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Abstract

We consider the problem of estimating the support of a vector β∗ ∈ R
p based on observa-

tions contaminated by noise. A significant body of work has studied behavior of ℓ1-relaxations
when applied to measurement matrices drawn from standard dense ensembles (e.g., Gaussian,
Bernoulli). In this paper, we analyze sparsified measurement ensembles, and consider the trade-
off between measurement sparsity, as measured by the fraction γ of non-zero entries, and the
statistical efficiency, as measured by the minimal number of observations n required for exact
support recovery with probability converging to one. Our main result is to prove that it is
possible to let γ → 0 at some rate, yielding measurement matrices with a vanishing fraction of
non-zeros per row while retaining the same statistical efficiency as dense ensembles. A variety
of simulation results confirm the sharpness of our theoretical predictions.

Keywords: Quadratic programming; Lasso; subset selection; consistency; thresholds; sparse ap-
proximation; signal denoising; sparsity recovery; ℓ1-regularization; model selection

1 Introduction

Recent years have witnessed a flurry of research on the recovery of high-dimensional sparse sig-
nals (e.g., compressed sensing [2, 6, 18], graphical model selection [13, 14], and sparse approxi-
mation [18]). In all of these settings, the basic problem is to recover information about a high-
dimensional signal β∗ ∈ R

p, based on a set of n observations. The signal β∗ is assumed a priori to
be sparse: either exactly k-sparse, or lying within some ℓq-ball with q < 1. A large body of theory
has focused on the behavior of various ℓ1-relaxations when applied to measurement matrices drawn
from the standard Gaussian ensemble [6, 2], or more general random ensembles satisfiying mutual
incoherence conditions [13, 20].

These standard random ensembles are dense, in that the number of non-zero entries per mea-
surement vector is of the same order as the ambient signal dimension. Such dense measurement
matrices are undesirable for practical applications (e.g., sensor networks), in which it would be
preferable to take measurements based on sparse inner products. Sparse measurement matrices
require significantly less storage space, and have the potential for reduced algorithmic complexity
for signal recovery, since many algorithms for linear programming, and conic programming more
generally [1], can be accelerated by exploiting problem structure. With this motivation, a body
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of past work (e.g. [4, 8, 16, 23]), motivated by group testing or coding perspectives, has studied
compressed sensing methods based on sparse measurement ensembles. However, this body of work
has focused on the case of noiseless observations.

In contrast, this paper focuses on observations contaminated by additive noise which, as we
show, exhibits fundamentally different behavior than the noiseless case. Our interest is not on
sparse measurement ensembles alone, but rather in understanding the trade-off between the degree
of measurement sparsity, and its statistical efficiency. We assess measurement sparsity in terms
of the fraction γ of non-zero entries in any particular row of the measurement matrix, and we
define statistical efficiency in terms of the minimal number of measurements n required to recover
the correct support with probability converging to one. Our interest can be viewed in terms of
experimental design: more precisely we ask: what degree of measurement sparsity can be permitted
without any compromise in the statistical efficiency? To bring sharp focus to the issue, we analyze
this question for exact subset recovery using ℓ1-constrained quadratic programming, also known
as the Lasso in the statistics literature [3, 17], where past work on dense Gaussian measurement
ensembles [20] provides a precise characterization of its success/failure. We characterize the density
of our measurement ensembles with a positive parameter γ ∈ (0, 1], corresponding to the fraction
of non-zero entries per row. We first show that for all fixed γ ∈ (0, 1], the statistical efficiency
of the Lasso remains the same as with dense measurement matrices. We then prove that it is
possible to let γ → 0 at some rate, as a function of the sample size n, signal length p and signal
sparsity k, yielding measurement matrices with a vanishing fraction of non-zeroes per row while
requiring exactly the same number of observations as dense measurement ensembles. In general,
in contrast to the noiseless setting [23], our theory still requires that the average number of non-
zeroes per column of the measurement matrix (i.e., γn) tend to infinity; however, under the loss
function considered here (exact signed support recovery), we prove that no method can succeed
with probability one if this condition does not hold. The remainder of this paper is organized as
follows. In Section 2, we set up the problem more precisely, state our main result, and discuss some
of its implications. In Section 3, we provide a high-level outline of the proof.

Work in this paper was presented in part at the International Symposium on Information Theory
in Toronto, Canada (July, 2008). We note that in concurrent and complementary work, Wang et
al. [22] have analyzed the information-theoretic limitations of sparse measurement matrices for
exact support recovery.

Notation: Throughout this paper, we use the following standard asymptotic notation: f(n) =
O(g(n)) if f(n) ≤ Cg(n) for some constant C < +∞; f(n) = Ω(g(n)) if f(n) ≥ cg(n) for some
constant c > 0; and f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

2 Problem set-up and main result

We begin by setting up the problem, stating our main result, and discussing some of their conse-
quences.
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2.1 Problem formulation

Let β∗ ∈ R
p be a fixed but unknown vector, with at most k non-zero entries (k ≤ p

2), and define
its support set

S := {i ∈ {1, . . . , p} | β∗i 6= 0}. (1)

We use βmin to denote the minimum value of |β∗| on its support—that is, βmin := mini∈S |β∗i |.
Suppose that we make a set {Y1, . . . , Yn} of n independent and identically distributed (i.i.d.)

observations of the unknown vector β∗, each of the form

Yi := xT
i β

∗ +Wi, (2)

where W ∼ N (0, σ2) is observation noise, and xi ∈ R
p is a measurement vector. It is convenient

to use Y =
[
Y1 Y2 . . . Yn

]T
to denote the n-vector of measurements, with similar notation for

the noise vector W ∈ R
n, and

X =




xT
1

xT
2
...
xT

n


 =

[
X1 X2 . . . Xp

]
. (3)

to denote the n×p measurement matrix. With this notation, the observation model can be written
compactly as Y = Xβ∗ +W .

Given some estimate β̂, its error relative to the true β∗ can be assessed in various ways, de-
pending on the underlying application of interest. For applications in compressed sensing, various
types of ℓq norms (i.e., E‖β̂ − β∗‖q) are well-motivated, whereas for statistical prediction, it is most

natural to study a predictive loss (e.g., E‖Xβ̂ −Xβ∗‖). For reasons of scientific interpretation or
for model selection purposes, the object of primary interest is the support S of β∗. In this paper,
we consider a slightly stronger notion of model selection: in particular, our goal is to recover the
signed support of the unknown β∗, as defined by the p-vector S(β∗) with elements

[S(β∗)]i :=

{
sign(β∗i ) if β∗i 6= 0

0 otherwise.

Given some estimate β̂, we study the probability P[S(β̂) = S(β∗)] that it correctly specifies the
signed support.

The estimator that we analyze is ℓ1-constrained quadratic programming (QP), also known as the
Lasso [17] in the statistics literature. The Lasso generates an estimate β̂ by solving the regularized
QP

β̂ = arg min
β∈Rp

{
1

2n
‖Y −Xβ‖2

2 + ρn‖β‖1

}
, (4)

where ρn > 0 is a user-defined regularization parameter. A large body of past work has focused on
the behavior of the Lasso for both deterministic and random measurement matrices (e.g., [5, 13, 18,
20]). Most relevant here is the sharp threshold [20] characterizing the success/failure of the Lasso
when applied to measurement matrices X drawn randomly from the standard Gaussian ensemble
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(i.e., each element Xij ∼ N (0, 1) i.i.d.). In particular, the Lasso undergoes a sharp threshold as a
function of the control parameter

θ(n, p, k) :=
n

2k log(p − k)
. (5)

For the standard Gaussian ensemble and sequences (n, p, k) such that θ(n, p, k) > 1, the probability
of Lasso success goes to one, whereas it converges to zero for sequences for which θ(n, p, k) < 1.
The main contribution of this paper is to show that the same sharp threshold holds for γ-sparsified
measurement ensembles, including a subset for which γ → 0, so that each row of the measurement
matrix has a vanishing fraction of non-zero entries.

2.2 Statement of main result

A measurement matrix X ∈ R
n×p drawn randomly from a Gaussian ensemble is dense, in that each

row has Θ(p) non-zero entries. The main focus of this paper is the observation model (2), using
measurement ensembles that are designed to be sparse. To formalize the notion of sparsity, we let
γ ∈ (0, 1] represent a measurement sparsity parameter, corresponding to the (average) fraction of
non-zero entries per row. Our analysis allows the sparsity parameter γ(n, p, k) to be a function of
the triple (n, p, k), but we typically suppress this explicit dependence so as to simplify notation.
For a given choice of γ, we consider measurement matrices X with i.i.d. entries of the form

Xij
d
=

{
Z ∼ N (0, 1) with probability γ

0 with probability 1 − γ.
(6)

By construction, the expected number of non-zero entries in each row of X is γp. It is straight-
forward to verify that for any constant setting of γ, elements Xij from the ensemble (6) are sub-
Gaussian. (A zero-mean random variable Z is sub-Gaussian [19] if there exists some constant C > 0
such that P[|Z| > t] ≤ 2 exp(−Ct2) for all t > 0.) For this reason, one would expect such ensembles
to obey similar scaling behavior as Gaussian ensembles, although possibly with different constants.
In fact, the analysis of this paper establishes exactly the same control parameter threshold (5) for
γ-sparsified measurement ensembles, for any fixed γ ∈ (0, 1), as the completely dense case (γ = 1).
On the other hand, if γ is allowed to tend to zero, elements of the measurement matrix are no longer
sub-Gaussian with any fixed constant, since the variance of the Gaussian mixture component scales
non-trivially. Nonetheless, our analysis shows that for γ → 0 suitably slowly, it is possible to
achieve the same statistical efficiency as the dense case.

In particular, we state the following result on conditions under which the Lasso applied to spar-
sified ensembles has the same sample complexity as when applied to the dense (standard Gaussian)
ensemble:

Theorem 1. Suppose that the measurement matrix X ∈ R
n×p is drawn with i.i.d. entries according

to the γ-sparsified distribution (6). Then for any ǫ > 0, if the sample size satisfies

n > (2 + ǫ)k log(p− k), (7)

then the Lasso succeeds with probability one as (n, p, k) → +∞ in recovering the correct signed
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support as long as

nρ2
nγ

log (p− k)
→ ∞ (8a)

ρn

βmin

(
1 +

√
k

γ

√
log log(p− k)

log(p− k)

)
→ 0 (8b)

γ3min

{
k,

log(p− k)

log log(p− k)

}
→ ∞. (8c)

Remarks:

(a) To provide intuition for Theorem 1, it is helpful to consider various special cases of the sparsity
parameter γ. First, if γ is a constant fixed to some value in (0, 1], then it plays no role in the
scaling, and condition (8c) is always satisfied. Furthermore, condition (8a) is then the exact same
as that of from previous work [20] on dense measurement ensembles (γ = 1). However, condi-
tion (8b) is slightly weaker than the corresponding condition from [20] in that βmin must approach
zero more slowly. Depending on the exact behavior of βmin, choosing ρ2

n to decay slightly more
slowly than log p/n is sufficient to guarantee exact recovery with n = Θ(k log(p − k)), meaning
that we recover exactly the same statistical efficiency as the dense case (γ = 1) for all constant
measurement sparsities γ ∈ (0, 1). At least initially, one might think that reducing γ should in-
crease the required number of observations, since it effectively reduces the signal-to-noise ratio by
a factor of γ. However, under high-dimensional scaling (p → +∞), the dominant effect limiting
the Lasso performance is the number (p− k) of irrelevant factors, as opposed to the signal-to-noise
ratio (scaling of the minimum).

(b) However, Theorem 1 also allows for general scalings of the measurement sparsity γ along
with the triplet (n, p, k). More concretely, let us suppose for simplicity that βmin = Θ(1). Then
over a range of signal sparsities—say k = αp, k = Θ(

√
p) or k = Θ(log(p − k)), corresponding

respectively to linear sparsity, polynomial sparsity, and exponential sparsity—-we can choose a
decaying measurement sparsity, for instance

γ =

[
log log (p − k)

log (p− k)

] 1

6

→ 0 (9)

along with the regularization parameter ρ2
n = log (p−k)

n

√
log (p−k)

log log (p−k) while maintaining the same

sample complexity (required number of observations for support recovery) as the Lasso with dense
measurement matrices.

(c) Of course, the conditions of Theorem 1 do not allow the measurement sparsity γ to approach zero
arbitrarily quickly. Rather, for any γ guaranteeing exact recovery, condition (8a) implies that the
average number of non-zero entries per column of X (namely, γn) must tend to infinity. (Indeed,
with n = Ω(k log(p − k)), our specific choice (9) certainly satisfies this constraint.) A natural
question is whether exact recovery is possible using measurement matrices, either randomly drawn
or deterministically designed, with the average number of non-zeros per row (namely γn) remaining
bounded. In fact, under the criterion of exactly recovering the signed support (4), no method can
succeed with w.p. one if γnβ2

min remains bounded.

5



Proposition 1. If γnβ2
min does not tend to infinity, then no method can recover the signed support

with probability one.

Proof. We construct a sub-problem that must be solvable by any method capable of performing
exact signed support recovery. Suppose that β∗1 = βmin 6= 0 and that the column X1 has n1

non-zero entries, say without loss of generality indices i = 1, . . . , n1. Now consider the problem of
recovering the sign of β∗1 . Let us extract the observations i = 1, . . . , n1 that explicitly involve β∗1 ,
writing

Yi = Xi1β
∗
1 +

∑

j∈T (i)

Xijβ
∗
j +Wi, i = 1, . . . , n1

where T (i) denotes the set of indices in row i for which Xij is non-zero, excluding index 1. Even
assuming that {β∗j , j ∈ T (i)} were perfectly known, this observation model (10) is at best equivalent
to observing β∗1 contaminated by constant variance additive Gaussian noise, and our task is to
distinguish whether β∗1 = βmin or β∗1 = −βmin. The average Y = 1

n1

∑n1

i=1[Yi −
∑

j∈T (i)Xijβ
∗
j ] is a

sufficient statistic, following the distribution Y ∼ N(βmin,
σ2

n1
). Unless the effective signal-to-noise

ratio, which is of the order n1β
2
min, goes to infinity, there will always be a constant probability of

error in distinguishing β∗1 = βmin from β∗1 = −βmin. Under the γ-sparsified random ensemble, we
have n1 ≤ (1 + o(1)) γn with high probability, so that no method can succeed unless γnβ2

min goes
to infinity, as claimed.

Note that the conditions in Theorem 1 imply that nγβ2
min → +∞. In particular, condition (8b)

implies that ρ2
n = o(β2

min), and condition (8a) implies that nγρ2
n → +∞, which implies the condition

of Proposition 1.

3 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We begin with a high-level outline of the proof; as
with previous work on dense Gaussian ensembles [20], the key is the notion of a primal-dual witness

for exact signed support recovery. We then proceed with the proof, divided into a sequence of
separate lemmas. Analysis of “sparsified” matrices require results on spectral properties of random
matrices not covered by the standard literature. The proofs of some of the more technical results
are deferred to the appendices.

3.1 High-level overview of proof

For the purposes of our proof, it is convenient to consider matrices X ∈ R
n×p with i.i.d. entries of

the form

Xij
d
=

{
Z ∼ N (0, 1

γ
) with probability γ

0 with probability 1 − γ.
(10)

So as to obtain an equivalent observation model, we also reset the variance of Wi of each noise term
Wi to be σ2

γ
. Finally, we can assume without loss of generality that sign(β∗S) = ~1 ∈ R

k.
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Define the sample covariance matrix

Σ̂ :=
1

n
XTX =

1

n

n∑

i=1

xix
T
i . (11)

Of particular importance to our analysis is the k×k sub-matrix Σ̂SS. For future reference, we state
the following claim, proved in Appendix D:

Lemma 1. Under the conditions of Theorem 1, the submatrix Σ̂SS is invertible with probability

greater than 1 −O( 1
(p−k)2

).

The foundation of our proof is the following lemma: it provides sufficient conditions for the
Lasso (4) to recover the signed support set.

Lemma 2 (Primal-dual conditions for support recovery). Suppose that Σ̂SS ≻ 0, and that we can

find a primal vector β̂ ∈ R
p, and a subgradient vector ẑ ∈ R

p that satisfy the zero-subgradient
condition

Σ̂
(
β∗ − β̂

)
+

1

n
XTW + ρnẑ = 0, (12)

and the signed-support-recovery conditions

ẑi = sign(β∗i ) for all i ∈ S, (13a)

β̂j = 0 for all j ∈ Sc, (13b)

|ẑj | < 1 for all j ∈ Sc, and (13c)

sign(β̂i) = sign(β∗i ) for all i ∈ S. (13d)

Then β̂ is the unique optimal solution to the Lasso (4), and recovers the correct signed support.

See Appendix B.1 for the proof of this claim.
Thus, given Lemmas 1 and 2, it suffices to show that under the specified scaling of (n, p, k), there

exists a primal-dual pair (β̂, ẑ) satisfying the conditions of Lemma 2. We establish the existence of
such a pair with the following constructive procedure:

(a) We begin by setting β̂Sc = 0, and ẑS = sign(β∗S).

(b) Next we determine β̂S by solving the linear system

Σ̂SS

(
β∗S − β̂S

)
+

1

n
XT

SW + ρn sign(β∗S) = 0. (14)

(c) Finally, we determine ẑSc by solving the linear system:

−ρnẑSc = Σ̂ScS

(
β∗S − β̂S

)
+

1

n
XT

ScW. (15)
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By construction, this procedure satisfies the zero sub-gradient condition (12), as well as auxiliary
conditions (13a) and (13b); it remains to verify conditions (13c) and (13d).

In order to complete these final two steps, it is helpful to define the following random variables:

V a
j :=

1

n
XT

j

{
XS(Σ̂SS)−1~1

}
ρn (16a)

V b
j := Xj

T

[
1

n
XS(Σ̂SS)−1XT

S − In×n

]
W

n
, (16b)

Ui := eTi

(
Σ̂SS

)−1
[

1

n
XT

SW − ρn
~1

]
, (16c)

where ei ∈ R
k is the unit vector with one in position i, and 1 ∈ R

k is the all-ones vector.
A little bit of algebra (see Appendix B.2 for details) shows that ρnẑj = V a

j + V b
j , and that

Ui = β̂i − β∗i . Consequently, if we define the events

E(V ) :=

{
max
j∈Sc

|V a
j + V b

j | < ρn

}
(17a)

E(U) :=

{
max
i∈S

|Ui| ≤ βmin

}
, (17b)

where the minimum value βmin was defined previously as the minimum value of |β∗| on its support,
then in order to establish that the Lasso succeeds in recovering the exact signed support, it suffices
to show that P[E(V ) ∩ E(U)] → 1,

We decompose the proof of this final claim in the following three lemmas. As in the statement
of Theorem 1, suppose that n > (2 + ǫ)k log(p − k), for some fixed ǫ > 0.

Lemma 3 (Control of V a). Under the conditions of Theorem 1, we have

P[max
j∈Sc

|V a
j | ≥ (1 − δ)ρn] → 0. (18)

Lemma 4 (Control of V b). Under the conditions of Theorem 1, we have

P[max
j∈Sc

|V b
j | ≥ δρn] → 0. (19)

Lemma 5 (Control of U). Under the conditions of Theorem 1, we have

P[(E(U))c] = P[max
i∈S

|Ui| > βmin] → 0. (20)

3.2 Proof of Lemma 3

We assume throughout that Σ̂SS is invertible, an event which occurs with probability 1−o(1) under
the stated assumptions (see Lemma 1). If we define the n-dimensional vector

h := XS(Σ̂SS)−1~1, (21)

then the variable V a
j can be written compactly as

V a
j

ρn
= XT

j h =
n∑

ℓ=1

hℓXℓj . (22)
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Note that each term Xℓj in this sum is distributed as a mixture variable, taking the value 0 with
probability 1 − γ, and distributed as N(0, 1

γ
) variable with probability γ. For each ℓ = 1, . . . , n,

define the discrete random variable

Hℓ
d
=

{
hℓ with probability γ

0 with probability 1 − γ.
(23)

For each index ℓ = 1, . . . , n, let Zℓj ∼ N(0, 1
γ
). With these definitions, by construction, we have

V a
j

ρn

d
=

n∑

ℓ=1

HℓZℓj.

To gain some intuition for the behavior of this sum, note that the variables {Zℓj , ℓ = 1, . . . , n}
are independent of {Hℓ, ℓ = 1, . . . , n}. (In particular, each Hℓ is a function of XS , whereas Zℓj is
a function of Xℓj , with j /∈ S.) Consequently, we may condition on H without affecting Z, and

since Z is Gaussian, we have (
V a

j

ρn
| H) ∼ N(0,

‖H‖2

2

γ
). Therefore, if we can obtain good control on

the norm ‖H‖2, then we can use standard Gaussian tail bounds (see Appendix A) to control the
maximum maxj∈Sc V a

j /ρn. The following lemma is proved in Appendix C:

Lemma 6. Under condition (8c), then for any fixed δ > 0, we have

P

[
‖H ‖2

2 ≤ γk(1 + δ)

n

]
≥ 1 −O(exp(−min{2 log(p− k),

n

2k
}))

The primary implication of the above bound is that each V a
j /ρn variable is (essentially) no larger

than a N(0, k
n
) variable. We can then use standard techniques for bounding the tails of Gaussian

variables to obtain good control over the random variable maxj∈Sc |V a
j |/ρn. In particular, by union

bound, we have

P[max
j∈Sc

|V a
j | ≥ (1 − δ)ρn] ≤ (p− k) P[

n∑

ℓ=1

HℓjZj ≥ (1 − δ)]

For any δ > 0, define the event T (δ) := {‖H ‖2
2 ≤ kγ(1+δ)

n
}. Continuing on, we have

P[max
j∈Sc

|V a
j | ≥ (1 − δ)ρn] ≤ (p − k)

{
P[

n∑

ℓ=1

HℓjZj ≥ (1 − δ) | T (δ)] + P[(T (δ)c)]

}

≤ (p − k)

{
2 exp

(
−n(1 − δ)2

2k(1 + δ)

)
+ O(exp(−min (2 log(p− k),

n

2k
)))

}
,

where the last line uses a standard Gaussian tail bound (see Appendix A), and Lemma 6. Finally,
it can be verified that under the condition n > (2 + ǫ)k log (p− k) for some ǫ > 0, and with δ > 0
chosen sufficiently small, we have P[maxj∈Sc |V a

j | ≥ (1 − δ)ρn] → 0 as claimed.
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3.3 Proof of Lemma 4

Defining the orthogonal projection matrix Π⊥
S := In×n −XS(XT

SXS)−1XT
S , we then have

P[max
j∈Sc

|V b
j | ≥ δρn] = P[max

j∈Sc

∣∣XT
j Π⊥

S (W/n)
∣∣ ≥ δρn]

≤ (p − k) P

[∣∣XT
1 Π⊥

S (W/n)
∣∣ ≥ δρn

]
. (24)

Recall from equation (23) the representation Xℓ1 = HℓjZℓj, where Hℓj is Bernoulli with pa-
rameter γ, and Zℓj ∼ N(0, 1

γ
) is Gaussian. The variable

∑n
ℓ=1Hℓj is binomial; define the following

event

T :=

{
1

n

∣∣
n∑

ℓ=1

Hℓj − γn
∣∣ ≤ 1

2
√
k

}
.

From the Hoeffding bound (see Lemma 7), we have P[T c] ≤ 2 exp(− n
2k

). Using this representation
and conditioning on T , we have

P

[∣∣XT
j Π⊥

S (W/n)
∣∣ ≥ δρn

]
≤ P

[
∣∣ 1
n

n∑

ℓ=1

HℓjZℓjΠ
⊥
S (W )ℓ

∣∣ ≥ δρn | T
]

+ P[T c]

≤ P



∣∣ 1
n

n(γ+ 1

2
√

k
)∑

ℓ=1

ZℓjΠ
⊥
S (W )ℓ

∣∣ ≥ δρn


+ 2exp(− n

2k
),

where we have assumed without loss of generality that the first n(γ + 1
2
√

k
) elements of H are

non-zero. Since Π⊥
S is an orthogonal projection matrix, we have ‖Π⊥

S (W )‖2 ≤ ‖W‖2, so that

P

[∣∣XT
j Π⊥

S (W/n)
∣∣ ≥ δρn

]
≤ P



∣∣ 1
n

n(γ+ 1

2

√
k
)∑

ℓ=1

ZℓjWℓ

∣∣ ≥ δρn


+ 2exp(− n

2k
), (25)

Conditioned on W , the random variable Mj := 1
n

∑n(γ+ 1

2
√

k
)

ℓ=1 ZℓjWℓ is zero-mean Gaussian with
variance

ν(W ; γ) :=
1

n2γ

n(γ+ 1

2

√
k
)∑

ℓ=1

W 2
ℓ .

For some δ1 > 0, define the event

T2(δ1) :=

{
ν(W ; γ) ≤ (1 + δ1)

σ2

nγ2
(γ +

1

2
√
k
)

}
.

Note that E[ν(W ; γ)] = σ2

nγ2 (γ + 1
2
√

k
). Since γ

σ2

∑n(γ+ 1

2

√
k
)

ℓ=1 W 2
ℓ is χ2 with d = n(γ + 1

2
√

k
) degrees

of freedom, using χ2-tail bounds (see Appendix A), we have

P[(T2(δ1))
c] ≤ exp

(
−n(γ +

1

2
√
k
)
3δ21
16

)
.
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Now, by conditioning on T2(δ1) and its complement and using tail bounds on Gaussian variates
(see Appendix A), we obtain

P



∣∣ 1
n

n(γ+ 1

2

√
k
)∑

ℓ=1

ZℓjWℓ

∣∣ ≥ δρn


 ≤ P



∣∣ 1
n

n(γ+ 1

2

√
k
)∑

ℓ=1

ZℓjWℓ

∣∣ ≥ δρn | T2(δ1)


+ P[(T2(δ1))

c]

≤ 2 exp

(
− nγ2(δ2ρ2

n)

2σ2(1 + δ1)(γ + 1
2
√

k
)

)
+

exp

(
−n(γ +

1

2
√
k
)
3δ21
16

)
. (26)

Finally, putting together the pieces from equations (26), (25), and equation (24), we obtain
that P[maxj∈Sc |V b

j | ≥ δρn] is upper bounded by

(p− k)

{
2 exp(− n

2k
) + 2 exp

(
− nγ2(δ2ρ2

n)

2σ2(1 + δ1)(γ + 1
2
√

k
)

)
+ exp

(
−n(γ +

1

2
√
k
)
3δ21
16

)}
.

The first term goes to zero since n > (2 + ǫ)k log(p − k). The second term goes to zero because

eventually γ2

γ+ 1

2
√

k

> γ
2 (because Condition (8c) implies that γ

√
k → ∞), and Conditon (8a) implies

that Cnγρ2
n − log (p− k) → ∞. Our choice of n and Condition (8c) (which implies that γk → ∞)

is enough for the third term goes to zero.

3.4 Proof of Lemma 5

We first observe that conditioned on XS , each Ui is Gaussian with mean and variance:

mi := E[Ui | XS ] = eTi
( 1

n
XT

SXS

)−1[− ρn
~1
]
,

ψi := var[Ui | XS ] =
σ2

γn
eTi
( 1

n
XT

SXS

)−1
ei

Define the upper bounds

m∗ := ρn(1 +
√
k O(

1

γ

√
max

{
log (k)

k log (p− k)
,
log log(p− k)

log(p− k)

}
))

ψ∗ :=
σ2

γn

[
1 −O(

1

γ

√
max

{
log (k)

k log (p − k)
,
log log(p − k)

log(p− k)

}
)

]−1

and the following event

T (m∗, ψ∗) := {max
i∈S

|mi| ≤ m∗ and max
i∈S

|ψi| ≤ ψ∗}.

Conditioning on T and its complement, we have

P[(E(U))c] = P[
1

βmin
max
i∈S

Ui| > 1]

≤ P[
1

βmin
max
i∈S

|Ui| > 1 | T (m∗, ψ∗)] + P[(T (m∗, ψ∗))c].

11



Applying Lemma 10 with t = 1 and θ = k, we have P[(T (m∗, ψ∗))c] ≤ kO(k−2).
We now deal with the first term. Letting Yi ∼ N(0, ψi), and using T as shorthand for the event

T (m∗, ψ∗), we have

P[
1

βmin
max
i∈S

|Ui| > 1 | T ] = E

{
P
[
max
i∈S

|Ui| > βmin | XS ,T
]}

≤ E

{
P
[
max
i∈S

(
|mi| + |Yi|

)
> βmin | XS ,T

]}

≤ E

{
P
[
m∗ + max

i∈S
|Yi| > βmin | XS ,T

]}

= E

{
P
[ 1

βmin
max
i∈S

|Yi| > 1 − m∗

βmin
| XS ,T

]}
.

Condition (8b) implies that m∗

βmin
→ 0, so that it suffices to upper bound

E

{
P
[ 1

βmin
max
i∈S

|Yi| >
1

2
| XS ,T

]}
≤ E

{
k P[|Y ∗| ≥ βmin

2
| XS ,T ]

}

≤ 2k exp

(
−β

2
min

8ψ∗

)
.

where Y ∗ ∼ N (0, ψ∗), and we have used standard Gaussian tail bounds (see Appendix A).
It remains to verify that this final term converges to zero. Taking logarithms and ignoring

constant terms, we have

log (k)(1 − β2
min

log(k) 8ψ∗ ) = log (k)


1 −

β2
minγn

(
1 −O( 1

γ

√
max

{
log (k)

k log (p−k) ,
log log(p−k)

log(p−k)

}
)

)

8σ2 log k


 .

We would like to show that this quantity diverges to −∞. Condition (8c) implies that

1

γ

√
max

{
log (k)

k log (p− k)
,
log log(p− k)

log(p − k)

}
→ 0.

Hence, it suffices to show that log k
(
1 − β2

minγn

16σ2 log k

)
diverges to −∞. We have

log(k)

(
1 − β2

minγn

16 log(k)

)
= log(k) (1 − β2

min

ρ2
n

γnρ2
n

16σ2 log(k)
)

= log(k) (1 − β2
min

ρ2
n

γnρ2
n

16σ2 log(p− k)

log(p − k)

log (k)
)

Condition (8b) implies that
β2

min

ρ2
n

→ ∞ and Condition (8a) states that γnρ2
n

log(p−k) → ∞. In our

observation model, k ≤ p
2 , and so the third term is greater than one.

Therefore, we have that P[E(U)c] tends to zero.
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4 Experimental Results

In this section, we provide some experimental results to illustrate the claims of Theorem 1. We
consider two different sparsity regimes, namely linear sparsity (k = αp) and polynomial sparsity
(k =

√
p), and we allow γ to converge to zero at some rate.

For all experiments, the additive noise variance is set to σ2 = 0.0625 and we fix the vector β∗

by setting the first k entries are set to one, and the remaining entries to zero. There is no loss of
generality in fixing the support in this way, since the ensemble in invariant under permutations.

Based on Lemma 2, it suffices to simulate the random variables {V a
j , V

b
j , j ∈ Sc} and {Ui, i ∈ S},

and then check the equivalent conditions (17a) and (17b). In all cases, we plot the success proba-
bility P[S(β̂) = S(β∗)] versus the control parameter θ(n, p, k) = n

2k log(p−k) . Note that Theorem 1
predicts that the Lasso should transition from failure to success for θ ≈ 1.

In Figure 1, the empirical success rate of the Lasso is plotted against the control parame-
ter θ(n, p, k) = n

2k log(p−k) . Each panel shows three curves, corresponding to the problem sizes

p ∈ {512, 1024, 2048}, and each point on the curve represents the average of 100 trials. For the

experiments in Figure 1, we set γ = 0.5 log(p−k)√
p−k

, which converges to zero at a rate slightly faster

than that guaranteed by Theorem 1. Nonetheless, we still observe the ”stacking” behavior around
the predicted threshold θ∗ = 1.
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Figure 1. Plots of the success probability P[Ŝ = S] versus the control parameter θ(n, p, k) =
n

k log(p−k) for γ-sparsified ensembles, with decaying measurement sparsity γ = .5 log (p−k)
√

p−k
. (a) Poly-

nomial signal sparsity k = O(
√
p). (b) Linear signal sparsity k = Θ(p).

5 Discussion

In this paper, we have studied the problem of recovery the support set of a sparse vector β∗ based
on noisy observations. The main result is to show that it is possible to “sparsify” standard dense
measurement matrices, so that they have a vanishing fraction of non-zeroes per row, while retaining
the same sample complexity (number of observations n) required for exact recovery. We also showed

13



that under the support recovery metric and in the presence of noise, no method can succeed without
the number of non-zeroes per column tending to infinity. See also the paper [22] for complementary
results on the information-theoretic scaling of sparse measurement ensembles.

The approach taken in this paper is to find rates which γ (as a function of n, p, k) can safely tend
towards zero while maintaining the same statistical efficiency as dense random matrices. In various
practical settings [21], it may be preferable to make the measurement ensembles even sparser at
the cost of taking more measurements n and thus decreasing efficiency relative to dense random
matrices. A natural question is the sample complexity n(γ, p, k) in this regime as well. Finally, this
work has focused only on a randomly sparsified matrices, as opposed to particular sparse designs
(e.g., based on LDPC or expander-type constructions [7, 16, 23]). Although our results imply that
exact support recovery with noisy observations is impossible with bounded degree designs, it would
be interesting to examine the trade-off between other loss functions (e.g, ℓ2 reconstruction error)
and sparse measurement designs.
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A Standard concentration results

In this appendix, we collect some tail bounds used repeatedly throughout this paper.

Lemma 7 (Hoeffding bound [9]). Given a binomial variate Z ∼ Bin(n, γ), we have for any δ > 0

P[|Z − γn| ≥ δn] ≤ 2 exp
(
− 2nδ2

)
.

Lemma 8 (χ2-concentration [10]). Let X ∼ χ2
m be a chi-squared variate with m degrees of freedom.

Then for all 1
2 > δ ≥ 0, we have

P[X −m ≥ δm] ≤ exp

(
− 3

16
mδ2

)
.

We will also find the following standard Gaussian tail bound [11] useful:

Lemma 9 (Gaussian tail behavior). Let V ∼ N(0, σ2) be a zero-mean Gaussian with variance σ2.

Then for all δ > 0, we have

P[|V | > δ] ≤ 2 exp
(
− δ2

2σ2

)
.

B Convex optimality conditions

B.1 Proof of Lemma 2

Let f(β) := 1
2n
‖Y −Xβ‖2

2 + ρn‖β‖1 denote the objective function of the Lasso (4). By standard

convex optimality conditions [15], a vector β̂ ∈ R
p is a solution to the Lasso if and only if 0 ∈ R

p

is an element of the subdifferential of f(β) at β̂. These conditions lead to

1

n
XT (Xβ̂ − Y ) + ρnẑ = 0,

14



where the dual vector ẑ ∈ R
p is an element of the subdifferential of the ℓ1-norm, given by

∂‖β̂‖1 =
{
z ∈ R

p | zi = sign(β̂i) if β̂i 6= 0, zi ∈ [−1, 1] otherwise
}
.

Now suppose that we are given a pair (β̂, ẑ) ∈ R
p × R

p that satisfy the assumptions of
Lemma 2. Condition (12) is equivalent to (β̂, ẑ) satisfying the zero subgradient condition. Condi-
tions (13a), (13c) and (13d) ensure that ẑ is an element of the subdifferential of the ℓ1-norm at β̂.
Finally, conditions (13b) and (13d) ensure that β̂ correctly specifies the signed support.

It remains to verify that β̂ is the unique optimal solution. By Lagrangian duality, the Lasso
problem (4) (given in penalized form) can be written as an equivalent constrained optimization
problem over the ball ‖β‖1 ≤ C(ρn), for some constant C(ρn) < +∞. Equivalently, we can
express this single ℓ1-constraint as a set of 2p linear constraints ~vTβ ≤ C, one for each sign vector
~v ∈ {−1,+1}p. The vector ẑ can be written as a convex combination ẑ =

∑
~v α

∗
~v~v, where the

weights α∗
~v are non-negative and sum to one. By construction of β̂ and ẑ, the weights α∗ form an

optimal Lagrange multiplier vector for the problem. Consequently, any other optimal solution—say
β̃—must also minimize the associated Lagrangian

L(β;α∗) = f(β) +
∑

~v

α∗
~v

[
~vTβ − C

]
,

and satisfy the complementary slackness conditions α∗
~v

(
~vT β̃ −C

)
= 0. Note that these comple-

mentary slackness conditions imply that ẑT β̃ = C. But this can only happen if β̃j = 0 for all indices

where |ẑj | < 1. Therefore, any optimal solution β̃ satisfies β̃Sc = 0. Finally, given that all optimal
solutions satisfy βSc = 0, we may consider the restricted optimization problem subject to this set
of constraints. If the Hessian submatrix Σ̂SS is strictly positive definite, then this sub-problem is
strictly convex, so that β̂ must be the unique optimal solution, as claimed.

B.2 Derivation of {V a
j , V b

j , Ui}
In this appendix, we derive the form of the {V a

j , V
b
j } and {Ui} variables defined in equations (16a)

through (16c). We begin by writing the zero sub-gradient condition in a block-form, and substi-
tuting the relations specified in conditions (13a) and (13b):

[
Σ̂SS Σ̂SSc

Σ̂ScS Σ̂ScSc

][
β̂S − β∗S

0

]
+

[
1
n
XT

SW
1
n
XT

ScW

]
+ ρn

[
sign(β∗S)
ẑSc

]
= 0.

By solving the top block, we obtain

U := β̂S − β∗S = −Σ̂−1
SS

{
1

n
XT

SW + ρn sign(β∗S)

}
.

By back-substituting this relation into the lower block, we can solve explicitly for ẑSc ; doing so
yields that ẑSc = V a + V b, where the (p − k)-vectors are defined in equations (16a) and (16b).
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C Proof of Lemma 6

Let Z ∈ R
n×n denote a n× n matrix, for which the off-diagonal elements Zij = 0 for all i 6= j, and

the diagonal elements Zii ∼ Ber(γ) are i.i.d. With this notation, we can write H
d
= Zh. Using the

definition (21) of h, we have

‖H ‖2
2 = ‖Zh‖2

2

= ‖Z XS

n
(Σ̂SS)−1~1‖2

2

= ~1T (Σ̂SS)−1(Z
XS

n
)T (Z

XS

n
)(Σ̂SS)−1~1

=
γ

n
~1T (Σ̂SS)−1

{
1

γn

n∑

i=1

I [Zii = 1] xix
T
i

}

︸ ︷︷ ︸
(Σ̂SS)−1~1

Γ(Z)

where xi is the ith row of the matrix XS . From Lemma 10 with θ = 1 and t = (p− k), we have

P

[
|||Σ̂−1

SS |||2 ≥ f1(p, k, γ)
]

≤ 1

(p− k)2
(27)

where f1(p, k, γ) :=

(
1 −O

(
1
γ

√
max

{
1
k
, log log(p−k)

log(p−k)

}))−1

.

Next we control the spectral norm of the random matrix Γ(Z), conditioned on the total number∑n
i=1 Zii of non-zero entries. In particular, applying Lemma 10 with t = p− k, and θ = 1, we have

P

[
‖ΓZ ‖2 ≥ z

nγ

[
1 +

C
z
n

√
max

{
1

k z
n

,
log z

n
log(p− k)

z
n

log(p− k)

}]
|

n∑

i=1

Zii = z

]
≤ 1

(p− k)2
, (28)

as long as k z
n
→ ∞.

The next step is to deal with the conditioning. Define the event

T (k, γ) :=

{
Z | γ − 1√

2k
≤ 1

n

n∑

i=1

Zii ≤ γ +
1

2
√
k

}
.

Defining the function

f2(p, k, γ) :=

(
1 +

1

2
√
kγ

) [
1 + O

(1

γ

√√√√max

{
1

k(γ − 1
2
√

k
)
,
log (γ + 1

2
√

k
) log(p− k)

(γ − 1
2
√

k
) log(p− k)

})]
,

we have

P[|||Γ(Z)|||2 ≥ f2(p, k, γ)] ≤ P[|||Γ(Z)|||2 ≥ f2(p, k, γ) | T (k, γ)] + P[(T (k, γ))c]

≤ exp(−2 log(p− k)) + 2 exp(− n

2k
)

≤ 3 exp(−min{2 log(p− k),
n

2k
}), (29)
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where we have used the bound (28), and the Hoeffding bound (see Lemma 7).
Combining the bounds (27) and (29), we conclude that as long as γk → ∞, then:

P

[
|||Σ̂−1Γ(Z)Σ̂−1|||2 ≥ f2

1 f2

]
≤ 4 exp(−min{2 log(p − k),

n

2k
}).

Since ‖~1‖2 =
√
k, we have

P[‖H‖2
2 ≥ γk

n
f2
1 f2] ≤ 4 exp(−min{2 log(p− k),

n

2k
}).

To conclude the proof, we note that assumption (8c) implies that both f1(p, k, γ) and f2(p, k, γ)
converge to 1 as (p, k, γ) scale. In particular, for any fixed δ > 0, we have f2

1 f2 < (1 + δ) for (p, k)
sufficiently large, so that Lemma 6 follows.

D Singular values of sparsified matrices

Let θ(p, k) ∈ (0, 1] and t(p, k) ∈ {1, 2, 3, . . .} be functions. Let X be an θn× k random matrix with
i.i.d. entries Xij distributed according to the γ-sparsified ensemble (6).

Lemma 10. Suppose that n ≥ (2 + ν)k log (p − k) for some ν > 0. If as k, p− k,→ ∞

T (γ, k, p, θ, t) :=
1

γ

√
max

{
log (t)

θk log (p− k)
,
log[θ log(p− k)]

θ log(p− k)

}
−→ 0

then for some constant C ∈ (0,∞), we have

P

[
sup

‖u‖2=1

∣∣ 1√
θn

‖Xu‖2 − 1
∣∣ ≥ C T (γ, k, p, θ, t)

]
≤ O(

1

t2
), (30)

Note that Lemma 10 with θ = 1 and t = p − k implies that Σ̂ = 1
n
XT

SXS is invertible with
probability greater than 1 −O( 1

(p−k)2 ), there establishing Lemma 1. Other settings in which this

lemma is applied are (θ, t) = (γ, p− k) and (θ, t) = (1, k). The remainder of this section is devoted
to the proof of Lemma 10.

D.1 Bounds on expected values

Let X ∈ R
θn×k be a random matrix with i.i.d. entries, of the sparsified Gaussian form

Xij ∼ (1 − γ)δX(0) + γN(0,
1

γ
).

Note that E[Xij] = 0 and var(Xij) = 1 by construction.
We follow the proof technique outlined in [19]. We first note the tail bound:

Lemma 11. Let Y1, . . . , Yd be i.i.d. samples of the γ-sparsified ensemble. Given any vector a ∈ R
d

and t > 0, we have P[
∑d

i=1 aiYi > t] ≤ exp
(
− γt2

2‖a‖2

2

)
.
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To establish this bound, note that each Yi is dominated (stochastically) by the random variable
Z ∼ N(0, 1

γ
). In particular, we have

MYi
(λ) = E[exp(λYi)] = (1 − γ) + γE[exp(λZ)] ≤ exp(λ2/2γ).

Now let us bound the maximum singular value sk(X) of the random matrix X. Letting Sd−1

denote the ℓ2 unit ball in d dimensions, we begin with the variational representation

sk(X) = max
u∈Sk−1

‖Xu‖

= max
v∈Sθn−1

max
u∈Sk−1

vTXu.

For an arbitrary ǫ ∈ (0, 1), we can find ǫ-covers (in ℓ2 norm) of Sθn−1 and Sk−1 withMθn(ǫ) = (3/ǫ)θn

and Mk(ǫ) = (3/ǫ)k points respectively [12]. Denote these covers by Cθn(ǫ) and Ck(ǫ) respectively.
A standard argument shows that for all ǫ ∈ (0, 1), we have

‖X‖2 ≤ 1

(1 − ǫ)2
max

uα∈Ck(ǫ)
max

vβ∈Cθn(ǫ)
vT
βXuα.

Let us analyze the maximum on the RHS: for a fixed pair (u, v) in our covers, we have

uTXv =
θn∑

i=1

k∑

j=1

Xijuivj .

Let us apply Lemma 11 with d = θnk, and weights aij = uivj. Note that we have

‖a‖2
2 = =

∑

i,j

a2
ij =

∑

i

u2
i (
∑

j

v2
j ) = 1

since each u and v are unit norm. Consequently, for any fixed u, v in the covers, we have

P[uTXv > t] ≤ exp

(
−γt

2

2

)

By the union bound, we have

P

[
max

uα∈Ck(ǫ)
max

vβ∈Cθn(ǫ)
vT
βXuα > t

]
≤ Mk(ǫ)Mθn(ǫ) exp

(
−γt

2

2

)

≤ exp

(
(k + θn) log(3/ǫ) − γt2

2

)
.

By choosing ǫ = 1
2 and t =

√
4
γ
(k + θn) log 6, we can conclude that

s1(X)/
√
θn = ‖X‖2/

√
θn ≤ C

√
1

γ

√
1 +

k

θn

w.p. 1 − exp(−(k + θn) log 6). Note that

k

θn
= O

(
1

(2 + ν)θ log(p− k)

)
→ 0,
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since log[θ log(p−k)]
θ log (p−k) → 0, which implies that θ log (p− k) → ∞.

Consequently, we can conclude that

‖X‖2/
√
θn ≤ O(1/

√
γ)

w.p. one as θn, k → ∞. Although this bound is essentially correct for a N (0, 1
γ
) ensemble with γ

fixed, it is very crude for the sparsified case with γ → 0, but will useful in obtaining tighter control
on s1(X) and sk(X) in the sequel.

D.2 Tightening the bound

For a given u ∈ Sk−1, consider the random variable ‖Xu‖2
2 :=

∑θn
i=1(Xu)

2
i . We first claim that

each variate Zi = (Xu)2i is subexponential:

Lemma 12. For any t > 0, we have P[Zi > t] ≤ 2 exp
(
−γt

2

)
.

Proof. We can write (Xu)i =
∑k

j=1Xijuj where ‖u‖2 = 1. Hence, from Lemma 11, we have

P[

k∑

j=1

Xijuj > δ] ≤ exp(−γδ
2

2
).

By symmetry, we have P[Zi > t] = P[|∑k
j=1Xijuj | >

√
t] ≤ 2 exp(−γt

2 ) as claimed.

Now consider the event

P

[∣∣∣∣
‖Xu‖2

2

θn
− 1

∣∣∣∣ > δ

]
= P

[∣∣∣∣∣

θn∑

i=1

Zi − E[

θn∑

i=1

Zi]

∣∣∣∣∣ > δθn

]

We may apply Theorem 1.4 of Vershynin [19] with b = 8θn/γ2 and d = 2/γ. Hence, we have
4b/d = 16θn/γ, which grows at least linearly in θn. Hence, for any δ > 0 less than 16θn/γ (we will
in fact take δ → 0), we have

P

[∣∣∣∣
‖Xu‖2

2

θn
− 1

∣∣∣∣ > δ

]
≤ 2 exp

(
− δ2(θn)2

256θn/γ2

)
= 2exp

(
−γ

2 δ2θn

256

)
.

Now take an ǫ-cover of the k-dimensional ℓ2 ball, say with N(ǫ) = (3/ǫ)k elements. By union
bound, we have

P

[
inf

i=1,...,N(ǫ)

‖Xui‖2
2

θn
< 1 − δ

]
≤ exp

(
−γ

2 δ2θn

256
+ k log(3/ǫ)

)

Now set

δ =

√
2

γ

√
256f(k, p)k log(3/ǫ)

θn
,

where f(k, p) ≥ 1 is a function to be specified. Doing so yields that the infimum is bounded by
1 + δ with probability 1 − exp(−kf(k, p) log(3/ǫ)). (Note that the choice of f(k, p) influences the
rate of convergence, hence its utility.)
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For any element u ∈ Sk−1, we have some ui in the cover, and moreover

∣∣‖Xu‖2 − ‖Xui‖2
∣∣ = |{‖Xu‖ − ‖Xui‖} {‖Xu‖ + ‖Xui‖}|

≤ |{‖Xu‖ − ‖Xui‖}| (2‖X‖)
≤ (‖X‖ ‖u− ui‖) (2‖X‖) ≤ 2‖X‖2ǫ

From our earlier result, we know that ‖X‖2 = O(θn/γ) with probability 1 − exp(log 6(k + θn)).
Putting together the pieces, we have that the bound

1

θn
inf

u∈Sk−1

‖Xu‖2 ≥ 1 + δ +C2ǫ/γ = 1 +
2

γ

√
32f(k, p)k log(3/ǫ)

θn
+
C2

γ
ǫ,

for some constant C2 > 0 independent of θn, k, γ, holds with probability at least

min{1 − exp(−kf(k, p) log(3/ǫ)), 1 − exp(− log 6(k + θn))}, (31)

Now set ǫ = 3k/θn, so that we have w.h.p.

1

θn
inf

u∈Sk−1

‖Xu‖2 ≥ 1 − C3

γ

√
f(k, p)

k

θn
log(

θn

k
)

(Note that we have utilized the fact that both
√
f(k, p) k

θn
log(θn

k
) and k

θn
→ 0, but the former more

slowly than the latter.)
Since k/θn → 0, this quantity will go to zero, as long as f(k, p) remains fixed, or scales slowly

enough. To understand how to choose f(k, p), let us consider the rate of convergence (31). To
establish the claim (30), we need rates fast enough to dominate a log(t) term in the exponent,
which guides our choice of f(k, p). Recall that we are seeking to prove a scaling of the form
n = Θ(k log(p − k)), so that our requirement (with ǫ = 3k/θn = 3

θ log(p−k)) is equivalent to the
quantity

kf(k, p) log(3/ǫ) − log(t) = kf(k, p) log[θ log(p− k)] − log(t)

tending to infinity. First, if k > log(t)
log[θ log(p−k)] , then we may simply set f(k, p) = 2. Otherwise, if

k ≤ log(t)
log θ log(p−k) , then we may set

f(k, p) = 2
log(t)

k log θ log(p− k)
≥ 1.

If f(k, p) = 2, then we have

f(k, p)
k

θn
log(

θn

k
) = 2

log[θ log(p− k)]

θ log(p− k)
→ 0.

In the other case, if k ≤ log(t)
log θ log(p−k) , we have

f(k, p)
k

θn
log(

θn

k
) ≤ 2

log(t)

k log θ log(p − k)

1

θ log(p− k)
log θ log(p− k) =

2

k

log t

θ log (p− k)
→ 0,
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which again follows from the assumptions in Lemma 10.
Recalling the definition of T (γ, k, p, θ, t) from Lemma 10, we can summarize both cases can be

summarized cleanly by saying that with probability greater than 1 − 1
t2

:

1

θn
inf

u∈Sk−1

‖Xu‖2 ≥ 1 − C

γ

√
max

{
1

k

log t

θ log (p − k)
,
log θ log(p− k)

θ log(p− k)

}

= 1 − CT (γ, k, p, θ, t)

Because T (γ, k, p, θ, t) → 0, for all p ≥ p∗1, k ≥ k∗1 , CT (γ, k, p, θ, t) < 1. Thus we can take square
root of both sides and apply the identity

√
1 + x = 1+ x

2 +o(x) (valid for |x| < 1) to conclude that,

with probability greater than 1 − C1(p∗
1
,k∗

1
)

t2
:

1√
θn

inf
u∈Sk−1

‖Xu‖ ≥ 1 − C

2
T (γ, k, p, θ, t) + o(T (γ, k, p, θ, t)),

As T (γ, k, p, θ, t) → 0, for all k ≥ k∗2, p ≥ p∗2 we have that |o(T (γ, k, p, θ, t))| < C
4 T (γ, k, p, θ, t)

Thus, with probability greater than 1 − C2(p∗
1
,k∗

1
,p∗

2
,k∗

2
)

t2
:

1√
θn

inf
u∈Sk−1

‖Xu‖ ≥ 1 − 3C

4
T (γ, k, p, θ, t),

Note that this same process can be repeated to bound the maximum singular value, yielding
the following result:

1√
θn

sup
u∈Sk−1

‖Xu‖ ≤ 1 +
3C

4
T (γ, k, p, θ, t),

Combining these two bounds, we have proved Lemma 10.
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