3.3 
Top 50 10.0 4.0 
Top 100 5.0 2.0 
Top 500 4.0 3.4 
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Figure 1.  Scatter plots of gene expressions of approximately 530 GO annotated yeast genes 
between four experiments in a yeast histone mutation dataset (Sabet et. al., 2004).  Axes 
represent  RMA normalized gene expression values.  
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Figure 2.  Correlation estimates of two simulated vectors by Knorm correlation (in red) 
and Pearson coefficients (in blue) in the presence of vector component dependencies at 
different levels. X-axis indicates the dependency level; Y-axis represents the estimated 
correlation.  The true correlation value is 0.17. 
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Figure 3. QQ-plot of elements in Λ̂ , estimated from a randomly selected expression 
matrix constructed through a bootstrapping procedure for the yeast dataset described in 
Section 3 against a standard normal distribution.   
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Appendix 
 
1. IMPACT OF EXPERIMENTAL DEPENDENCIES ON PEARSON 

COEFFICIENTS 
 
In addition to the results presented in Figure 2, we further investigate the adverse impact of 
experimental (column) dependencies on the Pearson coefficient of two uncorrelated genes 
across eight experiments (i.e. two row vectors of dimension 8).  In this simulation study, we 
simulate gene expression matrices with rows corresponding to genes, and columns 
corresponding to experiments.  Three different correlation matrices are used to describe the 
column dependencies: in Figure A1(a), the column correlation matrix is an identity matrix to 
simulate for row vectors with independent vector components; in Figure A1(b), the column 
correlation matrix consists of a mixture of zero and positive elements to simulate for row 
vectors with moderately positively correlated components; in Figure A1(c), the column 
correlation matrix consists of elements in a range of 0.8 to 1.0 to simulate for row vectors 
with highly positively correlated components.  Each histogram in Figure A1 consists of 5000 
Pearson coefficients, each computed from a pair of row vectors that are independently 
generated by a common multivariate normal distribution with zero means, unit variances and 
a specified correlation matrix as described above. 
 
From Figures A.1(a)–A.1(c), we see a change in the distribution of the Pearson coefficients 
with increasing dependencies between the vector components.  Figure A.1(a) shows a 
histogram representing the true distribution of Pearson coefficients between the two 
uncorrelated vectors. The distributions of the Pearson coefficients in Figures A.1(b) and 
A.1(c) become more skewed toward the larger absolute correlation values as dependencies 
between the components increase. 
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2. DERIVATION OF KRONECKER PRODUCT STRUCTURED COVARIANCE 
MATRIX OF GENE EXPRESSION MATRIX X UNDER OUR MODEL 
 

Theorem S1.  Given a p n×  matrix Λ  of i.i.d. elements with mean 0 and unit variances, the 
covariance matrix of    1/2 1/2 TX = U D Λ P V  is ⊗G EΣ Σ , where   =G TΣ U D U  and 

=G TΣ V P V  are the singular value decompositions of GΣ  and EΣ  respectively. 
 
Proof. Letting   1/2 TΩ = Λ P V , we have  1/2X = U D Ω . Since Λ  is a p n× matrix of i.i.d. 
elements with unit variances, the covariance matrix of Λ is ,pnI or 

equivalently ( )Cov vec( ) = pnΛ I , where pnI  is a ( ) ( )pn pn×  identity matrix.  Now we 

consider the covariance matrix of Ω .  Let  ijΩ  be the (i,j)th element in Ω , ie  be a p-

dimensional column vector of zeroes except a value of 1 at the ith element and jf  be a n-
dimensional column vector of zeroes except a value of 1 at the jth element. Then we have 

( ) ( )

( )

' ' ' '

' '

'

'

'

Cov , Cov     ,      

  Cov(  ,  )    

    when   '
0 when   '

  when   '
0 when   '

when   '

0 wh

ij i j i j i j

j i i j

j j

j j

jj

i i
i i

i i
i i

i i

Ω Ω =

=

⎧ =
= ⎨

≠⎩
⎧ =

= ⎨
≠⎩

=
=

T 1/2 T T 1/2 T

T 1/2 T T 1/2 T

T 1/2 1/2 T

T E

E

e Λ P V f e Λ P V f

f V P e Λ e Λ P V f

f V P P V f

f Σ f

Σ

en   'i i

⎧⎪
⎨

≠⎪⎩

                          (A1) 

Therefore, the covariance matrix of Ω  is ⊗ E
pI Σ . Furthermore, letting ijX to be the (i,j)th 

element in X , we have 
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Thus the covariance matrix of  1/2X = U D Ω  is ⊗G EΣ Σ .   ■  
 



21 

3. DERIVATION OF MLEs IN EQUATIONS (6)–(8) 
 

Theorem S2.  Let the covariance matrices GΣ  and EΣ  be invertible. Given that vec( )X  
follows a multivariate normal distribution with mean vec( ( )) vec( )E = TX µ1  and covariance 
matrix ⊗G EΣ Σ , where 1  is a column vector of ones, the Maximum Likelihood Estimators 
(MLEs) of GΣ , EΣ  and µ , conditional on remaining parameters, are given in equations (6)–
(6) in Section 2 respectively. 
 
Proof.  By the assumed multivariate normal model, the log-likelihood function of an 
observed X  is  

( )( ) ( ) ( )( )1 11( ; , , ) log | | log | | .
2 2 2
p nl tr

− −
= − − − − −

TE G E G T E T GX µ Σ Σ Σ Σ X µ1 Σ X µ1 Σ  

Then the first partial derivatives of ( ; , , )l E GX µ Σ Σ  with respect to GΣ , EΣ  and µ  are 
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As the normal distribution belongs to the exponential family and its log-density function is 
concave, the MLEs can be obtained by equating the above derivatives to zero and solving for 

GΣ , EΣ  and µ , by which, we then obtain the MLEs of GΣ , EΣ  and , µ  conditional on 
remaining parameters, respectively as given in equations (6)–(8) in Section 2.  Note that the 

EΣ  here is equivalent to the ER  in equation (7) as EΣ  is assumed to have unit variances in 
the main article.    ■ 
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4. DESCRIPTION OF EXPERIMENTS 
 
 Yeast dataset (Sabet et. al. 2004) 

Experiment 1: Wild type yeast 
Experiment 2: Single mutants for RPD3P 
Experiment 3: Single mutants 1 for histones H3 
Experiment 4: Single mutants 2 for histones H3 
Experiment 5: Single mutants 1 for histones H4 
Experiment 6: Single mutants 2 for histones H4 
Experiment 7: Double mutants for RPD3 and histones H3 
Experiment 8: Double mutants for RPD3 and histones H4 
 
Human Th cell dataset (Lund et. al. 2005) 
Experiment 1: Untreated cells 
Experiment 2: AntiCD3 + AntiCD28 (2h) 
Experiment 3: AntiCD3 + AntiCD28 (6h) 
Experiment 4: AntiCD3 + AntiCD28 (48h) 
Experiment 5: AntiCD3 + AntiCD28 + IL-12 (2h) 
Experiment 6: AntiCD3 + AntiCD28 + IL-12 (6h) 
Experiment 7: AntiCD3 + AntiCD28 + IL-12 (48h) 
Experiment 8: AntiCD3 + AntiCD28 + IL-12 +TGFbeta (26h) 
Experiment 9: AntiCD3 + AntiCD28 + IL-12 +TGFbeta (6h) 
Experiment 10: AntiCD3 + AntiCD28 + IL-12 +TGFbeta (48h) 
Experiment 11: AntiCD3 + AntiCD28 + IL-4 (2h) 
Experiment 12: AntiCD3 + AntiCD28 + IL-4 (6h) 
Experiment 13: AntiCD3 + AntiCD28 + IL-4 (48h) 
Experiment 14: AntiCD3 + AntiCD28 + IL-4 + TGFbeta (2h) 
Experiment 15: AntiCD3 + AntiCD28 + IL-4 + TGFbeta (6h) 
Experiment 16: AntiCD3 + AntiCD28 + IL-4 + TGFbeta (48h) 
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5. ROBUSTNESS OF KNORM CORRELATION 
  
We additionally performed the following simulation study to examine the robustness of the 
Knorm correlation when the multivariate normality assumption of the gene expression matrix 
X  does not hold.   
 
The data were simulated and analyzed as follows: 

• We generated two datasets from the Normal and Poisson distributions respectively.  
The dependencies between the vector components are introduced by having the 
appropriate number of components to be identical. For example, a 20% component 
dependency indicates that the first 20 components in the vector of dimension 100 are 
the same. 

In the Normally distributed dataset, at each p% dependency level (with p=1,…,100), 
we first generate 100 i.i.d. column vectors of dimension 2, each from a bivariate 
normal distribution with zero means, unit variances and a correlation of 0.17, and 
then assign the first 100p% vectors to be the same as the first vector (while remaining 
the last 100(1-p)% independent vectors unchanged).  Putting these 100 column 
vectors of dimension 2 into a matrix, we now obtain two row vectors of dimension 
100 with a true row correlation of 0.17, and p% of the vector components being 
identical (the correlation between components within the vector is either 0 or 1).     

  In the Poisson distributed dataset, we first sampled pairs of values from two 
dependent Poisson processes (the correlation between the Poisson processes is 0.17).  
Similar to what we did in the normally distributed dataset, we then constructed the 
pairs of vectors and introduced the dependencies between the vector components. 

  Each dataset consists of 30 independent pairs of vectors at each component 
dependency level.   

• By our construction procedure, the component covariance matrix for each vector is 
known.  We then computed the Knorm correlation for each vector pair using equation 
(6) with the known component covariance matrix, and estimated the mean squared 
errors of the Knorm correlation with the true correlation 0.17. 

 
Figure A.2. shows the mean squared errors of the Knorm correlation. The blue points 
represent the Normal dataset and read points represent the Poisson dataset.  We see that the 
two sets of mean squared errors are close to each other, suggesting that the Knorm correlation 
is more or less robust against the normality assumption. Note that the normal dataset here is 
the same one used in Figure 2 in the revised manuscript.   
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6. RESULTS USING EUCLIDEAN DISTANCE VERSUS THE MAHALANOBIS 
DISTANCE (YEAST DATASET) 

 

We perform an additional study to further demonstrate the advantage of adjusting for 
experiment dependencies using another distance metric. Here, we use the Mahalanobis 
distance and Euclidean distance on standardized expressions to infer gene relationships. The 
experiment correlation matrix used in computing the Mahalanobis distance is from the 
Knorm iterative estimation procedure.  Table A.1 presents the results on the yeast dataset.  It 
further reinforces the advantage of taking into account experiment dependencies in the 
distance calculations. We observe that the Knorm correlations yield higher percentages of 
GO functionally related gene pairs than that by the Mahalanobis distance except for the top 
10 genes. 
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Figure A.1.  Adverse impact of increasing component dependencies on the distribution 
of the Pearson coefficients for a pair of uncorrelated vectors.  Each histogram consists of 
Pearson coefficients estimated from 5000 random pairs of uncorrelated vectors. 
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Figure A.2.  A plot comparing the mean square errors of Knorm correlation from the 
normally distributed vectors (shown in blue) against that from the poisson distributed 
vectors (shown in red) across various component dependencies. 
 
 

Percentage of component dependency

0              25             50            75            100

0 
   

   
 0

.1
   

   
0.

2 
   

  0
.3

   
   

0.
4 

   
   

0.
5

M
ea

n 
sq

ua
re

 e
rro

r

Percentage of component dependency

0              25             50            75            100

0 
   

   
 0

.1
   

   
0.

2 
   

  0
.3

   
   

0.
4 

   
   

0.
5

M
ea

n 
sq

ua
re

 e
rro

r

Percentage of component dependency

0              25             50            75            100

0 
   

   
 0

.1
   

   
0.

2 
   

  0
.3

   
   

0.
4 

   
   

0.
5

M
ea

n 
sq

ua
re

 e
rro

r



27 

Table A.1.  Comparison of percentages of GO functionally related gene pairs identified by 
the Euclidean and Mahalanobis distances for the yeast dataset. 
 

No. of top 
ranking gene 
pairs 

Mahalanobis 
distance 

Euclidean 
distance 

Knorm 
correlation 

Pearson 
coefficient 

Top 10 50.0% 20.0% 30.0% 10.0% 
Top 30 36.7% 16.7% 43.3% 20.0% 
Top 50 32.0% 26.0% 38.0% 26.0% 
Top 100 26.0% 24.0% 34.0% 21.0% 
Top 500 26.4% 21.2% 26.4% 21.8% 

 
 
 


