
DAMAGE SEGREGATION AT FISSIONING MAY
INCREASE GROWTH RATES: A SUPERPROCESS MODEL

STEVEN N. EVANS AND DAVID STEINSALTZ

Abstract. A fissioning organism may purge unrepairable damage by
bequeathing it preferentially to one of its daughters. Using the mathe-
matical formalism of superprocesses, we propose a flexible class of ana-
lytically tractable models that allow quite general effects of damage on
death rates and splitting rates and similarly general damage segregation
mechanisms. We show that, in a suitable regime, the effects of random-
ness in damage segregation at fissioning are indistinguishable from those
of randomness in the mechanism of damage accumulation during the or-
ganism’s lifetime. Moreover, the optimal population growth is achieved
for a particular finite, non-zero level of combined randomness from these
two sources. In particular, when damage accumulates deterministically,
optimal population growth is achieved by a moderately unequal division
of damage between the daughters, while too little or too much division
is sub-optimal. Connections are drawn both to recent experimental re-
sults on inheritance of damage in protozoans, and to theories of aging
and resource division between siblings.

1. Introduction

One of the great challenges in biology is to understand the forces shaping
age-related functional decline, termed senescence. Much current thinking on
senescence (cf. [SG06]) interprets the aging process as an accumulation of
organismal damage. The available damage repair mechanisms fall short, it
is often argued, because of limitations imposed by natural selection, which
may favor early reproduction, even at the cost of later decrepitude. One
line of research aims to clarify these trade-offs by examining the non-aging
exceptions that test the senescence rule. Of late, it has even been argued
that negligible [Fin90] or even negative [VBD+04] senescence may not be as
theoretically implausible as some had supposed, and that it might not even
be terribly rare [Gue04].

Fissioning protozoans have been generally viewed as a large class of excep-
tions to the senescence rule. Indeed, their immortality has been considered
almost tautological by the principle enunciated by P. Medawar [Med57], that
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individual birth is a fundamental prerequisite for aging. This principle has
been sharpened by L. Partridge and N. Barton [PB93], who remark

The critical requirement for the evolution of ageing is that
there be a distinction between a parent individual and the
smaller offspring for which it provides. If the organism breeds
by dividing equally into identical offspring, then the distinc-
tion between parent and offspring disappears, the intensity of
selection on survival and reproduction will remain constant
and individual ageing is not expected to evolve.

Recent experiments [AGRN03, LJBJ02, ASJ03, SMPT05] have focused at-
tention on the elusive quality of the “distinction” between parent and off-
spring. If aging is the accumulation of unrepaired damage, then “age” may
go up or down. The metazoan reproduction that results in one or more
young (pristine) offspring, entirely distinct from the old (damaged) parent,
is an extreme form of rejuvenation. This may be seen as one end of a con-
tinuum of damage segregation mechanisms that include the biased retention
of carbonylated proteins in the mother cell of budding yeast [AGRN03] and
perhaps the use of aging poles inherited by one of the pair of Escherichia
coli daughter cells as, in the words of C. Stephens [Ste05], cellular “garbage
dumps”. Even where there is no conspicuous morphological distinction be-
tween a mother and offspring, the individuals present at the end of a bout
of reproduction may not be identical in age, when age is measured in ac-
cumulated damage. Whereas traditional theory has focused on the extreme
case of an aging parent producing pristine offspring, it now becomes nec-
essary to grapple with the natural-selection implications of strategies along
the continuum of damage-sharing between the products of reproduction.

Our approach is a mathematical model of damage-accumulation during
a cell’s lifetime and damage-segregation at reproduction that quantifies (in
an idealized context) the costs and benefits of unequal damage allocation to
the daughter cells in a fissioning organism. The benefits arise from what G.
Bell [Bel88] has termed “exogenous repair”: pushing more of the damage
into one daughter cell than into the other,

For a conceptually simple class of models of population growth that flexi-
bly incorporate quite general structures of damage accumulation, repair and
segregation, we analytically derive the conditions under which increasing in-
equality in damage inheritance will boost the long-term population growth
rate. In particular, for organisms whose lifetime damage accumulation rate
is deterministic and positive, some non-zero inequality will always be pre-
ferred. While most immediately relevant for protozoans, this principle and
our model may have implications more generally for theories of intergener-
ational effects, such as transfers of resources and status.

One consequence of exogenous repair may seem surprising: If inherited
damage significantly determines the population growth rate, and if damage
is split unevenly among the offspring, there may be a positive benefit to
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accelerating the turnover of generations. In simple branching population
growth models, the stable population growth rate is determined solely by the
net birth rate. In the model with damage, increasing birth and death rates
equally may actually boost the population growth rate. This may be seen
as the fission analogue of Hamilton’s principle [Ham66], that the likelihood
of future decline, and increasing mortality rates, places a selective premium
on early reproduction. Of course, if the variance in damage accumulation is
above the optimum, then this principle implies that reducing the inequality
in inheritance, or decreasing birth and death rates equally, would be favored
by natural selection.

2. Background

Popular reliability models of aging (such as [Kol81, GG01, Dou82] and
additional references in section 3 of [SG06]) tend to ignore repair, while the
class of growth-reproduction-repair models (such as [Kir77, AL95, Cic97,
Man01, CL06] and further references in section 2 of [SG06]) tend to ignore
the fundamental non-energetic constraints on repair. A living system will
inevitably accumulate damage. Damage-repair mechanisms are available,
but these can only slow the process, not prevent it. The repair mechanism
of last resort is selective death. Any individual line will almost certainly go
extinct, but the logic of exponential profusion means that there may still
some lines surviving.* Following this logic one step further brings us to our
central question: What benefit, if any, would accrue to a line of organisms
that could not purge damage, but could selectively segregate it into one of
its children?

This mechanism of selective segregation of damage was described by G.
Bell [Bel88], who called it “exogenous repair”. Bell’s theoretical insight de-
rived from his analysis of a class of experiments that were popular a century
ago, but have since largely been forgotten. The general protocol allowed pro-
tozoans to grow for a time, until a small sample was plated to fresh medium,
and this was repeated for many rounds. Effectively, this created an artificial
selection of a few surviving lines, selected not for maximum fitness (as would
be the case if the population were allowed to grow unmolested), but at ran-
dom. In most settings, in the absence of sexual recombination, population
senescence — slackening and eventual cessation of growth — was the rule.

One would like to follow the growth of individual cells, but this was
inconceivable with the technology of the time. Only lately has such an
undertaking become not only conceivable, but practicable. Recent work
[SMPT05] has followed individual E. coli over many generations, following
the fates of the “old pole” cell (the one that has inherited an end that

*While this argument is simplest for haploid fissioning organisms, the same logic could
be applied to the germ line of higher organisms, as in [BP98]. Sexual recombination, in
this picture, only facilitates the rapid diffusion of high-quality genetic material, and the
bodies are rebuilt from good raw materials in each generation.
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has not been regenerated) and the “new pole” cell. Whereas individual
cells do not have a clearly defined age, it makes more sense to ascribe an
age to a pole. Unpublished work from the same laboratory (described in
October 2004 at a workshop held at the Max Planck Institute for Demo-
graphic Research in Rostock), as well as the work of [AGRN03, LJBJ02]
on Saccharomyces cerevisiae goes even further, tracking the movement of
damaged proteins or mitochondria through the generations, and showing
that the growth of the population is maintained by a subpopulation of rela-
tively pristine individuals. The demography of damage accumulation in the
fissioning yeast Schizosaccharomyces pombe has recently been described in
[MFD+06]. These striking experiments have helped focus attention on the
elusive nature of the asymmetries that underly microbial aging.

We propose a model to address the following question: Suppose the
“costs” of accumulating damage are inevitable. What may be under evo-
lutionary control is the equality of dividing this damage between the two
daughters. Of course, perfectly equal splitting of damage is physically im-
possible, and one must always take care not to read an evolutionary cause
into a phenomenon that is inevitable. At the same time, it is worth posing
the question, whether there is an optimal level of asymmetry in the segre-
gation of damage which is non-zero. If this is true in the models, it suggests
possibilities for future experiments, to determine whether the asymmetry is
being actively driven by the cell, or whether possibilities for reducing the
asymmetry are being neglected.

In principle, this is a perfectly generic evolutionary phenomenon. It de-
pends upon the “old-pole” experiments only to the extent that they reveal at
least one mechanism producing such an asymmetry. Our model is intended
to represent a large population of fissioning organisms, each of which has
an individual “damage level”, which determines its rate of growth and divi-
sion, and its likelihood of dying. When a cell divides, its daughters divide
the parent’s damage unequally, with the inequality controlled by a tunable
parameter. The evolution of this population is described formally by a
mathematical object called a “superprocess”.

An illustration of the underlying branching model is in Figure 1. In this
example, each individual cell accumulates damage at a constant rate during
its lifetime, so that the lifelines of cells are parallel sloping lines. The only
way to reduce the damage load is to pass the damage on disproportionately
to one of the daughters at a division. Note the following:

• Any fixed line of descent eventually dies.
• The population as a whole continues to grow.
• Death is more likely, and fissioning comes more slowly, for cells that

are further right — that is, with more damage.
• The population eventually clusters at low levels of damage.

At this point, we should acknowledge [WPJK06], which appeared while
the present paper was under review, and which puts forward an account
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Figure 1. Illustration of the branching model. Sloping lines
are lifelines of cells, moving downward in time and rightward
in damage space. Filled circles represent fission events. Open
circles represent deaths. Arrows represent cells that survive
to the end of the experiment.

of the possible advantages of asymmetric damage division in many respects
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quite similar, in others substantially different. The paper [WPJK06] com-
plements the present paper in several important respects:

(1) The present paper presents an abstract model of damage segregation
and its effects, whereas [WPJK06] is specifically a model of the “old-
pole” effect.

(2) The present paper offers analytical solutions for models that incor-
porate a broad range of mechanisms for damage segregation and the
effect of damage on death and splitting rates, and it provides gen-
eral results about the effect of damage segregation on growth rates,
whereas the specific parametric model of [WPJK06] is amenable to
simulation and computational exploration of its particular parame-
ter space.

(3) The present paper performs its analysis in an asymptotic regime,
the relevance of which to the behavior of actual finite populations
depends on scaling assumptions which are not required in [WPJK06].
(Roughly speaking, the scaling assumptions are analogous to those
that are required for the validity of the diffusion approximations
introduced by researchers such as Kimura into population genetics.)

(4) The present paper includes no explicit representation of cell growth.
The important lesson is that the same fundamental behavior is seen in two
very different models, analyzed with very different methods. In each case,
increasing the inequality in transmission of damage to the daughter cells is
found to increase the population growth rate in some circumstances.

3. Description of the model

Our model for the growth of a population of fissioning organisms such
as E. coli is an infinite population measure-valued diffusion limit of a se-
quence of finite population branching models. The formal description of
this measure-valued process is contained in the Appendix. In the present
section we confine ourselves to an intuitive description of the model.

3.1. Diffusion. The state of the process at any time t is a collection of cells,
each of which has some level of damage. We represent the level of damage as
a positive real number. Each cell develops independently of its fellows, per-
forming four different behaviors: Damage creation, damage repair, death,
and fissioning. Damage creation and repair sum to a net damage process,
which we model as a diffusion. Diffusion processes, which are most com-
monly applied in population genetics as models for fluctuating proportions
of alleles in a population (cf. [Ewe79]), may be thought of as continuous
analogues of random walks. A real-valued diffusion is a general model of a
random process that changes continuously in time and satisfies the Markov
property: future behavior depends only on the current state, not on the more
distant past. The diffusion model of damage accumulation in a cell is deter-
mined by two parameters: the diffusion rate σmot(x), giving the intensity of
random fluctuation of the damage level as a function of the current damage
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level x; and the drift b(x), giving the trend in damage, whether increasing
(positive) or decreasing (negative), as a function of current damage.

3.2. Branching diffusions and measure-valued diffusions. While cells
move independently through damage space, they are also splitting in two
and dying, at rates that depend on their current damage state. The obvious
way to represent the state of this “branching diffusion” process at any given
time is as a list of a changing number of cells, each labeled with its damage
state. It turns out to be mathematically more convenient to invert this de-
scription and present all the damage states, each with a number (possibly
zero) representing the number of cells in that state. Formally, such a de-
scription is called an integer-valued measure on the space of damage states
(that is, on the positive real numbers). A stochastic process whose state
at any given time is one of these measures is a measure-valued (stochastic)
process.

We take this mathematical simplification one step further, at the expense
of increasing the amount of hidden mathematical machinery. The discrete
numbers of individuals in the population prevent us from applying the pow-
erful mathematical tools of analysis. This is exactly analogous to the diffi-
culties that arise in analyzing the long-term behavior of discrete branching
models, or inheritance models such as the Wright-Fisher and Moran mod-
els [Ewe79]. The famous solution to that problem was W. Feller’s [Fel51]
diffusion approximation. By an essentially analogous method (see, for ex-
ample, [Eth00] or [Per02]), rescaling the time and giving each cell “weight”
1/n, while letting the population size and the birth and death rates grow
like n, and now sending n to infinity, we obtain in the limit a stochastic
process that has as its state space continuous distributions of “population”
over the damage states. Such general distributions are called measures and
may be identified in our setting with density functions on the positive real
numbers. We stress that the limiting stochastic process is not deterministic
and can be thought of as an inhomogeneous cloud of mass spread over the
positive real numbers that evolves randomly and continuously in time. Such
a stochastic process is called a measure-valued diffusion or superprocess. An
accessible introduction to measure-valued process produced by this sort of
scaling limit, including the original superprocess, called “super-Brownian
motion,” is [Sla02].

As described in [Saw76], branching diffusions [Mor62, CK70, Ewe69] and
the related stepping-stone models [Kim53, KW64] were well established in
the 1960s as models for the geographic dispersion, mutation, and selection of
rare alleles. Important early applications of spatially structured branching
models include [Kin77, SF81], which helped to elucidate the spatial pop-
ulation distributions that are likely to arise from from populations under
local dispersion and local control. The utility of measure-valued stochastic
processes in population biology was established by the celebrated limit ver-
sion of allele frequency evolution in a sampling-replacement model due to
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W. Fleming and M. Viot [FV79], which followed quickly upon the math-
ematical innovations of D. Dawson [Daw75]. In particular, studies such
as [EG87, GT99] show how the measured-valued diffusion approach helps
in taming the complexities of infinite sites models. Superprocesses have
found broad application in the study of persistence and extinction proper-
ties of populations evolving in physical space (such as [You01, Eth04]) or
in metaphorical spaces of genotypes (such as [DK99, WB02, DH83]). A
thorough introduction to the subject, including extensive notes on its roots
and applications in branching-diffusion and sampling-replacement models,
is [Daw93a].

3.3. The damage-state superprocess. Formally, we posit a sequence of
branching models, converging to our final superprocess model. If the scaling
assumptions are reasonable, important characteristics of the branching mod-
els — in particular, the connection between the process parameters and the
long-term growth rate — should be well approximated by the corresponding
characteristics of the superprocess.

The nth model in the sequence begins with a possibly random number
Nn of individuals. Individuals are located at points of the positive real
line R+. The location of an individual is a measure of the individual’s
degree of cellular damage. We code the ensemble of locations at time t ≥ 0
as a measure Xn

t on R+ by placing mass 1/n at each location, so that
the initial disposition of masses Xn

0 is a random measure with total mass
Nn/n. During its life span the damage level fluctuates, as the organism
accumulates and repairs damage. An individual’s level of damage evolves as
an independent diffusion on R+ with continuous spatially varying drift b(x),
continuous diffusion rate σmot(x), and continuous killing rate (depending
on n) kn(x). While our mathematical framework allows general behavior
(mixtures of reflection and killing) at the boundary point 0, it seems sensible
for applications to assume complete reflection. Other boundary behavior
would imply a singular mortality mechanism at damage level 0.

An individual can split into two descendants, which happens at spatially
varying rate an(x). As in the standard Dawson-Watanabe superprocess
construction [EK86, Daw93b, Eth00], we assume that birth and death rates
grow with n but are nearly balanced, so that there is an asymptotically finite
net birth rate

(1) β(x) := lim
n→∞

(
an(x)− kn(x)

)
<∞

while the total rate at at which either death or splitting occurs satisfies

(2) ρ(x) := lim
n→∞

n−1 (an(x) + kn(x)) <∞.

In other words, an individual at location x attempts to split at a rate which is
asymptotically nρ(x), and such an attempt is successful (resp. unsuccessful)
with a probability that is asymptotically 1

2(1+β(x)/n) (resp. 1
2(1−β(x)/n)).

We assume that β∗ := supx β(x) < ∞ and β∞ := limx→∞ β(x) exists
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(though it may be −∞). Both of these conditions hold under the biolog-
ically reasonable assumption that β is non-increasing (that is, asymptotic
net birth rate is non-increasing in the amount of damage).

The unbalanced transmission of damaged material leads to one important
difference from the standard Dawson-Watanabe superprocess construction:
When a split occurs the two descendants are not born at the same point
as the parent. A parent at location x has descendants at locations x − Y
and x+ Y , where Y is randomly chosen from a distribution πn

x on R+. We
suppose that

(3) σ2
seg(x) := lim

n→∞
n

∫ ∞

−∞
y2 dπn

x(y) <∞

for some continuous function σ2
seg. The quantity σ2

seg(x) is a measure of the
amount of damage segregation that takes place when a parent with level of
damage x splits.

We show in the Appendix that the process Xn converges to a limit process
X, as n → ∞, as long as the initial damage distributions Xn

0 converge to
some finite measure X0. The limit is a Dawson-Watanabe superprocess
whose underlying spatial motion is a diffusion with drift b (the same as the
original motion) and diffusion rate σ, where

(4) σ2(x) := σ2
mot(x) + σ2

seg(x)ρ(x)

Thus the asymptotic effect of segregation is equivalent to an increase in the
diffusion rate, which may be thought of as the extent of random fluctuation
in the the underlying motion of an individual cell through damage space.
The same effect may be achieved by increasing simultaneously the fission
and death rates, leaving fixed the net rate of birth. The quantity σ2

seg(x)
measures a re-scaled per generation degree of damage segregation, and multi-
plication by the re-scaled splitting rate ρ(x) produces a quantity σ2

seg(x)ρ(x)
that measures a re-scaled per unit time rate of damage segregation.

4. Major results

Write Zt for the asymptotic re-scaled population size at time t. That is,
Zt is the total mass of the measure Xt. We show that there is an asymptotic
population growth rate λ in the sense that the asymptotic behavior of the
expectation of Zt satisfies

(5) lim
t→∞

t−1 log E
[
Zt

]
= λ.

Thus, E
[
Zt

]
grows to first order like eλt.

When the asymptotic growth rate λ is positive, this result may be sig-
nificantly strengthened. Theorem 7.4 tells us then (under mild technical
conditions) that:

• To first order, the total population size at time t, Zt, grows like eλt.
More precisely, Zt/E

[
Zt

]
converges to a finite, non-zero, random

limit as t→∞.
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• The random distribution describing the relative proportions of dam-
age states of cells at time t converges to a non-random distribution
with density cφ as t → ∞, where φ is the unique solution to the
ordinary differential equation

1
2
[
σ2(x)φ(x)

]′′− [b(x)φ(x)]′ + β(x)φ(x) = λφ

with
σ(0)2

2
φ′(0) = 2b(0)φ(0)

and c is the normalization constant required to make cφ integrate 1.
That is, for any 0 ≤ a < b <∞ the proportion of the population with
damage states between a and b converges to

∫ b
a φ(x) dx/

∫∞
0 φ(x) dx.

Suppose now that we identify (as is commonly done) fitness of a cell type
with the asymptotic growth rate λ. It is not obvious, under arbitrary fixed
conditions of average damage accumulation and repair (b), splitting rate (ρ),
and net reproduction (β), what level of randomness in damage accumula-
tion and repair (σmot) and damage segregation (σseg) has the highest fitness.
Under the biologically reasonable assumption that the average damage ac-
cumulation rate is everywhere positive, though, it is generally true that
moderate degrees of randomness in both mechanisms lead to higher growth
rates than either very small or very large degrees of randomness. Theorem
7.5 (in section 7.3) tells us that, under fairly general conditions, if the dif-
fusion rate σ is reduced uniformly to 0, or increased uniformly to ∞, this
pushes the asymptotic growth rate down to β∞ = limz→∞ β(z).

Since the growth rate at any damage level is higher than β∞, this result
tells us that the growth rate is minimized by sending σ uniformly either to 0
or to ∞. Too much or too little randomness in damage accumulation yields
lower growth rates; optimal growth must be found at intermediate levels of
diffusion.

Imagine now a situation in which the upward drift in damage has been
brought as low as possible by natural selection, optimizing repair processes
and tamping down damage generation. We see that there may still be some
latitude for natural selection to increase the lineage’s growth rate, by tin-
kering with this randomness. Recall that σ is composed of two parts: the
randomness of damage accumulation during the lifecourse, and the inequal-
ity of damage transmission to the daughters. Without altering damage gen-
eration or repair, but only the equality of transmission to the offspring, the
cell type’s long-term growth rate may be increased. In particular, if dam-
age accumulation rates are positive and deterministic — a fixed rate b(x) of
damage accumulation per unit of time, when a cell has damage level x —
the growth rate will always be improved by unequal damage transmission.

5. An example

Suppose that damage accumulates deterministically during the life of an
organism, at a rate proportional to the current level of damage. In the
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absence of damage segregation, then, the damage at time t grows like ebt

(this corresponds to b(x) = bx and σ2
mot = 0). We suppose that the combined

parameter σ2
segρ(x) describing the time rate of damage segregation for an

organism that fissions at damage level x is τ2x2, where τ is a tunable non-
negative parameter (hence, σ(x) =

√
σ2

segρ(x) = τx). The generator for the
spatial motion in the limit superprocess is thus

τ2

2
x2f ′′(x) + bxf ′(x).

This is the generator of the geometric Brownian motion exp(τBt + (b −
τ2

2 )t). We see immediately that adding enough noise can push the spatial
motion toward regions with less damage. To make this fit formally into our
theorems, we assume complete reflection at 1. (We have previously taken
the range of damage states to be the positive real numbers (0,∞), whereas
here we have taken the interval (1,∞). The choice of interval is irrelevant
as far as the mathematics goes, and we could convert this choice to our
previous choice by simply re-defining b(x) and σ(x)).

Suppose that the bias of reproduction over dying in the superprocess is
of the form β(x) = β0 − β1x. The population growth rate will be the same
as for the process Yt = Bt +( b

τ −
τ
2 )t, with reflection at 0, and killing at rate

β0 − β1e
τYt . The eigenvalue equation is

1
2
f ′′(y) + b̃xf ′(y) + (β0 − β1e

τy)f(y) = λf(y),

where b̃ := b
τ −

τ
2 , with boundary condition f ′(0) = 0.

Using standard transformations as in section 6 of [SE05], or symbolic
mathematics software such as Maple, we may compute a basis for the space
of solutions to be the modified Bessel functions

Iν

(√
8β1/τ2eτy/2

)
e−b̃y and Kν

(√
8β1/τ2eτy/2

)
e−b̃y,

where

(6) ν =
2
√
b̃2 − 2(β0 − λ)

τ
.

By definition, λ is the infimum of those λ such that the solution f is
non-negative. Since f ′(0) = 0, it cannot be the case that f(0) = 0. Hence,
the solution for λ has no zero, but the solution for every λ < λ does have
a zero in R+. By continuity (as argued for the same problem in [SE05]), it
follows that the solution for λ is a multiple of Kν . The boundary condition
translates to

(7)
K ′

ν

Kν

(√
8β1

τ

)
=

b̃√
2κ1

.
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Figure 2. Asymptotic growth rates λ computed from (11)
for populations whose deterministic rate of damage accumu-
lation is equal to the current damage level, and whose relative
excess of births over deaths is 1.9 − x/2 at damage level x.
Damage segregation is added at rate τx for births to parents
at damage level x.

Find ν0 real such that the last zero of Kiν0 is at
√

8β1/τ , and represent
the corresponding λ by

λ0 = −τ
2ν2

0

8
− b̃2

2
+ β0.

Then

λ = inf

{
λ ∈ (λ0,∞) :

K ′
ν

Kν

(√
8β1

τ

)
= − b̃√

2β1

}
.
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Figure 3. Asymptotic distribution of damage for the choice
of parameters β1 = 1

2 , b = 1 and β0 = 1.9, and various choices
of τ .

As an example, take β1 = 1
2 , b = 1 and β0 = 1.9. Using the mathematical

programming language Maple we compute the asymptotic growth rates given
in Figure 2. The maximum growth rate of occurs at τ = 1.75. Figure 3 shows
the asymptotic distribution of damage for different values of τ . Note that
as τ increases, the asymptotic distribution becomes increasingly compressed
into the lower range of damages.

Remember that σ =
√
σ2

mot + σ2
segρ, where σ2

mot quantifies the random-

ness of fluctuations in the damage during the life of a cell; σ2
seg quantifies

the extent to which the damage is split unequally between the daughters
and ρ is the splitting rate. More unequal distribution of damage among the
daughter cells means that there will be effectively more randomness in the
rate of damage accumulation within a line.
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We point out one implication for the evolution of generation time. Sup-
pose that there is no mechanism available for altering the extent of damage
segregation in each fission event. (Perhaps damage segregation is not ac-
tively determined, but is only a consequence of the inevitable one-way in-
heritance of an “old pole”, or simple random fluctuation.) Suppose, though,
that the organism can accelerate the generations. This has the effect of in-
creasing σ, which may be enough to shift the asymptotic growth rate into
the positive.

To be specific, suppose there is a population of 1000 bacteria, with de-
terministic damage accumulation at a rate x units per day when the cell
has x units of damage. A cell with x units of damage has a hazard rate for
reproduction in the next instant of 25.95−x/4, and a hazard rate for dying
of 24.05 + x/4. (Measuring time in days, this corresponds to a mean time
between fission events of about 1 hour.) In the notation of our model, this
means that ρ(x) = 50/1000 = 0.05 and β(x) = 1.9 − x/2. The minimum
level of damage in a cell is 1 unit. At a fission event, if the mother has
x units of damage, one daughter gets 90% of x and the other 110% of x.
(Damage units must be thought of as proportional to the total volume of the
cell. Thus, when a cell with x damage units divides, there is 2x damage to
be divided up.) From equation (3), we compute that σseg(x) = 3.1x. Since
σmot was assumed to be 0, this means that σ(x) = σseg(x)

√
.05 = 0.7x. We

see from Figure 2 that the asymptotic growth rate of the population will be
−0.09, meaning that the population may be expected to decline over time.

Suppose now there were a mutant strain which had boosted its rate of
reproduction to 40−x/4, but was penalized with a rate of dying 38.2+x/4.
That is, fission rates were increased by 14.05 (about 35% at the minimum
damage state), but the mortality rate was increased by a bit more, by 14.15.
Everything else stays the same. We now have ρ = 78.2/1000 = .0782,
meaning that σ(x) = 0.87x, and despite the mortality penalty we see that
the population now has a positive asymptotic growth rate of 0.09. Instead
of declining, this strain will tend to double in numbers about every 10 days.

6. Conclusions

We have introduced a mathematical model of population growth, for a
population of haploid organisms that accumulate damage. This is a limit
of branching processes, in which individuals accumulate damage, rising and
falling at random, with an upward tendency. Under fairly general assump-
tions we have shown

• The population growth rate converges to a fixed rate, determined by
the solutions to an ordinary differential equation (ODE);

• If the asymptotic growth rate is positive, the relative proportions of
damage levels within the population converge to a fixed distribution,
also given by the solution to an ODE;
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• The effect of increasing damage segregation in the model (that is,
causing one daughter cell to have higher damage than the parent
after the split and one lower) is equivalent to increasing the random-
ness (diffusion) of the damage-accumulation process;

• Accelerating the turnover of generations — increasing birth and
death rates equally, leaving the net birth rate unchanged — effec-
tively increases damage segregation;

• In general, the optimum level of combined damage diffusion and
damage segregation (as measured by the growth rate) is not 0, but
is some finite non-zero level.

This is one possible mathematical analysis of exogenous repair. A strain
of cells with deterministic damage accumulation will eventually run itself to
extinction because of the increasing damage load. Perhaps surprisingly, the
simple expedient of dividing the damage unequally between the offspring
may be enough to rescue the line. In general, if the damage diffusion rate
were sub-optimal, a mutant line could obtain a selective advantage by in-
creasing the level of damage segregation. In fact, damage segregation could
be a worthwhile investment even if it came at the cost of a slight overall
increase in damage accumulation. Perhaps even more surprising, simply
accelerating cell division and cell death equally, leaving the net birth rate
unchanged, may be enough to shift a negative population growth rate into
the positive range. Of course, there can also be too much damage segre-
gation, and there is potential for improving growth rates by equalizing the
inheritance between the daughter cells, if the variation in damage accumu-
lation is excessive.

An abstract model such as presented in this paper is primarily a guide to
thinking about experimental results, rather than a template for analyzing
the data from any given experiment. This does not mean that this model
cannot be experimentally tested. Some general predictions of the model are:

(1) Mechanisms for actively increasing damage segregation in reproduc-
tion should be common.

(2) While individual lines tend toward increasing damage, the overall
distribution of damage in the population stabilizes.

(3) Damage segregation compensates for “too little” randomness in
damage accumulation. Thus more unequal division of damage might
be expected in organisms whose rate of damage accumulation is more
deterministic.

(4) Manipulating the extent of damage segregation should affect the
population growth rate. Under some circumstances, increasing seg-
regation should increase the growth rate.

(5) One way of manipulating damage segregation is to manipulate the
generation time. Increasing the fission rate and the death rate
equally has the effect of increasing the segregation effect.
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The first “prediction” is already fairly established. While asymmetric
reproduction and exogenous repair were implicit in the century-old line of
experiments recounted in [Bel88], the direct measure of asymmetry in proto-
zoan reproduction has only recently become possible. Some of the organisms
studied are

(1) Caulobacter cresentus: This bacterium grows from one end and then
divides. The old end accumulates damage and senesces, while the
new end experiences “rejuvenating reproduction” [ASJ03].

(2) Escherichia coli: While this bacterium seems to divide symmetri-
cally, rejuvenation seems to happen preferentially in the middle,
while the poles accumulate damage. [SMPT05] found declining vigor
with increasing age of the inherited cellular poles.

(3) Saccharomyces cerevisiae: The aging of the mother cell in these bud-
ding yeast was established as long ago as [MJ59], and the functional
asymmetry between mother and daughter was established by [HU77].
[LJBJ02] showed that the continuing lineage growth depends upon
maintaining the asymmetry in damage state between mother (more
damaged) and daughter (less damaged). An atp2 mutant strain that
failed to segregate active mitochondria preferentially to the daughter
cell succumbed to clonal senescence. [AGRN03] found that carbony-
lated proteins are selectively retained by the mother cell, and that
this requires an active SIR2 gene. (Higher activity of SIR2 also in-
creases the longevity of the mother cell itself, which seems surprising
on the face of it; but this is likely a consequence of epistatic effects,
cf. [KMG99].)

(4) Schizosaccharomyces pombe: These fissioning yeast seem superfi-
cially to divide symmetrically. While there is no gross morphological
distinction on the basis of which the two products of reproduction
could be allocated to categories “parent” and “offspring,” the fis-
sion, there is heritable asymmetry between the two fission products
in size [BW99] and number of fission scars [CZB80]. The inheritance
of damaged proteins was studied in [MFD+06], but asymmetry of in-
heritance was not measured directly.

Yeast seem to be a promising class of organisms for studying the inheri-
tance of damage. As remarked by Lai et al. [LJBJ02],

The aging process of yeast cells best illustrates the cellu-
lar and generational asymmetry [. . . .] The immortality of
the yeast clone] depends upon the establishment of an age
difference between a daughter cell and the mother cell that
produces it. Although the daughter cell receives cellular com-
ponents from the mother cell, it does not inherit the mother
cells age and is always younger than the mother cell. This
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age asymmetry implies that any substance or process respon-
sible for the aging of mother cells must be carefully isolated
from the daughter cells.

The biodemography of both S. cerevisiae and S. pombe is relatively well un-
derstood, and methods for tracking fission scars, carbonylated proteins and
inactive mitochondria are well developed. We have two species with quite
different types of damage segregation, and comparisons are likely to prove
illuminating. The identification of other clonal senescence mutants that act
on damage segregation, whether variant mutations to SIR2 or another gene,
would expand the toolkit for tuning damage segregation in S. pombe.

The recent study of carbonylation [MFD+06] seems particularly amenable
to analysis in terms of exogenous repair and our model. This study examined
the distribution of damaged proteins in the whole population, finding that
the dividing cells were concentrated down near 0, while the non-dividing
(senescent) cells had a significantly higher level of damage. The main pa-
rameters in our model — the rate of damage accumulation in stationary
phase, the vital rates for cells with a given damage level, the type of damage
inheritance — could all be measured in principle. Indeed, the symmetry of
damage inheritance between the daughters was examined, but only to point
out that there is some sharing of damage, that the carbonylated proteins are
not all retained by one of the two daughters. Pushing this further, it would
be possible to measure the inequality of damage inheritance, both of car-
bonylated proteins and inactive mitochondria. Once these parameters had
been estimated, it would be possible to compare the damage distribution in
the paper with our theoretically predicted asymptotic distribution.

Comparing mutant strains with different damage segregation properties
would further refine the comparison. It would also be possible to perform
competition experiments: Broadly speaking, we would predict that as the
overall damage load increases — perhaps by exposure to paraquat or dis-
abling of antioxidants — this would shift the optimal level of damage segre-
gation. In some simple choices of parameters for the model this shift would
be toward more extreme damage segregation, the same effect that would be
predicted from decreasing the variability of damage accumulation. Thus,
we might expect that strains exposed to such toxic environments over some
time would evolve to show higher levels of damage segregation. If damage
segregation is not controlled by active mechanisms, this means that increas-
ing damage accumulation should select for a faster turnover of generations:
simultaneously higher rates of cell death and fissioning.

Perhaps no simple resolution should be expected. We are examining the
interaction of individual-level aging downward, with aging of parts of indi-
viduals, and simultaneously upward, toward population-level aging. In the
present model one might say that there is a partial individualization of senes-
cence. That is, while there is no identifiable individual who ages and dies,
leaving behind youthful descendants, damage segregation has transformed
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the senescence problem plaguing the entire population into a problem of
some individual cells.

There has been some controversy (see [Wol05], and the response [ST05])
about whether results such as those of [SMPT05] reflect genuine “aging.”
Perhaps more profitable is to see, in this growing family of experimental
results, clues to the broader context of aging: Paradigmatic aging in our
species and similar ones is one of a class of mechanisms which function
to redistribute damage within a population. Most metazoans, perhaps in-
evitably, have converged on the extreme strategy of keeping essentially all
the damage (even generating much more damage in the process), and pro-
duce pristine offspring. In protozoans, there seem to be a broader range of
mechanisms, and degrees of damage differentiation in the end-products of
reproduction.

Is this relativization of senescence of any relevance for metazoans, then?
It is, for at least two separate reasons. The first is that the propagation of
the germ line is in many senses comparable to the propagation of a line of
protozoans. As eloquently commented by Lai et al. [LJBJ02], “Some of the
key questions in aging concern the differences between germline and soma.
Any mechanism invoked to explain the aging of the soma must also be able
to accommodate the immortality of the germline. At the level of the organ-
ism, the issue is the renewal that occurs at each generation, providing the
progeny a fresh start with the potential for a full life span.” This principle
may also be significant for the regulation of replicative senescence in somatic
stem cells or other somatic cells. The recent discovery of non-random seg-
regation in mouse mitotic chromosome replication [AK06] may be a hint in
this direction.

The other reason is perhaps more profound, and certainly more specula-
tive. Over the past several decades, mathematical theory has played a sig-
nificant part in the evolving discussion of risk-management and bet-hedging
in natural selection. J. Gillespie’s seminal treatment [Gil74] notes that

the variance in the numbers of offspring of a genotype has
two components, the within-generation component resulting
from different individuals of the same genotype having dif-
ferent numbers of offspring, and a between-generation com-
ponent due to the effects of a changing environment.

The general conclusion has been that lower variance in essential demographic
traits is selectively favored [FS90, Goo84], although this picture is compli-
cated by varying environments, if the variance is associated with variable
response to the environment [EH94]. Damage accumulation falls into a
third class of variance: variable epigenetic inheritance of a resource shared
between offspring.

Our model departs from the models of within-generation variation in
which the varying phenotypes of siblings are independent, but is allied
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with models of resource sharing within families. In the case of damage-
accumulation the “resource” is the undamaged cell components, but this
model might in principle be applied to the transmission of resources or sta-
tus from parents to offspring. In contrast to the general selective advantage
for reduced within-generation variability in the uncorrelated setting, the re-
sults of our analysis suggest that increased variability may be selectively
favored when the phenotype is a shared resource.

This beneficial variance may have some relevance for the growing recog-
nition that the evolution of longevity depends fundamentally on the nature
of intergenerational transfers. All the work on this problem of which we are
aware, particularly [Lee03, KR02, RK03, CL06] implicitly presumes that re-
sources are divided equally according to need (though [HDS02] points out
that the goal of equality may still produce systematic biases based on birth-
order). The key paper of Trivers [Tri74] explicitly opposes a parental goal of
equality against the offspring’s interest in monopolizing resources. Models
of offspring provisioning in this tradition, such as [PML89, RHP02], seem
to assume a “diminishing returns” to investment, hence higher fitness for
reduced spread in offspring quality, except when there is a threshold for sur-
vival that only one is likely to cross. Our model suggests that the cumulative
effect of exponential growth can easily make unequal division of resources
a winning strategy. This inequality may be purely random, and need not
depend on sibling competition or some other strategy for identifying and
rewarding the inherently superior offspring.

7. Mathematical methods

Define (Pt)t≥0 to be the semigroup generated by

Lφ :=
1
2
σ2φ′′ + bφ′ + βφ

with boundary condition

(8) p0
σ(0)2

2
φ′(0) = (1− p0)φ(0)

for some fixed 0 ≤ p0 ≤ 1. (This semigroup will not, in general, be sub-
Markovian because β can take positive values). As we observe in Section
7.2, E[〈φ,X(t)〉] =

∫
R+ Ptφ(x) dν(x) when X0 is the deterministic measure

ν, and so the behavior of (Xt)t≥0 is governed by that of (Pt)t≥0, at least at
the level of expectations. The choice p0 = 1 is most relevant for the descrip-
tion of fissioning organisms, because it corresponds to complete reflection
at the state 0 representing no damage. Other choices of p0 would imply the
rather anomalous presence of an additional singular killing mechanism at
0. However, since the mathematical development is unchanged by the as-
sumption of a general boundary condition, we do not specialize to complete
reflection.

It turns out that the entire long-term behavior of (Xt)t≥0 is rather simply
connected to that of (Pt)t≥0. Let (P ∗

t )t≥0 be the adjoint semigroup generated
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by

L∗φ(x) :=
1
2
d

dx2

[
σ2(x)φ(x)

]
− d

dx
[b(x)φ(x)] + β(x)φ(x).

with boundary condition

(9) p0
σ(0)2

2
(
φ′(0)− 2b(0)φ(0)

)
= (1− p0)φ(0).

For any λ, define φλ to be the unique solution to the initial value problem
(10)

L∗φλ = λφλ with φλ(0) = p0 and
σ(0)2

2
(
φ′λ(0)− 2b(0)φλ(0)

)
= 1− p0.

Put

(11) λ := inf
{
λ : φλ(x) is non-negative for all x

}
.

We recall in Proposition 7.2 that, under suitable hypotheses, for a compactly
supported finite measure ν

lim
t→∞

〈Pt+s1, ν〉
〈Pt1, ν〉

= eλs

so that a fortiori
lim
t→∞

t−1 log〈Pt1, ν〉 = λ,

and, moreover,

lim
t→∞

〈Ptϕ, ν〉
〈Pt1, ν〉

=

∫∞
0 ϕ(z)φλ(z)dz∫∞

0 φλ(z)dz

for a bounded test function ϕ. We subsequently show in Theorem 7.4, again
under suitable hypotheses, that if λ > 0, then

lim
t→∞

〈ϕ,Xt〉
〈Pt1, ν〉

= W

∫∞
0 ϕ(z)φλ(z)dz∫∞

0 φλ(z)dz

in probability, where W is a non-trivial random variable (that doesn’t de-
pend on ϕ). In particular, the asymptotic growth rate of the total mass
〈1, Xt〉 is λ and

lim
t→∞

〈ϕ,Xt〉
〈1, Xt〉

=

∫∞
0 ϕ(z)φλ(z)dz∫∞

0 φλ(z)dz

We show in Section 7.3 under quite general conditions (including the as-
sumption that β is non-increasing so that β∞ = infx β(x)) that the presence
of some randomness in either the damage and accumulation diffusion or the
damage segregation mechanism is beneficial for the long-term growth of the
population but too much randomness is counterproductive. That is, if b, β
and ρ are held fixed, then λ converges to β∞ as the diffusion rate function
σ =

√
σ2

mot + σ2
seg goes to either 0 or ∞, whereas λ > β∞ for finite σ.
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7.1. Results from [SE05]. Essential to linking the long-term growth be-
haviour of the superprocess to the theory of quasistationary distributions is
the observation that L − β∗ (recall that β∗ is a constant, the upper bound
on β) is the generator of a killed diffusion semigroup Qtφ = e−β∗tPtφ. Thus,
when we have a result stating that Qt converges to a stationary distribution
with density a multiple of φλ, meaning that for any bounded test function
ϕ : R+, and any compactly supported finite measure ν,

lim
t→∞

〈Qtϕ, ν〉
〈Qt1, ν〉

=

∫∞
0 ϕ(z)φλ(z)dz∫∞

0 φλ(z)dz
,

then the same holds for Pt.
For t ≥ 0 and ν a compactly supported finite measure on R+, set

(12) ωt(ν) :=
〈Pt1, ν〉
Pt1(1)

.

When ν = δx, write ωt(x). Note that

(13) ωt(ν) =
∫ ∞

0
ωt(x) dν(x)

for any compactly supported finite measure ν. Define

(14) ω∗(x, ν) = sup
t≥0

ωt(x)
ωt(ν)

.

Assume the following condition: For all compactly supported finite mea-
sures ν on R+, and some ε > 0

(GB2) sup
s≥0

sup
x∈R+

e−(2λ−ε)s

∫
ω∗(y, ν)2Ps(x, dy) <∞.

While (GB2) is an abstract condition, it is implied by a fairly concrete
condition on the diffusion parameters.

Lemma 7.1. Condition (GB2) always holds if the net birth rate β is mono-
tone non-increasing, and there is complete reflection at 0.

Proof. Changing β by a constant leaves ωt, hence ω∗ as well, unchanged.
Thus, we may assume that β ≤ 0, so that Pt is the semigroup of a killed
diffusion.

Given x < x′, we may couple the diffusion Xt started at x with a diffusion
X ′

t, with identical dynamics but started at x′, so that Xt ≤ X ′
t for all

t. By the monotonicity of β, this implies that Pt1(x) ≥ Pt1(x′), since
Pt1(x) = Px{τ∂ > t}. Consequently, ωt is monotonically non-increasing,
and so is ω∗. In particular, for all y, ω∗(y, ν) ≤ ω∗(0, ν), which is finite, by
the results of section 2.5 of [SE05]. Then

sup
s≥0

sup
x∈K

e−(2λ−ε)s

∫
ω∗(y, ν)2Ps(x, dy) ≤ ω∗(0, ν)2 <∞.

�



22 STEVEN N. EVANS AND DAVID STEINSALTZ

We will also need to assume the technical condition

(LP) L∗ is in the limit-point case at ∞.

We define

b̃(z) :=
b ◦ F−1(x)
σ ◦ F−1(x)

− 1
2
σ′ ◦ F−1(x),

and β̃(x) := β ◦ F−1(x), where F (y) :=
∫ y
0 du/σ(u) is the Liouville trans-

form, the spatial transformation that converts the diffusion coefficient into
a constant. Then Lemma 2.1 of [SE05] says that (LP) holds whenever

(LP’) lim inf
x→∞

x−2
(
b̃(x)2 + b̃′(x) + 2β̃(x)

)
> −∞.

Examples which do not satisfy this condition must have pathological fluctu-
ations in b.

Define ψλ to be the unique solution to the initial value problem

(15) Lψλ = λψλ with ψλ(0) = p0 and
σ(0)2

2
ψ′λ(0) = 1− p0.

We summarize relevant results from Lemma 2.2, Theorem 3.4 and Lemma
5.2 of [SE05].

Proposition 7.2. Assume the conditions (GB) and (LP).
(i) The eigenvalue λ is finite.
(ii) The semigroup (Pt)t≥0 has an asymptotic growth rate η. That is, for

any compactly supported ν, and any positive s,

(16) lim
t→∞

〈Pt+s1, ν〉
〈Pt1, ν〉

= eηs.

(iii) The following implications hold:

λ > β∞ =⇒ η = λ > β∞

λ = β∞ =⇒ η = λ = β∞

λ < β∞ =⇒ η = λ or η = β∞

(iv) If η = λ 6= β∞, then, for any compactly supported finite measure ν,

(17) lim
t→∞

ωt(ν) =
∫
ψη(x)
ψη(1)

dν(x),

and, for any bounded test function ϕ,

(18) lim
t→∞

〈Ptϕ, ν〉
〈Pt1, ν〉

=

∫∞
0 ϕ(z)φλ(z)dz∫∞

0 φλ(z)dz
.

(v) If β is non-constant and non-increasing and p0 = 1 (that is, there
is complete reflection at 0), then (18) holds if and only if λ > β∞.
In particular, (18) holds if p0 = 1 and β is non-increasing and un-
bounded below (so that β∞ = −∞).
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Proof. The only part that is not copied directly from [SE05] is (v). If λ >
β∞, then η = λ > β∞ by (iii) and (18) holds by (iv). Suppose that (18)
holds but λ ≤ β∞. Since there is no killing at 0 (p0 = 1), by (8), the
constant function is in the domain of L. Thus, we may apply the Kolmogorov
backward equation to see that by (16),

η =
d

ds

∣∣∣
s=0

(
lim
t→∞

〈Pt+s1, ν〉
〈Pt1, ν〉

)
=
d

ds

∣∣∣
s=0

(
lim
t→∞

〈Pt(Ps1), ν〉
〈Pt1, ν〉

)
by (18)

=
d

ds

∣∣∣
s=0

(∫∞
0 Ps1(z)φλ(z)dz∫∞

0 φλ(z)dz

)
=

∫∞
0 L1(z)φλ(z)dz∫∞

0 φλ(z)dz

=

∫∞
0 β(z)φλ(z)dz∫∞

0 φλ(z)dz
.

Hence η > β∞ because β is non-constant and φλ(z) is non-negative for all
z and strictly positive for z close to 0. (In fact, φλ is strictly positive for all
z). However, this contradicts (iii). �

A simple consequence of Proposition 7.2 is the following.

Corollary 7.3. For any compactly supported finite measure ν and any ε > 0,
there are positive constants 0 < cε,ν ≤ Cε,ν < ∞ such that if 0 ≤ t′ ≤ t′′ <
∞, then

(19) cε,νe
(η−ε)(t′′−t′) ≤ 〈Pt′′1, ν〉

〈Pt′1, ν〉
≤ Cε,νe

(η+ε)(t′′−t′).

Proof. By replacing Pt by e−β∗tPt, we may suppose that (Pt)t≥0 is the semi-
group of a killed diffusion, so that 〈Pt1, ν〉 is non-increasing in t.

There is some integer N such that if N ≤ n is an integer, then

eη−ε ≤ 〈Pn+11, ν〉
〈Pn1, ν〉

≤ eη+ε.

If N ≤ n′ ≤ n′′ are integers, then, since

〈Pn′′1, ν〉
〈Pn′1, ν〉

=
n′′−1∏
n=n′

〈Pn+11, ν〉
〈Pn1, ν〉

,

it follows that

e(η−ε)(n′′−n′) ≤ 〈Pn′′1, ν〉
〈Pn′1, ν〉

≤ e(η+ε)(n′′−n′).

Note that if n′, n′′ are arbitrary non-negative integers, then
〈Pn′′1, ν〉
〈Pn′1, ν〉

=
〈Pn′′1, ν〉
〈Pn′′∨N1, ν〉

〈Pn′∨N1, ν〉
〈Pn′1, ν〉

〈Pn′′∨N1, ν〉
〈Pn′∨N1, ν〉

.
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On the one hand,

min
m′,m′′≤N

〈Pm′′1, ν〉
〈PN1, ν〉

〈PN1, ν〉
〈Pm′1, ν〉

≤ 〈Pn′′1, ν〉
〈Pn′′∨N1, ν〉

〈Pn′∨N1, ν〉
〈Pn′1, ν〉

≤ max
m′,m′′≤N

〈Pm′′1, ν〉
〈PN1, ν〉

〈PN1, ν〉
〈Pm′1, ν〉

.

On the other hand,

e−N |η−ε|e(η−ε)(n′′−n′) ≤ 〈Pn′′∨N1, ν〉
〈Pn′∨N1, ν〉

≤ eN |η+ε|e(η+ε)(n′′−n′).

Thus the claimed inequality holds with suitable constants for t′, t′′ restricted
to the non-negative integers.

For arbitrary t′ ≤ t′′ with dt′e ≤ bt′′c we have

cε,νe
−2|η−ε|e(η−ε)(t′′−t′) ≤ cε,νe

(η−ε)(dt′′e−bt′c)

≤
〈Pdt′′e1, ν〉
〈Pbt′c1, ν〉

≤ 〈Pt′′1, ν〉
〈Pt′1, ν〉

≤
〈Pbt′′c1, ν〉
〈Pdt′e1, ν〉

≤ Cε,νe
(η+ε)(bt′′c−dt′e) ≤ e2|η+ε|Cε,νe

2|η+ε|e(η+ε)(t′′−t′).

and the result holds for such t′, t′′ by suitably adjusting the constants.
If t′ ≤ t′′ but dt′e > bt′′c (so that t′′ − t′ ≤ 1), then the observation( 〈Pdt′e1, ν〉

〈Pbt′′c1, ν〉

)−1

≤ 〈Pt′′1, ν〉
〈Pt′1, ν〉

≤
( 〈Pbt′c1, ν〉
〈Pdt′′e1, ν〉

)−1

shows that a further adjustment of the constants suffices to complete the
proof. �

7.2. Scaling limit. The asymptotic behavior of Dawson-Watanabe super-
processes has been undertaken by Engländer and Turaev [ET02], who ap-
plied general spectral theory to demonstrate, under certain formal condi-
tions, the convergence in distribution of the rescaled measure e−λctXt, where
λc is the generalized principal eigenvalue. Convergence in distribution was
improved to convergence in probability by Engländer and Winter [EW05].
We take a different route to proving a similar scaling limit, which has two
advantages.

(1) Our proof is more direct, and the conditions, when they hold,
straightforward to check.

(2) Our proof holds in some cases when the results of [ET02] do not
apply. In particular, the scaling need not be exactly exponential.

On the other hand, our approach is more restrictive, in being applicable
only to processes on R+.

Our proof depends on Dynkin’s formulae [Dyn91] for the moments of a
Dawson-Watanabe superprocess. For any bounded measurable ϕ,ϕ′ : R+ →
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[−1, 1], any starting distribution ν, and any 0 ≤ t ≤ t′,

Eν [〈ϕ,Xt〉] = 〈Ptϕ, ν〉,
Eν

[
〈ϕ,Xt〉〈ϕ′, Xt′〉

]
= 〈Ptϕ, ν〉〈Pt′ϕ

′, ν〉

+
〈∫ t

0
Ps

[
ρ · Pt−sϕ · Pt′−sϕ

′] ds, ν〉.(20)

Note by Proposition 7.2 that in the following result the assumptions η =
λ > 0 and (18) are implied by the assumptions η = λ > 0 and λ 6= β∞.

Theorem 7.4. Suppose that the conditions (LP) and (GB2) of Section 7.1
hold. Suppose further that η = λ > 0 and (18) holds. Then the rescaled
random measure X̃t := 〈Pt1, ν〉−1Xt converges in L2 to a random multi-
ple of the deterministic finite measure which has density φλ with respect to
Lebesgue measure. That is,

(21) W := lim
t→∞

〈1, X̃t〉

exists in L2, and if ϕ is any bounded test function,

(22) lim
t→∞

Eν

[{
〈ϕ, X̃t〉 −W

∫∞
0 ϕ(z)φλ(z) dz∫∞

0 φλ(z) dz

}2
]

= 0.

The long-term growth rate of the total mass of Xt is limt→∞ t−1 log〈1, Xt〉 =
λ.

Proof. From Proposition 7.2, we know that

lim
t→∞

Eν [〈ϕ, X̃t〉] =
〈Ptϕ, ν〉
〈Pt1, ν〉

=

∫∞
0 ϕ(z)φλ(z)dz∫∞

0 φλ(z)dz
.

Also,

〈Pt1, ν〉−1〈Pt′1, ν〉−1

∫ t

0
Ps

[
ρ · Pt−sϕ · Pt′−sϕ

′] (x)ds
=
∫ ∞

0

∫
1s≤t

〈Pt−s1, ν〉
〈Pt1, ν〉

〈Pt′−s1, ν〉
〈Pt′1, ν〉

× ρ(y)
ωt−s(y)
ωt−s(ν)

ωt′−s(y)
ωt′−s(ν)

Pt−sϕ(y)
Pt−s1(y)

Pt′−sϕ
′(y)

Pt′−s1(y)
Ps(x, dy)ds.

For fixed y the integrand converges as t, t′ →∞ to

ρ(y)
(
ψλ(y)
〈ψλ, ν〉

)2(∫∞
0 ϕ(z)φλ(z)dz∫∞

0 φλ(z)dz

)2

e−2λs.

By (19), for any t ≤ t′ the integrand is bounded for any positive ε by

ρ∗
1
cε,ν

e−2s(λ−ε)

(
sup

τ

ωτ (y)
ωτ (ν)

)2

≤ ρ∗
1
cε,ν

e−2s(λ−ε)ω∗(y, ν)2,
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where ρ∗ := supx ρ(x). Condition (GB2) implies that this upper bound has
finite integral for ε sufficiently small. This allows us to apply the Dominated
Convergence Theorem to conclude that

lim
t′≥t→∞

〈Pt1, ν〉−1〈Pt′ ,1, ν〉−1

〈∫ t

0
Ps

[
ρ · Pt−sϕ · Pt′−sϕ

′] ds, ν〉
=
( ∫∞

0 ϕ(z)φλ(z)dz
〈ψλ, ν〉

∫∞
0 φλ(z)dz

)2 ∫ ∞

0
e−2λs〈Ps(ρψλ)2, ν〉ds.

(23)

That is, for any ε > 0, there is T such that for all t′ ≥ t ≥ T∣∣∣∣〈Pt1, ν〉−1〈Pt′ ,1, ν〉−1

〈∫ t

0
Ps

[
ρ · Pt−sϕ · Pt′−sϕ

′] ds, ν〉−M(ν, ϕ)
∣∣∣∣ < ε,

where M(ν, ϕ) is the right-hand side of (23).
By (20), we may find Tε such that for all t′ ≥ t ≥ Tε,∣∣∣∣Eν [〈ϕ, X̃t〉〈ϕ′, X̃t′〉]

−K

(∫∞
0 ϕ(z)φλ(z)dz∫∞

0 φλ(z)dz

)(∫∞
0 ϕ′(z)φλ(z)dz∫∞

0 φλ(z)dz

)∣∣∣∣ < ε,

where

K := 1 + 〈ψλ, ν〉−2

∫ ∞

0
e−2λs〈Ps(ρψλ)2, ν〉ds.

Then, for t′ ≥ t ≥ Tε,

Eν

[(
〈ϕ, X̃t〉 − 〈ϕ, X̃t′〉

)2
]

= Eν [〈ϕ, X̃t〉2] + Eν [〈ϕ, X̃t′〉2]− 2Eν [〈ϕ, X̃t〉〈ϕ, X̃t′〉]
< 4ε.

Thus 〈ϕ, X̃t〉 is a Cauchy sequence in L2 and converges to a limit. In particu-
lar, there is a random finite measure X̃∞ such that X̃t → X̃∞ in probability
in the topology of weak convergence of finite measure on R+.

It remains only to show that the limit is a multiple of the finite measure
with density φλ. For any bounded test function ϕ, let

At := 〈ϕ, X̃t〉 − 〈1, X̃t〉〈ϕ, φλ〉.
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By (20),

E[A2
t ] =

(
〈Ptϕ, ν〉
〈Pt1, ν〉

)2

+

〈∫ t

0
Ps

[
ρ ·
(
Pt−sϕ

〈Pt1, ν〉

)2
]
ds, ν

〉

+ 〈ϕ, φλ〉2 + 〈ϕ, φλ〉2
〈∫ t

0
Ps

[
ρ ·
(
Pt−s1
〈Pt1, ν〉

)2
]
ds, ν

〉

− 2〈ϕ, φλ〉
〈Ptϕ, ν〉
〈Pt1, ν〉

− 2〈ϕ, φλ〉
〈∫ t

0
Ps

[
ρ · Pt−s1

〈Pt1, ν〉
Pt−sϕ

〈Pt1, ν〉

]
ds, ν

〉
,

which converges to 0 as t→∞. �

7.3. Optimal growth conditions.

Theorem 7.5. Suppose b is a fixed drift function, β is a fixed non-
increasing, non-constant net reproduction function, and (σm) is a sequence
of diffusion functions. Write (P (m)

t )t≥0 for the semigroup associated with
σm, b, and β, assuming complete reflection at 0. Assume that (18) holds for
each m. Denote the corresponding asymptotic growth rate by λm > β∞.

Suppose that either of the following two conditions hold.
(a)

inf
m

inf
x∈R+

b(x)
σm(x)

− σ′m(x) =: γ > −∞

and
lim

m→∞
inf

x∈R+
σm(x) = ∞,

(b)
inf

x∈R+
b(x) =: b∗ > 0

and
lim

m→∞
sup

x∈R+

σm(x) = 0.

Then limm→∞ λm = β∞.

Proof. The condition and the conclusion remain true if β is changed by
a constant, so we may assume, without loss of generality, that β is non-
positive. This means that P (m)

t is the semigroup of a killed diffusion Ŷ (m).
Let τ (m)

∂ be the killing time of Ŷ (m). Write Y (m) for the diffusion without
killing that corresponds to Ŷ (m). Assume that β∞ > −∞. The proofs for
β∞ = −∞ are similar and are left to the reader. Since λm > β∞ always
holds, it suffices in both cases to establish that lim infm→∞ λm ≤ β∞.

Consider first the case of condition (a). It follows from the assump-
tion that 0 is a regular boundary point that the Liouville transformation
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Fm(x) :=
∫ x
0 du/σm(u) is finite for all x ∈ R+. The transformed diffusion

V̂ (m) := Fm ◦ Ŷ (m) has diffusion function the constant 1, drift function

(24)
b ◦ F−1

m

σ ◦ F−1
m

− 1
2
σ′ ◦ F−1

m ,

and killing rate function −β ◦ F−1
m . The asymptotic growth rate for V̂ (m)

is also λm. Write V (m) := Fm ◦ Y (m) for the diffusion without killing that
corresponds to V̂ (m).

Since limm→∞ infx∈R+ σm(x) = ∞, it follows that limm→∞ F−1
m (x) = ∞

for all x > 0. Hence, given ε > 0 there exists M such that for m ≥M ,

β ◦ F−1
m (x) ≤ βε(x),

where

βε(x) :=


0, 0 ≤ x < ε,

(β∞ + ε) (x−ε)
ε , ε ≤ x < 2ε,

β∞ + ε, x ≥ 2ε.

Write W for Brownian motion with drift γ and complete reflection at 0.
By the comparison theorem for one-dimensional diffusions and the assump-
tion that β is non-increasing,

E
[
exp

(∫ t

0
β ◦ F−1

m (V (m)
s ) ds

)]
≤ E

[
exp

(∫ t

0
β ◦ F−1

m (Ws) ds
)]

≤ E
[
exp

(∫ t

0
βε(Ws) ds

)]
if V (m) and W have the same initial distribution. Thus λm ≤ λ̃ε, where

λ̃ε := inf
{
λ : φ̃λ,ε(x) is non-negative for all x

}
for φ̃λ,ε the unique solution to the initial value problem

(25)
1
2
φ̃′′λ,ε − γφ̃λ,ε + βεφ̃λ,ε = λφ̃λ,ε with φ̃λ,ε(0) = 1 and φ̃′λ(0) = γ.

Solutions of the equation
1
2
f ′′(x)− γf ′(x)− rf(x) = λf(x)

for some constant r are linear combinations of the two functions

exp
((
γ −

√
γ2 + 2(λ+ r)

)
x
)

and
exp

((
γ +

√
γ2 + 2(λ+ r)

)
x
)
.

Solutions of the equation
1
2
f ′′(x)− γf ′(x) + (p− qx)f(x) = λf(x)
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for some constants p and q are linear combinations of the two functions

eγxAi
(
γ2 + 2(λ− p+ qx)

22/3q2/3

)
and

eγxBi
(
γ2 + 2(λ− p+ qx)

22/3q2/3

)
,

where Ai and Bi are the Airy functions (see Section 10.4 of [AS65]). It
follows that for fixed λ the first and second derivatives of φ̃λ,ε are bounded
on [0, ε] and of orders at most ε−1/3 and ε−2/3, respectively, on [ε, 2ε]. Thus

(26) lim
ε↓0

sup
0≤x≤2ε

|φ̃λ,ε(x)− 1| = 0 and lim
ε↓0

sup
0≤x≤2ε

|φ̃′λ,ε(x)− γ| = 0.

Consider the initial value problem
1
2
φ̆′′λ,c,g − γφ̆′′λ,c,g + β∞φ̆λ,c,g = λφ̆λ,c,g with φ̆λ,c,g(0) = c and φ̆′λ,c,g(0) = g.

Now
inf
{
λ : φ̆λ,1,γ(x) is non-negative for all x

}
is simply the negative of the asymptotic killing rate of reflected Brownian
motion with drift γ killed at constant rate −β∞, namely β∞ (this also follows
from explicit computation). If λ > β∞, then an explicit computation of the
solution shows that φ̆λ,c,g is non-negative for c sufficiently close to 1 and g
sufficiently close to γ.

Choose any λ > β∞. On (2ε,∞), the eigenfunction φλ,ε coincides one
of the functions φ̆λ,c,g. From (26) we know that by choosing ε sufficiently
small, we can make c as close as we like to 1 and g as close as we like to γ;
hence, φλ,ε is non-negative on (2ε,∞). The initial values of (25) show that it
is also non-negative on [0, 2ε] for ε sufficiently small. Thus lim infε↓0 λ̃ε ≤ λ;
since λ was chosen arbitrary ≤ β∞, it follows lim infε↓0 λ̃ε ≤ β∞. Combining
this with (11), we see that and the proof for condition (a) is complete.

Now we consider the case of condition (b). Set

Σ2
m = sup

x∈R+

σ2
m(x)

and

Z
(m)
t = Y

(m)
t − Y

(m)
0 −

∫ t

0
b(Y (m)

s )ds− `0t (Y
(m)),

where `0(Y (m)) is the local time at 0 of Y (m). Then Z
(m)
t is a martingale

with quadratic variation process bounded by Σ2
mt. Put

Z
(m)∗
t := sup

0≤s≤t

∣∣Z(m)
s

∣∣.
Because a continuous martingale is a time-change of Brownian motion, there
is a universal constant C such that

P
{
Z

(m)∗
t ≥ ε

}
≤ C exp(−ε2/2Σ2

mt).
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For any δ > 0,

P
{
τ

(m)
∂ > t

}
= E

[
exp

(∫ t

0
β(Y (m)

s ) ds
)]

≤ E
[
exp

(∫ t

δt
β(b∗s− b∗tδ/2) ds

)]
+ P

{
Z

(m)∗
t > b∗tδ

}
≤ exp

(
(1− δ)t sup

x≥b∗tδ/2
β(x)

)
+ P

{
Z

(m)∗
t > b∗tδ/2

}
≤ exp((1− δ)β(b∗tδ/2) t) + C exp(−t(b∗δ)2/8Σ2

m).

(Recall we have assumed that β is non-increasing.) Since limm→∞ Σ2
m = 0

and limx→∞ β(x) = β∞, we may find T such that

P
{
τ

(m)
∂ > t

}
≤ exp((1− 2δ)β∞t)

for all t ≥ T and all m sufficiently large. It follows that λm ≤ (1 − 2δ)β∞
for m sufficiently large. Thus lim infm→∞ λm ≤ β∞, as required. �

Appendix: Convergence of the branching processes

We show in this section that the sequence of measure-valued processes
(Xn) converges to a Dawson-Watanabe superprocess X under suitable con-
ditions. We first recall the definition of the limit X as the solution of a
martingale problem.

For simplicity, we deal with the biologically most relevant case where there
is no killing at 0 in the damage and accumulation diffusion; that is, p0 = 1
in the boundary condition (8), so that the domain D(L) of the operator L

consists of twice differential functions φ that vanish at infinity, satisfy (8) for
p0 = 1, and are such that Lφ is continuous and vanishes at infinity. Similar
arguments handle the other cases.

Suppose that the asymptotic rescaled branching rate ρ is bounded and
continuous. Recall that the asymptotic net birth rate β is continuous and
bounded above. Let M denote the space of finite measures on R+ equipped
with the weak topology. For each ν ∈ M there is a unique-in-law, cádlág,
M-valued process X such that X0 = ν and for every non-negative φ ∈ D(L)

exp(−〈φ,Xt〉)− exp(−〈φ, ν〉)−
∫ t

0
exp(−〈φ,Xs〉)〈−Lφ+

1
2
ρφ2, Xs〉 ds

is a martingale. Moreover, X is a Markov process with continuous paths.
Our convergence proof follows the proof of convergence of branching

Markov processes to a Dawson-Watanabe superprocess, as found in Chapter
1 of [Eth00] or in Chapter 9 of [EK86]. Because we only wish to indicate
why a superprocess is a reasonable approximate model for a large population
of fissioning organisms, we don’t strive for maximal generality but instead
impose assumptions that enable us to carry out the proof with a minimal
amount of technical detail.
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Let (Πt)t≥0 be the Markovian semigroup generated by

Gφ :=
1
2
σ2

motφ
′′ + bφ′

with boundary condition (8) for p0 = 1. That is, the generator of (Πt)t≥0

is the operator G acting on the domain D(G) consisting of twice differential
functions φ that vanish at infinity, satisfy (8) for p0 = 1 with σ2 replaced
by σ2

mot, and are such that Gφ is continuous and vanishes at infinity. Thus
(Πt)t≥0 is the Feller semigroup of the particle motion for the measure-valued
processes Xn.

Let E denote the state space formed by taking the one-point compacti-
fication of R+. The semigroup (Πt)t≥0 can be extend to functions on E in
a standard manner. The point at infinity is a trap that is never reached by
particles starting elsewhere in E. The domain of the extended semigroup is
the span of D(G) and the constants (which we will also call D(G)) and the
generator is extended by taking G1 = 0. We also extend the measure-valued
processes Xn – the point at infinity never collects any mass if no mass starts
there.

Set βn(x) := an(x) − kn(x) and ρn(x) := n−1(an(x) + kn(x)). Suppose
that βn and ρn are bounded and continuous. Given a bounded continuous
function g : R+ → R, put Jn

+g(x) :=
∫
g(x + y) dπn

x(y) and Jn
−g(x) :=∫

g(x− y) dπn
x(y)

We have for f ∈ D(G) with infx f(x) > 0 that

exp(〈n log f,Xn
t 〉)− exp(〈n log f,Xn

0 〉)

−
∫ t

0
exp(〈n log f,Xn

s 〉)

×
〈
n

f

{
Gf + nρn

[
an

nρn
· Jn

+f · Jn
−f +

kn

nρn
− f

]}
, Xn

s

〉
ds

is a càdlàg martingale (cf. the discussion at the beginning of Section 9.4 of
[EK86]).

If Xn
0 is a non-random measure ν ∈ M, then essentially the same argu-

ment as in the proof of Lemma 9.4.1 of [EK86] shows that

(27) Eν [〈1, Xn
t 〉] ≤ 〈1, ν〉 exp

(
t sup

x
ρn(x)βn(x)

)
and

(28) P
{

sup
t
〈1, Xn

t 〉 exp
(
−t sup

x
ρn(x)βn(x)

)
> z

}
≤ 〈1, ν〉

z

(the result in [EK86] has the analogue of supx |ρn(x)βn(x)| in place of
supx ρ

n(x)βn(x), but an examination of the proof shows that it carries
through with this constant).

In order to motivate our next set of assumptions, imagine just for the mo-
ment that the jump distribution πn

x is the distribution of a random variable
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n−1/2Yx where Yx has moments of all orders. For φ sufficiently well-behaved
and fn := 1− n−1φ, a Taylor expansion shows that
(29)
n

fn(x)

{
Gfn(x) + nρn(x)

[
an(x)
nρn(x)

· Jn
+fn(x) · Jn

−fn(x) +
kn(x)
nρn(x)

− fn(x)
]}

is of the form

−
{1

2
σ2

mot(x)φ
′′(x) + b(x)φ′(x) + βn(x)φ(x)

+
an(x)

an(x) + kn(x)
n

(∫
y2 dπn

x(y)
)
φ′′(x)− ρn(x)an(x)

an(x) + kn(x)
φ2(x)

}
plus lower order terms, and this converges pointwise to

−
{

1
2
σ2(x)φ′′(x) + b(x)φ′(x) + β(x)φ(x)− 1

2
ρ(x)φ2(x)

}
under the assumptions (1), (2), and (3).

With this informal observation in mind, assume that D(L) ⊆ D(G) and
that if fn := 1− n−1φ with φ ∈ D(L) and infx φ(x) > 0, then the function
in (29) converges uniformly to −Lφ+ 1

2ρφ
2.

Under this assumption, we can follow the proof of Theorem 9.4.3 in [EK86]
(using (28) to verify the compact containment condition in the same manner
that the similar bound (9.4.14) is used in [EK86]) to establish that if Xn

0

converges in distribution as a random measure on E, then the process Xn

converges in distribution as a càdlàg E-valued process to X.
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