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Abstract

Some astronomy projects require a blind search through a vast

number of hypotheses to detect objects of interest. The number of

hypotheses to test can be in the billions. A naive blind search over

every single hypothesis would be far too costly computationally. We

propose a hierarchical scheme for blind search, using various ‘reso-

lution’ levels. At lower resolution levels, ‘regions’ of interest in the

search space are singled out with a low computational cost. These

regions are refined at intermediate resolution levels and only the most

promising candidates are finally tested at the original fine resolution.

The optimal search strategy is found by dynamic programming. We

demonstrate the procedure for pulsar search from satellite gamma-ray

observations and show that the power of the naive blind search can

almost be matched with the hierarchical scheme while reducing the

computational burden by more than three orders of magnitude.
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1 Introduction

“What is the most efficient way to look for a needle in a large haystack?”

This is, in essence, a problem one faces in some astronomy projects. Huge

amounts of data are gathered. These could be luminosities from thousands

of stars (Alcock et al., 2003), photon arrival times from potential pulsars

(Kanbach et al., 1989; Gehrels and Michelson, 1999) or measurements to de-

tect gravitational waves (Abramovici et al., 1992). Some of the encountered

problems might be more accurately formulated as: “What is the most ef-

ficient way to look for a needle in several thousand haystacks?” Take the

search for gamma-ray pulsars as an example. For each of many observed

sources, photon arrival times are recorded and the question is whether there

is any periodicity in the arrival times of the photons. To this end, the power-

spectrum has to be calculated on a very fine grid of frequencies. The number

of frequencies to be searched scales proportionally to the length T of the

observations. Additionally, rotation-powered pulsars ‘spin down’ over time,

losing some of their rotational energy. Searching over frequency alone is not

sufficient and the drift has to be accounted for. If the drift is linear over

the time period of observations, the number of drift values to be searched

(to guarantee some chosen power of detection) scales as T 2. The number of

hypotheses thus increases thus like T 3 and is already unbearably high for the

recent EGRET satellite observations (Kanbach et al., 1989), with roughly

100 billion frequency-drift combinations to be searched for each source to de-

termine whether there is any periodicity in the photon arrival times. Thus, in

a blind search for radio-quiet pulsars among the EGRET sources, Chandler

et al. (2001) used a 512 processor supercomputer. The upcoming GLAST

survey will be faced with even higher computational challenges as observa-

tional times are longer.

Some related problems in astronomy include the detection of gravitational
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waves and the search for variable stars. To verify the existence of gravita-

tional waves, a space interferometer LIGO is in operation (Abramovici et al.,

1992). The precision of the experiment is unprecedented. Any search for

gravitational waves will have to be at a very fine grid in frequency space,

posing computational challenges. Likewise for the search for stars with pe-

riodically changing luminosity. These fluctuations can sometimes indicate

the presence of a planet and some exoplanets have been found in this way.

Surveys with the potential for the search for stars with variable luminosity

include the Taiwanese-American occultation survey (Alcock et al., 2003) and

the planned ‘Pan-Starrs’ (Kanbach et al., 1989) and LSST (Tyson, 2002)

projects. We will mostly be taking the search for gamma-ray pulsars as an

example, though, using data from the EGRET mission Kanbach et al. (1989),

data being from the 3rd EGRET catalogue (Hartman et al., 1999).

Resolution levels and hierarchical search. The proposed hierarchical

search scheme rests on a simple underlying idea. Instead of testing every

single of, potentially, billions of hypotheses individually, some kind of ‘ag-

gregate’ or ‘summary’ statistics is calculated for sub-groups of hypotheses.

These could, in the simplest case, be the average test statistics over each

sub-group. The needle in the haystack corresponds to a single or a few true

non-null hypothesis (the needle) to be detected among, potentially, billions

of true null hypotheses (the haystack). If the evidence at the individual level

is strong enough for the true non-null hypotheses to stand out from billions

of null hypotheses, it is certainly still high enough to produce ‘suspiciously’

high values of any sensible aggregate statistics (like an average) over sub-

groups of, say, tens or hundreds of hypotheses. One could first calculate

the aggregate statistics over all sub-groups. In a second stage, one can then

examine the promising candidate groups in more detail. The computational

saving consist of not spending too much effort on uninteresting sub-groups
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of hypotheses. Such a two-stage procedure begs the question of optimal-

ity. Maybe a three-stage procedure is even better, doing a pre-selection of

promising sub-groups at a very coarse level before entering the two-stage

procedure? Or maybe four or five-stage procedures? Also, it is unclear what

the optimal size of sub-groups is. Should one aggregate over ten hypotheses

or thousands? We propose a fitting algorithm that can, in principle, answer

these questions. Instead of asking the traditional statistical question,

“What is the most powerful test procedure under a constraint on

the false-positive rate?”,

we rather ask

“What is the most powerful test procedure under a constraint on

(a) the false-positive rate and (b) the computational cost of the

procedure?”.

By taking the constraint on the computational resources into account, the

problem becomes much richer and challenging. We only try to illuminate

some aspects of taking this step and think that problems of this type will

play some role beyond the astronomical problems (’astronomical’ both in

scope and size) mentioned above.

Related work. Such ideas go back at least to proposals for group testing

(Dorfman, 1943) and work on sequential estimation (Kiefer and Sacks, 1963;

Bickel and Yahav, 1967), and more recently have been considered in the

physics community. A simple hierarchical setup, yet only in a two-layer

version, was proposed in Brady and Creighton (2000). Later, Cutler et al.

(2005) showed that the computational costs could be reduced even further

by adding a third stage. We try to formulate the problem so that it is

applicable to a broader array of problems than detection of gravitational
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waves. Our main contribution is the formulation of the optimal solution

in terms of dynamic programming (DP). That way, all involved constants,

number of layers, resolution levels and other involved parameters can be

chosen automatically in a nearly optimal way. Moreover, we show how DP

can be solved in a computationally efficient manner for a hierarchical tree.

A related issue occurs also for fast online pattern recognition. In a widely

cited paper, Viola and Jones (2001) proposed ‘boosting cascades’ as a very

fast approach for object recognition in images. In each ‘cascade’ step, a com-

putationally cheap algorithm (in effect, a few steps of a boosting algorithm)

reduce the number of potential targets by a large factor, without losing real

objects of interest on the way. A finer distinction has then to be made only for

a greatly reduced number of potential objects. In similar spirit, Blanchard

and Geman (2005) examine the optimality of hierarchical testing designs,

using the related assumption of tests with zero type II error (not losing any

object of interest on the way). They derive interesting results about optimal-

ity conditions for any hierarchical testing scheme under these assumptions.

We take a more pragmatic approach and try to derive an optimal detection

scheme under non-negligible type II errors.

2 Hierarchical search

After introducing some notation, the example of pulsar detection is described

in more detail and the notion of hierarchies and resolution levels is illustrated

at hand of this example.

The notation for the ‘naive’ search is introduced. In the naive search, each

hypothesis out of a potentially very large number n of hypotheses is tested.

The parameter of interest is denoted by θj, j = 1, . . . , n for each individual

hypotheses. The associated null hypotheses are

H0,j : θj ∈ Θ0, j = 1, . . . , n,
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HA,j : θj ∈ ΘA, j = 1, . . . , n.

Associated with each test j = 1, . . . , n is a real-valued test statistic Zj.

Assume for simplicity that each test statistics Zj follows, marginally and

conditional on θj, the same distribution for all j = 1, . . . , n. Each null

hypothesis H0,j can be rejected if Zj > q, where q is chosen such that, for

true null hypotheses, the probability of exceeding the threshold is limited by

P (Zj > q) ≤ α. The level α can be chosen to achieve any desired family-

wise error rate or false discovery rate. For control of the family-wise error

rate, one can for example use a simple Bonferroni correction. We will not

be concerned with the choice of the threshold q in the following and simply

assume it to be fixed.

Each test incurs a certain computational cost and it might be too expensive

to do all n tests. The question is then if we can find procedures that maintain

good power while being computationally cheaper than the naive search over

each individual hypothesis.

2.1 Example: Pulsar Detection

Using satellite gamma-ray detectors, the EGRET project recorded photon

arrival times from a number of known and unknown sources. For the (known)

pulsar PSR1706, for example, 1072 photons with energies above 200 MeV

were observed over a time-span of T = 1205197 seconds, roughly 14 days.

These pulsar performed more than 108 rotations in this observational time,

meaning that the chance to see a photon in any given cycle is very low.

What is a sensible statistic to detect periodicity in these arrival times? The

problem is studied in Bickel et al. (2007a,b). Surprisingly and fortunately,

even though the detection sensitivity of the detector changes over time (for

example, because the earth moves between the satellite and the object of

interest), the distribution of the test statistic does not depend on it. To test
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Figure 1: Histogram of the phase of photon arrival times for pulsar PSR1706.

The probed frequency in Hz is shown on the top of each histogram and is

increasing slightly from left to right. The true frequency is in the center

and shows the clearest deviation from uniform arrival times. The drift was

adjusted to the true drift of this pulsar. In a blind search, the frequency

range to be searched ranges from about 1 Hz to 40 Hz.

for periodicity at a given frequency ω and drift ω̇ with photon arrival times

t1, . . . , tm, we use in the following simply the power in the first harmonic,

F (ω, ω̇) =
2

m
|
m∑
j=1

exp(2πiφj)|2, where φj = ωtj − ω̇t2j/2. (1)

If φ(T ) � 1, the null distribution of the statistics is approximately chi-

squared with two degrees of freedom. This is the Rayleigh test statistic for

periodicity (Mardia and Jupp, 1999). As alluded to above, this quantity

would have to calculated over a fine grid for possible frequency-drift pairs

(ω, ω̇) to have a reasonable chance of detection. Figure 1 illustrates the

effect of even a slight misspecification of the frequency. The drift has to be

matched even better, as the number of gridpoints necessary scales linearly in

T for frequency. This precision is is needed in order that an arrival time at

the beginning of the record be in phase with one at the end. For the same

reason, the scaling of the number of necessary grid values is T 2 for drift, as

any mismatch δω̇ in drift leads to a phase shift δω̇ T 2/2 at the end of the
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observational period.

Tapering and blocked search. The function F can be ’smoothed out’

by so-called ‘blocking’ of the observational time. Instead of calculating the

power in each frequency-drift combination over the entire length of the ob-

servations, one can divide the observational time into 2κ blocks B1, . . . , B2κ

of equal length, with some value of κ ∈ N. Calculating (1) separately for

each block and summing the result over all blocks, one obtains the modified

statistic

F κ(ω, ω̇) =
2

m

2κ∑
k=1

|
∑

j:tj∈Bk

exp(2πiφj)|2. (2)

In essence, the phase information between successive blocks is lost. The

resulting statistic has not as sharp a peak for the true frequency-drift pair as

F . It is, on the other hand, less sensitive to misspecifications of these values.

The number of grid points to be searched is of order T/2κ for frequency and

of order T 2/22κ for drift.

The ‘smoothing out’ effect of blocking can be observed in Figure 2. For pulsar

PSR1706, the function F κ is shown for the values κ = 0, . . . , 4 in the vicinity

of the ‘true’ frequency-drift of pulsar PSR1706. It becomes evident that

sensitivity to the drift parameter decreases more rapidly for an increasing

number of blocks, compared with the sensitivity to frequency. This supports

the previous observation that the number of gridpoints needs to scale like T

for frequency but like T 2 for drift. The hierarchical search navigates its way

from the coarsest level to the the finest resolution level, trying to detect all

peaks while minimizing the computational cost.

2.2 Tree structure

The basic idea of hierarchical search is to start at a coarse resolution level,

where a small computational cost is sufficient to divide the search space
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Figure 2: The frequency-drift plot for pulsar PSR1706, showing the power

in the first harmonic at different ‘resolution’ levels. From top left to bottom

right, the number of blocks decreases from 16 over 8, 4 and 2 to 1 at the finest

resolution. The true frequency and drift of the pulsar is seen as a sharp peak

at the finest resolution at the bottom right. The peak is ’smeared out’ at

lower resolution levels.

9



● ●

● ● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

X1
((1))

X2
((1))

X1
((2))

X2
((2)) X3

((2))
X4

((2))

X1
((3))

X2
((3)) X3

((3))
X7

((3))
de((3))(2,3)

de((5))(3,7)
Z1 Z2 Z3 Z4 Z5

Figure 3: Illustration of the hierarchical setup. The ellipsoids indicate that,

for example, the descendants of node 7 in layer 3, can be referred to as

de(5)(3, 7), if one is looking at descendants in the fifth layer. The original

test statistics Z1, . . . , Zn form the highest layer of the hierarchy and are

identical to X
(5)
1 , . . . , X

(5)
n .
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into ‘interesting’ regions (which warrant further exploration at finer resolu-

tion levels) and ‘uninteresting’ regions (on which no further computational

resources should be spend).

The hierarchical setup can most conveniently be represented by trees. Each

tree has G layers, or generations, of nodes, corresponding to the various

resolution levels. The coarsest resolution corresponds to layer ` = 1, while

the finest resolution level, where final test decisions are made, corresponds

to level ` = G.

At each layer, some observations can be made. The number of potential

observations is increasing for finer resolution levels. Figure 3 illustrates the

basic setup. For simplicity, assume that the number of original tests can be

written as n = 2D. The first layer contains 2D−G+1 measurements

X
(1)
1 , . . . , X

(1)

2D−G+1 .

Each successive layer contains then twice as many potential measurements

as the previous layer, up to the original 2D measurements for the final layer.

The layers are organized in a binary tree. In each layer, the nodes v =

1, . . . , 2D−G+` of the tree correspond to the potential measurements that can

be made. Each node in layers ` up to G−1 has two children in the next layer

` + 1. The search proceeds along these tree branches. If the observation at

a node is ‘promising’, the children are examined in more detail. Or, maybe,

some further descendants are examined directly. If the observation at node

v is not ‘promising’ enough, search in this subtree is stopped.

Take a node v in layer `. All descendants of this node in layer s > ` are

referred to as de(s)(`, v). Figure (3) shows two examples. The final layer

` = G contains all the original n observations Z1, . . . , Zn, where each Zv is

identical to X
(G)
v , and we will mainly use the latter notation in the following.

We have formulated the problem in terms of binary splits. The approach

can easily be generalized to form K-ary splits. However, the case of binary
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splits is quite general. The search strategy will not necessarily have to observe

nodes in every layer and can ‘jump’ across layers. Hence, there is no negative

effect if the binary splits cause more layers to be present than necessary for

an efficient search, as the optimal search strategy will simply ignore these

superfluous layers.

2.3 Hierarchical Search Strategies

Any value in the tree can only be observed upon ‘payment’ of a computational

price C`, which depends, potentially, on the layer ` of the tree. The question is

then: if one has already observed some nodes, which ones should be observed

next? And which subtrees are unpromising candidates? The descendants of

those unpromising candidates should then be discarded in further search.

If the observed value of a node is sufficiently ‘interesting’ (typically, suffi-

ciently high), the search proceeds to the next layer in the subtree that is

formed by taking the observed node as a root node. Or the search could skip

the next layer entirely and proceed with the second next layer and so on. On

the other hand, if the observed value indicates that this region of the search

space does not warrant further investigation, the search can stop completely

in the entire subtree.

Let O be a vector with the same dimensionality as X. The value of O
(`)
v at

node v in layer ` is given by

O(`)
v =

{
1 if the value X

(`)
v has been observed

0 if the value X
(`)
v has not (yet) been observed

The search strategy S can be formulated separately for each layer. The

strategy S can thus be written as a vector (S(1), . . . , S(G)). Upon observing

the value X
(`)
v in layers ` = 1, . . . , G, the strategy S(`) is a mapping

S(`) : R 7→ {0, `+ 1, . . . , G},
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saying in which generation to search next. The strategy depends in this

formulation only on the layer ` and not the individual node v. This eases

the computational burden when fitting the optimal strategy and the optimal

strategy is of this form if all X
(`)
v in the same layer ` are exchangeable. A

value of 0 means that no further search takes place in the subtree formed

by taking node v as root node. A value s > ` means that generation s is

searched next. This generation s can be larger than ` + 1. In this case, one

or more generations are skipped and the search continues directly on a much

finer grid. Continuing the search after the final layer is not sensible and we

use the convention that S(G)(x) = 0 for all values x in layer G.

The hierarchical search proceeds then as follows.

1. Initialize. For the lowest layer ` = 1, set O
(1)
v = 1 for all v (so that all

values in the lowest layer are observed). Initialize O
(`)
v = 0 for all v in

all other layers ` = 2, . . . , G.

2. Loop. Do the following successively for all layers ` = 1, . . . , G.

For each node v in layer `,

(a) Calculate the value x = X
(`)
v if and only if O

(`)
v = 1.

(b) Let s = S(`)(x).

If s 6= 0, set O
(s)
u = 1 for all descendants u ∈ des(`, v) of node v in

layer s.

The algorithm above shows the implementation for the search strategy under

the assumption that the strategy, which consists of G functions S(1), . . . , S(G)

is known. To find an ‘optimal’ strategy, one first needs to formulate the

objectives. Here, we are trying to minimize the computational cost of the

search while maximizing the chance of detecting truly interesting events (false

null hypotheses in the final layer).
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2.3.1 Computational cost

The computational cost of a search is simply the sum of the computational

costs of observing nodes. A node v in layer ` has been observed if O`
v = 1,

according to the notation introduced above. As the cost of observing any

node in layer ` is C`, the total cost is∑
v,`

C` 1{O(`)
v = 1}.

The computational cost of a strategy S is the expected value of the quantity

above,

Cost(S) := E
(∑

v,`

C` 1{O(`)
v = 1}

)
. (3)

The goal is to choose the strategy S in a way to keep the computational cost

as small as possible while maximizing power.

2.3.2 Power

The power of a strategy S is determined by the probability of being able to

reject false null hypotheses. Possible candidates for rejection are all nodes v

in the final layer G whose value X
(G)
v surpasses the critical threshold q. The

crucial additional requirement is now that the value of those nodes has been

observed. The power of the testing scheme is measured by

Power(S) := E
(∑

v

1{X(G)
v ≥ q} 1{O(G)

v = 1}
)
. (4)

The power is clearly maximal if all leaf nodes are observed and is then equal

to the power achieved by naive search.

As an alternative to the definition above, one might want to count only

rejections of those nodes which correspond to false null hypotheses. Rejecting

true null hypotheses is clearly not desirable. We chose the definition above

as it allows to quantify the ‘success’ of the search scheme in situations where
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Figure 4: The outcome of the hierarchical search for pulsar PSR1706 in the

vicinity of the ’true’ frequency (in the center of the plot) and for the ’true’

drift. At the lowest resolution in level 1, all frequencies are examined on a

coarse grid. The line above each layer indicates the value of the test statistic

at each node (where a node corresponds to a frequency). All observed test

statistics are shown in black, while unobserved frequencies are gray. Promis-

ing candidate frequencies are then searched on a finer grid in layer 2. For

sufficiently high values, layer 2 is even skipped and the search continues di-

rectly on a finer grid in layer 3. The peak in the highest layer around the

true frequency is found. The total number of tests made is 176, compared to

512 frequencies that would have to be searched if only the layer at the finest

resolution would be available. A lot of activity in this picture is triggered by

the peak at the ‘true’ frequency (and some smaller peaks next to the main

peak as a result); for other, uninteresting, regions with no peak (which make

up the vast majority of a typical blind search), the proportion of tests made

is more than three orders of magnitude smaller than the number of potential

tests in the final layer.
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no knowledge is available as to which hypotheses would be truly false or true

null hypotheses. More fundamentally, the search strategy is just a first step,

narrowing down the number of hypotheses to be tested in the final layer.

All these tested hypotheses can only be rejected if the corresponding values

of the test statistics are above the critical value q. The overall procedure

will have the same power as computationally expensive naive blind search

(where all hypotheses are tested) if we can observe all nodes in the final

layer, where the test statistic is above q. With (4), one measures thus simply

the additional loss of possible rejections resulting from the fact that not all

hypotheses in the final layer are observed.

2.3.3 Optimal Strategies

There is clearly a tradeoff between the computational cost of a search strat-

egy and its power. At one extreme, power could be maximized by searching

over all hypotheses. This naive search strategy attains maximal power but

increases the computational burden to unbearable levels. At the other ex-

treme, cost could be minimized by dropping all search immediately, with

the result of zero cost yet also zero detection power. Neither of these two

extremes is clearly desirable.

For a given affordable computational cost c, an ‘optimal’ strategy attains the

maximal power under the computational constraint,

argmaxS Power(S), subject to Cost(S) ≤ c.

It will be more convenient to formulate the problem in a different yet equiva-

lent way. For each cost constraint c, there is a value λ such that the optimal

strategy is given by Sλ, defined as

Sλ = argmaxS {Power(S)− λCost(S)}. (5)

In most cases, one would typically be interested in a whole family of solutions,

for different values of λ. This allows the value of λ to be chosen once the
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entire tradeoff between power and cost is known. The question arises whether

the optimal strategy Sλ can be computed for any given value of the tradeoff

parameter.

2.4 Dynamic Programming

To obtain a close approximation to the optimal solution Sλ, one can use

dynamic programming (Bertsekas, 1995). The optimal solution can be found

by working down the hierarchy. The first non-trivial task is the strategy for

layer G− 1. It can be found without knowledge about the optimal strategies

for layers below G− 1. Once S(G−1) is known, strategy S(G−2) can be found,

using the previously found approximately optimal strategy for layer G − 1.

Proceeding in this way, the optimal strategy can be computed for every layer.

2.4.1 Payoff

The ‘payoff’ P is a random real-valued function for each node in the tree.

For node v in layer `, the payoff measures the ‘success’ in the subtree that is

induced by taking node v in layer ` as root node. For a given realization, the

payoff is then the number of correctly rejected null hypotheses in this subtree

less the spent computational cost, weighted by λ, under a given strategy S.

P
(`)
λ,v,S =

∑
u∈de(G)(`,v)

1{X(G)
u > q} 1{O(G)

u = 1} − λ

G∑
`∗=`+1

∑
u∈de(`∗)(`,v)

C`∗1{O(`∗)
u = 1}.

(6)

The first part is the number of rejected hypotheses among all descendants in

the final layer G. The second part measures the computational cost spend

in the subtree. The sum stretches only over all layers which are above layer

` and is by definition 0 if ` = G. Note that the payoff is a function of the

strategy S, as the strategy influences the observations O.
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Using the definition of the payoff above, it becomes clear that the optimal

strategy Sλ maximizes the expected payoff at the first layer,

Sλ = argmaxS E(
∑
v

P
(1)
λ,v,S).

This definition is equivalent to (5). The payoff function defined above will

be useful to characterize the optimal strategy across all layers of the tree.

While the optimal strategy maximizes the expected payoff, one can conversely

define a ‘value function’ to characterize the payoff under such an optimal

strategy.

2.4.2 The value function V.

The value function V at node v in layer ` < G measures, conditional on the

observation X
(`)
v , the expected payoff under the best possible strategy,

V
(`)
λ,v (x) = max

S
E( P

(`)
λ,v,S | X

(`)
v = x). (7)

The value function depends on the tradeoff parameter λ and the layer ` under

consideration. For the most part, we will be considering distributions of X

for which the value function above does not depend on the specific node v

in the layer. This holds true if the distribution of X is identical under an

exchange of nodes in the same layer of a tree (which includes exchange of

the relevant subtrees attached to these nodes). We will write simply V
(`)
λ .

Instead of looking at the value function directly, it is useful to look at the

’continuation value’, which measures the expected value if taking a specific

action in the next step and following the optimal strategy thereafter.

2.4.3 The continuation value Q.

The value function is calculated under the assumption that the optimal strat-

egy is known completely. The ‘continuation value’, in contrast, assumes only
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that the optimal strategy is known after the next necessary action has been

taken; for details and more motivation see Bertsekas (1995).

At node v in layer ` < G, the set of actions s that can be taken is either to

drop all further search (which corresponds to action ‘s = 0’) or to proceed

in layer `∗ with ` < `∗ ≤ G (which corresponds to action ‘s = `∗’). The

continuation value for some node v in layer `, when taking action s, is given

by

Q
(`)
λ,v,s(x) =

∑
u∈de(s)(`,v)

{
E(V

(s)
λ,u |X

(`)
v = x)− λCs

}
. (8)

The descendants de(s)(`, v) are, by convention, the empty set if s = 0 and the

continuation value is in this case 0 (as it should be as all search is terminated).

Again, we will mostly be working with situations where the value function

does not depend on the specific node in a given layer and the continuation

value can then be written as

Q
(`)
λ,s(x) =

{
0 if s = 0

2s−` (E(V
(s)
λ |X(`) = x)− λCs) if s 6= 0

. (9)

For the decision to drop all further search (s = 0), the continuation value

is clearly zero as no costs will be incurred but no detections will be made

either. For s 6= 0, the set of descendants is of size 2s−l (as we are working

with binary trees).

The connection between the value function and the continuation value is

simple. The value function (7) is the continuation value under the best

decision,

V
(`)
λ (x) = max

s∈{0,`+1,...,G}
Q

(`)
λ,s(x). (10)

The best decision is the one that leads to the highest continuation value

S
(`)
λ (x) = argmaxs∈{0,`+1,...,G}Q

(`)
λ,s(x). (11)

If the continuation values are known, the value function follows immediately
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by (10). Also, the optimal action follows by (11). It is thus sufficient to fit

the continuation values.

2.4.4 Dynamic Programming

As motivated above, to find the optimal strategy it is sufficient to fit the

continuation values. Starting at the topmost layer, the fit of all possible G−`
continuation values in layer ` require only the previously fitted continuation

values of higher layers than `. Starting at the leaf nodes in the highest layer,

the value function can be computed as follows.

1) Initialize Leaf Nodes. Set current generation ` to the highest gen-

eration G. The value function is

V
(G)
λ (x) = 1{x ≥ q}

2) Compute Continuation Value. Move one generation down, `← `−
1. The continuation value Q

(`)
λ,s(x) is given for actions s ∈ {`+1, . . . , G}

by

Q
(`)
λ,s(x) = 2s−` (E(V

(s)
λ |X

(`) = x)− λCs). (12)

For s = 0, the continuation value vanishes identically.

3) Compute Value Function. The value function for generation ` is

given by

V
(`)
λ (x) = max

s∈{0,`+1,...,G}
Q

(`)
λ,s(x).

4) Loop. If ` > 1, go to Step 2. Else stop.

The most challenging step is the computation of the continuation value in

(12) as it involves computing the expectation of the value function, condi-

tional on the observations in lower layers. The approach we choose here is

Monte Carlo (MC) sampling, fitting the continuation values by a nonpara-

metric regression.
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2.5 Computing the optimal strategy by simulation

Solving the dynamic programming problem explicitly is not feasible in general

and one has to resort to simulation to approximate the conditional expec-

tation in (12). Even a MC approach has to be well designed due to the

potentially very high number of tests involved and the enormous sizes of the

trees involved. In situations we are interested in, the number of nodes in a

tree can be in the billions. It is then infeasible to hold anything in memory

which scales linearly with tree size. Only small subsets of the tree can be

held in memory at any given time.

2.5.1 Simulating ‘paths’

It might be very costly to simulate a single realization of X over the entire

tree. Moreover, to do so would be inefficient as it would yield many simula-

tions towards the leaves but just a limited number of samples for lower layers

closer to the root nodes.

An alternative approach is to simulate X for random ‘paths’ in the tree. Let

(v1, . . . , vG) be a random path in the tree (where node v` sits in layer ` for

all ` = 1, . . . , G) in the sense that

• if ` > 1, node v` has to be in the set de`(`− 1, v`−1) of descendants of

the node v`−1;

• the density is uniform over all such paths.

Consider that one would draw m samples of X over the entire tree. At

the same time, m random paths are drawn. The realization of X along the

corresponding path (v1, . . . , vG) is then denoted for all i = 1, . . . ,m by

X(1),i, . . . , X(G),i. (13)

Specifying the layer ` is sufficient, as in each layer only a single node (namely

v`) is observed.
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2.5.2 Path Payoff

Definition (6) of ‘payoff’ requires that the realization of X over the entire

tree is known. As we are (by computational necessity) working only with

paths, we define the ‘path payoff’ as the best estimate of the ‘payoff’ under

this constraint. The basic restriction is that one observes only one node v in

each generation. One can correct for that fact by multiplying every rejection

and all the computational costs along the path by an appropriate factor. The

path payoff P̂ is defined by

P̂
(`)
λ,v,S = 2G−` 1{X(G)

vG
> q} 1{O(G)

vG
= 1} − λ

G∑
`∗=`+1

2`−`
∗
C`∗ 1{O`∗

v`∗
= 1}.

(14)

At each layer, only one node is observed (the node in the path) and the payoff

at this node, multiplied by an appropriate factor, is an unbiased estimate of

the payoff across all nodes in this layer. The path payoff is an unbiased

estimate of the payoff (6). If we let X be the vector which contains all

observations from the tree, then

E(P̂
(`)
λ,v,S|X) = P

(`)
λ,v,S, (15)

where the expectation is with respect to randomly sampled paths. Note that,

conditional on X, the payoff is a constant and the path payoff depends only

on the randomly chosen path. As the value function V
(`)
λ (x) is the expected

payoff, one obtains an unbiased estimate of the value function through the

path payoff. For a node v in generation `,

V
(`)
λ (x) = E(P

(`)
λ,v,S|X

(`)
v = x).

Thus, using (15),

V
(`)
λ (x) = E(E(P̂

(`)
λ,v,S|X)|X(`)

v = x) = E(P̂
(`)
λ,v,S|X

(`)
v = x), (16)
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where S is the optimal strategy. Samples from the path payoff are thus

unbiased estimates of the value function and can be used to fit both the value

function and the continuation values. The path payoff under the optimal

strategy S is clearly unknown, as the optimal strategy is unknown. Yet one

can replace the optimal strategy in the computation of P
(`)
λ,v,S above by an

approximately optimal strategy.

2.5.3 Implementing Dynamic Programming

As mentioned above, the key to the implementation of dynamic programming

is that the path payoff in layer ` < G is only a function of the continuation

values in layers `+ 1, . . . , G.

Given a set of Monte Carlo samples as in (13), the goal is to fit all the con-

tinuation value functions as defined in (12). Starting at ` = G− 1, the fitted

continuation value is used to compute the path payoffs for the layer beneath.

These path payoffs are in turn again the basis for fitting the continuation

values in this lower layer. The procedure works then down the layers, as

described in Section 2.4.4. The major step is fitting the continuation values

in (12).

Suppose one fits the continuation value Q
(`)
λ,s for layer ` and action s ∈ {0, `+

1, . . . , G}. Using the definition from (13), the value of X in the i-th MC

sample in layer ` (in which there is only one node v` in the realized random

path), is denoted by X(`),i. Let X(`),MC be the m-dimensional vector that

contains the observations in the `-th layer from all m paths,

X(`),MC = (X(`),1, . . . , X(`),m).

Let P̂
(`),i
λ,s be the path payoff for the i-th MC sample in layer ` (where the

node is determined by the random path), when choosing action s ∈ {0, ` +

1, . . . , G}. In analogy to above, denote by P (`),MC the vector of all payoffs
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across all paths,

P̂
(`),MC
λ,s = (P̂

(`),1
λ,s , . . . , P

(`),m
λ,s ). (17)

The path payoff in layer ` depends on the strategy S in higher layers ` +

1, . . . , G, and one sets S to be the strategy that is determined by the already

fitted continuation values for these layers. If leaving off the subscript s, the

value P
(`)
λ is the payoff when choosing the optimal decision at layer `. The

value P̂
(`),i
λ is the payoff for the i-th MC sample when choosing the decision

s according to the fitted continuation values in layer ` itself.

By combining the computation of the continuation value (12) with the equiv-

alence relation (16) between the value function and the path payoff, it follows

that for all i = 1, . . . ,m and s ∈ {`+ 1, . . . , G},

Q
(`)
λ,s(x) = 2s−`

{
E(P

(s)
λ |X

(`) = x)− λCs
}
.

Stopping further search with s = 0 yields always a continuation value of

0. An unbiased observation of Q
(`)
λ,s(x) at value x = X(`),i is thus given by

replacing the expectation of the payoff with the path payoff, so that the right

hand side of the equation above is approximated at the point x = X(`),i by

Q
(`)
λ,s(x) = 2s−`

{
P̂

(s),i
λ − λCs

}
+ ε,

where ε has zero expectation, E(ε) = 0, if the strategy fitted at layers above

` is optimal. If it is only approximately optimal, there will be a, hopefully

small, bias in ε. It follows that for each layer ` and action s ∈ {`+1, . . . , G},
there are m independent samples available to fit the continuation value. As

the continuation value is monotonically increasing in its argument, one can

find a fit Q̂
(`)
λ,s as the monotone increasing function that minimizes

Q̂
(`)
λ,s = argminf :f↑ 2s−`

m∑
i=1

(
P̂

(s),i
λ − λCs − f(X(s),i)

)2

. (18)

In summary, the algorithm proceeds in analogy to the scheme outlined in

Section 2.4.4 as follows.
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I Simulate Monte Carlo Samples Simulate m random paths in the

tree. For each of the m paths, simulate the distribution of X over

this path. The resulting Monte Carlo samples are, for each layer ` =

1, . . . , G given by X(`),i with i = 1, . . . ,m.

II Compute Continuation values

1) Initialize Leaf Nodes. Set current generation ` to the highest

generation G. The payoff under the optimal strategy is

P̂
(G)
λ (x) = 1{x ≥ q}.

2) Compute Continuation Value. Move one generation down,

` ← ` − 1. The continuation value Q
(`)
λ,s(x) is computed for all

s ∈ {` + 1, . . . , G} separately according to (18). The payoff P̂
(`),i
λ

for the i-th sample is then determined for s 6= 0 by

P̂
(`),i
λ = 2s−`

{
P̂ (s),i − λCs

}
,

and 0 if s = 0. The decision s on the r.h.s. above is given by

s = argmaxs′ Q̂
(`)
λ,s′(X

(`),i),

and by s = 0 if the maximum of the argument on the r.h.s. over

all values s′ is negative.

4) Loop. If ` > 1, go to Step 2. Else stop.

If the number of sample paths m is converging to infinity, the fitted con-

tinuation values, and hence the fitted strategy, will converge to the optimal

continuation values and the optimal strategy. We refrain from giving a proof

as it is standard DP, only slightly adapted to the situation at hand. The

crucial step is the replacement of simulation over entire trees by simulation

along paths.
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2.5.4 Choosing the alternative

Note, that the optimal strategy depends on the underlying distribution X. If

the distribution of the original observations Z is known, then the distribution

of X over the entire tree is in general also known (in the sense that one can

simulate from it). Knowing the distribution of Z requires, however, that we

know how many false null hypotheses with θj ∈ ΘA we expect among all n

observations and what the distribution of Z is under the alternative.

The alternative is often unknown. One approach is to choose the alternative

distribution for θj ∈ ΘA such that any false null hypothesis is just barely

detectable under naive search. Still, this approach would not determine the

precise shape of the distribution of Z under the alternative. We have made

quite good experience with an alternative approach. Simulating under the

global null hypothesis, we merely try to detect all strong (and rare) peaks

in the test statistics. We might be losing a bit of power in this way, as the

strategy is possibly not optimal. Yet, this turned out to be a negligible effect

in practice. The advantage is that no assumption about the distribution

under the alternative has to be made.

The chosen approach helps also with another practical issue. If the threshold

q is rather large, there are just a tiny fraction of sample paths which exceed

the threshold in the final layer. The number of sample paths required (to

achieve a reasonable fit) is then very large. With simulation under the global

null, we can simply adjust the threshold q to a very high quantile of the

null distribution. As a rule of thumb, if we try to reduce the computational

burden to a fraction β of the naive search, one could aim for a threshold q

that corresponds to the 1 − 1/β quantile of the null distribution of all Zj,

j = 1, . . . , n values. If every exceedance of this threshold is detected by

the scheme (and nothing else), the computational burden would be in the

same order of magnitude as the fraction β of the cost of naive search, as

every detection in the final layer is preceded by a path of observations in the
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Figure 5: Outcome of the testing scheme for pulsar PSR1706 in the vicinity

of the true frequency and drift (marked with a cross). From left to right, the

red dots indicate all observed frequency-drift pair in layer 1 to 5 (with number

of blocks decreasing from 24 = 16 to 20 = 1). At the lowest level, all pairs are

examined on a coarse grid, while finer levels search for interesting frequency-

drift pairs on an increasingly finer grid. The true frequency-drift combination

is found at the finest resolution in layer 5. The shown area corresponds only

to a tiny fraction of the frequency-drift space to be searched. The activity

in other regions is much less.

previous layers. This rule of thumb seems to work well in practice.

3 Numerical example

We apply the hierarchical search scheme to the data of pulsar PSR1706.

In the, roughly, 14 day long observation of this pulsar, 1072 photons with

energies above 200 MeV were observed. It is known for this pulsar that the

true frequency at the beginning of the observations is roughly 9.761175993
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Hz. The pulsar spins down with a drift of −8.827879 · 10−12s−2. Over the

entire observational time, the pulsar went through roughly 108 cycles. In a

typical blind search for pulsars, a frequency range from 1-40 Hz would have

to be searched and a drift range from 0 down to −5 · 10−11s−2. Searching

over a sufficiently fine grid would require in the range of 109 frequency-drift

pairs to be searched.

Here, we fit the hierarchical scheme with five successive layers. The final layer

computes the test statistics F (ω, ω̇) in (1) on a grid with 3 observation points

between frequencies which are spaced 1/T apart and 3 drift values between

1/T 2-spaced drift values. For each of the layers ` = 1, . . . , 4 beneath, the

times series is divided into 25−` blocks of equal length and the test statistic

F 5−`(ω, ω̇) in (2) is calculated, for each layer ` = 1, . . . , 5 on a grid with

spacing of length δω` = 25−`/(3T ) in frequency space and δω̇` = 22(5−`)/(9T 2)

in drift space, effectively giving an oversampling of factor 3 in both the

frequency and drift direction. The search tree is thus an 8-ary tree. Each

node can be represented in terms of the associated frequency ω and drift ω̇.

The children of a node (ω, ω̇) in layer ` (the children being in layer ` + 1)

correspond o the frequency drift combinations

(ω + ηω δω
`+1, ω̇ + ηω̇ δω̇

`+1)

for all 8 possible combinations of ηω ∈ {−1/2, 1/2} and ηω̇ ∈ {−3/2,−1/2, 1/2, 3/2}.
To fit the optimal strategy, we simulate 5 ·105 random paths under the global

null hypothesis. As motivated above, the threshold q is chosen as the 0.999

quantile of the distribution of F (ω, ω̇), which are the observations in the final

layer. One crucial aspect is the choice of λ. Each value of λ gives a different

tradeoff between computational cost and detection power. Here, we adjusted

λ such that the computational cost of searching is below 0.1% of the cost

of the naive search (0.08% to be precise). The cost clearly depends on the

underlying distribution of X. If there are many false null hypotheses in the
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final layer, computation is slowed down as more time is spend on examining

those peaks. We measured the cost under a global null hypothesis. The

reasoning is that the vast majority of computational resources are spend on

regions in frequency-drift space which are well approximated by this global

null assumption.

Figure 5 shows the outcome of the search for pulsar PSR1706. We restrict

ourselves to a very small regions around the true frequency and drift. It can

be seen how the search narrows down regions of interest. In the first layer, all

values are examined on a coarse grid. The regions of interest are the refined

on finer and finer grids in successive layers. At the final layer, the peak

at the true values of frequency and drift is among the observed values and

would thus be found in a blind search. The question arises clearly how easy

it is to find the peak. The test statistic F at the true frequency and drift is

approximately equal to a p-value of 1.13 ·10−7 (this has been calculated using

a chi-squared approximation for F with 2 degrees of freedom). While this

may sound like a large peak (and hence an easy rejection), it has to be taken

into account that one is searching over hundreds of millions of frequency-drift

pairs. To adjust for multiplicity, one can use a Bonferroni correction. This is

not very conservative if one is looking just for a single rejection to be made.

Clearly, there is dependence between the test statistics at nearby frequencies

and drift values but we could take, as a lower bound for the multiplicity

correction, the number of gridpoints in the frequency-drift scheme, divided

by 9 (as 3 gridpoints are placed between frequencies spaced 1/T apart and

frequencies 1/T apart are approximately independent). At level 0.05, the

peak of PSR1706 would only be in the rejection region if up to half a million

tests were made. In the current problem, the multiplicity correction would

have to be in the tens or hundreds of millions. Hence, the peak is found

with the search scheme even though it is below the rejection threshold. It is

reassuring to know that even peaks below the rejection threshold are found
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by the search scheme.

Next, the power of the detection scheme is examined for simulated data. All

parameters are the same as in the example of pulsar PSR1706, including the

fact that 1072 photons are observed from a time-varying source. However,

the density of photon arrival phases is now controlled. We assume a simple

sinusoidal density. For a given frequency ω and drift ω̇, that the density

for an observed phase φ = ωt + ω̇t2/2 is proportional to 1 + θ sin(2πφ), for

some value 0 < θ < 1. Larger values of θ make detection easier, while

θ = 0 corresponds to a unperiodic source, the null hypothesis. Note that the

density above can be modulated by any function c(t) without changing the

result noticeably, as long c(t) is nearly constant over time-scales of length

1/ω.

We choose, for each simulation, randomly a frequency ω and drift ω̇ in the

search range of 1 to 40 Hz and 0 to −5 · 10−11s−2, respectively. On the

one hand, we calculated the power to detect any periodicity for ‘naive’ blind

search, as a function of θ. Every test statistic above the 1− α/n-quantile of

the null distribution of F is rejected. The level α was set to 0.05. The mul-

tiplicity correction n was set to 109. Rejections require in this case roughly

20σ events.

The hierarchical search was implemented with various values of the tradeoff

parameter λ, using 105 random samples paths under the global null hypoth-

esis as training samples. The threshold q for training of the hierarchical

scheme was chosen lower than the actual required threshold for rejection (as

motivated above). It was set as in the example above to the 0.999 quantile

of the null distribution of F (ω, ω̇) under the global null. The implicit goal of

the hierarchical search is thus to identify any 8σ event in the final layer. Any

such event might not be rejected, as rejections require 20σ events. Tuning

the scheme towards higher thresholds might increase its efficiency but would

also require many more sample paths for the fitting stage. The fitting of the
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Figure 6: The tradeoff between computational cost and detection power.

Four different signals strengths are used. The computational cost of naive

search (looking at every hypotheses in the final layer) is set to 1. The power

starts to deteriorate substantially once the computational cost is reduced by

more than three orders of magnitude compared with naive blind search.
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continuation values took merely a few seconds on a standard CPU and this

cost is hence negligible compared to the cost of the search.

The aim is to see how the tradeoff parameter λ influences both the com-

putational cost and the power, which is here the probability that the ‘true’

frequency-drift pair (ω, ω̇) is rejected. For the ‘true’ frequency-drift pair to

be rejected (a) the relevant test statistic has got to be above the final re-

jection threshold and (b) the test statistic has got to be observed (not been

dropped by the search scheme before it reaches the final layer). The power

of detection is now a function of λ, as the chance of observing the relevant

test statistic is a function of λ. We count every rejection as successful if

it is within 1/T of the ‘true’ frequency and within 1/T 2 of the ‘true’ drift.

For λ → 0, we obtain the same power as for ‘naive’ blind search, as every

hypothesis in the final layer is examined. For larger values of λ, the power of

detection starts to decrease, while the computational cost decreases. Figure 6

shows some results. We use four values θ = 0.24, 0.26, 0.29, 0.34. With these

values, the power for ‘naive’ blind search is, approximately, increasing from

0.1245 for θ = 0.24 over power of 0.2381 and 0.4920 to a power of 0.8717 for

θ = 0.34. The computational cost and detection power is calculated for 1000

simulations for each value of θ and λ. As can be seen from Figure 6, the

computational cost can be lowered by more than three orders of magnitude,

while still retaining more than 90% of the power of blind search.
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