
The spectrum of kernel random matrices

Noureddine El Karoui ∗

Department of Statistics,
University of California, Berkeley

December 13, 2007

Abstract

We place ourselves in the setting of high-dimensional statistical inference, where the number of
variables p in a dataset of interest is of the same order of magnitude as the number of observations n.

We consider the spectrum of certain kernel random matrices, in particular n × n matrices whose
(i, j)-th entry is f(X ′

iXj/p) or f(‖Xi − Xj‖2/p), where p is the dimension of the data, and Xi are
independent data vectors. Here f is assumed to be a locally smooth function.

The study is motivated by questions arising in statistics and computer science, where these matrices
are used to perform, among other things, non-linear versions of principal component analysis. Surpris-
ingly, we show that in high-dimensions, and for the models we analyze, the problem becomes essentially
linear - which is at odds with heuristics sometimes used to justify the usage of these methods. The anal-
ysis also highlights certain peculiarities of models widely studied in random matrix theory and raises
some questions about their relevance as tools to model high-dimensional data encountered in practice.

1 Introduction

Recent years has seen newfound theoretical interest in the properties of large dimensional sample
covariance matrices. With the increase in the size and dimensionality of datasets to be analyzed, questions
have been raised about the practical relevance of information derived from classical asymptotic results
concerning spectral properties of sample covariance matrices. To address these concerns, one line of analysis
has been the consideration of asymptotics where both the sample size, n and the number of variables p in
the dataset go to infinity, jointly, while assuming for instance that p/n had a limit.

This type of questions concerning the spectral properties of large dimensional matrices have been and
are being addressed in variety of fields, from physics to various areas of mathematics. While the topic is
classical, with the seminal contribution Wigner (1955) dating back from the 1950’s, there has been renewed
and vigorous interest in the study of large dimensional random matrices in the last decade or so. This
has led to new insights and the appearance of new “canonical” distributions (Tracy and Widom (1994)),
new tools (see Voiculescu (2000)) and, in Statistics, a sense that one needs to exert caution with familiar
techniques of multivariate analysis when the dimension of the data gets large and the sample size is of the
same order of magnitude as the dimension of the data.

So far in Statistics, this line of work has been concerned mostly with the properties of sample covariance
matrices. In a seminal paper, Marčenko and Pastur (1967) showed a result that from a statistical standpoint
may be interpreted as saying, roughly, that asymptotically, the histogram of the sample eigenvalues is
a deterministic non-linear deformation of the histogram of population eigenvalues. Remarkably, they
managed to characterize this deformation for fairly general population covariances. Their result was shown
in great generality, and introduced new tools to the field, including one that has become ubiquitous, the
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Stieltjes transform of a distribution. In its best known form, their result says that when the population
covariance is identity, and hence all the population eigenvalues are equal to 1, in the limit the sample
eigenvalues are split and, if p ≤ n, they are spread between [(1 −

√
p/n)2, (1 +

√
p/n)2], according to a

fully explicit density, known now as the density of the Marčenko-Pastur law. Their result was later re-
discovered independently in Wachter (1978) (under slightly weaker conditions), and generalized to the case
of non-diagonal covariance matrices in Silverstein (1995), under some particular distributional assumptions,
which we discuss later in the paper.

On the other hand, recent developments have been concerned with fine properties of the largest eigen-
value of random matrices, which became amenable to analysis after mathematical breakthroughs which
happened in the 1990’s (see Tracy and Widom (1994), Tracy and Widom (1996) and Tracy and Widom
(1998)). Classical statistical work on joint distribution of eigenvalues of sample covariance matrices (see
Anderson (2003) for a good reference) then became usable for analysis in high-dimensions. In particular,
in the case of gaussian distributions, with Id covariance, it was shown in Johnstone (2001) that the largest
eigenvalue of the sample covariance matrix is Tracy-Widom distributed. More recent progress (El Karoui
(2007c)) managed to carry out the analysis for essentially general population covariance. On the other
hand, models for which the population covariance has a few separated eigenvalues have also been of inter-
est: see for instance Paul (2007) and Baik and Silverstein (2006). Beside the particulars of the different
type of fluctuations that can be encountered (Tracy-Widom, Gaussian or other), researchers have been
able to precisely localize these largest eigenvalues. One striking aspect of those results is the fact that in
the high-dimensional setting of interest, the largest eigenvalues are always positively biased, with the bias
being sometime really large. (We also note that in the case of i.i.d data - which naturally less interesting
in statistics - results on the localization of the largest eigenvalue have been available for quite some time
now, after the works Geman (1980) and Yin et al. (1988) to cite a few.) This is naturally in sharp contrast
to classical results of multivariate analysis, which show

√
n-consistency of all sample eigenvalues - though

the possibility of bias is a simple consequence of Jensen’s inequality.
On the other hand, there has been much less theoretical work on kernel random matrices. In particular,

we are not aware of any work in the setting of high-dimensional data analysis. However, given the practical
success and flexibility of these methods (we refer to Schölkopf and Smola (2002) for an introduction), it is
natural to try to investigate theoretically their properties. Further, as illustrated in the data analytic part
of Williams and Seeger (2000), the n/p boundedness assumption in not unrealistic, as far as applications
of kernel methods are concerned. The aim of the present paper is to shed some theoretical light on the
properties of these kernel random matrices, and to do so in relatively wide generality. We note that the
choice of renormalization that we make is motivated in part by the arguments of Williams and Seeger
(2000) and their practical choices of kernels for data of varying dimensions.

Existing theory on kernel random matrices (see for instance the interesting Koltchinskii and Giné
(2000)), for fixed dimensional input data, predicts that the eigenvalues of kernel random matrices behave
- at least for the largest ones - like the eigenvalues of the corresponding operator on L2(dP ), if the data
is i.i.d with probability distribution P . These insights have also been derived through more heuristic but
nonetheless enlightening arguments in, for instance, Williams and Seeger (2000). By contrast, we show
that for the models we analyze, kernel random matrices essentially behave like sample covariance matrices
and hence their eigenvalues suffer from the same bias problems that affect sample covariance matrices in
high-dimensions. In particular, if one were to try to apply the heuristics of Williams and Seeger (2000),
which were developed for low-dimensional problems, to the high-dimensional case, the predictions would
be quite wildly wrong. (A simple example is provided by the Gaussian kernel with i.i.d Gaussian data,
where the computations can be done completely explicitly, as explained in Williams and Seeger (2000).)
We also note that the scaling we use is different from the one used in low dimensions, where the matrices
are scaled by 1/n. This is because the high-dimensional problem would be completely degenerate if we
used this normalization in our setting. However, our results still give information about the problem when
it is scaled by 1/n.

We note that from a random matrix point of view, our study is connected to the study of Euclidian
random matrices and distance matrices, which is of some interest in, for instance, Physics. We refer to
Bogomolny et al. (2003) and Bordenave (2006) for work in this direction in the low (or fixed) dimensional
setting. We also note that at the level of generality we place ourselves in, the random matrices we study
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do not seem to be amenable to study through the classical tools of random matrix theory. Hence, beside
their obvious statistical interest, they are also very interesting on purely mathematical grounds.

We now turn to the gist of our paper, which will show that high-dimensional kernel random matrices
behave spectrally essentially like sample covariance matrices. We will get two types of results: in Theorems
1 and 2, we get a strong approximation result (in operator norm) for standard models studied in random
matrix theory. In Theorems 3 and 4, we characterize the limiting spectral distribution of our kernel random
matrices, for a wide class of data distributions. In Section 2, we also state clearly the consequences of our
theorems and review the relevant theory of high-dimensional sample covariance matrices. From a technical
standpoint, we adopt a point of view centered on the concentration of measure phenomenon, as exposed for
instance in Ledoux (2001), as it provides a unified way to treat the two types of results we are interested
in. Finally, we discuss in our conclusion (Section 3) the consequences of our results, and in particular some
possible limitations of standard random matrix models as tools to model data encountered in practice.

2 Spectrum of kernel random matrices

Kernel random matrices do not seem to be amenable to analysis through the usual tools of random
matrix theory. In particular, for general f , it seems difficult to carry out either a method of moments
proof, or a Stieltjes transform proof, or a proof that relies on knowing the density of the eigenvalues of the
matrix.

Hence, we take an indirect approach. Our strategy is to find approximations of the kernel random matrix
that have two properties. First, the approximation matrix is analyzable or has already been analyzed in
random matrix theory. Second, the quality of the approximation is good enough that spectral properties
of the approximating matrix can be shown to carry over to the kernel matrix.

The strategy in the first two theorems is to derive an operator norm “consistent” approximation of our
kernel matrix. In other words, if we call M our kernel matrix, we will find K such that |||M−K|||2 → 0, as
n and p tend to ∞. Note that both M and K are real symmetric (and hence Hermitian) here. We explain
after the statement of Theorem 1 why operator norm consistency is a desirable property. But let us say
that in a nutshell, it implies consistency for each individual eigenvalue as well as eigenspaces corresponding
to separated eigenvalues.

For the second set of theorems (Theorems 3 and 4), we will relax the distributional assumptions made
on the data, but at the expense of the precision of the results we will obtain: we will characterize the
limiting spectral distribution of our kernel random matrices.

Our theorems below show that kernel random matrices can be well approximated by matrices that are
closely connected to large-dimensional covariance matrices. The spectral properties of those matrices have
been the subject of a significant amount of work in recent and less recent years, and hence this knowledge,
or at least part of it, can be transferred to kernel random matrices. In particular, we refer the reader to
Marčenko and Pastur (1967), Wachter (1978), Geman (1980), Yin et al. (1988), Silverstein (1995), Bai
and Silverstein (1998), Johnstone (2001), Baik and Silverstein (2006), Paul (2007), El Karoui (2007c), Bai
et al. (2007) and El Karoui (2007a) for some of the most statistically relevant results in this area. We
review some of them now.

2.1 Some results on large dimensional sample covariance matrices

Since our main theorems are approximating theorems, we first wish to state some of the properties of
the objects we will use to approximate kernel random matrices. In what follows, we consider an n × p
data matrix, with, say p/n having a finite non-zero limit. Most of the results that have been obtained are
of two types: either they are so-called “bulk” results and concern essentially the spectral distribution (or
loosely speaking the histogram of eigenvalues) of the random matrices of interest. Or they concern the
localization and fluctuation behavior of extreme eigenvalues of these random matrices.
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2.1.1 Spectral distribution results

An object of great interest in random matrix theory is the spectral distribution of random matrices.
Let us call li the decreasingly ordered eigenvalues of our random matrix, and let us assume we are working
with an n×n matrix, Mn. The empirical spectral distribution of a n×n matrix is the probability measure
which puts mass 1/n at each of its eigenvalues. In other words, if we call Fn this probability measure, we
have

dFn(x) =
1
n

n∑
i=1

δli(x) .

Note that the histogram of eigenvalues represent an integrated version of this measure.
For random matrices, this measure Fn is naturally a random measure. A very striking result in the

area of covariance matrices is that if we observe i.i.d data vectors Xi, with Xi = Σ1/2
p Yi, where Yi is a

vector with i.i.d entries, under weak moment conditions on Yi, Fn converges to a non-random measure,
which we call F .

We call the modelsXi = Σ1/2
p Yi the standard models of random matrix theory because most results have

been derived under these assumptions. In particular, striking results (Geman (1980), Bai and Silverstein
(1998), Bai and Silverstein (1999)) show, among many other things, that when the entries of the vector Y
have 4 moments, the largest eigenvalues of the sample covariance matrix X ′X/n, where Xi now occupies
the first row of the n× p matrix X, stay close to the endpoint of the support of F .

A very natural question is therefore to try to characterize F . Except in particular situations, it is
difficult to do so explicitly. However, it is possible to characterize a certain transformation of F . The tool
of choice in this context is the Stieltjes transform of a distribution. It is a function defined on C+ by the
formula, if we call StF the Stieltjes transform of F ,

StF (z) =
∫
dF (λ)
λ− z

, Im [z] > 0.

In particular for empirical spectral distributions, we see that, if Fn is the spectral distribution of the matrix
Mn,

StFn(z) =
1
n

n∑
i=1

1
li − z

=
1
n

trace
(
(Mn − zId)−1

)
.

The importance of the Stieltjes transform in the context of random matrix theory stems from two facts:
on the one hand, it is connected fairly explicitly to the matrices that are being analyzed. On the other
hand, pointwise convergence of Stieltjes transform implies weak convergence of distributions, if a certain
mass preservation condition is satisfied. This is how a number of bulk results are therefore proved. For a
clear and self-contained introduction to the connection between Stieltjes transforms and weak convergence
of probability measures, we refer the reader to Geronimo and Hill (2003).

The result of Marčenko and Pastur (1967), later generalized by Silverstein (1995) for standard random
matrix models with non-diagonal covariance, and more recently by El Karoui (2007a) away from those
standard models, is a functional characterization of the limit F . If one calls wn(z) the Stieltjes transform of
the empirical spectral distribution of XX ′/n, wn(z) converges pointwise (and almost surely after Silverstein
(1995)) to a non-random w(z), which, as a function, is a Stieltjes transform. Moreover, w, the Stieltjes
transform of F , satisfies the equation, if p/n→ ρ:

− 1
w(z)

= z − ρ

∫
λdH(λ)
1 + λw

,

where H is the limiting spectral distribution of Σp, assuming that such a distribution exists. We note that
Silverstein (1995) proved the result under a second moment condition on the entries of Yi.

From this result, Marčenko and Pastur (1967) derived that in the case where Σp = Id, and hence
dH = δ1, the limiting spectral distribution has a limit whose density is, if ρ ≤ 1,

fρ(x) =
1

2πρ

√
(b− x)(x− a)

x

where a = (1− ρ1/2)2 and b = (1 + ρ1/2)2. The difference between the population spectral distribution (a
point mass at 1) and the limit of the empirical spectral distribution is very striking.
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2.1.2 Largest eigenvalues results

Another line of work has been focused on the behavior of extreme eigenvalues of sample covariance
matrices. In particular, Geman (1980) showed, under some moment conditions, that when Σp = Idp,
l1(X ′X/n) → (1+

√
p/n)2. In other words, the largest eigenvalue stays close to the endpoint of the limiting

spectral distribution of X ′X/n. This result was later generalized in Yin et al. (1988), and shown to be true
under the assumption of finite 4th moment only, for data with mean 0. In recent years, fluctuation results
have been obtained for this largest eigenvalue, which is of practical interest in PCA. Under Gaussian
assumptions, Johnstone (2001) and El Karoui (2003) (see also Forrester (1993) and Johansson (2000))
showed that the fluctuations of the largest eigenvalue are Tracy-Widom. For the general covariance case,
similar results, as well as localization information were recently obtained in El Karoui (2007c). We note
that the localization information (i.e a formula) that was discovered in this latter paper, through appeal
to Bai and Silverstein (1998), was shown to hold for a wide variety of standard random matrix models.
We refer the interested reader to Fact 2 in El Karoui (2007c) for more information. Interesting work has
also been done on so-called “spiked” models, where a few population eigenvalues are separated from the
bulk of them. In particular, in the case where all population eigenvalues are equal, except for one that is
significantly larger (see Baik et al. (2005) for the discovery of a very interesting phase transition), Paul
(2007) showed, in the Gaussian case, inconsistency of the largest sample eigenvalue, as well as the fact
that the angle between the population and sample principal eigenvectors is bounded away from 0. Paul
(2007) also obtained fluctuation information about the largest empirical eigenvalue. Finally, we note that
the same inconsistency of eigenvalue result was also obtained in Baik and Silverstein (2006), beyond the
Gaussian case.

2.1.3 Notations

Let us now define some notations and add some clarifications.
First, let us remind the reader that if A and B are two rectangular matrices, AB and BA have the

same eigenvalues, except for possibly, a certain number of zeros. We will make repeated use of this fact,
both for matrices like X ′X and XX ′ and in the case where A and B are both square, in which case, AB
and BA have the same eigenvalues.

We will also need various norms on matrices. We will use the so-called operator norm, which we denote
by |||A|||2, which corresponds to the largest singular value of A, i.e maxi

√
li(A∗A). We occasionally

denote the largest singular value of A by σ1(A). Clearly, for positive semi-definite matrices, the largest
singular value is equal to the largest eigenvalue. Finally, we will sometime need to use the Frobenius (or
Hilbert-Schmidt) norm of a matrix A. We denote it by ‖A‖F . By definition, it is simply

‖A‖2
F =

∑
i,j

A2
i,j .

Further, we use ◦ to denote the Hadamard (i.e entrywise) product of two matrices. We denote by µm

the m-th moment of a random variable. Note that by a slight abuse of notation, we might also use the
same notation to refer to the m-th absolute moment (i.e E|X|m) of a random variable, but if there is any
ambiguity, we will naturally precise which definition we are using.

Finally, in the discussion of standard random matrix models that follows, there will be arrays of random
variables and a.s convergence. We work with random variables defined on a common probability space.
To each ω corresponds an infinite dimensional array of numbers. The n × p matrices we will use in what
follows are the “upper-left” corner of this array.

We now turn to the study of kernel random matrices. We will show that we can approximate them by
matrices that are closely connected to sample covariance matrices in high-dimensions and, therefore, that
a number of the results we just reviewed also apply to them.
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2.2 Inner-product kernel matrices: f(X′
iXj/p)

Theorem 1 (Spectrum of inner product kernel random matrices). Let us assume that we observe n i.i.d
random vectors, Xi in Rp. Let us consider the kernel matrix M with entries

Mi,j = f

(
X ′

iXj

p

)
.

We assume that

a) n � p, i.e n/p and p/n remain bounded as p→∞

b) Σ is a positive semi-definite p× p matrix , and |||Σ|||2 = σ1(Σ) remains bounded in p.

c) trace (Σ) /p has a finite limit.

d) Xi = Σ1/2Yi.

e) The entries of Yi are i.i.d, and have 4 + ε moments, for some ε > 0.

f) f is a C1 function in a neighborhood of lim trace (Σ) /p and a C3 function in a neighborhood of 0.

Under these assumptions, the kernel matrix M can (in probability) be approximated consistently in
operator norm, when p and n tend to ∞, by the matrix K, where

K =

(
f(0) + f

′′
(0)

trace
(
Σ2
)

2p2

)
11′ + f ′(0)

XX ′

p
+ υpIdn ,

υp = f

(
trace (Σ)

p

)
− f(0)− f ′(0)

trace (Σ)
p

.

In other words,
|||M −K|||2 → 0 , in probability, when p→∞ .

The advantages of obtaining an operator norm consistent estimator are many. We list some here:

• Asymptotically, M and K have the same j-largest eigenvalue: this is simply because for symmetric
matrices, if lj is the j-th largest eigenvalue of a matrix, Weyl’s inequality implies that

|lj(M)− lj(K)| ≤ |||M −K|||2 .

• The limiting spectral distributions of M and K (if they exist) are the same. This is a consequence
of Lemma 1 below.

• We have subspace consistency for eigenspaces corresponding to separated eigenvalues. (For a proof,
we refer to El Karoui (2007b), Corollary 3.)

(Note that the statements we just made assume that both M and K are symmetric, which is the case
here.)

The strategy for the proof is the following. According to the results of Lemma A-3, the matrix X ′
iXj/p

has “small” entries off the diagonal, whereas on the diagonal, the entries are essentially constant and
equal to trace (Σ) /p. Hence, it is natural to try to use the δ-method (i.e do a Taylor expansion) entry
by entry. By contrast to standard problems in Statistics, the fact that we have to perform n2 of those
Taylor expansions means that the second order term is not negligible, a priori. The proof shows that this
approach can be carried out rigorously, and that, surprisingly, the second order term is not too complicated
to approximate in operator norm. Also, it is shown that the third order term plays essentially no role.
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Proof. First, let us call

τ ,
trace (Σ)

p
.

We can rewrite our kernel matrix as:

f(X ′
iXj/p) = f(0) + f ′(0)X ′

iXj/p+
f ′′(0)

2
(X ′

iXj/p)2 +
f (3)(ξi,j)

6
(X ′

iXj/p)3 , if i 6= j ,

f(‖Xi‖2
2/p) = f(τ) + f ′(ξi,i)

(
‖Xi‖2

2

p
− τ

)
on the diagonal.

The proof can be separated in different steps. We will break the kernel matrix into a diagonal term
and an off diagonal term. The results of Lemma A-3, after they are shown, will allow us to take care of
the diagonal matrix at relatively lost cost. So we postpone that part of the analysis to the end of the proof
and we first focus on the off-diagonal matrix.

A) Study of the off-diagonal matrix
• Truncation and centralization
This step is classical. Following the arguments of Lemma 2.2 in Yin et al. (1988), we see that because

we have assumed that we have 4 + ε moments, and n � p, the array Y = Y1≤i≤n,1≤j≤p is almost surely
equal to the array Ỹ of same dimensions, with

Ỹi,j = Yi,j1|Yi,j |≤Bp
, where Bp = p1/2−δ , and δ > 0.

We will therefore carry out the analysis on this Ỹ array. Note that most of the results we will rely on
require vectors of i.i.d entries with mean 0. Of course, Ỹi,j has in general a mean different from 0. In

other words, if we call µ = E
(
Ỹi,j

)
, we need to show that we do not lose anything in operator norm by

replacing Ỹi’s by Ui’s with Ui = Ỹi − µ1. Note that, as seen in Lemma A-3, by plugging in t = 1/2− δ in
the notation of this lemma, which corresponds to the 4 + ε moment assumption here, we have

|µ| ≤ p−3/2−δ .

Now let us call S the matrix XX ′/p, except that its diagonal is replaced by zeros. From Yin et al.
(1988), and the fact that n/p stays bounded, we know that |||XX ′/p|||2 ≤ σ1(Σ)|||Y Y ′|||2/p stays bounded.
Using Lemma A-3, we see that the diagonal of XX ′/p stays bounded a.s in operator norm. Therefore,
|||S|||2 is bounded a.s.

Now, as in the proof of Lemma A-3, we have

Si,j =
U ′

iΣUj

p
+ µ

(
1′ΣUj

p
+

1′ΣUi

p

)
+ µ2 1′Σ1

p
,
U ′

iΣUj

p
+Ri,j a.s .

Note that this equality is true a.s only because it involves replacing Y by Ỹ . The proof of Lemma A-3
shows that

|Ri,j | ≤ µ 2σ1/2
1 (Σ)(σ1/2

1 (Σ) + p−δ/2) + µ2σ1(Σ) a.s .

We conclude that, for some constant C,

‖R‖2
F ≤ Cn2µ2 ≤ Cn2p−3−2δ → a.s .

Therefore |||R|||2 → 0 a.s . In other words, if we call SU the matrix with i, j entry U ′
iΣUj/p off the diagonal

and 0 on the diagonal,
|||S − SU |||2 → 0 a.s .

Now it is a standard result on Hadamard products (see for instance, Bhatia (1997), Problem I.6.13, or Horn
and Johnson (1994), Theorems 5.5.1 and 5.5.15) that for two matrices A and B, |||A◦B|||2 ≤ |||A|||2|||B|||2.
Since the Hadamard product is commutative, we have

S ◦ S − SU ◦ SU = (S + SU ) ◦ (S − SU ) .
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We conclude that

|||S ◦ S − SU ◦ SU |||2 ≤ |||S − SU |||2(|||S|||2 + |||SU |||2) → 0 a.s ,

since |||S − SU |||2 → 0 a.s , and |||S|||2 and hence |||SU |||2 stay bounded, a.s.
The conclusion of this study is that to approximate the second order term in operator norm, it is

enough to work with SU and not S, and hence, very importantly, with bounded random variables with
zero mean. Further, the proof of Lemma A-3 makes clear that σ2

U , the variance of the Ui,j ’s, goes to 1, the
variance of the Yi,j ’s very fast. So if we can approximate U ′

iΣUj/(pσ2
U ) consistently in operator norm by a

matrix whose operator norm is bounded, this same matrix will constitute an operator norm approximation
of U ′

iΣUj/p.
In other words, we can assume that the random variables we will be working with have variance 1

without loss of generality, and that they have mean 0 and are bounded.
• Control of the second order term
As we just explained, we assume from now on in all the work concerning the second order term that

the vectors Yi have mean 0 and are bounded by Bp = p1/2−δ. This is because we just saw that replacing
Yi by Ui would not change ( a.s and asymptotically) the operator norm of the matrix to be studied.

The control of the second order term turns out to be the most delicate part of the analysis, and the
only place where we need the assumption that Xi = Σ1/2Yi. Let us call W the matrix with entries

Wi,j =

{
(X′

iXj)
2

p2 , if i 6= j

0, if i = j

Note that, when i 6= j,

E (Wi,j) = E
(
trace

(
X ′

iXjX
′
jXi

))
/p2 = E

(
trace

(
XjX

′
jXiX

′
i

))
/p2 = trace

(
Σ2
)
/p2.

Because we assume that trace (Σ) /p has a finite limit, and n/p stays bounded away from 0, we see that the
matrix E (W ) has a largest eigenvalue that, in general, does not go to 0. Our aim is to show that W can
be approximated in operator norm by this constant matrix. So let us consider the matrix W̃ with entries

W̃i,j =

{
(X′

iXj)
2

p2 − trace
(
Σ2
)
/p2 , if i 6= j

0, if i = j

Simple computations show that the expected Frobenius norm squared of this matrix does not go to 0.
Hence more subtle arguments are needed to control its operator norm. We will show that E

(
trace

(
W̃ 4
))

goes to zero, which implies that E
(
|||W̃ |||42

)
goes to zero, because W̃ is real symmetric.

The elements contributing to trace
(
W̃ 4
)

are generally of the form W̃i,jW̃j,kW̃k,lW̃l,i. We first focus on

the case where all these indices (i, j, k, l) are different. Recall that Xi = Σ1/2Yi, where Yi has i.i.d entries.
We want to compute E

(
W̃i,jW̃j,kW̃k,lW̃l,i

)
, so it is natural to focus first on

E
(
W̃i,jW̃j,kW̃k,lW̃l,i |Yi, Yk

)
Now, note that

W̃i,j =
1
p2

{
Y ′

i ΣYjY
′
j ΣYi − trace

(
Σ2
)}

=
1
p2

{
Y ′

i Σ(YjY
′
j − Id)ΣYi + trace

(
Σ2(YiY

′
i − Id)

)}
.

Hence, calling
Mj , YjY

′
j − Id ,

we have

p4W̃i,jW̃j,k = (Y ′
i ΣMjΣYiY

′
kΣMjΣYk) + (Y ′

i ΣMjΣYi)trace
(
Σ2Mk

)
+ (Y ′

kΣMjΣYk)trace
(
Σ2Mi

)
+ trace

(
Σ2Mi

)
trace

(
Σ2Mk

)
.

8



Now, of course, we have E (Mj) = E (Mj |Yi, Yk) = 0. Hence,

p4E
(
W̃i,jW̃j,k |Yi, Yk

)
= (Y ′

i ΣE
(
MjΣYiY

′
kΣMj |Yi, Yk

)
ΣYk) + trace

(
Σ2Mi

)
trace

(
Σ2Mk

)
.

Now, note that if M is deterministic, we have, since E
(
YjY

′
j

)
= Id,

E (MjMMj) = E
(
YjY

′
jMYjY

′
j

)
−M .

If we now use Lemma A-1, and in particular Equation A-1, page 24, we finally have, recalling that here
σ2 = 1,

E (MjMMj) = (M +M ′) + (µ4 − 3)diag(M) + trace (M) Id−M

= M ′ + (µ4 − 3)diag(M) + trace (M) Id

In the case of interest here, we have M = ΣYiY
′
kΣ, and the expectation is to be understood conditionally

on Yi, Yk, but because we have assumed that the indices are different, and the Ym’s are independent, we
can do the computation of the conditional expectation as if M were deterministic. Therefore, we have

(Y ′
i ΣE

(
MjΣYiY

′
kΣMj |Yi, Yk

)
ΣYk) = Y ′

i Σ
[
ΣYkY

′
i Σ + (µ4 − 3)diag(ΣYiY

′
kΣ) + (Y ′

kΣ2Yi)Id
]
ΣYk

=
[
(Y ′

i Σ2Yk)2 + (µ4 − 3)Y ′
i Σdiag(ΣYiY

′
kΣ)ΣYk + (Y ′

i Σ2Yk)2
]

Naturally, we have E
(
W̃i,jW̃j,k |Yi, Yk

)
= E

(
W̃k,lW̃l,i |Yi, Yk

)
, and therefore, by using properties of con-

ditional expectation, since all the indices are different,

p8E
(
W̃i,jW̃j,kW̃k,lW̃l,i

)
= E

([
2(Y ′

i Σ2Yk)2 + (µ4 − 3)Y ′
i Σdiag(ΣYiY

′
kΣ)ΣYk + trace

(
Σ2Mi

)
trace

(
Σ2Mk

)]2)
.

Now by convexity, we have (a+ b+ c)2 ≤ 3(a2 + b2 + c2), so to control the above expression, we just need
to control the square of each of the terms appearing in the above expression. Let us start by the term
E
(
(Y ′

i Σ2Yk)4
)
. A simple re-writing shows that

(Y ′
i Σ2Yk)4 = Y ′

i Σ2YkY
′
kΣ2YiY

′
i Σ2YkY

′
kΣ2Yi .

Using Equation (A-1) in Lemma A-1, we therefore have, using the fact that Σ2YiY
′
i Σ2 is symmetric,

E
(
(Y ′

i Σ2Yk)4 |Yi

)
= Y ′

i Σ2
[
2Σ2YiY

′
i Σ2 + (µ4 − 3)diag(Σ2YiY

′
i Σ2) + trace

(
Σ2YiY

′
i Σ2

)
Id
]
Σ2Yi

= 3(Y ′
i Σ4Yi)2 + (µ4 − 3)Y ′

i Σ2diag(Σ2YiY
′
i Σ2)Σ2Yi .

Finally, we have, using Equation (A-2) in Lemma A-1,

E
(
(Y ′

i Σ2Yk)4
)

= 3
[
2trace

(
Σ4
)

+ (trace
(
Σ4
)
)2 + (µ4 − 3)trace

(
Σ4 ◦ Σ4

)]
+ (µ4 − 3)E

(
Y ′

i Σ2diag(Σ2YiY
′
i Σ2)Σ2Yi

)
.

Now, we have

Y ′
i Σ2diag(Σ2YiY

′
i Σ2)Σ2Yi = trace

(
Σ2YiY

′
i Σ2diag(Σ2YiY

′
i Σ2)

)
= trace

(
Σ2YiY

′
i Σ2 ◦ Σ2YiY

′
i Σ2

)
.

Calling vi = Σ2Yi, we note that the matrix under the trace is (viv
′
i) ◦ (viv

′
i) = (vi ◦ vi)(vi ◦ vi)′ (see Horn

and Johnson (1990), p. 458 or Horn and Johnson (1994), p. 307). Hence,

Y ′
i Σ2diag(Σ2YiY

′
i Σ2)Σ2Yi = ‖vi ◦ vi‖2

2 .

Now let us call mk the k-th column of the matrix Σ2. Using the fact that Σ2 is symmetric, we see that
the k-th entry of the vector vi is vi(k) = m′

kYi. So vi(k)4 = Y ′
imkm

′
kYiY

′
imkm

′
kYi. Calling Mk = mkm

′
k,

we see using Equation (A-2) in Lemma A-1 that

E
(
vi(k)4

)
= 2trace

(
M2

k

)
+ [trace (Mk)]

2 + (µ4 − 3)trace (Mk ◦Mk) .
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Using the definition of Mk, we finally get that

E
(
vi(k)4

)
= 3‖mk‖4

2 + (µ4 − 3)‖mk ◦mk‖2
2 .

Now, note that if A is a generic matrix, and Ak is its k − th column, denoting by ek the k-th vector of
the canonical basis, we have Ak = Aek and hence ‖Ak‖2

2 = e′kA
′Aek ≤ σ2

1(A), where σ1(A) is the largest
singular value of A. So in particular, if we call λ1(B) the largest eigenvalue of a positive semi-definite
matrix B, we have ‖mk‖4

2 ≤ λ1(Σ4)‖mk‖2
2.

After recalling the definition of mk, and using the fact that
∑

k‖mk ◦mk‖2
2 = ‖Σ2 ◦ Σ2‖2

F , we deduce
that

E
(
‖vi ◦ vi‖2

2

)
= 3

∑
k

‖mk‖4
2 + (µ4 − 3)

∑
k

‖mk ◦mk‖2
2

≤ 3λ1(Σ4)trace
(
Σ4
)

+ (µ4 − 3)trace
([

Σ2 ◦ Σ2
]2)

.

Therefore, we can conclude that

E
(
(Y ′

i Σ2Yk)4
)
≤ 3λ1(Σ4)trace

(
Σ4
)

+ (µ4 − 3)trace
([

Σ2 ◦ Σ2
]2)

.

Now recall that, according to Theorem 5.5.19 in Horn and Johnson (1994), if A and B are positive
semidefinite matrices, if λ(A ◦ B) ≺w d(A) ◦ λ(B), where λ(B) is the vector of decreasingly ordered
eigenvalues of B, and d(A) denotes the vector of decreasingly ordered diagonal entries of A (because all
the matrices are positive semidefinite, their eigenvalues are their singular values). Here ≺w denotes weak
(sub)majorization. In our case, of course, A = B = Σ2. Using the results of Example II.3.5 (iii) in Bhatia
(1997), with the function φ(x) = x2, we see that

trace
(
(Σ2 ◦ Σ2)2

)
=
∑

λ2
i (Σ

2 ◦ Σ2) ≤
∑

d2
i (Σ

2)λ2
i (Σ

2) ≤ λ1(Σ4)trace
(
Σ4
)
.

Finally, we have
E
(
(Y ′

i Σ2Yk)4
)
≤ (3 + |µ4 − 3|)λ1(Σ4)trace

(
Σ4
)

(1)

This bounds the first term in our upper bound.
Let us now turn to the third term. By independence of Yi and Yk, it is enough to understand

E
([

trace
(
Σ2Mi

)]2). Note that

E
([

trace
(
Σ2Mi

)]2) = E
([
Y ′

i Σ2Yi − trace
(
Σ2
)]2) = E

(
Y ′

i Σ2YiY
′
i Σ2Yi

)
− trace

(
Σ2
)2

.

Using Equation (A-2) in Lemma A-1, we conclude that

E
([

trace
(
Σ2Mi

)]2) = 2trace
(
Σ4
)

+ (µ4 − 3)trace
(
Σ2 ◦ Σ2

)
.

Using the fact that we know the diagonal of Σ2 ◦ Σ2, we conclude that,

E
([

trace
(
Σ2Mi

)]2 [trace
(
Σ2Mk

)]2) ≤ {2trace
(
Σ4
)

+ |µ4 − 3|λ1(Σ2)trace
(
Σ2
)}2

. (2)

Finally, let us turn to the middle term. Before we square it, it has the form Y ′
i Σdiag(ΣYkY

′
i Σ)ΣYk. Call

uk = ΣYk. Making the same computations as above, we find that

Y ′
i Σdiag(ΣYkY

′
i Σ)ΣYk = trace

(
diag(ΣYkY

′
i ΣYkY

′
i Σ
)

= trace
(
(ΣYkY

′
i Σ) ◦ (ΣYkY

′
i Σ)

)
= trace

(
(uku

′
i) ◦ (uku

′
i)
)

= trace
(
(uk ◦ uk)(ui ◦ ui)′

)
= (ui ◦ ui)′(uk ◦ uk)

We deduce, using independence and elementary properties of inner products that

E
([
Y ′

i Σdiag(ΣYkY
′
i Σ)ΣYk

]2) ≤ E
(
‖ui ◦ ui‖2

2

)
E
(
‖uk ◦ uk‖2

2

)
.
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Note that to arrive at Equation (1), we studied expressions similar to E
(
‖ui ◦ ui‖2

2

)
. So we can conclude

that
E
([
Y ′

i Σdiag(ΣYkY
′
i Σ)ΣYk

]2) ≤ {(3 + |µ4 − 3|)λ1(Σ2)trace
(
Σ2
)}2 (3)

With our assumptions, the terms (1), (2) and (3) are O(p2). Note that in the computation of the trace,
there are O(n4) such terms. Finally, note that the expectation of interest to us corresponds to the sum of
the three quadratic terms divided by p8. So the total contribution of these terms is in expectation O(p−2).
This takes care of the contribution of the terms involving four different indices, as it shows that

0 ≤ E

 ∑
i6=j 6=k 6=l

W̃i,jW̃j,kW̃k,lW̃l,i

 = O(p−2) .

Let us now focus on the other terms. Note that because W̃i,i = 0, terms involving 3 different indices
with a non-zero contribution are necessarily of the form (W̃i,j)2(W̃i,k)2, since terms with a cycle of length
3 all involve a term of the form W̃i,i and hence contribute 0. Let us now focus on those terms, assuming
that j 6= k. Note that we have O(n3) such terms, and that it is enough to focus on the W 2

i,jW
2
i,k, since

the contribution of the other terms is, in expectation, of order 1/p4, and because we have only n3 terms
in the sum, this extra contribution is asymptotically zero. Now, we clearly have E

(
W 2

i,jW
2
i,k|Yi

)
=[

E
(
W 2

i,j |Yi

)]2
, by conditional independence of the two terms. The computation of E

(
W 2

i,j |Yi

)
is similar

to the ones we have made above, and we have

p4E
(
W 2

i,j |Yi

)
= 2(Y ′

i Σ2Yi)2 + (µ4 − 3)Y ′
i Σdiag(ΣYiY

′
i Σ)ΣYi + (trace

(
ΣYiY

′
i Σ
)
)2 .

Using the fact that Ki = ΣYiY
′
i Σ is positive semidefinite, and hence its diagonal entries are non-negative,

we have trace (Ki ◦ Ki) ≤ (trace (Ki))2, we conclude that

p4E
(
W 2

i,j |Yi

)
≤ (3 + |κ4 − 3|)(Y ′

i Σ2Yi)2 ≤ (3 + |κ4 − 3|)σ1(Σ)4‖Yi‖4
2 .

Hence,

E
(
W 2

i,jW
2
i,k

)
≤ 1
p8

(3 + |κ4 − 3|)2σ1(Σ)8‖Yi‖8
2 .

Now, the application F which takes a vector and returns its Euclidian norm is trivially a convex 1-
Lipschitz function, with respect to Euclidian norm. Because the entries of Yi are bounded by Bp, we
see that, according to Corollary 4.10 in Ledoux (2001), ‖Yi‖2 satisfies a concentration inequality, namely
P (|‖Yi‖2−mF | > r) ≤ 4 exp(−r2/16B2

p), where mF is a median of F . A simple integration (see for instance
the proof of Proposition 1.9 in Ledoux (2001), and change the power from 2 to 8) then shows that

E
(
|‖Yi‖2 −mF |8

)
= O(B8

p) .

Note, we know, according to Proposition 1.9 in Ledoux (2001), that if µF is the mean of F , µF exists and
|mF − µF | = O(Bp). Since µ2

F ≤ µF 2 = E
(
‖Yi‖2

2

)
= p, we conclude that, if C denotes a generic constant

that may change from display to display,

E
(
‖Yi‖8

2

)
≤ E

(
|‖Yi‖2 −mF +mF |8

)
≤ 27(E

(
|‖Yi‖2 −mF |8

)
+m8

F )

≤ C(E
(
|‖Yi‖2 −mF |8

)
+ |mF − µF |8 + µ8

F ≤ C(B8
p + p4)

Now, our original assumption about the number of moments of the random variables of interest imply that
Bp = O(p1/2−δ). Consequently,

E
(
‖Yi‖8

)
= O(p4)

Therefore,
E
(
W 2

i,jW
2
i,k

)
= O(p−4)

11



and ∑
i

∑
j 6=i,k 6=i,j 6=k

E
(
W 2

i,jW
2
i,k

)
= O(p−1) .

The last terms we have to focus on to control E
(
trace

(
W̃ 4
))

are of the form W̃ 4
i,j . Note that we have

n2 terms like this. Since by convexity, (a + b)4 ≤ 8(a4 + b4), we see that it is enough to understand the
contribution of W 4

i,j to show that
∑

i,j E
(
W̃ 4

i,j

)
tends to zero. Now, let us call for a moment v = ΣYi

and u = Yj . The quantity of interest to us is basically of the form E
(
(u′v)8

)
. Let us do computations

conditional on v. We note that since the entries of u are independent and have mean 0, in the expansion of
(u′v)8, the only terms that will contribute a non-zero quantity to the expectation have entries of u raised
to a power greater than 2. We can decompose the sum representing E

(
(u′v)8|v

)
into subterms, according

to what powers of the terms are involved. There are 6 terms: (2,2,2,2) (i.e all terms are raised to the power
2), (3,3,2) (i.e two terms are raised to the power 3, and one to the power 2), (4,2,2), (4,4), (5,3), (6,2) and
(8). For instance the subterm corresponding to (2,2,2,2) is, before taking expectations,∑

i1 6=i2 6=i3 6=i4

u2
i1u

2
i2u

2
i3u

2
i4(vi1vi2vi3vi4)

2 .

After taking expectations conditional on v, we see that it is obviously non-negative and contributes

(σ2)4
∑

i1 6=i2 6=i3 6=i4

(vi1vi2vi3vi4)
2 ≤ (

∑
v2
i )

4 = (Y ′
i Σ2Yi)4 ≤ σ1(Σ)8‖Yi‖8

2 .

Note that we just saw that E
(
‖Yi‖8

2

)
= O(p4) in our context. Similarly, the term (3, 3, 2) will contribute

µ2
3σ

2
∑

i1 6=i2 6=i3

v3
i1v

3
i2v

2
i3 .

In absolute value, this term is less than

µ2
3σ

2(
∑

|vi|3)2(
∑

v2
i ) .

Now, note that if z is such that ‖‖2z2 = 1, we have, for p ≥ 2,
∑
|zi|p ≤

∑
z2
i = 1. Applied to z = v/‖v‖2,

we conclude that
∑
|vi|p ≤ ‖v‖p

2. Consequently, the term (3,3,2) contributes in absolute value less than

µ2
3σ

2‖v‖8
2 .

The same analysis can be repeated for all the other terms, which are all found to be less than, ‖v‖8
2

times the moments of u involved. Because we have assumed that our original random variables had 4 + ε
moments, the moments of order less than 4 cause no problem. The moments of order higher than 4, say
4 + k, can be bounded by µ4B

k
p . Consequently, we see that

E
(
W 4

i,j

)
= E

(
E
(
W 4

i,j |Yi

))
≤ CB4

pE
(
‖Yi‖8

p8

)
= O(B4

p/p
4) = O(p−(2+4δ)) .

Since we have n2 such terms, we see that∑
i,j

E
(
W 4

i,j

)
→ 0 as p→∞ .

We have therefore established control of the second order term and seen that the largest singular value of
W̃ goes to 0 in probability, using Chebyshev’s inequality. Note that we have also shown that the operator
norm of W is bounded in probability and that

|||W −
trace

(
Σ2
)

p2
(11′ − Id)|||2 → 0 in probability.
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• Control of the third order term
We note that the third order term is of the form f (3)(ξi,j)

X′
iXj

p Wi,j . We first make the remark that if M
is a symmetric matrix with non-negative entries, and E is a symmetric matrix such that maxi,j |Ei,j | = ζ,
then

σ1(E ◦M) ≤ ζσ1(M) .

As a matter of fact, since the matrices are symmetric,

σ1(E ◦M) = lim
k→∞

(trace
(
(E ◦M)2k

)
)1/2k .

Now note that
|trace

(
(E ◦M)2k

)
| ≤ ζ2ktrace

(
M2k

)
,

by upper bounding each term in the expansion of trace
(
(E ◦M)2k

)
by ζ2k times the corresponding term

involving only the entries of M , which are all non-negative. Now summing all the terms involving the
entries of M only gives trace

(
M2k

)
. This shows the result concerning σ1(E ◦M).

So all we have to show is that maxi6=j |X ′
iXj/p| goes to 0. We are going to make use of Lemma A-3,

p.26 in the Appendix. In our setting, we have Bp = p1/2−δ, or 2/m = 1/2− δ. The Lemma hence implies,
for instance, that

max
i6=j

|X ′
iXj/p| ≤ p−δ log(p) a.s .

So maxi6=j |X ′
iXj/p| → 0 a.s . Note that this implies that maxi6=j |ξi,j | → 0 a.s . Since we have assumed

that f (3) exists and is continuous and hence bounded in a neighborhood of 0, we conclude that

max
i,j

|f (3)(ξi,j)X ′
iXj/p| = o(p−δ/2) a.s .

If we call E the matrix with entry Ei,j = f (3)(ξi,j)X ′
iXj/p off-the diagonal and 0 on the diagonal, we see

that E satisfies the conditions put forth in our discussion earlier in this section and we conclude that

|||E ◦W |||2 ≤ max
i,j

|Ei,j | |||W |||2 = o(p−δ/2) a.s .

Hence, the operator norm of the third order term goes to 0 almost surely. (To maybe clarify our arguments,
let us repeat that we analyzed the second order term by replacing the Yi’s by, in the notation of the
truncation and centralization discussion, Ui. Let us call WU = SU ◦ SU , again using notation introduced
in the truncation and centralization discussion. As we saw, |||W −WU |||2 → 0 a.s , so showing, as we did,
that |||WU |||2 remains bounded ( a.s ) implies that |||W |||2 does, too, and this is the only thing we need in
our argument showing the control of the third order term.)

B) Control of the diagonal term The proof here is divided into two parts. First, we show that
the error term coming from the first order expansion of the diagonal is easily controlled. Then we show
that the terms added when replacing the off-diagonal matrix by XX ′/p + trace

(
Σ2
)
/p211′ can also be

controlled. Recall the notation τ = trace (Σ) /p.
• Errors induced by diagonal approximation
Note that Lemma A-3 guarantees that for all i, |ξi,i − τ | ≤ p−δ/2, a.s. Because we have assumed that

f ′ is continuous and hence bounded in a neighborhood of τ , we conclude that f ′(ξi,i) is uniformly bounded
in p. Now Lemma A-3 also guarantees that

max
i

∣∣∣∣‖Xi‖2
2

p
− τ

∣∣∣∣ ≤ p−δ a.s .

Hence, the diagonal matrix with entries f(‖Xi‖2
2/p) can be approximated consistenly in operator norm by

f(τ)Id.
•Errors induced by off-diagonal approximation
When we replace the off-diagonal matrix by f ′(0)XX ′/p + [f(0) + f ′′(0)trace

(
Σ2
)
/2p2]11′, we add a

diagonal matrix with (i, i) entry f(0) + f ′(0)‖Xi‖2
2/p + f ′′(0)trace

(
Σ2
)
/2p2, which we need to subtract

eventually. We note that 0 ≤ trace
(
Σ2
)
/p2 ≤ σ2

1(Σ)/p → 0 when σ1(Σ) remains bounded in p. So this
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term does not create any problem. Now, we just saw that the diagonal matrix with entries ‖Xi‖2
2/p can

be consistently approximated in operator norm by (trace (Σ) /p) Id. So the diagonal matrix with (i, i)
entry f(0) + f ′(0)‖Xi‖2

2/p + f ′′(0)trace
(
Σ2
)
/2p2 can be approximated consistently in operator norm by

(f(0) + f ′(0)trace (Σ) /p)Id.
This finishes the proof.

2.3 Kernel random matrices of the type f(‖Xi −Xj‖22/p)

As is to be expected, the properties of such matrices can be deduced from the study of inner product
kernel matrices, with a little bit of extra work. We need to slightly modify the distributional assumptions
under which we work, and consider the case where we have 5 + ε moments; we also need to assume that
f is regular is the neighborhood of different points. Otherwise, the assumptions are the same as that of
Theorem 1. We have the following theorem:

Theorem 2 (Spectrum of Euclidian distance kernel matrices). Let us call

τ = 2
trace (Σ)

p
.

Let us call ψ the vector with entries ‖Xi‖2
2/p− trace (Σ) /p. Consider the kernel matrix M with entries

Mi,j = f

(
‖Xi −Xj‖2

2

p

)
.

Suppose that the assumptions of Theorem 1 hold, but that conditions e) and f) are replaced by

e’) The entries of Yi have 5 + ε moments.

f ’) f is C3 in a neighborhood of τ .

Then M can be approximated consistently in operator norm (and in probability) by the matrix K,
defined by

K = f(τ)11′ + f ′(τ)
[
1ψ′ + ψ1′ − 2

XX ′

p

]
+
f

′′
(τ)
2

[
1(ψ ◦ ψ)′ + (ψ ◦ ψ)1′ + 2ψψ′ + 4

trace
(
Σ2
)

p2
11′
]

+ υpId ,

υp = f(0) + τf ′(τ)− f(τ) .

In other words,
|||M −K|||2 → 0 in probability.

Proof. Note that here the diagonal is just f(0)Id and it will cause no trouble. The work therefore focuses
on the off-diagonal matrix. In what follows, we call τ = 2 trace(Σ)

p . Let us define

Ai,j =
‖Xi‖2

2

p
+
‖Xj‖2

2

p
− τ ,

and

Si,j =
X ′

iXj

p
.

With these notations, we have, off the diagonal,

Mi,j = f(τ) + [Ai,j − 2Si,j ] f ′(τ) +
1
2

[Ai,j − 2Si,j ]
2 f ′′(τ) +

1
6
f (3)(ξi,j) [Ai,j − 2Si,j ]

3 .

We note that the matrix A with entries Ai,j is a rank 2 matrix. As a matter of fact, it can be written,

if ψ is the vector with entries ψi = ‖Xi‖22
p − τ/2, A = 1ψ′ + ψ1′. Using the well-known identity (see e.g

Gohberg et al. (2000), Chapter 1, Theorem 3.2)

det(I + uv′ + vu′) = det
(

1 + u′v ‖u‖2
2

‖v‖2
2 1 + u′v

)
,
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we see immediately that the non-zero eigenvalues of A are

1′ψ ±
√
n‖ψ‖2 .

After these preliminary remarks, we are ready to start the proof per se.
• Truncation and centralization
Since we assume 5+ ε moments, we see, using Lemma 2.2 in Yin et al. (1988), that we can truncate the

Yi’s at level Bp = p2/5−δ, with δ > 0 and a.s not change the data matrix. We then need to centralize the
vectors truncated at p2/5−δ. Note that because we work with Xi−Xj = Σ1/2(Yi−Yj) centralization creates
absolutely no problem here, since it is absorbed in the difference. So in what follows we can assume without
loss of generality that we are working with vectors Xi = Σ1/2Yi, where the entries of Yi are bounded by
p2/5−δ and E (Yi) = 0. The issue of variance 1 is addressed as before, so we can assume that the entries of
Yi have variance 1.

• Concentration of ‖Xi −Xj‖22/p
By plugging-in the results of Corollary A-2, with 2/m = 2/5− δ, we get that

max
i6=j

∣∣∣∣‖Xi −Xj‖2
2

p
− 2

trace (Σ)
p

∣∣∣∣ ≤ log(p)p−1/10−δ .

Also, using the result of Lemma A-3, we have

max
i
|ψi| = max

i

∣∣∣∣‖Xi‖2
2

p
− trace (Σ)

p

∣∣∣∣ ≤ log(p)p−1/10−δ .

Note that, as explained in the proof of Lemma A-3, these results are true whether we work with Yi or their
truncated and centralized version.

• Control of the second order term
Let us call T the matrix with 0 on the diagonal and off-diagonal entries Ti,j = (Ai,j − 2Si,j)2. In other

words, if i 6= j,

Ti,j =
(
‖Xi −Xj‖2

2 − 2trace (Σ)
p

)2

.

We simply write (Ai,j − 2Si,j)2 = A2
i,j − 4Ai,jSi,j + 4S2

i,j . In the notation of the proof of Theorem 1,
the matrix with entries S2

i,j off the diagonal and 0 on the diagonal is what we called W . We have already
shown that

|||W −
trace

(
Σ2
)

p2
(11′ − Id)|||2 → 0 in probability .

Now, let us focus on the term Ai,jSi,j . Let us call H the matrix with

Hi,j = (1− δi,j)Ai,jSi,j .

Let us denote by S̃ the matrix with off-diagonal entries Si,j and 0 on the diagonal. Now note that
Ai,j = ψi + ψj . Therefore, we have, if diag(ψ) is the diagonal matrix with (i, i) entry ψi,

H = S̃diag(ψ) + diag(ψ)S̃ .

We just saw that under our assumptions, maxi |ψi| → 0 a.s . Because for any n × n matrices L1, L2,
|||L1L2|||2 ≤ |||L1|||2|||L2|||2, we see that to show that |||H|||2 goes to 0, we just need to show that |||S̃|||2
remains bounded. If we call S = XX ′/p, we have

S̃ = S − diag(S) .

Now we clearly have, |||S|||2 ≤ |||Σ|||2|||Y ′Y/p|||2. We know from Yin et al. (1988), that |||Y ′Y/p|||2 →
σ2(1 +

√
n/p)2, a.s. Under our assumptions on n and p, this is bounded. Now

diag(S) = diag(ψ) +
trace (Σ)

p
Id ,
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so our concentration results once again imply that |||diag(S)|||2 ≤ trace (Σ) /p + η a.s , for any η > 0.
Because ||| · |||2 is subadditive, we finally conclude that

|||S̃|||2 is bounded a.s .

Therefore,
|||H|||2 → 0 a.s .

Putting together all these results, we see that we have shown that

|||T − (A ◦A− diag(A ◦A))− 4
trace

(
Σ2
)

p2
(11′ − Id)|||2 → 0 in probability .

• Control of the third order term
The third order term is the matrix L with 0 on the diagonal and off-diagonal entries

Li,j =
f (3)(ξi,j)

6

(
‖Xi −Xj‖2

2 − 2trace (Σ)
p

)3

, E ◦ T ,

where T was the matrix investigated in the control of the second order term. On the other hand E is the
matrix with entries

Ei,j = (1− δi,j)
f (3)(ξi,j)

6

(
‖Xi −Xj‖2

2 − 2trace (Σ)
p

)
.

We have already seen that through concentration, we have

max
i6=j

∣∣∣∣‖Xi −Xj‖2
2

p
− 2trace (Σ)

p

∣∣∣∣ ≤ log(p)p−1/10−δ a.s .

This naturally implies that

max
i6=j

∣∣∣∣ξi,j − 2trace (Σ)
p

∣∣∣∣ ≤ log(p)p−1/10−δ a.s .

So if f (3) is bounded in a neighborhood of τ , we see that with high-probability so is maxi6=j |f (3)(ξi,j)|.
Therefore,

max
i6=j

|Ei,j | ≤ K log(p)p−1/10−δ .

We are now in position to apply the Hadamard product argument we used for the control of the third
order term in the proof of Theorem 1. To show that the third order term tends in operator norm to 0,
we hence just need to control |||T |||2 remains small compared to the bound we just gave on maxi,j |Ei,j |.
Of course, this is equivalent to showing that the matrix that approximates T has the same property in
operator norm.

Clearly, because σ1(Σ) stays bounded, trace
(
Σ2
)
/p stays bounded and so does |||trace

(
Σ2
)
/p2(11′ −

Id)|||2. So we just have to focus on A ◦A− diag(A ◦A). Recall that Ai,i = 2(‖Xi‖2
2/p− trace (Σ) /p), and

so Ai,i = 2ψi. We have already seen that our concentration arguments implies that maxi |ψi| → 0 a.s . So
|||diag(A ◦A)|||2 = maxi ψ

2
i goes to 0 a.s . Now,

A = 1ψ′ + ψ1′ ,

and hence, elementary Hadamard product computations (relying on ab′ ◦ uv′ = (a ◦ u)(b ◦ v)′) give that

A ◦A = 1(ψ ◦ ψ)′ + 2ψψ′ + (ψ ◦ ψ)1′ .

Therefore,
|||A ◦A|||2 ≤ 2(

√
n‖ψ ◦ ψ‖2 + ‖ψ‖2

2) .

Using Lemma A-1, and in particular Equation (A-2), we see that

E
(
ψ2

i

)
= 2σ4 trace

(
Σ2
)

p2
+ (κ4 − 3σ4)

trace (Σ ◦ Σ)
p2

,
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and therefore, E
(
‖ψ‖2

2

)
remains bounded. On the other hand, using Lemma 2.7 of Bai and Silverstein

(1998), we see that if we have 5 + ε moments,

E
(
ψ4

i

)
≤ C

(
(µ4trace

(
Σ2
)
)2

p4
+ µ5+εB

3−ε
p

trace
(
Σ4
)

p4

)
.

Now recall that we can take Bp = p2/5−δ. Therefore nE
(
‖ψ ◦ ψ‖2

2

)
is at most of order B3−ε

p /p. We conclude
that

P (|||A ◦A|||2 > log(p)
√
B3−ε

p /p) → 0 .

Note that this implies that

P (|||T |||2 > log(p)
√
B3−ε

p /p) → 0 .

Now, note that the third order term is of the form E ◦T . Because we have assumed that we have 5 + ε
moments, we have already seen that our concentration results imply that

max
i6=j

|Ei,j | = O

log(p)

√
B2

p

p

 = O
(
log(p)p−1/10−δ

)
a.s .

Using the fact that T has positive entries and therefore (see the proof of Theorem 1) |||E ◦ T |||2 ≤
maxi,j |Ei,j | |||T |||2, we conclude that with high-probability,

|||E ◦ T |||2 = O

(log(p))2
√
B5−ε

p

p2

 = O
(
(log(p))2p−δ′

)
where δ′ > 0 .

Hence,
|||E ◦ T |||2 → 0 in probability .

• Adjustment of the diagonal
To obtain the compact form of the approximation announced in the theorem, we need to include

diagonal terms that are not present in the matrices resulting from the Taylor expansion. Here, we show
that the corresponding matrices are easily controlled in operator norm.

When we replace the zeroth and first order terms by

f(τ)11′ + f ′(τ)
[
1ψ′ + ψ1′ − 2

XX ′

p

]
,

we add to the diagonal the term f(τ)+ f ′(τ)(2ψi− 2‖Xi‖2
2/p) = f(τ)− 2f ′(τ) trace(Σ)

p . In the end, we need
to subtract it.

When we replace the second order term by 1
2f

′′(τ)[1(ψ ◦ψ)′ + 2ψψ′ + (ψ ◦ψ)1′ + 4
trace(Σ2)

p2 11′], we add
to the diagonal the diagonal matrix with (i, i) entry

2f
′′
(τ)[ψ2

i +
trace

(
Σ2
)

p2
] .

With our assumptions, maxi |ψi| → 0 a.s and
trace(Σ2)

p remains bounded, so the added diagonal matrix
has operator norm converging to 0 a.s . We conclude that we do not need to add it to the correction in
the diagonal of the matrix approximating our kernel matrix.

An interpretation of the proofs of Theorems 1 and 2 is that they rely on a local “multiscale” approx-
imation of the original matrix. However, globally, there is a bit of a mixture between the scales which
creates the difficulties we had to deal with to control the second order term.
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2.3.1 A note on the Gaussian Kernel

The Gaussian kernel corresponds to f(x) = exp(−γx) in the notation of Theorem 2. We would like to
discuss it a bit more because of its widespread use in applications.

The result of Theorem 2 gives accurate limiting eigenvalue information for the case where we renormalize
the distances by the dimension, which seems to be, implicitly or explicitly what is often done in practice.

However, it is possible that information about the non-renormalized might be of interest, too in some
situations. Let us assume now that trace (Σ) grows to infinity at least as fast as p1/2+2/m+δ, where δ > 0
is such that 1/2 + 2/m+ δ < 1, which is possible since m ≥ 5 + ε here. We of course still assume that its
largest singular value, σ1(Σ) remains bounded. Then, Corollary A-2 guarantees that

min
i6=j

‖Xi −Xj‖2
2

p
>

trace (Σ)
p

a.s .

Hence,
max
i6=j

exp(−‖Xi −Xj‖2
2) ≤ exp(−trace (Σ)) ≤ exp(−p1/2+2/m+δ) a.s .

Hence, in this case, if M is our kernel matrix with entries exp(−‖Xi −Xj‖2
2), we have,

|||M − Id|||2 ≤ n exp(−p1/2+2/m+δ) , a.s ,

and the upper bound tends to zero extremely fast.

2.4 More general models

In this subsection, we consider more general models that the ones considered above. In particular, we
will here focus on data models for which the vectors Xi satisfy a so-called dimension-free concentration
inequality. As was shown in El Karoui (2007a), under these conditions, the Marčenko-Pastur equation
holds (as well as generalized versions of it). Note that these models are more general than the one considered
above (the proofs in the Appendix illustrate why the standard random matrix models can be considered as
subcases of this more general class of matrices), and can describe various interesting objects, like vectors
with certain log-concave distributions, or vectors sampled in a uniform manner from certain Riemannian
submanifolds of Rp, endowed with the canonical Riemannian metric inherited from Rp. We are now ready
to state the theorem

Theorem 3. Suppose the vectors Xi ∈ Rp are i.i.d and have the property that for 1-Lipschitz functions
(with respect to Euclidian norm),

P (|F −mF | > r) ≤ C exp(−cr2) ,

where C is independent of p and c may depend on p, but is required to satisfy c ≥ p−1/2+ε.
Consider the kernel random matrix M with Mi,j = f(X ′

iXj/p). Call Σ the covariance matrix of the
Xi’s and assume that σ1(Σ) stays bounded and trace (Σ) /p has a limit. Suppose that f is a real valued
function, which is C2 around 0 and C1 around trace (Σ) /p.

The spectrum of this matrix is asymptotically non-random and has, a.s, the same limiting spectral
distribution as that of

M̃ = f(0)11′ + f ′(0)
XX ′

p
+ υpIdn ,

where υp = f( trace(Σ)
p )− f(0)− f ′(0) trace(Σ)

p .

We note that the term f(0)11′ does not affect the limiting spectral distribution of M̃ , since finite rank
perturbations do not have any effect on limiting spectral distributions (see e.g Bai (1999), Lemma 2.2).
Therefore, it could be removed from the approximating matrix, but since it will clearly be present in
numerical work and simulations, we chose to leave it in our approximation.

The first step in the proof is the following lemma.
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Lemma 1. Suppose Kn is an n × n symmetric matrix with a limiting spectral distribution. Suppose Mn

is an n× n symmetric matrix.

1. Suppose Mn is such that ‖Mn −Kn‖F = o(
√
n). Then, Mn and Kn have the same limiting spectral

distribution.

2. Suppose Mn is such that |||Mn − Kn|||2 → 0. Then, Mn and Kn have the same limiting spectral
distribution.

Proof of Lemma. We call StKn and StMn the Stieltjes transforms of the spectral distributions of these two
matrices. Suppose z = u+ iv. Let us call li(Mn) the i-th largest eigenvalue of Mn.

We first focus on the Frobenius norm part of the lemma. We have

|StKn(z)− StMn(z)| = 1
n

∣∣∣∣∣
n∑

i=1

1
li(Kn)− z

− 1
li(Mn)− z

∣∣∣∣∣ ≤ 1
n

n∑
i=1

|li(Mn)− li(Kn)|
v2

.

Now, by Holder’s inequality,
∑
|li(Mn)−li(Kn)| ≤

√
n
√∑

|li(Mn)− li(Kn)|2. Now using Lidskii’s theorem
(i.e the fact that, since Mn and Kn are hermitian, the vector with entries li(Mn)− li(Kn) is majorized by
the vector li(Mn −Kn))), with, in the notation of Bhatia (1997), Theorem III.4.4 Φ(x) = x2, we have∑

|li(Mn)− li(Kn)|2 ≤
∑

l2i (Mn −Kn) = ‖Mn −Kn‖2
F .

We conclude that
|StKn(z)− StMn(z)| ≤ ‖Mn − Fn‖F√

nv2
.

Under the assumptions of the lemma, we therefore have

|StKn(z)− StMn(z)| → 0 .

Therefore the Stieltjes transform of the spectral distribution of Mn converges pointwise to the Stieltjes
transform of the limiting spectral distribution of Kn. Hence, the spectral distribution of Mn converges in
distribution to the limiting spectral distribution of Kn.

Let us now turn to the operator norm part of the lemma. By the same computations as above, we have

|StKn(z)− StMn(z)| = 1
n

∣∣∣∣∣
n∑

i=1

1
li(Kn)− z

− 1
li(Mn)− z

∣∣∣∣∣ ≤ 1
n

n∑
i=1

|li(Mn)− li(Kn)|
v2

≤ |||Mn −Kn|||2
v2

.

Hence if |||Mn −Kn|||2 → 0, it is clear that the two Stieljtes transforms are asymptotically equal, and the
conclusion follows.

We now turn to the proof of the theorem.

Proof of theorem. For the weaker statement required for the proof of Theorem 3, we will show that in the
δ-method we need to keep only the first term of the expansion, as long as f has a second derivative that is
bounded in a neighborhood of 0, and a first derivative that is bounded in a neighborhood of trace (Σ) /p.
In other words, we will split the problem into two parts: off the diagonal, we write

f

(
X ′

iXj

p

)
= f(0) + f ′(0)

X ′
iXj

p
+
f ′′(ξi,j)

2

(
X ′

iXj

p

)2

;

on the diagonal, we write

f

(
X ′

iXi

p

)
= f

(
trace (Σ)

p

)
+ f ′ (ξi,i)

(
X ′

iXi

p
− trace (Σ)

p

)
.

• Control of the off-diagonal error matrix The strategy is going to be to control the Frobenius
norm of the matrix

Wi,j =

{ (
X′

iXj

p

)2
if i 6= j

0 if i = j
.
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According to Lemma 1, it is enough for our needs to show that the Frobenius norm of this matrix is
o(
√
n) a.s to have the result we wish. Hence, the result will be shown, if we can for instance show that

max
i,j

Wi,j ≤ p−(1/2+ε)(log(p))1+δ a.s .

Now Lemma A-4 gives for instance,

max
i6=j

∣∣∣∣X ′
iXj

p

∣∣∣∣ ≤ (pc(p))−1/2 log(p) a.s .

Therefore, with our assumption on c(p), we have

max
i,j

Wi,j ≤ p−(1/2+ε)(log(p))2 a.s .

Now, ‖W‖F ≤ nmaxi,j |Wi,j |, so we conclude that in this situation, with our assumptions that n � p,

‖W‖F = o(
√
n) a.s

(We note that given a sequence model of matrices, the Borel-Cantelli lemma would apply and give an
almost sure statement in the above expression.) Since ‖W‖2

F ≤ n2 maxi,j W
2
i,j , we conclude that with very

high-probability,
‖W‖F = O(p1/2−ε/2) .

Now let us focus on
W̃i,j = f ′′(ξi,j)Wi,j ,

where ξi,j is between 0 and X ′
iXj/p. We just saw that with very high-probability, this latter quantity was

less than p−(1/4+ε/2), if c ≥ p−1/2+ε, therefore is f ′′ is bounded by K in a neighborhood of 0, we have, with
very high probability that

‖W̃‖F ≤ K‖W‖F = o(
√
n) .

• Control of the diagonal matrix
We first note that when we replace the off-diagonal matrix by f(0)11′ + f ′(0)XX ′/p, we add to the

diagonal certain terms that we need to subtract eventually.
Hence, our strategy here is to show that we can approximate (in operator norm) the diagonal matrix

D with entries

Di,i = f

(
trace (Σ)

p

)
+ f ′ (ξi,i)

(
X ′

iXi

p
− trace (Σ)

p

)
− f ′(0)

X ′
iXi

p
− f(0) ,

by υpIdp. To do so, we just have to show that the diagonal error matrix Z, with entries

Zi,i =
(
f ′ (ξi,i)− f ′(0)

)(X ′
iXi

p
− trace (Σ)

p

)
goes to zero in operator norm.

As seen in Lemma A-4, if c ≥ p−1/2+ε, with very high-probability,

max
i

∣∣∣∣X ′
iXi

p
− trace (Σ)

p

∣∣∣∣ ≤ p−(1/4+ε/2) .

If f ′ is continuous and hence bounded around trace(Σ)
p , we therefore see that the operator (or spectral)

norm of Z satisfies with high-probability

|||Z|||2 ≤ Kp−(1/4+ε/2) .

• Final step
We clearly have

M̃ −M = W + Z .
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It is also clear that M̃ has a limiting spectral distribution, satisfying, up to centering and scaling, the
Marčenko-Pastur equation; this was shown in El Karoui (2007a). By Lemma 1, we see that M̃ and M̃ −Z
have the same limiting spectral distribution, since their difference is Z and |||Z|||2 → 0. Using the same
lemma, we see that M and M̃ −Z have (in probability) the same limiting spectral distribution, since their
difference is W and we have established that the Frobenius norm of this matrix is (in probability) o(

√
n).

Hence, M and M̃ have (in probability) the same limiting spectral distribution.

We finally treat the case of kernel matrices computed from Euclidian norms, in this more general
distributional setting.

Theorem 4. Let us call τ = 2trace (Σ) /p, where Σ is the covariance matrix of the Xi’s. Suppose that f
is a real valued function, which is C2 around τ and C1 around 0.

Under the assumptions of Theorem 3, the kernel matrix M with (i, j) entry

Mi,j = f

(
‖Xi −Xj‖2

2

p

)
has a non-random limiting spectral distribution, which is the same as that of the matrix

M̃ = f(τ)11′ − 2f ′(τ)
XX ′

p
+ υpIdn ,

where υp = f(0) + τf ′(τ)− f(τ).

We note once again that the term f(τ)11′ does not affect the limiting spectral distribution of M . But
we keep it for the same reasons as before.

Proof. Note that the diagonal term is simply f(0)Id, so this term does not create any problem.
The rest of proof is similar to that of Theorem 3. In particular the control of the Frobenius norm of

the second order term is done in the same way, by controlling the maximum of the off-diagonal term, using
Corollary A-3 (and hence Lemma A-4).

Therefore, we only need to understand the first order term, in other words, the matrix with 0 on the
diagonal and off diagonal entry

Ri,j =
‖Xi −Xj‖2

2

p
− τ

=
[
‖Xi‖2

2

p
− trace (Σ)

p

]
+
[
‖Xj‖2

2

p
− trace (Σ)

p

]
− 2

X ′
iXj

p

As in the proof of Theorem 2, let us call ψ the vector with i-th entry ψi = ‖Xi‖22
p − trace(Σ)

p . Clearly,

Ri,j = δi,j(1ψ′ + ψ1′ − 2
XX ′

p
) .

Simple computations show that

R− 2
trace (Σ)

p
Id = 1ψ′ + ψ1′ − 2

XX ′

p
.

Now, obviously, 1ψ′+ψ1′ is a matrix of rank at most 2. Hence, R has the same limiting spectral distribution
as

2
trace (Σ)

p
Id− 2

XX ′

p
,

since finite rank perturbations do not affect limiting spectral distributions (see for instance Bai (1999),
Lemma 2.2). This completes the proof.
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The results of Theorem 3 and Theorem 4 apply to a wide variety of distributions, and in particular
ones for which the entries of the data vectors can have a fairly complicated dependence structure. For
instance, they apply to the following type of distributions:

• log-concave distributions, with a density of the type exp(−U(x)), with Hessian(U(x)) � cId, where
c > 0. (Theorem 2.7 in Ledoux (2001).)

• For data sampled from certain Riemannian submanifolds of Rp, the Riemannian metric at stake being
the one inherited from the ambient space. The key parameter in the concentration function here is
a certain type of curvature, called Ricci curvature. (See Theorem 2.4 in Ledoux (2001), and the fact
that the geodesic distance on the manifold is greater, with this choice of Riemannian metric, than
the Euclidian distance; this implies that Lipschitz functions with respect to the Euclidian metric are
Lipschitz with respect to the geodesic distance on the manifold, with the same Lipschitz constant.)

2.5 Some consequences of the Theorems

In practice, it is often the case that slight variant of kernel random matrices are used. In particular, it
is customary to center the matrices, i.e transform M so that its row sum, or column sum or both are 0.
In these situations, our results still apply; the following Fact makes it clear.

Fact 1 (Centered kernel random matrices). Let H be the n× n matrix Idn − 11′/n.

1. If the kernel random matrix M can be approximated consistently in operator norm by K, then, if
a, b ∈ {0, 1},

HaMHb can be approximated consistently in operator norm by HaKHb .

2. If the kernel random matrix M has the same limiting spectral distribution as the matrix K, then, if
a, b ∈ {0, 1},

HaMHb has the same limiting spectral distribution as K .

A nice consequence of the first point is that the recent hard work on localizing the largest eigenvalues
of sample covariance matrices (see Baik and Silverstein (2006), Paul (2007) and El Karoui (2007c)) can
be transferred to kernel random matrices and used to give some information about the localization of the
largest eigenvalues of HMH for instance. In the case of the results of El Karoui (2007c), Fact 2, the
arguments of El Karoui (2007a), Subsection 2.2.4, show that it gives exact localization information. In
other words, we can characterize the a.s limit of the largest eigenvalue of HMH (or HM or MH) fairly
explicitly, provided Fact 2 in El Karoui (2007c) apply. Finally, let us mention the obvious fact that since
for two square matrices A and B, AB and BA have the same eigenvalues, we see that HMH has the same
eigenvalues as MH and HM , because H2 = H.

Proof. The proofs are very simple. First note that H is positive semi-definite and |||H|||2 = 1. Using the
submultiplicativity of ||| · |||2, we see that

|||HaMHb −HaKHb|||2 ≤ |||M −K|||2|||Ha|||2|||Hb|||2 = |||M −K|||2 .

This shows the first point of the Fact.
The second point follows from the fact that HaMHb is a finite rank perturbation of M . Hence, using

Lemma 2.2 in Bai (1999), we see that these two matrices have the same limiting spectral distribution, and
since by assumption, K has the same limiting spectral distribution as M , we have the result of the second
point.

3 Conclusions

Beside the mathematical results which basically give both strong and weak approximation theorems,
this study raises several statistical questions, both about the richness - or lack thereof - of models that are
often studied in random matrix theory and about the effect of kernel methods in this context.
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Limitations of standard random matrix models

In the study of spectral distribution of large dimensional sample covariance matrices, it has been
somewhat forcefully advocated that the study should be done under the assumptions that the data are
of the form Xi = Σ1/2Yi, where the entries of Yi have finite fourth moment. At first sight, this idea is
appealing, as it seems to allow a great variety of distributions and hence flexible modeling. A possible
drawback however, is the assumption that the data are linear combinations of i.i.d random variables, or
the necessary presence of independence in the model. This has however been recently addressed (see e.g
El Karoui (2007a)) and it has been shown that one could go beyond models requiring independence in a
lurking random vector which the data linearly depend on.

Data analytic consequences However, a serious limitation is still present. As the results of Lemmas
A-3 and A-4 make clear, under the models for which the limiting spectral distribution of the sample
covariance matrix has been shown to satisfy the Marčenko-Pastur equation, the norms of the data vectors
are concentrated. More precisely, if one were to plot a histogram of {‖Xi‖2

2/p}n
i=1, this histogram would

look tightly concentrated around a single value. Hence these data vectors, when properly renormalized,
stay close to a sphere. Though the models are quite rich, the geometry that we can perceive by sampling
n such vectors, with n � p, is, arguably, relatively poor. These remarks should not be taken as aiming
to discredit the rich and extremely interesting body of work that has emerged out of the study of such
models. Their aim is just to warn possible users that in data analysis, a good first step would be to plot
the histogram of {‖Xi‖2

2/p}n
i=1 and check whether it is concentrated around a single value. Similarly, one

might want to plot the histogram of inner products {X ′
iXj/p} and check that it is concentrated around

0. If this is not the case, then insights derived from random matrix theoretic studies would likely not be
helpful in the data analysis.

We note however that recent random matrix work (see Boutet de Monvel et al. (1996), Burda et al.
(2005), Paul and Silverstein (2007), El Karoui (2007a)) has been concerned with distributions which
could be loosely speaking be called of “elliptical” type - though they are more general than what is
usually called elliptical distributions in Statistics. In those settings, the data is, for instance, of the form
Xi = riΣ1/2Yi, where ri is a real-valued random variable, independent of Yi. This allows the data vectors to
not approximately live on spheres, and is a possible way to address the concerns we just raised. However,
the characterization of the limiting expressions gets quite a bit more involved.

On kernel random matrices

Our study, motivated in part by numerical experiments we read about in the interesting Williams
and Seeger (2000), has shown that in the asymptotic setting we considered, which is generally considered
relevant for high-dimensional data analysis, kernel random matrices behave essentially like matrices closely
connected to sample covariance matrices. This is in sharp contrast to the low dimensional setting where it
was explained heuristically in Williams and Seeger (2000), and proved rigorously in Koltchinskii and Giné
(2000), that the eigenvalues of kernel random matrices converged (under certain assumptions) to those of
a canonically related operator. Under various assumptions on the distribution of our data, we have been
able to show a strong approximation result (operator norm consistency) whose meaning is that to first
order, the eigenvalues of kernel random matrices behave (up to centering and scaling) like the eigenvalues
of the covariance matrix of the data. The same is true for the eigenvectors of the kernel matrix and those
of the matrix XX ′/p which are associated to separated eigenvalues. We have also characterized limiting
spectral distributions of kernel random matrices for a broader class of distributions. This suggests that
kernel methods could suffer from the same problems that affect linear statistical methods, such as Principal
Component Analysis, in high-dimensions.

Our study also permits the transfer of some recent random matrix results concerning large dimensional
sample covariance matrices to kernel random matrices.

APPENDIX
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In this Appendix, we collect a few useful results that are needed in the proof of our Theorems, and
whose content we thought would be more accessible if they were separated from the main proofs.

Some useful results

We have the following elementary facts.

Lemma A-1. Suppose Y is a vector with i.i.d entries, and mean 0. Call its entries yi. Suppose E
(
y2

i

)
= σ2

and E
(
y4

i

)
= µ4. Then, if M is a deterministic matrix,

E
(
Y Y ′MY Y ′) = σ4(M +M ′) + (µ4 − 3σ4)diag(M) + σ4trace (M) Id . (A-1)

Further, we have (Y ′MY )2 = trace (MY Y ′MY Y ′), and

E
(
trace

(
MY Y ′MY Y ′)) = σ4trace

(
M2 +MM ′)+ σ4(trace (M))2 + (µ4 − 3σ4)trace (M ◦M) . (A-2)

Here diag(M) denotes the matrix consisting of the diagonal of the matrix M and 0 off the diagonal. The
symbol ◦ denotes Hadamard multiplication between matrices.

Proof. Let us call R = Y Y ′MY Y ′. The proof of the first part is elementary and consists merely in writing
the (i, j)-th entry of the corresponding matrix. As a matter of fact, we have

Ri,j = yiyj

∑
i,j

yiyjMi,j =
∑
k,l

yiyjykylMk,l .

Using the fact that entries of Y are independent and have mean 0, we see that, in the sum, the only terms
that will not be 0 in expectation are those for which each index appears at least twice. If i 6= j, only the
terms of the form y2

i y
2
j have this property. So if i 6= j,

E (Ri,j) = E
(
y2

i y
2
j (Mi,j +Mj,i)

)
= σ4(Mi,j +Mj,i) .

Let us now turn to the diagonal terms. Here again, only the terms y2
i y

2
k matter. So on the diagonal,

E (Ri,i) = µ4Mi,i + σ4
∑
j 6=i

Mj,j = (µ4 − σ4)Mi,i + trace (M) .

We conclude that
E (R) = σ4(M +M ′) + (µ4 − 3σ4)diag(M) + trace (M) Id .

The second part of the proof follows from the first result, after we remark that, if D is a diagonal
and L is general matrix, trace (LD) = trace (L ◦D), from which we conclude that trace (Mdiag(M)) =
trace (M ◦ diag(M)) = trace (M ◦M).

Lemma A-2 (Concentration of quadratic forms). Suppose the vectors Z is a vector in Rp, with i.i.d entries
of mean 0 and variance σ2. Suppose that their entries are bounded by Bp. Let M be a symmetric matrix,
with largest singular value σ1(M). Call

ζp =
128 exp(4π)σ1(M)B2

p

p

νp =
√
σ1(Σ)

Then we have, if r/2 > ζp,

P

(∣∣∣∣Z ′MZ

p
− σ2 trace (M)

p

∣∣∣∣ > r

)
≤ 8 exp(4π) exp(−p(r/2− ζp)2/(32B2

p(1 + 2νp)2σ1(M))) (A-3)

+ 8 exp(4π) exp(−p/(32B2
p(1 + 2νp)2σ1(M))) .
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Proof. We can decompose, using the spectral decomposition of M , M = M+ −M−, where M+ is positive
semi-definite and M− is positive definite (or 0 if M is itself positive semi-definite). We can do so by
replacing the negative eigenvalues of M by 0 in the spectral decomposition and get M+ in that way. Note
that then, the largest singular values of M+ and M− are also bounded by σ1(M), since σ1(M) is absolute
value of the largest eigenvalue of M in absolute value, and the non-zero eigenvalues of M+ are a subset of
the eigenvalues of M , and so are the eigenvalues of M−, when M− is not 0. Now it is clear that the function
F which associates to a vector x in Rp the scalar

√
x′M+x/p = ‖M1/2

+ x/
√
p‖2 is a convex,

√
σ1(M)/p-

Lipschitz function with respect to Euclidian norm. Calling mF the median of this function, when x is
sampled like Z, we have, using Corollary 4.10 in Ledoux (2001)

P (|F (Z)−mF | > r) ≤ 4 exp(−pr2/(16B2
pσ1(M))) .

Let us call µF the mean of F (it exists according to Proposition 1.8 in Ledoux (2001)). Following the
arguments given in the proof of this Proposition 1.8, and spelling out the constants appearing in the last
result of Proposition 1.8 in Ledoux (2001), we see that

P (|F (Z)− µF | > r) ≤ 4 exp(4π) exp(−pr2/(32B2
pσ1(M))) .

(Using the notation of Proposition 1.8 in Ledoux (2001), we picked κ2 = 1/2, and C ′ = exp(πC2/4);
showing that this is a valid choice just requires to carry out some of the computations mentioned in the
proof of that Proposition.)

Let us call A,B,D the sets

A ,

{∣∣∣∣Z ′M+Z

p
− µ2

F

∣∣∣∣ > r

}
,

B ,

{√
Z ′M+Z

p
+ µF ≤ 1 + 2µF

}
=

{√
Z ′M+Z

p
− µF ≤ 1

}
and

D ,

{∣∣∣∣∣
√
Z ′M+Z

p
− µF

∣∣∣∣∣ > r/(1 + 2µF )

}
.

Of course, we have P (A) ≤ P (A ∩ B) + P (Bc). Now note that A ∩ B ⊆ D, simply because for positive
reals, a− b/(

√
a+

√
b) =

√
a−

√
b. We conclude that

P (A) ≤ 4 exp(4π)
[
exp(−pr2/(32B2

p(1 + 2µF )2σ1(M))) + exp(−p/(32B2
pσ1(M)))

]
.

Let us know call σ2 the variance of the each of the component of Z. We know, according to Proposition
1.9 in Ledoux (2001), that

var (F ) =
E (Z ′M+Z)

p
− µ2

F = σ2 trace (M+)
p

− µ2
F ≤ ζp =

128 exp(4π)σ1(M)B2
p

p
.

Hence, we conclude that,if r > ζp,

P

(∣∣∣∣Z ′M+Z

p
− σ2 trace (M+)

p

∣∣∣∣ > r

)
≤ 4 exp(4π) exp(−p(r − ζp)2/(32B2

p(1 + 2µF )2σ1(M)))

+ 4 exp(4π) exp(−p/(32B2
p(1 + 2µF )2σ1(M))) .

To get the announced result, we note that for the sum of two reals to be greater than r in absolute
value, one needs to be greater than r/2, and that our bounds become conservative when we replace µF

(and its counterpart for M−) by νp. (Note that the get conservative bounds when replacing the µF ’s by

max(E
(√

Z ′M+Z/p
)
,E
(√

Z ′M−Z/p
)
), and that this quantity is clearly bounded by σσ1(Σ).) Hence,

we have, as announced: if r/2 > ζp,

P

(∣∣∣∣Z ′MZ

p
− σ2 trace (M)

p

∣∣∣∣ > r

)
≤ 8 exp(4π) exp(−p(r/2− ζp)2/(32B2

p(1 + 2µF )2σ1(M)))

+ 8 exp(4π) exp(−p/(32B2
p(1 + 2µF )2σ1(M))) .
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Finally, we note that the proof makes clear that the same result would hold for different choices of M+

and M−, as long as max(σ1(M+), σ1(M−)) ≤ σ1(M).

We therefore have the following useful corollary:

Corollary A-1. Let Yi and Yj be i.i.d random vectors as in Lemma A-2, with variance 1. Suppose that Σ
is a positive semi-definite matrix. We have, with

ζp =
128 exp(4π)σ1(Σ)B2

p

p
, and

νp =
√
σ1(Σ) ,

that if r/2 > ζp, and K = 8 exp(4π),

P

(∣∣∣∣Y ′
i ΣYj

p

∣∣∣∣ > r

)
≤ K exp(−p(r/2− ζp)2/(32B2

p(1 + 2νp)2σ1(Σ))) (A-4)

+K exp(−p/(32B2
p(1 + 2νp)2σ1(Σ))) .

Proof. The proof relies on the results of Lemma A-2. Remark that, since Σ is symmetric,

Y ′
i ΣYj =

1
2
(Y ′

i Y
′
j )
(

0 Σ
Σ 0

)(
Yi

Yj

)
.

Now the entries of the vector made by concatenating Yi and Yj are i.i.d. and so we fall back into the setting

of Lemma A-2. Finally, here M+ and M− are known explicitly. A possible choice is M+ = 1/2
(

Σ Σ
Σ Σ

)
and M− = 1/2

(
Σ 0
0 Σ

)
. νp is obtained by upper bounding the expectation of the square of F in the

notation of the proof of the previous Lemma, for these explicit matrices. Note that their largest singular
values are both smaller that σ1(Σ), so the results of the previous lemma apply.

Lemma A-3. Let {Yi}n
i=1 be i.i.d random vectors in Rp, whose entries are i.i.d, mean 0, variance 1, and

have bounded (in p) m ≥ 4 moments. Suppose that {Σp} is a sequence of positive semi-definite matrices,
whose operator norms are uniformly bounded in p and n/p is asymptotically bounded. We have, for any
given ε > 0,

max
i,j

∣∣∣∣Y ′
i ΣpYj

p
− δi,j

trace (Σp)
p

∣∣∣∣ ≤ p−1/2+2/m (log(p))(1+ε)/2 a.s .

Proof. In all the proof, we assume without loss of generality that m <∞.
Call t = 2/m. According to Lemma 2.2 in Yin et al. (1988), the maximum of the array of {Yi}n

i=1 is a.s
less than pt. So to control the maximum of the inner products of interest, it is enough to control the same
quantity when we replace Yi by Ỹi, with Ỹi,l , Yi,l1|Yi,l|≤pt . Now note that Ỹi satisfies the assumptions of
Corollary A-1, except for the fact that its mean is not necessarily zero. Note however, that all the entries
of Ỹi have the same mean, µ̃. Since Yi has mean 0, we have

|µ̃| ≤ E
(
|Y1,1|1|Y1,1|>pt

)
≤ E

(
|Y1,1|mp−t(m−1)

)
≤ µmp

−2+t .

Similarly, if we call σ̃2 the variance of Ỹ , we have

σ̃2 = E
(
|Y1,1|21|Y1,1|≤pt

)
− µ̃2 = 1− (E

(
|Y1,1|21|Y1,1|>pt

)
+ µ̃2) .

Hence, 0 ≤ 1− σ̃2, and

1− σ̃2 = E
(
|Y1,1|21|Y1,1|>pt

)
+ µ̃2

≤ E
(
|Y1,1|mp−t(m−2)

)
+ µ̃2

≤ µmp
−2+2t + µ2

mp
−4+2t = O(p−2+2t) .
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Now note that Corollary A-1 applies to the random variables Ui = Ỹi − µ̃1p, with Bp = 2pt, when p is
large enough. So ζp = O(p1−2t). Let us now call, for some ε > 0,

r(p) = pt−1/2(log(p))(1+ε)/2 .

Since, for p large enough, r(p)/2 > ζp, we can apply the conclusions of Corollary A-1, and plugging-in
the different quantities, we see that

P (|U ′
iΣpUj/p| > r(p)) ≤ exp(−K(log(p))1+ε) ,

where K denotes a generic constant. In particular, K is independent of p and is hence trivially bounded
away from 0 as p grows. We note further that the arguments of Lemma A-2 show that, since σ̃2 is the
variance of Ui,

P (|U ′
iΣpUi/p− σ̃2trace (Σp) /p| > r(p)) ≤ exp(−K(log(p))1+ε) .

Now,
Ỹ ′

i ΣpỸj

p
=
U ′

iΣpUj

p
+ µ

(1′ΣpUj + U ′
iΣp1)

p
+ µ2 1′Σp1

p
.

Remark that 1′Σp1 ≤ pσ1(Σp), and |1′ΣpUj | ≤
√

1′Σp1
√
U ′

jΣpUj . We conclude, using the results obtained

in the proof of Lemma A-2 that with probability greater than 1 − exp(−K(log(p))1+ε), the middle term
is smaller than 2

√
σ1(Σp)(

√
σ1(Σp) + r(p))µ. As a matter of fact,

√
U ′

jΣpUj/p is concentrated around

its mean, which is smaller than σ̃
√

trace (Σp) /p, which is itself smaller than
√
σ1(Σp). Now recall that

µ̃ = O(p−2+t) = o(r(p)). We can therefore conclude that,

P

(∣∣∣∣∣ Ỹ ′
i ΣpỸj

p
− δi,j σ̃

2 trace (Σp)
p

∣∣∣∣∣ > 2r(p)

)
≤ 2 exp(−K(log(p))1+ε) .

Now note, that 0 ≤ 1−σ̃2 = O(p−2+2t) = o(r(p)), since t ≤ 1/2 < 3/2. With our assumptions, trace (Σp) /p
remains bounded, so we have finally

P

(∣∣∣∣∣ Ỹ ′
i ΣpỸj

p
− δi,j

trace (Σp)
p

∣∣∣∣∣ > 3r(p)

)
≤ 2 exp(−K(log(p))1+ε) .

And therefore,

P

(
max

i,j

∣∣∣∣∣ Ỹ ′
i ΣpỸj

p
− δi,j

trace (Σp)
p

∣∣∣∣∣ > 3r(p)

)
≤ 2n2 exp(−K(log(p))1+ε) .

Using the Borel-Cantelli Lemma, we reach the conclusion that

max
i,j

∣∣∣∣∣ Ỹ ′
i ΣpỸj

p
− δi,j

trace (Σp)
p

∣∣∣∣∣ ≤ 3r(p) = 3p2/m−1/2 log(p) a.s .

Because the left-hand side is a.s equal to
∣∣∣Y ′

i ΣpYj

p − δi,j
trace(Σp)

p

∣∣∣, we reach the announced conclusion, but
with r(p) replaced by 3r(p). Note that, of course, any multiple of r(p), where the constant is independent of
p, would work in the proof. In particular, by taking r̃(p) = r(p)/3, we reach the announced conclusion.

Corollary A-2. Under the same assumptions as that of Lemma A-3, if we call Xi = Σ1/2
p Yi, we also have

max
i6=j

∣∣∣∣‖Xi −Xj‖2
2

p
− 2

trace (Σp)
p

∣∣∣∣ ≤ p−1/2+2/m(log(p))(1+ε)/2 a.s .
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Proof. The proof follows immediately from the results of Lemma A-3, after we write

‖Xi −Xj‖2
2 − 2trace (Σp) = [YiΣpYi − trace (Σp)] + [YjΣpYj − trace (Σp)]− 2Y ′

i ΣpYj .

Note that as explained in the proof of Lemma A-3, the constants in front of the bounding sequence do not
matter, so we can replace 3p−1/2+2/m(log(p))(1+ε)/2 by p−1/2+2/m(log(p))(1+ε)/2, and the result still holds.
(In other words, we are really using Lemma A-3 with upper bound p−1/2+2/m(log(p))(1+ε)/2/3.)

Lemma A-4. Let {Xi}n
i=1 be i.i.d random vectors in Rp, whose entries are i.i.d, mean 0, having the

property that for 1-Lipschitz functions F , if we denote by mF the median of F ,

P (|F −mF | > r) ≤ C exp(−c(p)r2) ,

where C is independent of p and c is allowed to vary with p. Call Σp the covariance matrix of the X1.
Assume that σ1(Σp) remains bounded in p. Then, we have

max
i,j

∣∣∣∣X ′
iXj

p
− δi,j

trace (Σp)
p

∣∣∣∣ ≤ (pc(p))−1/2 (log(p))(1+ε)/2 a.s .

Proof. The proof once again relies on concentration inequalities. First note that Proposition 1.11 combined
with Proposition 1.7 in Ledoux (2001) show that if Xi and Xj are independent and satisfy concentration

inequalities with concentration function α(r) (with respect to Euclidian norm), then the vector
(
Yi

Yj

)
also

satisfies concentration inequalities, with concentration function 2α(r/2) with respect to Euclidian norm
in R2p. (We note that Proposition 1.11 is proved for the metric on R2p ‖·‖2 + ‖·‖2, where each Euclidian
norm is a norm in Rp, but the same proof goes through for Euclidian norm on R2p. Another argument
would be to say that the metric ‖·‖2 + ‖·‖2 is equivalent to the norm of the full R2p, with the constants in
the inequalities being 1 and

√
2, simply because for a, b > 0,

√
a2 + b2 ≤ a+ b ≤

√
2
√
a2 + b2.)

Therefore, the arguments of Lemma A-2 go through without any problems, with Σp = Id and B2
p =

4/c(p). So a result similar to Corollary A-1 holds and we can apply the same ideas as in the proof of
Lemma A-3 and get the announced result.

Corollary A-3. Under the assumptions of Lemma A-4, we have

max
i6=j

∣∣∣∣‖Xi −Xj‖2
2

p
− 2

trace (Σp)
p

∣∣∣∣ ≤ (pc(p))−1/2 (log(p))(1+ε)/2 a.s .

Proof. The proof is an immediate consequence of Lemma A-4, along the same lines as the proof of Corollary
A-2.
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