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Abstract

Principal component analysis (PCA) is a classical method for dimensionality reduction
based on extracting the dominant eigenvectors of the sample covariance matrix. However,
PCA is well known to behave poorly in the “large p, small n” setting, in which the problem
dimension p is comparable to or larger than the sample size n. This paper studies PCA
in this high-dimensional regime, but under the additional assumption that the maximal
eigenvector is sparse, say, with at most k nonzero components. We consider a spiked
covariance model in which a base matrix is perturbed by adding a k-sparse maximal
eigenvector, and we analyze two computationally tractable methods for recovering the
support set of this maximal eigenvector: (a) a simple diagonal thresholding method, which
transitions from success to failure as a function of the rescaled sample size 84, (n, p, k) =
n/[k?log(p—Fk)]; and (b) a more sophisticated semidefinite programming (SDP) relaxation,
which succeeds once the rescaled sample size 04, (1, p, k) = n/[klog(p — k)] is larger than
a critical threshold. In addition, we prove that no method, including the best method
which has exponential-time complexity, can succeed in recovering the support if the order
parameter Osqp(n,p, k) is below a threshold. Our results thus highlight an interesting
trade-off between computational and statistical efficiency in high-dimensional inference.

Keywords: Principal component analysis; spectral analysis; spiked covariance ensembles;
sparsity; high-dimensional statistics; convex relaxation; semidefinite programming; Wishart
ensembles; random matrices.

1 Introduction

Principal component analysis (PCA) is a classical method [1, 22] for reducing the dimension
of data, say from some high-dimensional subset of R? down to some subset of R¢, with d < p.
Principal component analysis operates by projecting the data onto the d directions of maximal
variance, as captured by eigenvectors of the p X p population covariance matrix . Of course,
in practice, one does not have access to the population covariance, but instead must rely on
a “noisy” version of the form

S = Y+A, (1)
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where A = A, denotes a random noise matrix, typically arising from having only a finite
number n of samples. A natural question in assessing the performance of PCA is under
what conditions the sample eigenvectors (i.e., based on i) are consistent estimators of their
population analogues. In the classical theory of PCA, the model dimension p is viewed as fixed,
and asymptotic statements are established as the number of observations n tends to infinity.
With this scaling, the influence of the noise matrix A dies off, so that sample eigenvectors and
eigenvalues are consistent estimators of their population analogues [1]. However, such “fixed
p, large n” scaling may be inappropriate for many contemporary applications in science and
engineering (e.g., financial time series, astronomical imaging, sensor networks), in which the
model dimension p is comparable or even larger than the number of observations n. This
type of high-dimensional scaling causes dramatic breakdowns in standard PCA and related
eigenvector methods, as shown by classical and ongoing work in random matrix theory [13,
20, 21).

Without further restrictions, there is little hope of performing high-dimensional inference
with very limited data. However, many data sets exhibit additional structure, which can
partially mitigate the curse of dimensionality. One natural structural assumption is that
of sparsity, and various types of sparse models have been studied in past statistical work.
There is a substantial and on-going line of work on subset selection and sparse regression
models [e.g., 6, 11, 28, 35, 36], focusing in particular on the behavior of various ¢;-based
relaxation methods. Other work has tackled the problem of estimating sparse covariance
matrices in the high-dimensional setting, using thresholding methods [3, 12] as well as ;-
regularization methods [8, 39].

A related problem—and the primary focus of this paper—is recovering sparse eigenvectors
from high-dimensional data. While related to sparse covariance estimation, the sparse eigen-
vector problem presents a different set of challenges; indeed, a covariance matrix may have a
sparse eigenvector with neither it (nor its inverse) being a sparse matrix. Various researchers
have proposed methods for extracting sparse eigenvectors, a problem often referred to as
sparse principal component analysis (SPCA). Some of these methods are based on greedy or
nonconvex optimization procedures (e.g., [23, 40, 29]), whereas others are based on various
types of ¢;-regularization [41, 9]. Zou et al. [41] develop a method based on transforming
the PCA problem to a regression problem, and then applying the Lasso (¢;-regularization).
Johnstone and Lu [21] proposed a two-step method, using an initial pre-processing step to
select relevant variables followed by ordinary PCA in the reduced space. Under a particular
{,-ball sparsity model, they proved /»-consistency of their procedure as long as p/n converges
to a constant. In recent work, d’Asprémont et al. [9] have formulated a direct semidefinite
programming (SDP) relaxation of the sparse eigenvector problem, and developed fast algo-
rithms for solving it, but have not provided high-dimensional consistency results. The elegant
work of Paul and Johnstone [30, 32], brought to our attention after initial submission, studies
estimation of eigenvectors satisfying weak ¢,-ball sparsity assumptions for ¢ € (0,2). We
discuss connections to this work at more length below.

In this paper, we study the model selection problem for sparse eigenvectors. More pre-
cisely, we consider a spiked covariance model [20], in which the maximal eigenvector z* of the
population covariance ¥, € RP*P is k-sparse, meaning that it has nonzero entries on a subset
S(z*) with cardinality k, and our goal is to recover this support set exactly. In order to do
so, we have access to a matrix i, representing a noisy version of the population covariance,
as in equation (1). Although our theory is somewhat more generally applicable, the most
natural instantiation of ¥ is as a sample covariance matrix based on n i.i.d. samples drawn
from the population. We analyze this setup in the high-dimensional regime, in which all three



parameters—the number of observations n, the ambient dimension p and the sparsity index
k—are allowed to tend to infinity simultaneously. Our primary interest is in the following
question: Using a given inference procedure, under what conditions on the scaling of triplet
(n,p, k) is it possible, or conversely impossible, to recover the support set of the maximal
eigenvector z* with probability one?

We provide a detailed analysis of two procedures for recovering sparse eigenvectors: (a) a
simple diagonal thresholding method, used as a pre-processing step by Johnstone and Lu [21],
and (b) a semidefinite programming (SDP) relaxation for sparse PCA, recently developed
by d’Aspremont et al. [9]. Under the k-sparsity assumption on the maximal eigenvector, we
prove that the success/failure probabilities of these two methods have qualitatively different
scaling in terms of the triplet (n,p, k). For the diagonal thresholding method, we prove that
its success/failure is governed by the rescaled sample size

TG ) R T —— (2)

k?log(p — k)’
meaning that it succeeds with probability one for scalings of the triplet (n, p, k) such that 64, is
above some critical value and, conversely, fails with probability one when this ratio falls below
some critical value. We then establish performance guarantees for the SDP relaxation [9]: in
particular, for the same class of models, we show that it always has a unique rank-one solution
that specifies the correct signed support once 84;(n, p, k) is sufficiently large, and moreover,
that for sufficiently large values of the rescaled sample size

Ouap(n,p k) 1= —— (3)

klog(p — k)’

if there exists a rank-one solution, then it specifies the correct signed support. The proof of this
result is based on random matrix theory, concentration of measure, and Gaussian comparison
inequalities. Our final contribution is to use information-theoretic arguments to show that no
method can succeed in recovering the signed support for the spiked identity covariance model
if the order parameter sq,(n, p, k) lies below some critical value. One consequence is that the
given scaling (3) for the SDP relaxation is sharp, meaning the SDP relaxation also fails once
sqap drops below a critical threshold. Moreover, it shows that under the rank-one condition,
the SDP is in fact statistically optimal, i.e., it requires only the necessary number of samples
(up to a constant factor) to succeed.

The results reported here are complementary to those of Paul and Johnstone [30, 32],
who propose and analyze the augmented SPCA algorithm for estimating eigenvectors. In
comparison to the models analyzed here, their analysis applies to spiked models using the
identity base covariance, but it allows for m > 1 eigenvectors in the spiking. In addition,
they consider the class of weak ¢ ,-ball sparsity models, as opposed to the hard {yp-sparsity
model considered here. Another difference is that their results provide guarantees in terms
of the fo-norm between the eigenvector and its estimate, whereas our results guarantee exact
support recovery. We note that an estimate can be close in f3-norm while having a very
different support set. Consequently, the results given here, which provide conditions for exact
support recovery, provide complementary insight.

Our results highlight some interesting trade-offs between computational and statistical
costs in high-dimensional inference. On one hand, the statistical efficiency of SDP relaxation
is substantially greater than the diagonal thresholding method, requiring O(1/k) fewer obser-
vations to succeed. However, the computational complexity of SDP is also larger by roughly a
factor O(p?): an implementation due to d’Asprémont et al. [9] has complexity O(np+p?log p)



as opposed to the O(np + plog p) complexity of the diagonal thresholding method. Moreover,
our information-theoretic analysis shows that the best possible method—mnamely, one based
on an exhaustive search over all (Z) subsets, with exponential complexity—does not have
substantially greater statistical efficiency than the SDP relaxation.

The remainder of this paper is organized as follows. In Section 2, we provide precise
statements of our main results, discuss some of their implications and provide simulation
results to illustrate the sharpness of their predictions. Sections 3, 4 and 5 are devoted to
proofs of these results, with some of the more technical aspects deferred to appendices. We
conclude in Section 6.

1.1 Notation

For the reader’s convenience, we state here some notation used throughout the paper. For a
vector z € R, we use ||z, = (31 |zi[?) 7 {5 denote its ¢, norm. For a matrix A € R™*",
we use ||Afp,q to denote the matrix operator norm induced by vector norms ¢, and ¢4; more
precisely, we have

[Allp.q : = max Az (4)

l[zllg=1

A few cases of particular interest in this paper are (a) the spectral norm given by

Az = max {oi(A)},

=1,...,

where {0;(A)} are the singular values of A, and the ¢, operator norm, given by
n
Al = e 34
]:

Given two square matrices X,Y € R"™™ ™ we define the matrix inner product (X,Y)) :=
tr(XYT) = > XijYij. Note that this inner product induces the Hilbert-Schmidt norm
I Xlus = (X, X)).

We use the following standard asymptotic notation: for functions f,g, the notation
f(n) = O(g(n)) means that there exists a fixed constant 0 < C' < +o0 such that f(n) < Cg(n);
the notation f(n) = Q(g(n)) means that f(n) > Cg(n), and f(n) = ©(g(n)) means that
f(n) = O(g(n)) and f(n) = Q(g(n)). Note in particular that when used without a subscript
‘p’, these symbols are to be interpreted in a deterministic sense, i.e. the constants involved
are assumed to be nonrandom.

We use A(A) to denote a generic eigenvalue of a square matrix A, as well as Amin(-) and
Amax(+) for the minimal and the maximal eigenvalues, respectively. Any member of the set
of eigenvectors of A associated with an eigenvalue is denoted as ¥(A). Thus, Viyax(-), for
example, represents the eigenvectors associated with the maximal eigenvalue (occasionally
referred to as “maximal eigenvectors”). We always assume that eigenvectors are normalized
to unit fo-norm, and have a nonnegative first component. The sign convention guarantees
uniqueness of the eigenvector associated with an eigenvalue with geometric multiplicity one.

Finally, some probabilistic notation: we say a sequence of events {E};};>1 happens with
asymptotic probability one (w.a.p. one) if lim;_ o P[E;] = 1, whereas it holds asymptotically
almost surely (a.a.s.) as j — +oo if P( liminf E; ) = 1.
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2 Main results and consequences

The primary focus of this paper is the spiked covariance model, in which some base covariance
matrix is perturbed by the addition of a sparse eigenvector z* € RP. In particular, we study
sequences of covariance matrices of the form

Iy, O

— * T _ x _xT
Y, = B2z +[0 Fpk:| = [z +T (5)

where I')_j € S{fk is a symmetric PSD matrix with Apax(I'p—x) < 1. Note that we have
assumed (without loss of generality, by re-ordering the indices as necessary) that the nonzero
entries of z* are indexed by {1,...,k}, so that equation (5) is the form of the covariance after
any re-ordering. We also assume that the nonzero part of z* has entries 2] € ﬁ{—l, +1}, so
that [|z*]]2 = 1.

The spiked covariance model (5) was first proposed by Johnstone [20], who focused on the
spiked identity covariance matrix (i.e., model (5) with I',_;, = I,_). Johnstone and Lu [21]
established that the sample eigenvectors for the spiked identity model, based on a set of n
i.i.d. samples with distribution N(0,%,) from the spiked identity ensemble, are inconsistent
as estimators of z} whenever p/n — ¢ > 0. These asymptotic results were refined by later
work [31, 2].

In this paper, we study a slightly more general family of spiked covariance models, in
which the matrix I'),_, is required to satisfy the following conditions:

Al. IvTp—klloc,co = O(1), and (6a)
g

A2. Amax(Tp—) < min {1, Amin(T'p—k) + 8} . (6b)

Here /I',_; denotes the symmetric square root. These conditions are trivially satisfied by
the identity matrix I,_;, but also can hold for more general nondiagonal matrices. Thus,
under the model (5), the population covariance matrix 3 itself need not be sparse, since (at
least generically) it has k? + (p — k)2 = ©(p?) nonzero entries. Assumption (A2) on the eigen-
spectrum of the matrix I',_ ensures that as long as 3 > 0, then the vector 2* is the unique
maximal eigenvector of ¥, with associated eigenvalue (1+ /). Since the remaining eigenvalues
are bounded above by 1, the parameter 5 > 0 represents a signal-to-noise ratio, characteriz-
ing the separation between the maximal eigenvalue and the remainder of the eigenspectrum.
Assumption (A1) is related to the fact that recovering the correct signed support means that
the estimate 2 must satisfy |2 — 2*|loc < 1/vk. As will be clarified by our analysis (see
Section 4.4), controlling this /o, norm requires bounds on terms of the form ||\/I')_ ©/cc,
which requires control of the /s-operator norm ||/I'p—k|loc,00-

In this paper, we study the model selection problem for eigenvectors: i.e., we assume
that the maximal eigenvector z* is k-sparse, meaning that it has exactly k& nonzero entries,
and our goal is to recover this support, along with the sign of z* on its support. We let
S(z*) = {i | =z # 0} denote the support set of the maximal eigenvector; recall that
S(z*) ={1,...,k} by our assumed ordering of the indices. Moreover, we define the function
St :RP — {—1,0,+1}? by

[Se(w))i =

{sign(ui) ifu; #0 (7)

0 otherwise,



so that Sy (z*) encodes the signed support of the maximal eigenvector.

Given some estimate 5/’; of the true signed support Si(z*), we assess it based on the 0-1
loss H[g:\t # S4(2")], so that the associated risk is simply the probability of incorrect decision
IF’[§; # S4(z*)]. Our goal is to specify conditions on the scaling of the triplet (n,p, k) such
that this error probability vanishes, or conversely fails to vanish asymptotically. We consider
methods that operate based on a set of n samples z!, ..., 2", drawn i.i.d. with distribution
N(0,%,). Under the spiked covariance model (5), each sample can be written as

¥ = B+ VT, (8)

where /T is the symmetric matrix square root. Here v ~ N(0,1) is standard Gaussian, and
g" ~ N(0,I,x,) is a standard Gaussian p-vector, independent of v*, so that v/T'g* ~ N(0,T).
The data {2}, defines the sample covariance matrix

S o= Y, (9
=1

which follows a p-variate Wishart distribution [1]. In this paper, we analyze the high-
dimensional scaling of two methods for recovering the signed support of the maximal eigen-
vector. It will be assumed throughout that the size k of the support of z* is available to the
methods a priori, i.e., we do not make any attempt at estimating k.

2.1 Diagonal thresholding method

Under the spiked covariance model (5), note that the diagonal elements of the population
covariance satisfy Xy = 1+ /k for all £ € S, and ¥y < 1 for all £ ¢ S. (This latter bound
follows since for all £ ¢ S, we have ¥y < [|[Ip—i|l22 < 1.) This observation motivates a
natural approach to recovering information about the support set S, previously used as a
pre-processing step by Johnstone and Lu [21].

Let Dy, £ =1,...,p be the diagonal elements of the sample covariance matrix—viz.

1 < . ~
Dy = =) (@) = e
¢ - iZI(W) [E]ee

Form the associated order statistics
Day= D) <+ < Dp-1y < Dy,

and output the random subset S (D) of cardinality k specified by the indices of the largest
k elements {D(,_p41),---, Dy} The chief appeal of this method is its low computational

complexity: apart from the order O(np) of computing the diagonal elements of f], it requires
only performing a sorting operation, with complexity O(plogp).

Note that this method provides only an estimate of the support S(z*), as opposed to the
signed support St (z*). One could imagine extending the method to extract sign information
as well, but our main interest in studying this method is to provide a simple benchmark by
which to calibrate our later results on the performance of the more complex SDP relaxation.
In particular, the following result provides a precise characterization of the statistical behavior
of the diagonal thresholding method.



Proposition 1 (Performance of diagonal thresholding). For k = O(p'~%) for any § € (0,1),
the probability of successful recovery using diagonal thresholding undergoes a phase transition
as a function of the rescaled sample size

n

Hdia(nvpa k) = m- (10)

More precisely, there exists a constant 0, such that if n > 0,k*log(p — k), then
P[S(D) = S(z*)] > 1—exp(-O(k*log(p —k))) — 1, (11)

s0 that the method succeeds w.a.p. one and a constant 0, > 0 such that if n < 6, k? log(p — k),
then

PIS(D) = S(=")) < exp(-O(log(p—k))) — 0, (12)
so that the method fails w.a.p. one.

Remarks: The proof of Proposition 1, provided in Section 3, is based on large deviations
bounds on y2-variates. The achievability assertion (11) uses known upper bounds on the
tails of y2-variates [e.g., 4, 21]. The converse result (12) requires an exponentially tight lower
bound on the tails of y2-variates, which we derive in Appendix C.

To illustrate the prediction of Proposition 1, we provide some results on the diagonal
thresholding method. For all experiments reported here, we generated n samples {z?,..., 2"}
in an i.i.d. manner from the spiked covariance ensemble (5), with I' = I and § = 3. Figure 1
illustrates the behavior predicted by Proposition 1. Each panel plots the success probabil-
ity P[S(D) = S(z*)] versus the rescaled sample size fgia(n, p,n) = n/[k*log(p — k)]. Each

Diagonal thresholding: k = O(log(p)) Diagonal thresholding (k = O(sqrt(p))
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Figure 1: Plot of the success probability P[S(D) = S(z*)] versus the rescaled sample size
Baia(n, p, k) = n/[k? log(p— k)]. The five curves in each panel correspond to model dimensions
p € {100,200, 300, 600,1200}, SNR parameter 3 = 3, and sparsity indices £k = O(logp) in
panel (a), and k = O(,/p) in panel (b). As predicted by Proposition 1, the success probability
undergoes a phase transition, with the curves for different model sizes and different sparsity
indices all lying on top of one another.

panel shows five model dimensions (p € {100, 200, 300, 600, 1200} ), with panel (a) showing the



logarithmic sparsity index & = O(logp), and panel (b) showing the case k = O(,/p). Each
point on each curve corresponds to the average of 100 independent trials. As predicted by
Proposition 1, the curves all coincide, even though they correspond to very different regimes

of (p, k).

2.2 Semidefinite-programming relaxation

We now describe the approach to sparse PCA developed by d’Asprémont et al. [9]. Let
St ={Z eRP*? | Z=Z",Z = 0} denote the cone of symmetric, positive semidefinite (PSD)
matrices. Given n i.i.d. observations from the model N(0,,), let 5 be the sample covariance
matrix (9), and let p, > 0 be a user-defined regularization parameter. d’Asprémont et al. [9]
propose estimating z* by solving the optimization problem

7 = argmax |tr(2 Z) — Zii s.t.  tr(Z) =1, 13
8 s | (33 2) pnlzj:l is] (2) (13)

~

and computing the maximal eigenvector z = Vinax(Z). The optimization problem (13) is a
semidefinite program (SDP), a class of convex conic programs that can be solved exactly in
polynomial time. Indeed, d’Asprémont et al. [9] describe an O(p*logp) algorithm, with an
implementation posted online, that we use for all simulations reported in this paper.

To gain some intuition for the SDP relaxation (13), recall the Courant—Fischer variational
representation [18] of the maximal eigenvalue and eigenvector:

Fmax(2) = arg max 27 Sz. (14)
llzlla=1

A lesser known but equivalent variational representation is in terms of the semidefinite pro-
gram (SDP)

~

Z*=arg max tr(X2). (15)
ZeSh  tr(2)=1

For this problem, if the maximal eigenvalue is simple, the optimum is always achieved at a
rank-one matrix Z* = z*(z*)7, where z* = G’max(i) is the maximal eigenvector; otherwise,
there exist optimal solutions of higher rank, but the optimum is always achieved by at least
some rank-one matrix. If we were given a priori information that the maximal eigenvector
were sparse, then it might be natural to solve the same semidefinite program with the addition
of an ¢y constraint. Given the intractability of such an fy-optimization problem, the SDP
program (13) is a natural relaxation.

In particular, the following result provides sufficient conditions for the SDP relaxation (13)
to succeed in recovering the correct signed support of the maximal eigenvector:

Theorem 2 (SDP performance guarantees). Impose conditions (6a) and (6b) on the sequence
of population covariance matrices {3}, and suppose moreover that p, = (/(2k) and k =
O(logp). Then,

(a) Rank guarantee: There exists a constant O, = 64, (I B) such that for all sequences
(n,p, k) satisfying Ogqia(n,p, k) > Oy, the semidefinite program (13) has a rank-one
solution with high probability, and



(b) Critical scaling: There exists a constant Ocit = Oit(L3) such that if the sequence
(n,p, k) satisfies
n

esdp(n)py k) L= m > Ocrit, (16)

and if there exists a rank-one solution, then it specifies the correct signed support with
probability converging to one.

Remarks: Part (a) of the theorem shows that rank-one solutions of the SDP (13) are not
uncommon; in particular, they are guaranteed to exist with high probability at least under
the weaker scaling of the diagonal thresholding method. The main contribution of Theorem 2
is its part (b), which provides sufficient conditions for signed support recovery using the SDP,
when a rank-one solution exists. The bulk of our technical effort is devoted to part (b); in-
deed, the proof of part (a) is straightforward once all the pieces of the proof of part (b) have
been introduced, and so will be deferred to the last Appendix. For technical reasons, our
current proof(s) require the condition k£ = O(logp); however, it should be possible to remove
this restriction, and indeed, the empirical results do not appear to require it.

Proposition 1 and Theorem 2 apply to the performance of specific (polynomial-time)
methods. It is natural then to ask whether there exists any algorithm, possibly with super-
polynomial complexity, that has greater statistical efficiency. The following result is information-
theoretic in nature, and characterizes the fundamental limitations of any algorithm regardless
of its computational complexity.

Theorem 3 (Information-theoretic limitations). Consider the problem of recovering the eigen-
vector support in the spiked covariance model (5) with I' = I,,. For any sequence (n,p, k) —
+o00 such that

n 1+

esdp(nvpvk) = k:log(p—k:) < ﬁg ) (17)

the probability of error of any method is at least 1/2.

Remarks: Together with Theorem 2, this result establishes the sharpness of the thresh-
old (16) in characterizing the behavior of SDP relaxation, and moreover, it guarantees opti-
mality of the SDP scaling (16), up to constant factors, for the spiked identity ensemble.

To illustrate the predictions of Theorem 2 and 3, we applied the SDP relaxation to the
spiked identity covariance ensemble, again generating n i.i.d. samples. We solved the SDP re-
laxation using publically available code provided by d’Asprémont et al. [9]. Figure 2 shows the
corresponding plots for the SDP relaxation [9]. Here we plot the probability P[S4(Z) = S+ (2%)]
that the SDP relaxation correctly recovers the signed support of the unknown eigenvector z*,
where the signs are chosen uniformly in {—1,+41} at random. Following Theorem 2, the hor-
izontal axis plots the rescaled sample size Osqp(n, p, k) = n/[klog(p — k)]. Each panel shows
plots for three different problem sizes, p € {100, 200,300}, with panel (a) corresponding to
logarithmic sparsity (k = O(logp)), and panel (b) to linear sparsity (kK = 0.1p). Consistent
with the prediction of Theorem 2, the success probability rapidly approaches one once the
rescaled sample size exceeds some critical threshold. [Strictly speaking, Theorem 2 only covers
the case of logarithmic sparsity shown in panel (a), but the linear sparsity curves in panel (b)
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Figure 2: Performance of the SDP relaxation for the spiked identity ensemble, plotting the suc-
cess probability P[S4+(Z) = S+ (2*)] versus the rescaled sample size 0sqp(n, p, k) = n/[klog(p —
k)]. The three curves in each panel correspond to model dimensions p € {100, 200,300}, SNR
parameter § = 3, and sparsity indices k = O(log p) in panel (a), and k = 0.1p in panel (b). As
predicted by Theorem 2, the curves in panel (a) all lie on top of one another, and transition
to success once the order parameter 6yq;, is sufficiently large.

show the same qualitative behavior.] Note that this empirical behavior is consistent with our
conclusion that the order parameter 6sqp(n,p, k) = n/[klog(p — k)] is a sharp description of
the SDP threshold.

3 Proof of Proposition 1

We begin by proving the achievability result (11). We provide a detailed proof for the case
I'p—r = I, and discuss necessary modifications for the general case at the end. For ¢ =
1,...,p, we have

n

Dy = 3= 13 (VB 4] (18)

i=1 i=1

Since (v/Bzjv' + gi) ~ N(0,8(z})* + 1) for each i, the rescaled variate ng is central

x2 with n degrees of freedom. Consequently, we have

E[D,] — 1 for all £ € S°
7 144 forallfes,

where we have used the fact that (z})* = 1/k for £ € S, by assumption.

A sufficient condition for success of the diagonal thresholding decoder is a threshold 7%
such that Dy > (1+ 1) forall £ € S, and Dy < (14 73) for all £ € S¢. Using the union bound
and the tail bound (61) on central x2, we have

2
Xn 3n 2
> < — = > < (p— -
P %%’EDE— (1+77<:)] < (p k)]P’[n _1—1—77.:} < (p—k) exp< 167—k>’

10



so that the probability of false inclusion vanishes as long as n > 28(7;,) =2 log(p — k).
On the other hand, using the union bound and the tail bound (60b), we have

- 1
PlminD, < (1+7,)| < kP |22 1< +Zf—1
les _n 1+E

[ 2 _B8
= kp| X2 1<k
CERTE
.2
< kP X”—1<Tk—q
| n k

As long as 7, < [3/k, we may choose z = %(% —73)?2 in equation (60b), thereby obtaining the

upper bound

. n B 2
P D 1 < N
[Igrélg g<’l7,( +7‘]€):| < kexp( 4(/€ Tk) >,
so that the probability of false exclusion vanishes as long as n > T 4 2 logk. Overall,
& Tk

choosing 7, = % ensures that the probability of both types of error vanish asymptotically as

long as

3p? p?

Since k = o(p), the log(p — k) term is the dominant requirement. The modifications required
for the case of general I',_j are straightforward. Since var(y/T ) = (Tp—i)ee < 1 for all
¢ € S°¢ and samples i = 1,...,n, we need to adjust the scaling of the 2 variates. For general
I')p—k, the variates {Dy, ¢ € S°} need no longer be independent, but our proof used only union
bound, and so is valid regardless of the dependence structure.

We now prove the converse claim (12) for the spiked identity ensemble. At a high level,
this portion of the proof consists of the following steps. For a positive real ¢, define the events

4 1
n > max {6k2 log(p — k), 10,2 log k:} .

Ai(t):= {maxDe > 1 —l—t} , and Ag(t):= {minDe <1 —l—t} .
Lese tesS

Noting that the event A;(¢) N Aa(t) implies failure of the diagonal cutoff decoder, it suffices
to show the existence of some ¢ > 0 such that P[A;(¢)] — 1 and P[Ax(¢)] — 1.

Analysis of event A;(¢): Central to the analysis of event A; is the following large-deviations
lower bound on y2-variates:

Lemma 4. For a central x2 variable with n degrees of freedom, there exists a constant C > 0
such that

2
Xn C 2
P&t > —exp(—
[n >1—|—t] \Fe p( nt/2)

for allt € (0,1).

11



See Appendix C for the proof.

We exploit this lemma as follows. First define the integer-valued random variable
Z(t):=> 1Dy > 1+t
lese

corresponding to the number of indices ¢ € S¢ for which the diagonal entry Dy exceeds 1+ ¢,
and note that P[A;(¢t)] = P[Z(¢) > 0]. By a one-sided Chebyshev inequality [15], we have

B (E[Z(1))?
Pl = PIZ0) >0 = mrene s v Z@)

(19)

Note that Z(t) is a sum of (p — k) independent Bernoulli indicators, each with the same
parameter ¢(t) :=P[Dy > 1+t]. Computing the mean E[Z(t)] = (p — k)q(t) and variance
var(Z(t)) = (p — k)q(t) (1 — ¢(t)), and then substituting into the Chebyshev bound (19), we
obtain

(p—k)*q°(t) (p—k)q(t) 1
PA(t > > >1— ——F— 7.
MOl = G 0 o RO @) © G- R+l o ke
Consequently, the condition (p — k)q(t) — oo implies that P[A;(t)] — 1.
Let us set t = w. (Here § € (0,1) is the parameter from the assumption k =
O(p'~?).) From Lemma 4, we have q(t) > % exp(—nt?/2), so that
dlog(p — k) C(p—k) 0
_ > __ _
(P = F)q( ) 2 NG exp(— log(p — k)
Clp —k)' 2
7n :

Since n < Lk?log(p — k) for some L < 400 by assumption, we have

dloglp —k), O (p—K)'° (p—k)°

2 VI b R

1—6).

(p—k)a(

which diverges to infinity, since k = O(p

Analysis of event As: In order to analyze this event, we first need to condition on the
random vector v := (v!,...,v"), so as to decouple the random variables {D, £ € S}. After
conditioning on v, each variate nDy,{ € S is a noncentral X%yy*, with n degrees of freedom
and noncentrality parameter v* = %HUH%, so that each Dy has mean (v* + n).

Since v is a standard Gaussian n-vector, we have ||[v||3 ~ x2. Therefore, if we define the

event B(v) : = { ol %}, the large deviations bound (60a) implies that P[B] < exp(—n/16).

n

Therefore, by conditioning on B and its complement, we obtain

PlAS] < P [Ieréingg >141 | Bc] + P[B]
k
< (IP’ X2, >n(l+1) | BC]) + exp(—n/16), (20)

12



llvll

n

(V1)

on

N

where we have used the conditional independence of {Dy, ¢ € S}. Finally, since <

the event B¢, we have v* < %n, and thus

3
Px2, >n(l+t) | B] < P|xi,>{n+v}+n{t- %} \ IB%C} )

Since t = y/dlog(p — k)/n and n < Lk? log(p— k), we have ¢t > \/%%, so that the quantity
€:= min{%,t — %} is positive for the pre-factor L > 0 chosen sufficiently small. Thus, we

have

P [X%,y* >n(l+t) | B] < P [X%,u* > {n+v*} + ne|

. n e . ( ne2>
xp| ————— | = exp | ——+
Plte+29) P\ 64

using the x? tail bound (63). Substituting this upper bound into equation (20), we obtain

2

P[AS] < exp <_/€ne

o ) + exp (—n/16),

dlog(p—k)

n—» and

which certainly vanishes if € = % Otherwise, we have ¢ = t — % with t =
we need the quantity

3 3
%(t—2§> - 5krlog(p—k‘)—7ﬂ %

to diverge to +o0o. This divergence is guaranteed by choosing n < Lk?log(p — k), for L
sufficiently small.

4 Proof of Theorem 2(b)

The proof of our main result is constructive in nature, based on the notion of a primal-dual
certificate, that is, a primal feasible solution and a dual feasible solution that together satisfy
the optimality conditions associated with the SDP (13).

4.1 High-level proof outline

We first provide a high-level outline of the main steps in our proof. Under the stated assump-

tions of Theorem 2, it suffices to construct a rank-one optimal solution Z = 2z7, constructed
from a vector with ||Z]|2 = 1, as well as the following properties:
Correct sign: sign(z;) = sign(z]) forallie S, and (21a)
Correct exclusion: zj = 0 for all j € 5°. (21b)

Note that our objective function f(Z) = tr(X Z) — py, >_i;|Zij| is concave but not differen-
tiable. However, it still possesses a subdifferential (see the books [33, 17] for more details),

so that it may be shown that the following conditions are sufficient to verify the optimality
of Z =227,

13



Lemma 5. Suppose that for each x € RP with ||z|2 = 1, there exists a sign matriz U = U(z)
such that

(a) the matriz U satisfies

-~ ) Z:) st z. £ o5 0
Uj = signiZ)sign(z;) if 225 # (22)
€[-1,+1] otherwise.

(b) the vector Z satisfies of :J:T(fl - an(ac))x <zr (f] - pnﬁ(w))?
Then Z = 23T is an optimal rank-one solution.

Proof. The subdifferential 0 f (2 ) of our objective function at Z = Z consists of matrices of
the form ¥ — p,U, where U satisfies the condition (22). By the concavity of f, for any such
U and for all x € RP with ||z||2 = 1, we have

~

Fflzzh) < F(2)+te((Z = paU) (zz” = 2)).

Therefore, it suffices to demonstrate, for each = € RP with [|z||2 = 1, a valid sign matrix U (x)

~

such that tr((E — paU(z)) (z2” — Z)) < 0. Since we have

~

(S = palU () 22”) < (S = pal(2)) 2)
by assumption (b), the stated conditions are sufficient. ]
Remarks: Note that if there is a U independent of z such that 7 satisfies condition (b) of

Lemma 5, i.e. if Z is a maximal eigenvector of S - pnﬁ , then the above argument shows that

22T is in fact “the” optimal solution (i.e., among all matrices in the constraint space, not

necessarily rank-one).

The condition (22), when combined with the condition (21a), implies that we must have
Uss = sign(z5)sign(z5)". (23)

The remainder of the proof consists in choosing appropriately the remaining dual blocks ﬁs ge
and Ugege, and verifying that the primal-dual optimality conditions are satisfied. To describe
the remaining steps, it is convenient to define the matrix

d = S—p,U-T = B 2*T —p,U+A, (24)

where A : = ¥ — X is the effective noise in the sample covariance matrix. We divide our proof
into three main steps, based on the block structure

> — [‘I’ss ‘I’SSC} _ Bzzzy" - pnUss + Ass _PnpSSC + Aggse (25)
Pses Pss —pnUses + Ages —pnUsese + Agege

(A) In Step A, we analyze the upper-left block ®gg, using the fixed choice Ugs = sign(z%)sign(z%)T.

We establish conditions on the regularization parameter p,, and the noise matrix Agg un-
der which the maximal eigenvector of ®gg has the same sign pattern as zg. This maximal
eigenvector specifies the k-dimensional subvector Zg of our optimal primal solution.

14



(B) In Step B, we analyze the off-diagonal block ®gcg, in particular establishing conditions
on the noise matrix Agecg under which a valid sign matrix Ugeg can be chosen such that
the p-vector z : = (Zg,0g¢c) is an eigenvector of the full matrix ®.

(C) In Step C, we focus on the lower right block ®gege, in particular analyzing conditions on
Agege such that a valid sign matrix Ugege can be chosen such that Zz defined in Step B
satisfies condition (b) of Lemma 5.

Our primary interest in this paper is the effective noise matrix A = Y — ¥ induced by the
usual i.i.d. sampling model. However, our results are actually somewhat more general, in that
we can provide conditions on arbitrary noise matrices (which need not be of the Wishart type)
under which it is possible to construct (z,U) as in Steps A through C. Accordingly, in order
to make the proof as clear as possible, we divide our analysis into two parts: in Section 4.2, we
specify sufficient properties on arbitrary noise matrices A, and in Section 4.3, we analyze the
Wishart ensemble induced by the i.i.d. sampling model, and establish sufficient conditions
on the sample size n. In Section 4.3, we focus exclusively on the special case of the spiked
identity covariance, whereas Section 4.4 describes how our results extend to the more general
spiked covariance ensembles covered by Theorem 2.

4.2 Sufficient conditions for general noise matrices

We now state a series of sufficient conditions, applicable to general noise matrices. So as
to clarify the flow of the main proof, we defer the proofs of these technical lemmas to the
Appendix.

4.2.1 Sufficient conditions for step A

We begin with sufficient condition for the block (S, S). In particular, with the choice (23) of
Uss and noting that sign(z%) = vk 2% by assumption, we have

Pgg = (ﬁ — pnk)zgz*g + Agg := azgvz*g + Agg,

where the quantity « := 3 — p,k < § represents a “post-regularization” signal-to-noise ratio.
Throughout the remainder of the development, we enforce the constraint

B
- 26
Pn o (26)
so that a = 3/2. The following lemma guarantees correct sign recovery (see equation (21a)),
assuming that Agg is “small” in a suitable sense:

Lemma 6. (Correct sign recovery) Suppose that the upper-left noise matriz Agg satisfies
@

[Asslooco < 75, and  Assllzz — 0 (27)
with probability 1 as p — +o0o. Then w.a.p. one,
(a) The mazimal eigenvalue vy : = Apax(Pss) converges to «, and its second largest eigen-

value o converges to zero.

(b) The upper-left block ®gs has a unique mazimal eigenvector Zg with the correct sign
property (i.e. sign(Zs) = sign(z5)). More specifically, we have

~ " 1
1Zs — 25l < BN (28)
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4.2.2 Sufficient conditions for step B

With the subvector Zg specified, we can now specify the (p — k) x k submatrix Useg so that
the vector

2 := (Zs,0sc) €RP (29)
is an eigenvector of the full matrix ®. In particular, if we define the renormalized quantity

zs = zs/||zsl|1, and choose

~ 1 _ .
Uses = — (Ageszs) 51gn(zs)T, (30)

Pn

then some straightforward algebra shows that (Ages — pn(/jgc s)zs = 0, so that z is an eigen-
vector of the matrix ® = 32*(2*)T — p,U + A. It remains to verify that the choice (30) is a
valid sign matrix (meaning that its entries are bounded in absolute value by one).

Lemma 7. Suppose that w.a.p. one, the matriz A satisfies conditions (27), and in addition,
for sufficiently small § > 0, we have

0
[Aseslloc,2 < NG (31)
Then the specified (/chS is a valid sign matriz w.a.p. one.

4.2.3 Sufficient conditions in Step C

Up to this point, we have established that z : = (Zg, 6Sc) is an eigenvector of S - pn(/j . Thus
far, we have specified the sub-blocks (755 and ﬁssc of the sign matrix. To complete the proof,
it suffices to show that condition (b) in Lemma 5 can be satisfied—namely, that for each
z € SPL, there exists an extension Ugege () to our sign matrix such that

Zr (i — pn(//\'(m)) 2>l (i — pnﬁ(az)) x.

Note that it is sufficient to establish the above inequality with ®(x) in place of o an (z)t.
Given any vector x € SP~!, recall the definition (24) of the matrix ® = ®(z), and observe
that (2)7®(z)z = 71 for any choice of Ugege(x). Consider the partition z = (u,v) € SP~1,
with u € R¥ and v € R™, where m = p — k. We have

2Tz = uT dggu + 20T Dgegu + v Pgegev. (32)

Let us decompose u = uZs + Zs, where |u| < 1 and Z& is an element of the orthogonal
complement of the span of zZg. With this decomposition, we have
’LLT(I)Ss’LL = ,u22§<1>3525 + 2#2%@552% + (2§)T(I>SS/Z\§
= iy + (25) 0ss7s,
using the fact that Zg is an eigenvector of ®gg with eigenvalue v by definition. Note that

125113 < 1— 2, so that (z5)T @gsZ% is bounded by (1 — u?)y2, where 72 is the second largest
eigenvalue of ®gg, which tends to zero according to Lemma 6. We thus conclude that

uW'ssu < pPy+ (11— p*)y2. (33)

The following lemma addresses the remaining two terms in the decomposition (32):

n particular, we have £ 7Tz < |T||2,2 ||z[|3 = max{1, |Tp—xll2,2} ||z||3 = 1, while 27T% = ||Z5||3 = 1; i.e.,
we have 2Tz < 27Tz,
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Lemma 8. Let m =p—k and let S = {(n;,4;) }i be a set of cardinality |S| = O(m). Suppose
that in addition to conditions (27) and (31), the noise matriz A satisfies w.p. 1

1)
max 1/vT(Agese +T)v <n+ —=~C+¢, V(n,f) €S, 34
b i’ﬂ ( ) N (n,0) (34)
Vi1

for sufficiently small 6, > 0 as m — +o00. Then w.p. 1, for all x € SP=1 there exists a valid
sign matriz Usege(x) such that the matriz ®(z) : = Bz* 2*T — p,U(x) + A satisfies

xT(CD(:B))x <pla+(1—pH= < a (35)

| Q

where |p| = |22 < 1.

4.3 Noise in a sample covariance

Having established general sufficient conditions on the effective noise matrix, we now turn
to the case of i.i.d. samples z!,..., 2" from the population covariance, and let the effective
noise matrix correspond to the difference between the sample and population covariances. Our
interest is in providing specific scalings of the triplet (n, p, k) that ensure that the constructions
in Steps A through C can be carried out. So as to clarify the steps involved, we begin with
the proof for the spiked identity ensemble (I' = I). In Section 4.4, we provide the extension
to nonidentity spiked ensembles.

Recalling our sampling model ¢ = \/Bv'z* + ¢', define the vector h = %2?21 vigt. The
effective noise matrix A = 3 — ¥ can be decomposed as follows:

n

A = ﬁ (711 Z(vi)Z _ 1) Z*Z*T—l-\/ﬁ <Z*hT + hZ*T> + (nl ZgigiT o Ip) . (36)
N—————— i=1

i=1

P R w

We have named each of the three terms that appear in equation (36), so that we can deal
with each one separately in our analysis. The decomposition can be summarized as

A =3P+ \/BR+W.

The last term W is a centered Wishart random matrixz, whereas the other two are cross terms
from the sampling model, involving both random vectors and the unknown eigenvector z*.
Defining the standard Gaussian random matrix G = (gé)?f:n € R™P we can express W
concisely as

1
W= EGTG — I, (37)

Our strategy is to examine each of the terms P, v/BR and W separately. For sub-block
Agg, the corresponding sub-blocks of all the three terms are present, while for sub-block Ageg,
only /BRges and Wgeg have contributions. Since the conditions to be satisfied by these two
sub-blocks are expressed in terms of their (operator) norms, the triangle inequality immedi-
ately yields the results for the whole sub-block, once we have established them separately for
each of the contributing terms. On the other hand, although the conditions on Agege (given
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in Lemma 8) do not have this (sub)additive property, only the Wishart term contributes to
this sub-block, and it has a natural decomposition of the form required.

Regarding the Wishart term, the spectral norm (||W]|22) of such a random matrix is well
characterized [10, 13]; for instance, see claim (38a) in Lemma 10 for one precise statement.
The following lemma, concerning the mixed (00, 2) norms of submatrices of centered Wishart
matrices, is perhaps of independent interest, and plays a key role in our analysis.

Lemma 9. Let W € RP*P be a centered Wishart matriz as defined in (37). Let T,J C
{1,...,p} be sets of indices, with cardinalities |Z|, |J| — oo as n,p — oo, and let Wz 71
denote the corresponding submatriz. Then as long as max{|J|,log|Z|}/n = o(1), we have

VITT+ /log m)

T 7o = O
IWz,7 0,2 ( Jn
as n,p — +oo with probability 1.

See Appendix E for the proof of this claim.

4.3.1 Verifying steps A and B

First, let us look at the Wishart random matrix. The conditions on the upper-left sub-block
Wgss and lower-left sub-block Wgeg are addressed in the following lemma.

Lemma 10. As (n,p, k) — 400, we have w.a.p. one

22 = O( fL), (38a)
[Wssllso,o = O(ﬁ) (38D)

Wsesllooz = o(ﬁﬂfﬁg(}"“). (38¢)

Wss

In particular, under the scalingn > Lklog(p—k) and k = O(log p), the conditions of Lemma 6
and Lemma 7 are satisfied for Wgg and Wgeg for sufficiently large L.

Proof. Assertion (38a) about the spectral norm of Wgg follows directly from known results
on singular values of Gaussian random matrices (e.g., see [10, 13]). To bound the mixed norm
[Wses|loo,2, we apply Lemma 9 with the choices 7 = S¢ and J = S, noting that |Z| =p — k
and |J| = k. Finally, to obtain a bound on |[Wsg||oc,c0, We first bound [[Wss|lco,2. Again
using Lemma 9, this time with the choices Z = J = S, we obtain

[Weslocz = © (““f jllogk> -0 ( ﬁ) , (39)

as n, k — oco. Now, using the fact that for any = € R¥, ||z < Vk||z||c0, We obtain

[Wsslloo,o = max [Wssz|loo < max ||[Wsszlloo = VE[Wss|lo.2-
llzllo<1 lzl|l2<Vk

Combined with the inequality (39), we obtain the stated claim (38b). O
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We now turn to the cross-term R, and establish the following result.

Lemma 11. The matriz R = 2*hT+hz*T, as defined in equation (36), satisfies the conditions
of Lemmas 6 and 7.

Proof. First observe that h may be viewed as a vector consisting of the off-diagonal elements
of the first column of a (p+ 1) x (p+ 1) Wishart matrix, say W’. This representation follows
since h; = %Z?:l v"g;-, where the Gaussian variable v? is independent of g;. forall 1 <j <p.
For ease of reference, let us index rows/columns of W’ by 1,1,...,p, let S’ = {1’} U S, and
let h = W'y guse. (Recall that S U S is simply {1,...,p}.)

Since the spectral norm of a matrix is an upper bound on the £s-norm of any column, we

have
k+1
[hsll2 < W sisill2e = O <\/ n) ; (40)

where we used known bounds [10] on singular values of Gaussian random matrices. Un-

der the scaling n > Lklog(p — k), we thus have ||hg||2 £, . By Lemma 15, we have
P[|W'i;| > t] < Cexp(—cnt?) for t > 0 sufficiently small, which implies (via union bound)

that
Blls = O ( logn(p)> -0 <\}%> , (41)

under our assumed scaling. Note also that ||h|lcc = max{||hsl/co, [|[hsc]|co}, i-€. the co-norm
of each of these subvectors are also O(k~/2). Assume for the following that L is chosen large
enough so that ||h||s < §/Vk.

Now, to complete the proof, let us first examine the spectral norm of Rgg = z§h£+hsz§T.
The two (possibly) nonzero eigenvalues of this matrix are 257 hg + ||25||2/|hs||2, Whence we
have

P
IRssllzz < |25"hs| + |25 l2llhs]lz < 2]hsl2 = 0.

As for the (matrix) oo-norm of Rgg, let us exploit the “maximum row sum” interpretation,
Le. [[Rsslloc,co = maxies D e [Rij| (cf. Appendix A) to deduce

T
IRssllooco < l125h% o000 + 1525 lloo.oo

T T
(max =) 1051 + (mas |l ) 1257

IA

1
< —[Wssllsooe + |Ih oo\/%.
\/EW 55 || oo, |hs]|

From the argument of Lemma 10, we have [|[Wg/g/|loc.0c0 = O <\/ k;), so that

1 k P
G st =0 (/5] L0

and moreover, the norm ||Rgs[lc0,00 can be made smaller than 26, by choosing L sufficiently
large in the relation n > Lklog(p — k).
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Finally, to establish the additional condition required by Lemma 7—namely equation (31)—
notice that

[ Rseslloc,2 = max || Rsesylloo
lyll2=1

= max ||h5czf§Ty||oo
lyll2=1

. 5
= (| max [257y1) lhselloe < <=

lvll= vk
where the last line uses maxj,|,—1 1257y = ||z%]l2 = 1, thereby completing the proof. O

Finally, we examine the first term in equation (36), i.e. P. As this term only contributes
to the upper-left block, we only need to establish that it satisfies Lemma 6.

Lemma 12. The matriz Psg satisfies condition (27) of Lemma 6.

Proof. Note that for any matrix norm, we have || Psg| = ‘n_l (v - 1’ lz525T]).

Now,
notice that ||z5z5" |l = |257 25| = 1. Also, using the “maximum row sum” characterization

of matrix oco-norm, we have ||z5257 [lco.0c0 = Zle |( + ﬁ)( + ﬁﬂ = 1. Now by the strong

=130 (v1)2 — 1| 230 as n — oo. It follows that with probability 1

law of large numbers,

I Pssll2.2 = I Pssllsc,c0 — O,

which clearly implies condition (27). O

4.3.2 Verifying step C

For this step, we only need to consider the lower-right block of W i.e., we only need to verify
condition (34) of Lemma 8 for Agege = Wgege. Recall that W = n~!GTG — I, where G is a
n X p (canonical) Gaussian matrix (see equation (37)). With a slight abuse of notation, let
Ggse = (Gy5) for 1 <i <n and j € S°. Note that Gge € R"*™ where m = p — k and

ASCSC + I = WSCSC —+ Im = ’nilG%:cGSc.

Now, we can simplify the quadratic form in (34) as

VT (Asese + In)o = 1/ In12Gse0} = [In~2Csev]lo.
for which we have the following lemma.

Lemma 13. For any M > 0 and € > 0, there exists a constant B > 0 such that for any set
S = {(ni, £i) }; with elements in (0, M) x RY and cardinality |S| = O(m), we have

1
max |[n"Y2Ggev|ls < 1+ B,/%z te, V(0 €S (42)

llvll2<n,
vlli<e

as p — 00, with probability 1. In particular, under the scaling n > Lklogm, condition (34)
of Lemma 8 is satisfied for L large enough.
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Proof. Without loss of generality, assume M = 1. We begin by controlling the expectation
of the left-hand side, using an argument based on the Gordon—Slepian theorem [26], similar
to that used for establishing bounds on spectral norms of random Gaussian matrices [e.g.
10]. First, we require some notation: for a zero-mean random variable Z, define its standard

deviation o(Z) = (E|Z \2)1/ ?. For vectors z,y of the same dimension, define the Euclidean
inner product (z, y) = 27y. For matrices X, Y of the same dimension (although not necessarily
symmetric), recall the Hilbert—Schmidt norm

X s - = (X, X)YV2 = (ZX%)W'

Given some (possibly uncountable) index set {t € T}, let (X¢)ier and (Y;)ier be a pair of
centered Gaussian processes. One version of the Gordon-Slepian theorem (see [26]) asserts
that if o(Xs — Xy) < o(Y; = Y;) for all s,t € T, then we have

E[lsup Xy] < E[supVi. (43)
teT teT

For simplicity in notation, define H = Gge € R H := n~1/2Gge, and fix some
n, £ > 0. We wish to bound

f(ﬁ;n,ﬁ) ‘= max ||I§v||2: max <flv,u>

llvll2<n, lvll2<n,
lvlli<e llvll1<e,
flull2=1

where v € R™, u € R™. Note that (Hv,u) = u” Hv = tr(Hou®) = (H,uvT)). Consider H to
be a (canonical) Gaussian vector in R™", take

T:={t=(u,v) eR" xR™ [ |vlla <n, [[o]x <& [lul2 = 1}, (44)

and define X; = ((H, wv®) for t € T. Observe that (X;)er is a (centered) canonical Gaussian
process generated by H, and f(H;n,{) = maxycr X;. We compare this to the maximum of
another Gaussian process (Y;)ier, defined as Y; = ((g,h), (u,v)) where g € R” and h € R™

are Gaussian vectors with E[gg?| = #%I,, and E[hh?] = I,,. Note that, for example,

o({g.u)) = (Elg.u)?)"? = (u"Elgg"u) "> = nllul.

in which the left-hand size is the norm of a process ((g, u})u expressed in terms of the norm
of a vector (i.e., its index).

Let t = (u,v) € T and t' = (v/,v) € T. Assume, without loss of generality, that
|v"|l2 < ||v|l2- Then, we have

o} ( Xy — Xp) = Jluv” — u'v" s
— |||’LL’UT o ’LL/UT + u/vT o U,U/TWI%IS
= [loll3llu = '3 + [« |30 = o'[I3 + 2(u"u = u'[I3) (|[v]|5 = v ")

<P llu— |5+ [lv =[5 = o (Ve — Yi).
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where we have used Cauchy-Schwarz inequality to deduce |u’v/| < 1 = ||v/[|3 and |[vT0'| <
llvll2)|v]l2 < ||v||3. Thus, the Gordon—Slepian lemma is applicable and we obtain

Ef(ﬁ;n,ﬁ) < EmaxY;

teT
= E max (¢g,u)+E  max  (h,v)
l[ulla=1 [vll2<n, llvll.<¢

< Ellgll2 + (Elllls) £

< Van+ (\/@) L.

where we have used (EHgHg)2 <E(||l9l3) = Etr(g9") = trE(gg") = nn?; the bound used for
E|/hs follows from standard Gaussian tail bounds [26]. Noting that H = n~'/2H, we obtain

Ef(H;n,0) <n+ /2870,

n

The final step is to argue that f(H;n,¥) is sufficiently close to its mean. For this, we will
use concentration of Gaussian measure [26, 25] for Lipschitz functions in R™". To see that
A — f(A;n,£) is in fact 1-Lipschitz, note that it satisfies the triangle inequality and it is
bounded above by the spectral norm. Thus,

|f(Hym,0) — f(Fin, 0)| < f(H = Fin,0) < |H - Fllao < | H - Fllus

where we have used the assumption 7 < 1. Noting that H = n~Y2H and f(H;n,t) =
n/2f (H;n,¢), Gaussian concentration of measure for 1-Lipschitz functions [25] implies that

P[f(H;n,0) — E[f(H;n, )] > t] < exp(—nt®/2).

Finally, we use union bound to establish the result uniformly over S. By assumption, there
exists some K > 0 such that |S| < Km. Thus

P[(max (f(H;n,0) — (n+ +/(3logm)/n-£)) > t} < K exp(—nt?/2 + logm).

n,0)ES

Now, fix some € > 0, take t = 4/ 610% and apply the Borell-Cantelli lemma to conclude that

max [f(H;n,ﬁ)— <n+\/3logm-e>} < f8losm
(n,0)es n n

eventually (w.p. 1). O

4.4 Nonidentity noise covariance

In this section, we specify how the proof is extended to (population) covariance matrices having

a more general base covariance term I',_j, in equation (5). Let I’;/_ 2k denote the (symmetric)
square root of I',_j. We can write samples from this model as

@i:\/gviz*—i—gi, i1=1,...,n (45)

§ = 1/92§ ; (46)
prkg?‘g‘:

where



with g* ~ N(0,I,) and v ~ N(0,1) standard independent Gaussian random variables.

Denoting the resulting sample covariance as f], we can obtain an expression for the noise
matrix A = 5 — ¥. The result will be similar to expansion (36) with h and W appropriately
modified; more specifically, we have

hs =hs,  hge = 1/2 plse (47)
Wss = Wss, Wseg = p/_kWscs, Wsege =T /kWscscF /2 (48)

Note that the P-term is unaffected.

Re-examining the proof presented for the case I',_; = I,_;, we can identify conditions
imposed on h and W to guarantee optimality. By imposing sufficient constraints on I',_j, we
can make h and W satisfy the same conditions. The rest of the proof will then be exactly
the same as the case I',_;, = I,_j. As before, we proceed by verifying Steps A through C in
sequence.

4.4.1 Verifying steps A and B

Examining the proof of Lemma 11, we observe that we need bounds on ]|z, HhSH1 and
1A ]lse = max{||hs]lso, [|hse|loc }. Since hg = hg, we should only be concerned with ||hge||so,
for which we simply have

1/2

selloe < I, oo ool Fose loc.

Thus, assumption (6a)—i.c., [[T?]s.co = O(1)—guarantees that Lemma 11 also holds for
(nonidentity) I'.

Similarly, for Lemma 10 to hold, we need to investigate |||WSCS|HOO72, since this is the
only norm (among those considered in the lemma) affected by a nonidentity I'. Using sub-
multiplicative property of operator norms (see relation (58) in Appendix A), we have

1/2

[Wseslloo < T, lloo,coll Wses llos,2,

so that the same boundedness assumption (6a) is sufficient.

4.4.2 Verifying step C

For the lower-right block WSCSC we first have to verify Lemma 13. We also need to examine
the proof of Lemma 8 where the result of Lemma 13—mnamely relation (42)—Was used. Let

G = (gj)l”jp 11 and let Gge = (Gm> for 1 <i<n and j € S°. Note that G%. € RP=F)*" anqd

we have
- 1/2 1/2
GL. = ( gses- .- ,ggc) = Fp/fk (939“7 s ,ggc) - Fp/*kG%:C

Using this notation, we can write VIN/SCSC = n_lé:‘gcésc - = I‘;/fk (n_lGCSFCGSC —
Ip_k) r 11)/7 ka consistent with equation (48).

Now to establish a version of (42), we have to consider the maximum of
125 - 1/2
n =2 Ggevllz = n 2GSl

over the set where [[v]|2 < 7 and ||v]|; < ¢. Let 0 = I‘l/ka and note that for any consistent

pair of vector/matrix norms we have ||7]| < H]I‘l/2 Il llv|l. Thus, for example, ||v||2 < 1 implies
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|0]]2 < ”]F;/ﬁ Qk ll2,2m, and similarly for the ¢;-norm. Now, if we assume that Lemma 13 holds
for Gge, we obtain, for all (n,£¢) € S, the inequality

max |[n~2Ggev < max [n=Y2G g0 |2
lvllz<n, 13l12<0T 2,27,
llvll<e

||v||1<mr”2 ll1,1¢

1/2 1/2

<|T,-

1
14/ Ogm£+g. (49)

Thus, one observes that the boundedness condition (6a) guarantees that

1/2 1/2

ki = T2 oo, c0 < As,

thereby taking care of the second term in equation (49). More specifically, the constant A;

I~

is simply absorbed into some B’ = BA;. In addition, we also require a bound on H!P;/_ 2k ll2,2,
which follows from our assumption ||I',—|l22 < 1. However, the fact that the factor multi-
plying 7 in (49) is no longer unity has to be addressed more carefully.

Recall that inequality (42) was used in the proof of Lemma 8 to establish a bound on

T Agegev™ = v* T Weegev® = o™ (HTH — I, _y)v* = |Hv*||3 — ||v*|)3
where H = n~1/2Gge. The bound obtained on this term is given by (76). We focus on the

core idea, omitting some technical details such as the discretization argument?. Replacing
Wegege with Wgege, we need to establish a similar bound on

Tir 1 ~T ~ 1 2
v T Wsesev* = 0T (n 7 GEGse — Tpop)v* = [0 Y2Gsev*|3 — 1) 50" 3.
Note that [[v*]l2 < [T, 1 l22/IT 50" |12 or, equivalently, [IT, 25 3]lv* |2 < Hr;”kv*ug. Thus,

using (49), one obtains

— ~ * 1/2 « 1/2 1/2
In= 2 G sev |3 = T, 5018 < (ITy/ 5. — T,

23) 10113

+ (terms of lower order in [[v*|2).

Note that unlike the case I')_y = I,_j, the term quadratic in [|v*||2 does not vanish in
general. Thus, we have to assume that its coefficient is eventually small compared to 5. More
specifically, we assume

1/2 —1/2 a f
T ie = 10,5 < 5 eventually. (50)

The boundedness assumptions on ||I' 12 "ll1,1 and |||F |||272 now allows for the rest of the terms
to be made less than «/4, using arguments similar to the proof of Lemma 8, so that the overall
objective is less than «/2, eventually. This concludes the proof.

Noting that H|1“1/2 13,2 = Amax(Tp—x) and H|1“_1/2|||2 5 = Amin(I'p—%), We can summarize the
conditions suﬂi(nent for Lemma 8 to extend to general covariance structure as follows

It} = I e = O(1) (51a)
Amax(Tpr) < 1 (51b)
Aeias(Tyoi) ~ Amin(Tpi) < 2 610

as stated previously.

In particular, we will assume that v* saturates (49), so that ||v*|2 = n. For a more careful argument see
the proof of Lemma 8.
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5 Proof of Theorem 3

Our proof is based on the standard approach of applying Fano’s inequality (e.g., [7, 16,
38, 37]). Let S denote the collection of all possible support sets, i.e. the collection of k-
subsets of {1,...,p} with cardinality [S| = (¥); we view S as a random variable distributed
uniformly over S. Let Pg denote the distribution of a sample X ~ N(0,%,(5)) from a
spiked covariance model, conditioned on the maximal eigenvector having support set S, and
let X" = (z!,...,2") be a set of n i.i.d. samples. In information-theoretic terms, we view
any method of support recovery as a decoder that operates on the data X™ and outputs an
estimate of the support S = ¢(X"™)—in short, a (possibly random) map ¢ : (RP)" — S. Using
the 0-1 loss to compare an estimate S and the true support set S, the associated risk is simply
the probability of error Plerror] = g g G )IP’S [S # S]. Due to symmetry of the ensemble, in

fact we have Plerror] = IP’S[§ # S], where S is some fixed but arbitrary support set, a property
that we refer to as risk flatness.

In order to generate suitably tight lower bounds, we restrict attention to the following
sub-collection S of support sets:

S := {SeS|{1,....k—1}C S},

consisting of those k-element subsets that contain {1,...,k — 1} and one element from
{k,...,p}. By risk flatness, the probability of error with S chosen uniformly at random
from the original ensemble S is the same as the probability of error with .S chosen uniformly
from S. Letting U denote a subset chosen uniformly at random from S using Fano’s inequality,
we have the lower bound

I(U; X™) + log2
log [S|

Plerror] > 1-—

Y

where I(U; X™) is the mutual information between the data X" and the randomly chosen
support set U, and |§] = p—k + 1 is the cardinality of S.

It remains to obtain an upper bound on I(U; X"™) = H(X") — H(X"|U). By chain rule
for entropy, we have H(X"™) < nH(x). Next, using the maximum entropy property of the
Gaussian distribution [7], we have

1
H(X") < nH(z) < n{2[ + log(2m)] + 5 log det E [mT]}, (52)
where E[z27] is the covariance matrix of x. On the other hand, given U = U, the vector X"
is a collection of n Gaussian p-vectors with covariance matrix %,(U). The determinant of this
matrix is 1 + 3, independent of U, so that we have
H(X"|U) = % [1 + 1og(27r)] + glog(l + ). (53)
Combining equations (52) and (53), we obtain

I(U; X™) < % {log det E [z27] — log(1 + )} . (54)

The following lemma, proved in Appendix F, specifies the form of the log determinant of the
covariance matrix Xy : = E[zaT].
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Lemma 14. The log determinant has the exact expression

B 3 p—k B
log det Xpy = 1og(1+6)+log<1— 1+M(p_k+1))+(P—’f)10g(1+k(p_k+1)>'
(55)

Substituting equation (55) into equation (54) and using the inequality log(1 + a) < «, we
obtain

.Y n /8 p_k ﬁ
I(U,X)g2{log<1—1+ﬁk(p_k+1>>+(p—k‘)10g<1+lw>}
n{ 3 p—k  _Bp—Fk }
-2 1+8klp—k+1) ki(p—k+1)
“{ B p—k }
2 1+Bk(p—k+1)
B n
< ————.
~2(1+pP)k

From the Fano bound (52), the error probability is greater than 3 if %% < log(p — k) <
log ]gl, which completes the proof.

6 Discussion

In this paper, we studied the problem of recovering the support of a sparse eigenvector in a
spiked covariance model. Our analysis allowed for high-dimensional scaling, where the prob-
lem size p and sparsity index k increase as functions of the sample size n. We analyzed
two computationally tractable methods for sparse eigenvector recovery—diagonal threshold-
ing and a semidefinite programming (SDP) relaxation [9]—and provided precise conditions
on the scaling of the triplet (n,p, k) under which they succeed (or fail) in correctly recovering
the support. The probability of success using diagonal thresholding undergoes a phase tran-
sition in terms of the rescaled sample size 0gi. (7, p, k) = n/(k?log(p — k)), whereas the more
complex SDP relaxation, when it has a rank-one solution, succeeds once the rescaled sample
size Osap(n, p, k) = n/(klog(p — k)) is sufficiently large. Thus, the SDP relaxation has greater
statistical efficiency, by a factor of k relative to the simple diagonal thresholding method,
but also a substantially larger computational complexity. Finally, using information-theoretic
methods, we showed that no method, regardless of its computational complexity, can re-
cover the support set with vanishing error probability if 04, (7, p, k) is smaller than a critical
constant. Our results thus provide some insight into the trade-offs between statistical and
computational efficiency in high-dimensional eigenanalysis.

There are various open questions associated with this work. Although we have focused
on a Gaussian sampling distribution, parts of our analysis provide sufficient conditions for
general noise matrices. While qualitatively similar results should hold for sub-Gaussian dis-
tributions [5], it would be interesting to characterize how these conditions change as the tail
behavior of the noise is varied away from sub-Gaussian. For instance, under bounded moment
conditions, one would expect to obtain rates polynomial (as opposed to logarithmic) in the
dimension p. It is also interesting to consider extensions of our support recovery analysis to
recovery of higher rank “spiked” matrices, in the spirit of Paul and Johnstone’s [32] work on
{s-approximation, as opposed to the rank-one eigenvector outer product considered here.
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A Matrix norms

In this Appendix, we review some of the properties of matrix norms, with an emphasis on
induced operator norms. Recall from equation (4) that for a matrix A € R™*" the operator
norm induced by the vector norms ¢, and ¢, (on R™ and R", respectively) is defined by

[ Allpq = max [ Az, (56)

llzllg=1
for integers 1 < p,q < oo. As particular examples, we have the ¢1-operator norm given by
Al = maxi<j<m D214 |Asj], the lo-operator norm [|Alloc,c0 = maxi<i<y > 7%y |Aijl, and
the spectral or fp-operator norm ||A|l22 = max{c;(A)}, where o;(A) are the singular values

of A.
As a consequence of the definition (56), for any vector x € R™, we have

[Az]lp < I Allpgllzllg, (57)

a property referred to as || - ||,q being consistent with vector norms ||- ||, and |- ||; (on R™ and
R™ respectively). It also follows from the definition, using (57) twice, that operator norms
are consistent with themselves, in the following sense: if A € R™*™ and B € R™*¥, then

IABllpq < 1Al Bl

rq (58)

forall 1 <p,q,r < 0.
We can also apply any vector norm to matrices, treating them as vectors, by concatenating
their columns together. For example, we will use the following mixed-norm inequality

[AB[lco < | Alloo.c0ll Blloo, (59)

where ||B||« : = max; j | Bj;| is the elementwise {o-norm, and A and B are as defined above.
For the proof, let by, ..., b denote the columns of B. Then,

[AB]loc = [ [Aba, .., Abe] oo = max [[Abi o

IN

[Alloo.00 max [[billoc = | Alloc,c0 [|Blloo-

For more details, see the standard books [18, 34].

B Large deviations for chi-squared variates

The following large-deviations bounds for centralized x? are taken from Laurent and Mas-
sart [24]. Given a centralized x2-variate X with d degrees of freedom, then for all x > 0,

P [X —d>2Vdz + 293] < exp(—=z), and (60a)
P [X _d< —2\/%] < exp(—). (60b)

We also use the following slightly different version of the bound (60a),

3 1
P[X—dZda:]geXp(—IGd:UQ), 0§$<§ (61)
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due to Johnstone [19]. More generally, the analogous tail bounds for non-central x?, taken
from Birgé [4], can be established via the Chernoff bound. Let X be a noncentral x? variable
with d degrees of freedom and noncentrality parameter v > 0. Then for all z > 0,

P [X > (d+v)+2y/(d+2v)x + 23;} < exp(—x), and (62a)
P [X <(d+v)—2/{d+ 2u)x} < exp(—z). (62b)

We derive here a slightly weakened but useful form of the bound (62a), valid when v satisfies
v < Cd for a positive constant C. Under this assumption, then for any 6 € (0,1), we have

5
> < — .
P[X_(d+u)+4d\/5} < exp( 1+2cd> (63)
To establish this bound, let x = d(fgu for some § € (0,1). From equation (62a), we have
d? d?§ J
= > < — < — .
P P[X_(d+u)+2d\/5+2d+2l/5] < exp( d+2u> _exp< 1+20d)

Moreover, we have
P> P[X > (d+v)+ 245 +248] > P[X > (d+v)+44V5),

since /& > 6 for 6 € (0,1).

C Proof of Lemma 4

Using the form of the x2 PDF, we have, for even n and any t > 0,

X% = L - 5 lexp(—z T
P[] = w fu, e
B 1 (nj2 —1)! a1+ 0\ S 1 40\
= 20/ (n/2) (5)<n/21)+1eXp(_ 2 >ZZ; z'< 2 >
exp(—n n/2)"/?1
> exp(—nt/2) [ p( (n//22)(—{)2') (144271

where the second line uses standard integral formula (cf. §3.35 in the reference book [14]).
Using Stirling’s approximation for (n/2—1)!, the term within square brackets is lower bounded
by 2C/v/n. Also, over t € (0,1), we have (1 +¢)~ > 1/2, so we conclude that

P h% >1 +t] > \% exp (% [t — log(1 +t)]) . (64)

Defining the function f(¢) = log(1+t), we calculate f(0) = 0, f/(0) = Land f”(t) = —1/(1 + t)%.
Note that f”(t) > —1, for all ¢ € R. Consequently, via a second-order Taylor series expansion,
we have f(t) —t > —t2/2. Substituting this bound into equation (64) yields

2 2

X, C nt
PlXn Syl > e
["> +} B \/ﬁexp( 2)

as claimed.
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D Proofs for Section 4.2

D.1 Proof of Lemma 6

The argument we present here has a deterministic nature. In other words, we will show that if
the conditions of the lemma hold for a nonrandom sequence of matrices Agg, the conclusions
will follow. Thus, for example, all the references to limits may be regarded as deterministic.
Then, since the conditions of the lemma are assumed to hold for a random Agg a.a.s., it
immediately follows that the conclusions hold a.a.s.. To simplify the argument let us assume
that & |Agg|lec,00 < € for sufficiently small & > 0; it turns out that e = 5 is enough.

We prove the lemma in steps. First, by Weyl’s theorem [18, 34], eigenvalues of the per-
turbed matrix az§z5’ + Ags are contained in intervals of length 2||Agg|l2,2 centered at
eigenvalues of azngT. Since the matrix zj‘ngT is rank-one, one eigenvalue of the perturbed
matrix is in the interval [o £ |Agg]l2,2], and the remaining k — 1 eigenvalues are in the in-
terval [0 =+ [|Agg|l2,2]. Since by assumption 2[|Aggl22 < « eventually, the two intervals are
disjoint, and the first one contains the maximal eigenvalue ; while the second contains the
second largest eigenvalue 5. In other words, |y1 — a| < [|Ags|2,2 and |y2| < [|Ass|2,2. Since
[Assll2,2 — 0 by assumption, we conclude that 3 — « and 2 — 0. For the rest of the proof,
take n large enough so

et —1] < e, (65)

where € > 0 is a small number to be determined.
Now, let Zg € R¥ with ||Z5]l2 = 1 be the eigenvector associated with 1, i.e.

(azfqz}T + ASS)%\S = 7133. (66)

Taking inner products with Zg, one obtains a(z§T35)2 + ’z\gASSES = 7. Noting that
|zl AgsZs| is upper-bounded by [|Ags|l2,2, we have by triangle inequality
T~ T~
o = a(z8 Z8)?| = la —m + 71 — a2y Z5)°|
<o —m|+ i - a(z5" 28)| < 2 Assllap
which implies ngEg — 1 (taking into account our sign convention). Take n large enough so

that
12572 — 1| <, (67)

and let u be the solution of
azg + Agsu = au (68)

which is an approximation of equation (66) satisfied by zg. Using triangle inequality, one has
[ulloo < [128lloc + @™ | Assllos,collulloc, Which implies that

lulloo < (1= a7 Assllos,oo) HI#5lloo < (1 =€) [|25]lo0- (69)

We also have
lu = 2§ llc0 < @ Asslloocollulloo < (1 =)™ |2E oo (70)

Subtracting equation (68) from equation (66), we obtain az%(z572s — 1) + Ags(Zs — u) =
v1zs — au. Adding and subtracting v on the right-hand side and dividing by «, we have

25(257 25 — 1) + a ' Ags(Bs — u) = via” (B —u) + (1ot = D),

29



which implies
N -1 -1 s T~ * -1
25— ulloo < (o™ o JAsslaone) {12575 — 11 |zlo + o — 11 - ullo }
<(1-2)Ye+e(l—e)Y - 25l

where the last inequality follows from equations (65), (67) and (69). Combining with the
bound (70) on |lu — 25|/ yields

125 — 2§lloo < € n € n €
|25 o0 1-2e (1-2)(1—¢) 1-—¢
< 3¢
— (1-2¢)%

Finally, we take ¢ = 7~ to conclude [|Zg — 25|00 < 3/|25]lo0 = \lf a.a.s., as claimed.

2wk
D.2 Proof of Lemma 7

Recall that by definition, Zg = Zs/||Zs|/1. Using the identity sign(Zs)’2zs = [Zsl1_yields
Ugcng = p, ' AgegZg, which is the desired equation. It only remains to prove that Uscs is
indeed a valid sign matrix.

First note that from equation (28) we have |z;| € [7

IZsll € [4E, 5], Thus, [Zs]2 = 1/(1Zs)h) < 2.

] for 4 € S, which implies that

s\

Now we can write

R Uil < ol Ases Zslloo

< o Aseslloo 1752

2% 6 2
- B VEVE
4
=50

so that taking ¢ < % completes the proof.

D.3 Proof of Lemma 8

Here we provide the proof for the case I',_p = I),_j; necessary modifications for the general
case are discussed in Section 4.4. First, let us bound the cross-term in equation (32). Recall
that Zg = Zg/||zs|/1. Also, by our choice (30) of Useg, we have

Dges = Ages — pnUses = Ages — AgesZssign(Zs)"

Now, using sub-multiplicative property of operator norms [see relation (58) in Appendix A],
we can write

I@seslloo2 = [ Ases (Ip—k — Zs sign(2s)") loo,2
< [|Aseslo2 - 1p-r — Zs sign(Zs) " |22
< NAseslloo,2 - (1+ (1252 lIsign(Zs)l2) < 3 Asesloc,2, (71)
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where we have also used the facts that ||ab?[|a2 = ||a||2]|b]l2, and [|Zs]l2 = 1/(||Zs]1) < %,
using the bound (28). Recall the decomposition z = (u,v), where u = pzs + z with

p? + |15 < 1. Also, by our choice (30) of Uses, we have ®gequ = Pgeszs. Thus,

max |207 ®gegu| < max 1207 ®gegii| < /1 — p2 max, 1207 ®gegill. (72)
b lill2 < v/1=12, Jill2<

Ll zg

Using Holder’s inequality, we have

max |20T ®gegi| < 2||v|1 max | @ 55|00
lall2<1 lall2<

< 2fjvfl1 [Pseslloo,2

J
< 6[fvllx i
where we have used bound (71) and applied condition (31). We now turn to the last term in
the decomposition (32), namely v’ ®gegev = v Agegev — py, vTUgegev. In order to minimize
this term, we use our freedom to choose fjscsc(x) = sign(v) sign(v)7, so that —py, 0T Usgegev
simply becomes —p,, ||v||3.
Define the objective function f* := max, 27 ®z. Also let H = n 112G g, where Gge =
(Gi;) for 1 <i <n and j € S¢. Noting that Agege = HT H — I, (with m = p — k) and using
the bounds (33), (72) and (73), we obtain the following bound on the objective

(73)

f* < max uT<I>SSu + max 2vT<I>5c5u + max UTq)SCch
U u,v

{6|| == + | Holl3 — vl - pullvlT}| . (74)

< [WPn+ (1= p?)p] + (-4 7

*

g

In obtaining the last inequality, we have used the change of variable v — (/1 — p?) v, with
some abuse of notation, and exploited the inequality ||v]|2 < /1 — u2. (Note that this bound
follows from the identity |z[|2 =1 = u? + HZLHQ +||vl|3.)

Let v* be the optimal solution to problem ¢* in equation (74); note that it is random due
to the presence of H. Also, set S = {(7,¢;;)} where i and j range over {1,2,...,[\/m ]} and

Note that S satisfies the condition of the lemma, namely |S| = [v/m]? = O(m).
Since ||v*|l2 < 1, and [[v*||2 < [|[v*|]1 < v/m|[v*||2, there exists® (n*, £*) € S such that

*

1
Nt = —= <[l <7

N

=3 <) <

3Let i* = [/m|v*|2] and n* = \};n Using the fact that, for any z € R, [z] — 1 < = < [z], we have

n* —1/v/m < ||[v*]|2 < n* or, equivalently, |[v*||2 =n* + £ where —1/y/m < £ < 0. Now let j* = “U:H;—‘ One

llv

has (j* — D)|[v*]l2 < ||v*]lx < j*||v"|l2 which, using the fact that ||v*]]2 < 1, implies j*[|[v*|2 — 1 < |[v*]1 <
J*|lv*]]2. This in turn implies

Take £* = j*n* and note that j°¢ — 1 > —3, since j* is at most [v/m].
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Thus, using condition (34), we have

) 1 )
Hv*|]2 < max |[Hola <"+ —=+e<|v*|a+—=+—=(||v"]1 +3)+¢
|Hv' 2 < max|Hol 7 o7ll2 + =+ = ("l +3)

vl <e*
To simplify notation, let
A= Ae,6,m, k) ==1/vVm+36/Vk +e, (75)

so that the bound in the above display may be written as ||[v*||2 + 6||v*||1/Vk + A. Now, we
have

HU* 2 7}* 2<2 U* (5”7)*”1 +A> + (5HU ”1 +A>
[Hv™ [z = [[v"][2 < 2[[v*[l2 b 7

<2 <6’$£1 +A> + (6”1\)/*21 +A>2. (76)

Using this in (74) and recalling from (26) that p, = (3/(2k), we obtain the following bound

P LTI\ P P N Y

Note that this is quadratic in ||v*||; /v, i.e.

where

a:52—§, b=805+20A4, and c=24+ A>

By choosing § sufficiently small, say 6% < /4, we can make a negative. This makes the
quadratic form az? + bx + ¢ achieve a maximum of ¢ + b?/4(—a), at the point z* = b/2(—a).
Note that we have b/2(—a) — 0 and ¢ — 0 as €, — 0 and m,k — oo. Consequently, we
can make this maximum (and hence ¢g*) arbitrarily small eventually, say less than «/2, by
choosing § and ¢ sufficiently small.

Combining this bound on g* with our bound (74) on f*, and recalling that v — a and
Y2 — 0 by Lemma 6, we conclude that

o< pHato(l) + (1 —p?) [% + 0(1)} < a+o(l),

as claimed.

E Proof of Lemma 9

In this section, we prove Lemma 9, a general result on ||| 2-norm of Wishart matrices. Some
of the intermediate results are of independent interest and are stated as separate lemmas.
Two sets of large deviation inequalities will be used, one for chi-squared RVs x?2 and one for
“sums of Gaussian product” random variates. To define the latter precisely, let Z; and Zs be
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independent Gaussian RVs, and consider the sum Z?Zl X; where XiingZg, forl1 <i<n.
The following tail bounds are known [21, 4]:

P(‘n_l ZXi > t) < Cexp(—3nt?/2), ast—0 (77)
=1
P(jn"'x2 — 1| >t) < 2exp(—3nt?/16), 0<t<1/2, (78)

where C' is some positive constant.
Let W be a p x p centered Wishart matrix as defined in (37). Consider the following linear
combination of off-diagonal entries of the first row

n n p
> Wiy =n"') g} gja
j=2 =1 j=2
Let & = |lall;* ?:2 géaj, where a = (ag,...,ay) € RP7L. Note that {¢'}" ;| is a collection

of independent standard Gaussian RVs. Moreover, {£/}7; is independent of {g¢}" ;. Now,

we have
p n o
> aWi=n"all2 > gi¢,
=2 i=1

which is a (scaled) sum of Gaussian products (as defined above). Using (77), we obtain
P
P(‘Zajwlj‘ >t) < Cexp (- 3nt?/2||al|2) (79)
=2

Combining the bounds in (79) and (78), we can bound a full linear combination of first-
row entries. More specifically, let z = (z1,...,2,) € RP, with z; # 0 and Z?:z xzj # 0,
and consider the linear combination »°7_, 2;W1;. Noting that Wi = nty(g)?P—1isa
centered X2, we obtain

P[> a iy > 1] < B(Jlerial + | 3 a3 > )
j=1 J=2

p
< P[lasWii| > /2] + IP’H 3 xjwlj‘ > t/ﬂ
=2

<9 3nt? L ( 3nt? )
exp | ———— exp| — ————
= 2OP 716 122 PAT oy 22
3nt?
< pmax(2, Chesp (— 222
< 2max{2,C} exp 6.4 2521 3:?

Note that the last inequality holds, in general, for x # 0. Since there is nothing special about
the “first” row, we can conclude the following.

Lemma 15. Fort > 0 small enough, there are (numerical constants) ¢ >0 and C > 0 such
that for all x € RP\{0},

p
(15
j=1

>t> < C’exp(—cnt2/HxH%), (80)
for1 <i<np.
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Now, let Z,J7 C {1,...,p} be index sets*, both allowed to depend on p (though we have
omitted the dependence for brevity). Choose z such that z; = 0 for j ¢ J and ||z 7|2 = 1.
Note that |Wz 7z7]/cc = max |2 je7 Wijzj| = max | Z?Zl Wija;|, suggesting the following

lemma

Lemma 16. Consider some index set I such that |Z| — oo and ntlog|Z| — 0 as n,p — oo
and some z7 € SWI=Y. Then, there exists an absolute constant B > 0 such that

log |Z
Wr gzl < By 2 (81)
as n,p — oo, with probability 1.
Proof. Applying the union bound in conjunction with the bound (80) yields
P oy —ent?).
(r?eazx‘ Z Wl]x]) > t) < |Z| C exp(—cnt®) (82)
JjeJ
Letting ¢ = By/n~!log|Z|, the right-hand side simplifies to C'exp (—(c¢B* — 1)log|Z|). Tak-
ing B > v2¢~! and applying Borel-Cantelli lemma completes the proof. O
Note that as a corollary, setting x 7 = (1,0,...,0) yields bounds on the co-norm of columns

(or, equivalently, rows) of Wishart matrices.
Lemma 16 may be used to obtain the desired bound on |[Wz 7|ls,2. For simplicity, let
y € RV represent a generic | J|-vector. Recall that ||Wr 7]loc2 = max,cgl7i-1 [|Wz,7Yl[0o-

We use a standard discretization argument, covering the unit ¢2-ball of RI| using an e-net,
say N. It can be shown [27] that there exists such a net with cardinality |N| < (3/¢)l7] . For
every y € ST let u, € N be the point such that ||y — u,||2 <e. Then

IWz.7Ylloo S MWz 7llc02lly — uyllz + Wz gtyllo0 < Wz, 7ll00 28 + Wz, 70y [|o0-

Taking the maximum over y € SI=1 and rearranging yields the inequality
Wz g lloe2 < (1 = &)~ max [ Wz, 7uc. (83)
ueN

Using this bound (83), we can now provide the proof of Lemma 9 as follows. Let
N ={uy,...,up} be a Lnet of the ball SMI=1, with cardinality |N| < 6. Then from
our bound (83), we have

P(IWz,gllc02 > t) < P(2 max [Wr,7uljoo > t)

< WI-P([Wrguilleo > 1/2)
< 6V. C|Z| exp(—cnt?/4).

In the last line, we used (82). Taking t = D" 7% :Llogm with D" large enough and using
Borel-Cantelli lemma completes the proof.

4We always assume that these index sets form an increasing sequence of sets. More precisely, with Z = Iy,
we assume 77 C Zo C ---. We also assume \Ip| — 00 as p — 00.
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F Proof of Lemma 14

The mixture covariance can be expressed as

Sy oi= Elxa’] = E[E[z27|U]]
= ZéE[mxﬂU:S]
Ses S|
1
= — (I 2*(8)2*(S)T
Szeg|8|( + 524(8)2(9)T)
ﬁ * * T ﬁ
= I+ = 25(8)*(S) = I, + —=Y,
MDA TEE
where
Yij =) Wk (SLlVEkz"(5)"]; =) Wie Si{jest=) U{ij}cCs)
Ses Ses Ses

Let R:={1,...,k—1} and R® := {k,...,p}. Note that we always have R C S for S € S. In
general, we have

S|, if both4,j € R,
Yij =41, ifexactlyoneofiorj €R,
0, ifbothi,j ¢ R.
Consequently, Y takes the form

S| ... S|t 1 .01

S| IS[]1 1 1 ISIT1%  T,1%.
Y = 1 ... 1|1 or Y= foR SRR

1 ... 1]01 ... 0 Tpdh  Irexpe

1 ... 1/00 ... 1

where TR, for example, denotes the vector of all ones over the index set R. We conjecture an
eigenvector of the form
T
bch

and let us denote the associated eigenvalue as A. Thus, we assume Yv = Av, or, in more
detail,

SIIRI T +b|R|Tr = ATp,
‘R| IRc+bTRc — AbTRc

where we have used, for example, 151, = |R|. Note that |R¢| = S| = p — k + 1. Rewriting in
terms of [S|, we get

S| (|RI+b) = A,
IR|+b=Ab
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from which we conclude, assuming A # 0, that b = . This, in turn, implies A = [S| |R| + 1.

S|
Thus far, we have determined an eigenpair. We can now subtract A (v/[|v]|2)(v/[|v]]2)T =
(A/||v||2) voT and search for the rest of the eigenvalues in the remainder. Note that

A A _IS||R| +1
[oll3  [RI+b2[R]  |R|+|S|!

=S).

Thus, we have

A T |§| TRI% TRT%F%C
g VU =
o]l iy & TnTh
implying
B % ol — 0 0
ol 0 I-&1pTh
The nonzero block of the remainder has one eigenvalue equal to 1 — % = 0 and the rest of

|R¢| — 1 of its eigenvalues equal to 1. Thus, the remainder has |R| + 1 of its eigenvalues equal
to zero and |R°| — 1 of them equal to one.
Overall, we conclude that eigenvalues of Y are as follows:

IS||R| 4+ 1, 1 time, (p—k+1)(k—1)+1, 1 time,
1, |R¢| — 1 times, or 1, p — k times,
0, |R| times, 0, k — 1 times.
The eigenvalues of Y are mapped to those of ¥, by the affine map ¢ — 1 + % x, so that

>y has eigenvalues

Bk —1) g g

1+ + , 1
k kE(p—k+1) E(p—k+1)

(84)

with multiplicities 1, p — k and k — 1, respectively. The log determinant stated in the lemma
then follows by straightforward calculation.

G Proof of Theorem 2(a)

Since in part (a) of the theorem we are using the weaker scaling n > Oy.k?log(p — k), we
have more freedom in choosing the sign matrix U. We choose the upper-left block (755 as in
part (b) so that Lemma 6 applies. Also let Z: = (Zg,0g¢) as in (29), where Zg is the (unique)
maximal eigenvector of the k£ x k block ®gg; it has the correct sign by Lemma 6. We set the
off-diagonal and lower-right blocks of the sign matrix to

~ 1 ~ 1
Uses = —Ageg, Usgege = —Agege (85)
n n

so that Pgeg = 0 and Pgege = 0. With these blocks of ® being zero, z is the maximal
eigenvector of @, hence an optimal solution of (13), if and only if Zg is the maximal eigenvector
of ®gg; the latter is true by definition. Note that this argument is based on the remark

36



following Lemma 5. It only remains to show that the choices of (85) lead to valid sign
matrices.

Recalling that vector co-norm of a matrix A is || A« := max; j |4; ;| (see Appendix A),
we need to show H(/chSHOO <1 and ”ﬁScScHOO < 1. Using the notation of section 4.4 and the
mixed-norm inequality (59), we have

—~ ﬁ - ﬂ -
1seslloe = Y2 hsez oo < Y2 e loocollz 1
Pn Pn
\/B 7 *
= B gl o
Pn
VB 172

g
< =T Zklloo.co 1Pse lloo [l 25 oo
Pn

_ 2k log(p—k)\ 1 _ R
_\/30(1)0< e ) (1) 7= 0,

where the last line follows under the scaling assumed and assumption (6a) on ”]F;/_ Qk lloc,c0- For
the lower-right block, we use the mixed-norm inequality (59) twice together with symmetry
to obtain

1/2

~ 1 ~ 1 1/2
[eselloe =~ Wseselloo = -0, 5Wsese T, o

n

1. .1/2
< Iy 202 o W selloo
Pn

_ 2; o(1) o( log(fl_ k>>

which can be made less than one by choosing 0y, large enough. The bound on |[Wgege||oo
used in the last line can be obtained using arguments similar to those of Lemma 9. The proof
is complete.
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