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Abstract: We study the model selection property of the Elastic Net. In the classical

settings when p (the number of predictors) and q (the number of predictors with

non-zero coefficients in the true linear model) are fixed, Yuan and Lin (2007) give a

necessary and sufficient condition for the Elastic Net to consistently select the true

model. They showed that it consistently selects the true model if and only if there

exist suitable sequences λ1(n) and λ2(n) that satisfy EIC (which is defined later in

the paper). Here we study the general case when p, q, and n all go to infinity. For

general scalings of p, q, and n, when gaussian noise is assumed, sufficient conditions

are given such that EIC guarantees the Elastic Net’s model selection consistency.

We show that to make these conditions hold, n should grow at a rate faster than

q log(p− q). We compare the variable selection performance of the Elastic Net with

that of the Lasso. Through theoretical results and simulation studies, we provide

insights into when the Elastic Net can consistently select the true model even when

the Lasso cannot. We also point out through examples that when the Lasso cannot

select the true model, it is very likely that the Elastic Net cannot select the true

model either.

Key words and phrases: Lasso; Elastic Net; Model selection consistency; Irrepre-

sentable Condition; Elastic Irrepresentable Condition.

1. Introduction

Regularization has been a popular technique for model fitting in statistical

learning when the number of predictors p is large compared with the number

of observations n. Regularization methods have been shown to have a better

accuracy of prediction on future data (Tikhonov (1943); Hoerl and Kennard

(1970)). The Lasso (Tibshirani (1996)) which regularizes with an L1 penalty, can

also generate sparse models which are more interpretable. The Lasso provides a

computationally feasible way for model selection (Osborne, Presnell, and Turlach

(2000); Efron, Hastie, and Tibshirani (2004); Rosset (2004); Zhao and Yu (2007)).

But it does not perform well when the predictors are highly correlated or the
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number of predictors is much greater than the number of observations. Zou and

Hastie (2005) proposed the Elastic Net, which also has the property of sparsity,

to solve the above problems. Zou and Hastie (2005) state that the Elastic Net

regularization “is like a stretchable fishing net that retains all the big fish” and

that “Simulation studies and real data examples show that the Elastic Net often

outperforms the Lasso in terms of prediction accuracy”.

In this paper, we intend to understand the model selection performance

of the Elastic Net, relative to the Lasso. We show that the Elastic Net can

select the true model consistently when the sparsity measure, the total number

of predictors, and the sample size all go to infinity. We use both theoretical

results and simulation studies to shed light on when and why the Elastic Net can

outperform the Lasso for model selection.

Assume our data consists of a design matrix X ∈ Rn×p and the response

vector Y ∈ Rn. They follow a linear regression model

Y = Xβ + ǫ, (1.1)

where ǫ = (ǫ1, . . . , ǫn)T is a vector of i.i.d. additive Gaussian noise with mean 0

and variance σ2. This condition can be weakened to some moments condition

(Zhao and Yu (2006)) or to some tail probability function condition (Ravikumar,

Wainwright, Raskutti, and Yu (2008)). To simplify the proofs, we only consider

Gaussian noise in the paper. Throughout, the design matrix X is treated as

a deterministic (non-random) matrix. For the random case all the conclusions

can be obtained by conditioning on X. β is the vector of model coefficients.

The model is assumed to be “sparse”, i.e. most of the regression coefficients β

are exactly zero, corresponding to predictors that are irrelevant to the response.

Without loss of generality, assume the first q elements of vector β are non-zeroes.

Let β(1) = (β1, . . . , βq) and β(2) = (βq+1, . . . , βp), then β(1) 6= 0 element-wise and

β(2) = 0.

Write X(1) and X(2) as the first q and the last p−q columns of design matrix

X, respectively, and let C(n) = 1
n
XT X. For simplicity, C(n) is denoted by C,

which is a function of n. C can be expressed in the block-wise form:

C =

(
C11 C12

C21 C22

)
,
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where C11 = 1
n
XT

(1)X(1),C12 = 1
n
XT

(1)X(2),C21 = 1
n
XT

(2)X(1), and C22 = 1
n
XT

(2)X(2).

The näıve Elastic Net estimate β̂ is

β̂(näıve) = arg min
β

||Y − Xβ||22 + λ2||β||22 + λ1||β||1, (1.2)

where parameters λ1 and λ2 control the amount of regularization applied to the

estimate. λ2 = 0 leads the näıve Elastic Net estimate back to the Lasso estimate.

Since the Elastic Net estimate β̂(Elastic Net) is (1 + λ2)β̂(näıve), it selects

the same model as the näıve Elastic Net estimate. In this paper, we call the

näıve Elastic Net estimate (β̂) the Elastic Net estimate.

Recent work (Zhao and Yu (2006); Zou (2006); Yuan and Lin (2007); Mein-

shausen and Yu (2008)) has been precisely on the model selection consistency

of the Lasso. It has been shown that in the classical case when p and q are

fixed, a simple condition, called the Irrepresentable Condition on the generating

covariance matrices, is necessary and sufficient for the Lasso’s model selection

consistency. IC is defined in Zhao and Yu (2006) as follows.

Irrepresentable Condition (IC). There exists a positive constant η > 0

(which does not change with n), with

∥∥∥∥C21C
−1
11

(
sign(β(1))

) ∥∥∥∥
∞

≤ 1 − η. (1.3)

More precise results for the p ≫ n case are in Wainwright (2007), the first to

give conditions for the Lasso’s model selection consistency in the case of general

scalings of p, q, and n. Yuan and Lin (2007) concentrate mainly on the non-

negative garotte, but give a necessary and sufficient condition for the Elastic Net

to select the true model in the classical settings when p and q are fixed. EIC is

defined as follows.

Elastic Irrepresentable Condition (EIC). There exists a positive con-

stant η > 0 (which does not change with n), with

∥∥∥∥C21(C11 +
λ2

n
I)−1

(
sign(β(1)) +

2λ2

λ1
β(1)

)∥∥∥∥
∞

≤ 1 − η. (1.4)

Whether or not EIC holds depends on the data and the choice of parameters

λ1 and λ2. EIC is exactly IC when λ2 = 0 and C11 is invertible. EIC does not need

C11 to be invertible. If C11 is invertible, and λ2 is preselected and fixed, when λ1
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goes to ∞, as n goes to ∞, the Elastic Irrepresentable Condition reverts to the

Irrepresentable Condition. Generally speaking, if the Irrepresentable Condition

holds, then there exist λ1 > 0 and λ2 > 0 such that the corresponding Elastic

Irrepresentable Condition holds. The relationship between EIC and IC is further

studied in Section 3.

Here we analyze the model selection consistency of the Elastic Net for general

scalings of p, q, and n. The fixed p and q case is a special case. For the general

case, we give sufficient conditions on the relationship of p, q, and n such that EIC

guarantees the Elastic Net’s model selection consistency. We compare the model

selection performance of the Elastic Net with that of the Lasso. We show that

the Elastic Net can select the true model even when the Lasso cannot.

The rest of the paper is organized as follows. In Section 2, we give our main

results. For the general scalings of p, q, and n, conditions on the relationship

between p, q, and n are given such that EIC is sufficient for the Elastic Net to

select the true model. In Section 3, we compare the Elastic Net’s model selection

performance with the Lasso. Simulation studies are presented in Section 4 and

we conclude in Section 5. The longer proofs can be found in the Appendix.

2. Model Selection Consistency

We follow the notation and definitions of sign consistency as found in Zhao

and Yu (2006) and Wainwright (2007). Take β̂ =s β, if vector β̂ and the true

parameter β have the same sign element-wise.

Definition 1. Property R(X,β, ǫ, λ1, λ2): There exists an optimal solution

β̂(λ1, λ2), depending on the given parameters λ1 and λ2, for (1.2) with the prop-

erty β̂ =s β.

Definition 2. The Elastic Net estimate is Sign Consistent if there exists

λ̂1, λ̂2, both of which are functions of n and depend on the data, such that

lim
n→∞

P (β̂(λ̂1, λ̂2) =s β) = 1.

Note that the Elastic Net estimate β̂(λ̂1, λ̂2) is sign consistent if and only if

P [R(X,β, ǫ, λ̂1, λ̂2)] → 1 as n → ∞.

When p and q are fixed, Yuan and Lin (2007) have shown that the Elastic

Net consistently selects the true model if and only if there exist suitable sequences
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of λ1(n) and λ2(n) that satisfy EIC. We show that when p, q, and n all go to

infinity, under some conditions on the relationship between p, q, and n, EIC also

guarantees that the Elastic Net consistently selects the true model.

We first state necessary and sufficient conditions for property R(X,β, ǫ, λ1, λ2)

to hold; Lemma 1 is a consequence of KKT (Karush-Kuhn-Tucker) conditions.

Lemma 1. For any given λ1 > 0, λ2 > 0, and noise vector ǫ ∈ R
n, property

R(X,β, ǫ, λ1, λ2) holds if and only if

∣∣∣∣2X
T
(2)X(1)

(
XT

(1)X(1) + λ2I
)−1

[
XT

(1)ǫ −
λ1

2
sign(β(1)) − λ2β(1)

]
− 2XT

(2)ǫ

∣∣∣∣ ≤ λ1,

(2.1)

sign

((
XT

(1)X(1) + λ2I
)−1

[
XT

(1)X(1)β(1) + XT
(1)ǫ −

λ1

2
sign(β(1))

])
= sign(β(1)).

(2.2)

For shorthand, let
−→
b := sign(β(1)), and denote by ei the vector with 1 in

the ith position and zeroes elsewhere. For each index i ∈ S = {1, 2, . . . , q} and

j ∈ Sc = {q + 1, . . . , p}, let

Ui := eT
i

(
XT

(1)X(1) + λ2I
)−1

[
XT

(1)ǫ −
λ1

2

−→
b

]
, (2.3)

Vj := 2XT
j

{
X(1)

(
XT

(1)X(1) + λ2I
)−1

(
λ1

2

−→
b + λ2β(1))

−
[
X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1) − I

]
ǫ

}
. (2.4)

These random variables play an important role in our analysis. In particular,

condition (2.1) holds if and only if the event

M(V ) :=

{
max
j∈Sc

|Vj | ≤ λ1

}
(2.5)

holds. On the other hand, if we define ρ := min

∣∣∣∣
(
XT

(1)X(1) + λ2I
)−1 [

XT
(1)X(1)β(1)

]∣∣∣∣,
then the event

M(U) :=

{
max
i∈S

|Ui| < ρ

}
(2.6)

is sufficient to guarantee that condition (2.2) holds, if λ2 is chosen such that

sign

((
XT

(1)X(1) + λ2I
)−1

XT
(1)X(1)β(1)

)
= sign(β(1)). (2.7)
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Condition (2.7) holds, if λ2 is very small. Throughout this paper, we constrain

λ2 such that (2.7) holds.

In the zero-noise setting (ǫ = 0), the conditions in Lemma 1 reduce to

∣∣∣∣X
T
(2)X(1)

(
XT

(1)X(1) + λ2I
)−1

[
sign(β(1)) +

2λ2

λ1
β(1)

]∣∣∣∣ ≤ 1, (2.8)

sign

((
XT

(1)X(1) + λ2I
)−1

[
XT

(1)X(1)β(1) −
λ1

2
sign(β(1))

])
= sign(β(1)). (2.9)

When noises exist, under some conditions on the relationship between the

scalings of p, q and n, the Elastic Irrepresentable Condition is still sufficient for

the property of R(X,β, ǫ, λ1, λ2) to hold with probability tending to 1 as n → ∞.

Theorem 1. Suppose that Y = Xβ + ǫ, where each column of X is normalized

to l2-norm
√

n and ǫ ∼ N(0, σ2I). Assume EIC (1.4) holds. Consider q > 1 and

p− q > 1. If ρ := min

∣∣∣∣
(
C11 + λ2

n
I
)−1 [

C11β(1)

]∣∣∣∣, Cmin = Λmin(C11) + λ2
n

, where

Λmin(·) denotes the minimal eigenvalue, and λ1, λ2 are chosen such that

(a)
λ2
1

n log(p−q) → ∞,

(b) 1
ρ

{√
log q

nCmin
+ λ1

n

∥∥∥∥
(
C11 + λ2

n
I
)−1 −→

b

∥∥∥∥
∞

}
→ 0,

then P [R(X,β, ǫ, λ1, λ2)] → 1 as n → ∞.

A proof of Theorem 1 can be found in the Appendix.

Theorem 1 gives a result for general scalings of p, q, and n. In the classical

setting where p, q, and β are fixed, if C11 converges to a non-negative definite

matrix C0, suitable choice of λ2 makes ρ converge to a non-negative number ρ0.

Suppose ρ0 > 0, then (a) is equivalent to λ1/
√

n → ∞ and (b) is equivalent to

λ1/n → 0, if Cmin ≥ α for some α > 0.

Corollary 1. When p, q, and β are fixed, suppose that C11 converges to C0,

ρ0 > 0, and Cmin ≥ α for some α > 0, then EIC implies P [R(X,β, ǫ, λ1, λ2)] → 1

as n → ∞, if (a) λ1/
√

n → ∞, and (b) λ1/n → 0.

Note that λ1 =
√

n log n is a suitable choice for the fixed p and q case. A

similar conclusion is also reached in Meinshausen and Buhlmann (2006), Zhao
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and Yu (2006), Zou (2006), and Wainwright (2007) for the Lasso to select the

true model.

When all three parameters (n, p, q) go into infinity, suppose that Cmin ≥ α

for some α > 0, and ρ ≥ ρ0 for some ρ0 > 0. Then we have the following.

Corollary 2. EIC implies that the Elastic Net has sign consistency if

(a)
λ2
1

n log(p−q) → ∞, (b) log q
n

→ 0, and (c)
λ1

√
q

n
→ 0.

Proof. Note that

∥∥∥∥
(
C11 + λ2

n
I
)−1 −→

b

∥∥∥∥
∞

≤ C−1
min||

−→
b ||2 = C−1

min

√
q. So, conditions

(b) and (c) in Corollary 2 guarantee that condition (b) in Theorem 1 holds.

The conditions
λ2
1

n log(p−q)(= (
λ1

√
q

n
)2 × n

q log(p−q)) → +∞ and
λ1

√
q

n
→ 0 imply

that the number of observations n must grow at a rate faster than q log(p − q).

A suitable choice for λ1 is (
λ1

√
q

n
)2 = ( n

q log(p−q))
−α, for some 0 < α < 1, with

which we have λ1 = n1−α/2

q(1−α)/2(log(p−q))−α/2 .

3. Comparison with Lasso

As shown in Zou and Hastie (2005), the Elastic Net can select the “impor-

tant” variables for prediction and it often outperforms the Lasso in terms of

prediction accuracy. We have shown that in theory the Elastic Net can consis-

tently select the relevant predictors, under conditions stated in Theorem 1. In

this section, we compare the model selection performance of the Elastic Net with

that of the Lasso. Obviously when the Lasso selects the true model, the Elastic

Net can also select the true model. We also provide insights into when EIC is

weaker than IC and when the Elastic Net can consistently select the true model

even when the Lasso cannot.

Proposition 1. IC implies that for any λ1 > 0, there exists λ2, such that EIC

holds, but EIC does not imply IC.

This result is trivial, since λ2 = 0 or small λ2 > 0 leads EIC back to IC.

Proposition 1 suggests that when IC holds, under the conditions of Theorem

1, the Elastic Net can select the true model. From previous work (Wainwright

(2007)), under similar conditions, IC makes the Lasso select the true model.

So, the Elastic Net often outperforms the Lasso in terms of model selection

consistency. We have to point out that it may happen that in some situations



8 JINZHU JIA AND BIN YU

neither the Lasso nor the Elastic Net can select the true model, which can be

seen by simulations in Section 4.

An interesting question is under what conditions, the Elastic Net will do a

much better job than the Lasso for model selection. In other words, what prior

information about the model parameters would suggest that the Elastic Net will

select the true model while the Lasso will not? It is hard to answer this question

in general. But, in some situations, we can provide some insight into when EIC

holds while IC does not.

Consider the case p−q = 1, that is, there exists only one irrelevant predictor.

This is the simplest model selection problem, and we can give a simple necessary

and sufficient condition such that EIC holds.

First we give some regularity conditions on the model. These conditions are

easily fulfilled and they make our proof easier.

0 < Lmin ≤ Λ(C11) ≤ Lmax, (3.1)

‖β‖2 ≥ c1, for some constant c1 > 0, (3.2)

‖[C21]i‖2 ≥ c2, for some constant c2 > 0, (3.3)

where Λ(·) denotes the eigenvalues of a matrix, and [·]i denotes the ith row of

a matrix, i= 1, . . . , p − q. To simplify the proof, we consider β and C (and

correspondingly C11, C21) as fixed, and they don’t change with sample size n.

Theorem 2. Let (3.1), (3.2), and (3.3) hold, and suppose that p− q = 1. When

IC does not hold, for the sequence of λ1 with λ1
√

q/n → 0, there exists λ2 such

that EIC holds when n is very large, if and only if one of

C21C
−1
11 sign(β(1)) ≥ 1 and C21C

−1
11 β(1) < 0, (3.4)

C21C
−1
11 sign(β(1)) ≤ −1 and C21C

−1
11 β(1) > 0. (3.5)

A proof of Theorem 2 can be found in the Appendix.

When p − q ≥ 2, it is difficult to give a necessary and sufficient condition

such that EIC holds, but (3.4) and (3.5) are necessary conditions such that EIC

holds. We state it as a corollary of Theorem 2.

Corollary 3. Under (3.1), (3.2) and (3.3), suppose p − q > 1. When IC does

not hold, for a sequence of λ1 with λ1
√

q/n → 0, there exists λ2 such that EIC

holds when n is very large, only if, for all i = 1, . . . , p − q,
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[C21]iC
−1
11 β(1) < 0 when [C21]iC

−1
11 sign(β(1)) ≥ 1, (3.6)

[C21]iC
−1
11 β(1) > 0 when [C21]iC

−1
11 sign(β(1)) ≤ −1, (3.7)

Proof. This is a straightforward result of Theorem 2. We get this necessary result

from Theorem 2 by considering only one irrelevant variable (Xq+i) at a time.

Corollary 3 is useful to detect the case when neither the EIC nor the IC holds,

which suggests neither the Elastic Net nor the Lasso selects the true model.

4. Simulations

Zou and Hastie (2005) contain many experiments to show that the Elastic

Net performs much better than the Lasso, OLS and ridge regression in terms

of prediction accuracy, but they did not compare the model selection perfor-

mances between the Lasso and the Elastic net. Yuan and Lin (2007) also have

no example to show the differences of the performance on the model selection

consistency between the Lasso and the Elastic Net. In this section, simulations

are provided to do this comparison. When p ≫ n, especially when q > n,

the Lasso can select at most n variables before the model saturates (Zou and

Hastie (2005)). So, if q > n the lasso never selects the true model . We give

an example to show that the Elastic Net might be able to solve this kind of

problem. Here the R packages “lars” (Efron, Hastie and Tibshirani (2004);

http://cran.r- project.org/web/packages/lars/index.html) and “elasticnet” (Zou

and Hastie (2005); http://cran.r-project.org/web/packages/elasticnet/index.html)

are used to compute the Lasso and the Elastic Net solution paths.

Example 1. In this example, we want to illustrate that if p ≫ n, and EIC

holds, then conditions in Corollary 2 of Theorem 1 guarantee that the Elastic

Net can select the true model.

Set q = 50 and p = 52. From the comments after Corollary 2, n is supposed

to grow at a rate faster than q log(p − q), here 50 × log 2 = 35. So we chose

n = 46. The design matrix X was generated as N(0, Ip×p). We set λ2 = 0.01

and simulated X, that satisfied C21(C11 + λ2
n

)−1 ×1 < 1, 1 a column vector with

all entries 1. With β = [β(1), β(2)], β(1) a q−vector with all entries 1 and β(2) a

(p− q)−vector with all entries 0, since C21(C11 + λ2
n

)−1
(
sign(β(1)) + 2λ2

λ1
β(1)

)
=

(1 + 2λ2
λ1

)C21(C11 + λ2
n

)−1 × 1, there is some λ1 such that EIC holds. The true
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Figure 4.1: Elastic Net solution paths for p = 52, q = 50, n = 46. The solution corre-

sponding to the vertical line recovers exactly the first 50 predictors.

model is: Y = Xβ + 0.04 × ǫ. The Elastic Net was applied. Solution paths are

shown in Figure 4.1.

After examining the solutions, we see that the solution corresponding to

the vertical line in Figure 4.1 recovered exactly the first q non-zero predictors.

Theoretically, the Lasso can select at most n = 46 variables (Zou and Hastie

(2005)) and so does not perform well on these data. Applying the Lasso, we

found that it could select 45 variables at most.

Example 2. In this example, we compare the model selection performance

of the Lasso and the Elastic Net by simulation. From Theorem 2, we see that

when the Lasso does not select the true model consistently, the Elastic Net might.

In this example, we set p = 200, q = 10, and took the sample size n = 100. X ′
is

were independently simulated from the standard normal. To make IC not hold,

we set Xp = 1
8X1 + 1

4X2 + 1
2X3 + 1

2X4 + 1
2X5 +

√
11
8 e, where e was also from

the standard normal distribution and independent of X. Thus, Xp was standard

normal, but correlated with some of the relevant predictors. We took β1 = β2 =

−4, β3 = β4 = β5 = 0.5, β6 = β7 = β8 = β9 = β10 = 1, βi = 0, for all i > 10, and

the response Y = Xβ + 0.04ǫ, with ǫ standard normal and independent of all
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the predictors. We ran the simulation 500 times. Each time the Lasso and the

Elastic Net were applied to check if they selected the true model or not. When

the Elastic Net was applied, we set λ2 = 0.01. The Elastic Net selected the true

model 22.6% of the time, the Lasso 19%, the Elastic Net slightly better than the

Lasso in term of model selection consistency.

Example 3. In Example 2, we saw that the Elastic Net did better than

Lasso, but not by much. To understand this, we did some simulation to see

how strong the necessary conditions for EIC are. We used 4 designs to study

the necessary conditions. The first design has p = 6, q = 5, n = 1000. The first

5 relevant predictors were i.i.d. normal and the X6 was 1
8X1 + 1

4X2 + 1
2X3 +

1
2X4 + 1

2X5 +
√

11
8 e,where e was also normal and independent of X. We took

β1 = −4, β2 = −2, β3 = 0.5, β4 = 0.6, β5 = 0.7, β6 = 0. Under this setting,

through simple calculations, we have Σ21Σ
−1
11 sign(β) = 1.125 and Σ21Σ

−1
11 β =

−0.1, where Σ = E(X ′X/n) is the population covariance matrix. This means

that the necessary condition for EIC applied in the population value is satisfied.

Since p − q = 1, it is also a sufficient condition. But due to noise, C 6= Σ,

and EIC might not hold. The second design is similar to the first design with

the only difference that, for the second design, we sampled βi, i = 1, . . . , q, i.i.d.

from a uniform distribution U [−10, 10]. In the third and the fourth designs,

p = 200, q = 10, n = 100. X ′
is were normal with mean 0 and variance 1, and

with correlation ρij = ρ for all pairs of Xi and Xj . βi, i = 1, . . . , q, were i.i.d.

from a uniform distribution U [−10, 10]. In the third design, ρ = 0.3 and in the

fourth design, ρ = 0.8. For each design, we ran 100 simulations. We use “IC

YES” to denote the count of times when IC held and ‘IC NO” denotes the count

of times when IC did not hold. “NC YES” is used to denote the count of times

when the necessary conditions held and “NC NO” the count of times when the

necessary conditions did not hold. We call the 100 simulations an experiment

and we did 10 experiments. After the 10 experiments, the mean of the counts

and their corresponding standard errors are shown in Table 4.1.

From Table 4.1 we see that roughly speaking, when IC did not hold, it was

more likely that EIC did not hold either. So when the Lasso did not select the

true model, it was more likely that the Elastic Net did not select the true model

either.
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Design I II III IV

IC YES 0(0) 77(2.8) 31(3.4) 25(5.2)

IC NO
NC YES 94(1.8) 0(0) 0(0) 0(0)

NC NO 6(1.8) 23(2.8) 69(3.4) 75(5.2)

Table 4.1: The mean of the counts and their corresponding standard errors for different

designs. “IC YES” is used to denote the count of times when IC held, 100 simulations.

“IC NO” means that IC did not hold. “NC YES” is used to denote the count of times

when the necessary conditions held and “NC NO” denotes the count of times when the

necessary conditions did not hold. For Design I, p = 6, q = 5, n = 1000; X and β were

designed such that EIC held theoretically. For Design II, the design matrix X was the

same as that in design I, but βi, i = 1, . . . , q, were i.i.d. generated randomly from a

uniform distribution U(−10, 10). In Design III and Design IV, p = 200, q = 10, n = 100

and βi, i = 1, . . . , q, were i.i.d. generated from a uniform distribution U(−10, 10). In the

last two designs, X ′

i
s were standard normal, but correlated with each other. In Design

III, the correlation between each pair was 0.3 and in Design IV, it was 0.8.

5. Conclusion

We have discussed the ability of the Elastic Net to recover the sparsity pat-

tern of regression coefficients β. EIC is crucial for the Elastic Net’s model selec-

tion consistency. In the classical case when p and q are fixed,the condition that

there exist suitable sequences λ1(n) and λ2(n) such that EIC holds is necessary

and sufficient for the Elastic Net to consistently select the true model (Yuan and

Lin (2007)). When p and q both grow as n grows, EIC is no longer sufficient.

Some conditions on the relationships of p, q, and n are required. In this paper,

for our consistency results, n should grow at a rate faster than q log(p−q). When

p > n, in our examples, the Elastic Net performed better than the Lasso.
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Appendix: Proofs

Proof of Lemma 1. By standard (KKT) conditions for optimality in

convex program, the point β̂ is optimal if and only if 2XT Xβ̂ − 2XT Y + 2λ2β̂ +

λ1ẑ = 0, where

ẑ =

{
sign(β̂i) β̂i 6= 0

any real number which ∈ [−1, 1] β̂i = 0.

Substituting Y by Xβ + ǫ yields

2XT X(β̂ − β) − 2XT ǫ + 2λ2β̂ + λ1ẑ = 0. (1)

Condition R(X,β, ǫ, λ1, λ2) holds if and only if we have β̂(2) = 0, sign(β̂(1)) =

sign(β(1)), and |ẑ(2)| ≤ 1. From these conditions and using (1), we conclude that

the condition R(X,β, ǫ, λ1, λ2) holds if and only if

2XT
(2)X(1)(β̂(1) − β(1)) − 2XT

(2)ǫ = − λ1ẑ(2),

2XT
(1)X(1)(β̂(1) − β(1)) − 2XT

(1)ǫ + 2λ2β̂(1) = − λ1sign(β(1)).

Solve for β̂(1) and ẑ(2) to conclude that

−λ1ẑ(2) = 2XT
(2)X(1)(X

T
(1)X(1) + λ2I)−1(XT

(1)ǫ −
λ1

2
sign(β(1)) − λ2β(1)) − 2XT

(2)ǫ,

β̂(1) = (XT
(1)X(1) + λ2I)−1(XT

(1)X(1)β(1) + XT
(1)ǫ −

λ1

2
sign(β(1))).

Conditions sign(β̂(1)) = sign(β(1)) and |ẑ(2)| ≤ 1 are exactly (2.1) and (2.2). �

Before proving Theorem 1, we state without proof a well-known comparison

result on Gaussian maxima (see Ledoux and Talagrand (1991)).

Lemma 2. For any Gaussian random vector (X1, . . . ,Xn), we have

E max
1≤i≤n

Xi ≤ 3
√

log n max
1≤i≤n

√
EX2

i . (2)

With this lemma, we have when n > 1,

E max
1≤i≤n

|Xi| ≤ E|X1| + 2E max
1≤i≤n

Xi

≤
√

EX2
1 + 6

√
log n max

1≤i≤n

√
EX2

i

≤ 8
√

log n max
1≤i≤n

√
EX2

i , (3)
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where the first inequality comes from Ledoux and Talagrand (1991), the second

from (2), and the third from the fact that 2 log(n) > 1 when n > 1.

Proof of Theorem 1.

1. Analysis of M(V )

Note that Vj is Gaussian with mean

µj = E(Vj) = XT
j X(1)

(
XT

(1)X(1) + λ2I
)−1

(λ1
−→
b + 2λ2β(1)).

Recall that the Elastic Irrepresentable Condition is:

∣∣∣∣X
T
(2)X(1)

(
XT

(1)X(1) + λ2I
)−1

[
sign(β(1)) +

2λ2

λ1
β(1)

]∣∣∣∣ ≤ 1 − η.

So, |µj | ≤ (1 − η)λ1. Let Ṽj := 2XT
j

[
I − X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1)

]
ǫ, so

Vj = µj + Ṽj. Note M(V ) holds if and only if
maxj∈Sc Vj

λ1
≤ 1 and

minj∈Sc Vj

λ1
≥ −1.

Since

maxj∈Sc Vj

λ1
=

maxj∈Sc µj + Ṽj

λ1
≤ (1 − η) +

1

λ1
max

j
Ṽj, and

minj∈Sc Vj

λ1
=

minj∈Sc µj + Ṽj

λ1
≥ −(1 − η) +

1

λ1
min

j
Ṽj,

we need to show that

P

[
1

λ1
max
j∈Sc

Ṽj > η, or
1

λ1
min
j∈Sc

Ṽj < −η

]
→ 0.

In fact, it is sufficient to show that P

[
maxj∈Sc |Ṽj |

λ1
> η

]
→ 0. By applying

Markov’s inequality and (3), we have

P

[
maxj∈Sc |Ṽj |

λ1
> η

]
≤ E[maxj∈Sc |Ṽj |]

λ1η
≤ 8

√
log(p − q)

λ1η
max

j

√
E[Ṽ 2

j ]. (4)
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Straightforward computation yields

1

4
E[Ṽ 2

j ] = σ2XT
j

[
I − X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1)

]2

Xj

= σ2XT
j

[
I − 2X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1)

]
Xj

+ σ2XT
j X(1)

(
XT

(1)X(1) + λ2I
)−1

(XT
(1)X(1))

(
XT

(1)X(1) + λ2I
)−1

XT
(1)Xj

≤ σ2XT
j

[
I − 2X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1)

]
Xj

+ σ2XT
j X(1)

(
XT

(1)X(1) + λ2I
)−1

(XT
(1)X(1))

(
XT

(1)X(1) + λ2I
)−1

XT
(1)Xj

+ σ2XT
j X(1)

(
XT

(1)X(1) + λ2I
)−1

λ2I
(
XT

(1)X(1) + λ2I
)−1

XT
(1)Xj

= σ2XT
j

[
I − X(1)

(
XT

(1)X(1) + λ2I
)−1

XT
(1)

]
Xj

≤ σ2XT
j Xj = nσ2.

Then from (4) we have

P

[
maxj∈Sc |Ṽj |

λ1
> η

]
≤ 16σ

√
n log(p − q)

λ1η
.

Thus, (a) of Theorem 1 guarantees that P

[
maxj∈Sc |Ṽj |

λ1
> η

]
→ 0, and hence

P (M(V )) → 1.

2. Analysis of M(U)

Let Zi = eT
i

(
XT

(1)X(1) + λ2I
)−1

XT
(1)ǫ, so that

max
i

|Ui| = max
i

|Zi −
1

2
eT
i

(
XT

(1)X(1) + λ2I
)−1

λ1
−→
b |

≤ max
i

|Zi| +
1

2
λ1

∥∥∥∥
(
XT

(1)X(1) + λ2I
)−1 −→

b

∥∥∥∥
∞

.

Note Zi is Gaussian with mean 0 and variance

var(Zi) = σ2eT
i

(
XT

(1)X(1) + λ2I
)−1

(XT
(1)X(1))

(
XT

(1)X(1) + λ2I
)−1

ei

≤ σ2eT
i

(
XT

(1)X(1) + λ2I
)−1

ei

≤ σ2

nCmin
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From (3) we have

E[max
i

|Zi|] ≤ 8

√
σ2 log q

nCmin
.

1 − P

[∣∣∣∣
(
XT

(1)X(1) + λ2I
)−1

[
XT

(1)X(1)β(1) + XT
(1)ǫ −

λ1

2
sign(β(1))

]∣∣∣∣ > 0

]

≤ P

[
max

i
|Ui| ≥ ρ

]

≤ P

[
1

ρ

{
max

i
|Zi| +

1

2
λ1

∥∥∥∥
(
XT

(1)X(1) + λ2I
)−1 −→

b

∥∥∥∥
∞

}
≥ 1

]

≤ 1

ρ

{
E

[
max

i
|Zi|
]

+
1

2
λ1

∥∥∥∥
(
XT

(1)X(1) + λ2I
)−1 −→

b

∥∥∥∥
∞

}

≤ 1

ρ
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√
σ2 log q

nCmin
+

1

2
λ1

∥∥∥∥
(
XT

(1)X(1) + λ2I
)−1 −→

b

∥∥∥∥
∞



 .

Now, (b) of Theorem 1 guarantees that P (M(U)) → 1. �

Proof of Theorem 2.

Proof. “If” part. Suppose (3.4) holds, and let λ2 = −λ1C21C−1
11 sign(β)

2C21C−1
11 β

. Since

λ1/n → 0, λ2/n → 0. Then we have C21(C11 + λ2
n

I)−1
(
sign(β(1)) + 2λ2

λ1
β(1)

)
→

0, as n → ∞. Thus EIC holds when n is very large. In the same way, when (3.5)

holds, EIC holds when n is very large for some λ2.

“Only if” part. First, we show that λ2/n ≤ c, for some constant c. Or

else, we may assume λ2/n → ∞, as n → ∞. Note that both

|C21(C11 + λ2/n)−1sign(β)| ≤ 1

Lmin + λ2
n

‖C21‖2
√

q

≤ n

λ2
‖C21‖2

√
q,

|C21(C11 + λ2/n)−1β| ≥ 1

Lmax + λ2
n

‖C21‖2‖β‖2

≥ n

2λ2
‖C21‖2‖β‖2

≥ nc1

2λ2
‖C21‖2,
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when n is large enough. We used the fact that λ2/n → ∞, and then λ2/n > Lmax

when n is large enough.

From the above two inequalities, we have

|C21(C11 + λ2/n)−1(sign(β) +
2λ2

λ1
β)|

≥ 2λ2

λ1
|C21(C11 + λ2/n)−1β| − |C21(C11 + λ2/n)−1sign(β)|

≥ 2λ2

λ1

nc1

2λ2
‖C21‖2 −

n

λ2
‖C21‖2

√
q

=
nc1

λ1
‖C21‖2 −

n

λ2
‖C21‖2

√
q.

Since λ1
√

q/n → 0, n
λ1

≥ M
√

q, for any M > 0, when n is very large. Since

λ2/n → ∞, we have when n is large enough, n/λ2 ≤ 1. So,

|C21(C11 + λ2/n)−1(sign(β) +
2λ2

λ1
β)| ≥ ‖C21‖2

√
q(Mc1 − 1),

from which we see that when n is very large there is no λ2 such that EIC holds.

So, to make EIC hold, λ2/n must be less than a constant c.

We now prove that λ2/n must go to 0, as n → ∞. Or else we may assume

with no loss that λ2/n → c3, for some c3 > 0. Then we would have

|C21(C11 + λ2/n)−1sign(β)| ≤ 1

Lmin + c3/2
‖C21‖2

√
q,

|C21(C11 + λ2/n)−1β| ≥ 1

Lmax + 2c3
‖C21‖2‖β‖2

and, from the two inequalities,

|C21(C11 + λ2/n)−1(sign(β) +
2λ2

λ1
β)|

≥ 2λ2

λ1
|C21(C11 + λ2/n)−1β| − |C21(C11 + λ2/n)−1sign(β)|

≥ 2λ2

λ1

1

Lmax + 2c3
‖C21‖2‖β‖2 −

1

Lmin + c3/2
‖C21‖2

√
q.

Note that λ2
λ1

= λ2
n

n
λ1

≥ c3
2 M

√
q, for any M > 0, when n is large enough. We

used the fact that λ2
n

→ c3 and
λ1

√
q

n
→ 0.
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Now we have, for any M > 0,

|C21(C11 + λ2/n)−1(sign(β) +
2λ2

λ1
β)|

≥ c1c2c3

2
M

√
q

1

Lmax + 2c3
− c2

Lmin + c3/2

√
q,

from which we see that when n is very large, EIC does not hold.

At last, we show that if condition (3.4) or (3.5) does not hold, EIC will not

hold for any λ2. Suppose condition (3.4) does not hold. Since λ2/n → 0, we have

C21(C11 + λ2
n

)−1sign(β) → C21(C11)
−1sign(β) > 1 and C21(C11 + λ2

n
)−1β →

C21(C11)
−1β > 0 when n is very large. Therefore, C21(C11 + λ2

n
)−1sign(β) +

2λ2
λ1

C21(C11 + λ2
n

)−1β > 1 when n is very large, and EIC does not hold. The

proof for condition (3.5) is the same, and the proof is completed.
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