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Abstract

Spectral clustering is a broad class of clustering procedures in which an intractable combina-
torial optimization formulation of clustering is “relaxed” into a tractable eigenvector problem,
and in which the relaxed solution is subsequently “rounded” into an approximate discrete so-
lution to the original problem. In this paper we present a novel margin-based perspective on
multiway spectral clustering. We show that the margin-based perspective illuminates both the
relaxation and rounding aspects of spectral clustering, providing a unified analysis of existing
algorithms and guiding the design of new algorithms. We also present connections between spec-
tral clustering and several other topics in statistics, specifically minimum-variance clustering,
Procrustes analysis and Gaussian intrinsic autoregression.
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1 Introduction

Spectral clustering is a promising approach to clustering that has recently been undergoing rapid
development (Shi and Malik, 2000, Kannan et al., 2000, Zha et al., 2002, Ng et al., 2002, Shortreed
and Meilă, 2005, Ding et al., 2005, Bach and Jordan, 2006, von Luxburg, 2007). In the spectral
framework a clustering problem is posed as a discrete optimization problem (an integer program).
This problem is generally intractable computationally, and approximate solutions are obtained by a
two-step procedure in which (1) the problem is “relaxed” into a simplified continuous optimization
problem that can be solved efficiently, and (2) the resulting continuous solution is “rounded” into
an approximate solution to the original discrete problem. The adjective “spectral” refers to the fact
that the relaxed problem generally takes the form of an eigenvector problem (the original objective
function involves quadratic constraints, which yields a Rayleigh coefficient in the relaxed problem).

The solutions of the relaxed problem are often referred to as spectral embeddings and have
applications outside of the clustering context (Belkin and Niyogi, 2002). Our focus here, however,
will be on spectral clustering.

Spectral clustering was first developed in the context of graph partitioning problems (Donath
and Hofmann, 1973, Fiedler, 1973), where the problem is to partition a weighted graph into disjoint
pieces, minimizing the sum of the weights of the edges linking the disjoint pieces. The methodol-
ogy is applied to data analysis problems by identifying nodes of the graph with data points and
identifying the edge weights with the similarity (or “distance”) function used in clustering. The
problem then is to choose an appropriate relaxation of the weighted graph partitioning problem
and an appropriate rounding procedure. The current literature offers many such choices (see, e.g.,
von Luxburg, 2007).

Naive formulations of graph cut problems yield uninteresting solutions in which single nodes
are separated from the rest of the graph. The spectral formulation becomes interesting (and com-
putationally intractable) when some sort of constraint is imposed so that the partition is balanced.
There have been two main approaches to imposing balancing constraints. In the ratio cut (Rcut)
formulation (Chan et al., 1994) the constraints are expressed in terms of cardinalities of subsets
of nodes. In the normalized cut (Ncut) formulation (Shi and Malik, 2000), the constraints are
expressed in terms of the degrees of nodes. In this paper we study a general penalized cut (Pcut)
formulation that includes Rcut and Ncut as special cases and we emphasize the close relationships
between the spectral relaxations resulting from Rcut and Ncut formulations.

A seemingly very different approach to clustering is the classical minimum-variance formula-
tion where one minimizes the trace of the pooled within-class covariance matrix (Webb, 2002).
As we show, however, this formulation is closely related to Pcut. In particular, posing the
minimum-variance problem in the reproducing kernel Hilbert space (RKHS) defined by a ker-
nel function (Wahba, 1990), we establish a connection between spectral relaxation and minimum-
variance clustering by treating the Laplacian matrix in the Pcut formulation as the Moore-Penrose
inverse of the kernel matrix in the minimum-variance formulation.

Other forms of clustering procedures have been usefully analyzed in terms of their relationships
to discrimination or classification procedures (Webb, 2002), and in the current paper we aim to
develop connections of this kind in the case of spectral clustering. In this regard, it is important to
note that our focus is on the multiway clustering problem, in which a data set is directly partitioned
into c sets where c > 2. This differs from the classical graph-partitioning literature, where the focus
has been on algorithms that partition a graph into two pieces (“binary cuts”), with the problem
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of partitioning a graph into multiple pieces (“multiway cuts”) often approached by the recursive
invocation of a binary cut algorithm.

In the case of binary cuts, an interesting connection to classification has been established by
Rahimi and Recht (2004), who have noted that Ncut-based spectral clustering can be interpreted
as finding a hyperplane in an RKHS that falls in a “gap” in the empirical distribution. In the current
paper we show that this idea can be extended to general multiway Pcut spectral relaxation, where
the intuitive idea of a “gap” can be expressed precisely using ideas from the classification literature,
specifically the idea of a multi-class margin.

Turning to the rounding problem, we note first that for binary cuts the rounding problem is
a relatively simple problem, generally involving the choice of a threshold for the elements of an
eigenvector (Juhász and Mályusz, 1977, Weiss, 1999). The problem is significantly more complex
in the multiway case, however, where it essentially involves an auxiliary clustering problem based
on the spectral embedding. For example, Yu and Shi (2003) proposed a rounding scheme that
works with an alternative iteration between singular value decomposition (SVD) and non-maximum
suppression, whereas Bach and Jordan (2006) devised K-means and weighted K-means algorithms
for rounding. In the current paper we show that rounding can be usefully approached within the
framework of Procrustes analysis (Gower and Dijksterhuis, 2004). Moreover, we show that this
approach again reveals links between spectral methods and multiway classification; in particular,
we show that the auxiliary Procrustes problem that we must solve can be analyzed using the tools
of margin-based classification.

Extant multiway spectral algorithms, including those of Bach and Jordan (2006) and Yu and
Shi (2003), as well as many others (Ng et al., 2002, Zha et al., 2002, Ding et al., 2005, Shortreed
and Meilă, 2005), are based on the representation of spectral embeddings as c-dimensional vectors.
The redundancy inherent in using c-dimensional vectors is inconvenient, however, preventing the
flow of results from the binary case to the multiway case (Shi and Malik, 2000). The margin-
based perspective that we pursue here shows the value of working with a non-redundant, (c−1)-
dimensional representation of the spectral embedding.

Our overall approach to spectral clustering is as follows. We first construct a non-redundant,
margin-based representation of multiway spectral relaxation problems. Such a margin-based spec-
tral relaxation is a tractable constrained eigenvalue problem. We then carry out a rounding scheme
by solving an auxiliary Procrustes problem, which is again associated with a margin-based classifi-
cation method. We refer to the resulting clustering framework—margin-based spectral relaxation
with margin-based rounding—as margin-based spectral clustering.

The margin-based approach not only provides substantial insight into the relationships among
spectral clustering procedures, but it also yields probabilistic interpretations of these procedures.
Specifically, we show that the spectral relaxation obtained from the Pcut framework can be in-
terpreted as a form of Gaussian intrinsic autoregression (Besag and Kooperberg, 1995). These
are limiting forms of Gaussian conditional autoregressions (Besag, 1974, Mardia, 1988) that retain
the Markov property (two vertices in a graph are connected if and only if their corresponding
embeddings in the intrinsic autoregression are conditionally independent).

In summary, the current paper develops a mathematical perspective on spectral clustering that
unifies the various algorithms that have been studied and emphasizes connections to other areas of
statistics. Specifically we discuss connections to multiway classification, reproducing kernel Hilbert
space methods, Procrustes analysis and Gaussian intrinsic autoregression.
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The remainder of the paper is organized as follows. Sections 2 and 4 describes multiway spectral
relaxation problems based on the general Pcut formulation and the minimum variance formulation,
respectively. The relationship between these two formulations is also discussed in Section 4. In
Section 3 we present two rounding schemes, one based on Procrustean transformation and the other
based on K-means. We present a geometric perspective on spectral clustering using margin-based
principles in Section 5, and we discuss the connection to Gaussian intrinsic autoregression models
in Section 6. Experimental comparisons are given in Section 7 and we present our conclusions in
Section 8. Note that several proofs are deferred to the Appendix.

We use the following notation in this paper. Im denotes the m×m identity matrix, 1m the m×1
of ones, 0 the zero vector or matrix zero of appropriate size, and Hm = Im − 1

m1m1′
m the m×m

centering matrix. For an n×1 vector a = (a1, . . . , an)′, diag(a) represents the n×n diagonal matrix
with a1, . . . , an as its diagonal entries and ‖a‖ is the Euclidean norm of a. For an m×m matrix
A = [aij ], we let dg(A) be the diagonal matrix with a11, . . . , amm as its diagonal entries, A+ be
the Moore-Penrose inverse of A, tr(A) be the trace of A, rk(A) be the rank of A and ‖A‖F be
the Frobenius norm of A.

2 Spectral Relaxation for Penalized Cuts

Given a set of n d-dimensional data points, {x1, . . . ,xn}, our goal is to cluster the xi into c disjoint
classes such that each xi belongs to one and only one class. We consider a graphical representation
of this problem. Let V = {1, 2, . . . , n} denote the index set of the data points and consider an
undirected graph G = (V, E) where V is the set of nodes in the graph and E is the set of edges.
Associated with the graph is a symmetric n×n affinity matrix (also referred to as a similarity
matrix ), W = [wij ], defined on pairs of indices such that wij ≥ 0 for (i, j) ∈ E and wij = 0
otherwise. The values wij are often obtained via a function evaluated on the corresponding pairs
of data vectors; i.e., wij = ψ(xi,xj) for some (symmetric) function ψ. A variety of different ways
to map a data set into a graph G and an affinity matrix W have been explored in the literature;
for a review see von Luxburg (2007).

The problem is thus to partition V into c subsets Vj , where Vi∩Vj = ∅ for i 6= j and ∪c
j=1Vj = V ,

and where the cardinality of Vj is nj so that
∑c

j=1 nj = n. This problem is typically formulated as
a combinatorial optimization problem. Let W (A,B) =

∑

i∈A,j∈B wij for two (possibly overlapping)
subsets A and B of V and consider the following multiway penalized cut criterion:

Pcut =
c

∑

j=1

W (Vj , V ) −W (Vj , Vj)
∑

i∈Vj
πi

, (1)

where π = (π1, . . . , πn)′ is a user-defined vector of weights (examples are provided below) with
πi > 0 for all i. The numerator of each of the terms in this expression is equal to the sum of
the affinities on edges leaving the subset Vj . Thus the minimization of Pcut with respect to the
partition {V1, . . . , Vc} aims at finding a partition in which edges with large affinities tend to stay
within the individual subsets Vj . The denominator weights Πi encode a notion of “size” of the
subsets Vj and act to balance the partition.

The Pcut criterion can also be written in matrix notation as follows. Define D = diag(W1n)
and let L = D − W denote the Laplacian matrix of the graph. (An n×n matrix L = [lij ] is a
Laplacian matrix if lii > 0 for i = 1, . . . , n; lij = lji ≤ 0 for i 6= j;

∑n
j=1 lij = 0 for i = 1, . . . , n.
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Note that Laplacian matrices are positive semidefinite (Mohar, 1991).) Let Π = diag(π1, . . . , πn)
be a diagonal matrix of weights. Let ti ∈ {1, . . . , c} denote the assignment of xi to a cell in the
partition and define the indicator matrix E = [e1, . . . , en]′, where ei ∈ {0, 1}c×1 is a binary vector
whose tith entry is one and all other entries are zero. It can now be readily verified that Pcut

takes the following form:
Pcut = tr

(

E′LE(E′ΠE)−1
)

, (2)

where it is helpful to note that (E′ΠE)−1 is a diagonal matrix, implying that Pcut is simply a
scaled quadratic form. We wish to optimize this scaled quadratic form with respect to E.

Two well-known examples of the Pcut problem are the ratio cut (Rcut) problem (Chan et al.,
1994), in which Π = In, and the normalized cut (Ncut) problem (Shi and Malik, 2000), in which
Π = D. In the Rcut problem the notion of “size” of a subset Vj is simply the number of nodes
in the subset, whereas in the Ncut problem “size” is captured by the total degree of the nodes in
the subset.

The spectral clustering approach to minimizing Pcut involves two stages: (1) we relax the
problem into a tractable spectral analysis problem in which continuous variables replace the indi-
cators E, and (2) we then employ a rounding scheme to obtain a partition {V1, . . . , Vn} from the
continuous relaxation. In the remainder of this section, we focus on the first step (the relaxation)
and we return to the rounding problem in Section 3.

The standard presentation of spectral relaxation proceeds somewhat differently in the case of a
binary partition and a multiway partition (von Luxburg, 2007). In both cases, spectral relaxation is
motivated by the observation that the Pcut criterion in (2) has the form of a Rayleigh coefficient,
and that replacing the indicator matrix E with a real-valued matrix yields a classical generalized
eigenvector problem. In the binary case, the indicator matrix E has two columns, which yields two
generalized eigenvectors in the relaxed problem. However, in the subsequent rounding procedure,
the problem is to discriminate between two classes, for which a single vector direction suffices. To
deal with this redundancy it is standard to place a (linear) constraint upon the relaxation, such
that it is the second generalized eigenvector that is used for rounding (von Luxburg, 2007). In
the multiway case, on the other hand, no such constraint is imposed; the redundancy inherent in
having c generalized eigenvectors to discriminate among c classes is generally not addressed. (It is
resolved implicitly at the rounding stage).

We find this distinction between the binary case and the multiway case to be inconvenient, and
thus in the approach to be described in the following section we adopt an idea from the literature
on multiway classification (e.g., Zou et al., 2006, Shen and Wang, 2007), where non-redundant,
(c− 1)-dimensional vectors are used to discriminate among c classes. These vectors are referred to
as margin vectors. We refer the reader to the classification literature for the geometric rationale
behind the terminology of “margin” (although we note that a geometric interpretation of margin
vectors will also appear in the current paper in Section 5.1).

2.1 Spectral Relaxation

To formulate a spectral relaxation of (2), we replace the indicator matrix E with a real n×(c−1)
matrix Y = [y1, . . . ,yn]′. The following proposition, which is based on a result of Bach and Jordan
(2006), shows that we can express the Pcut criterion in terms of real-valued matrices Y satisfying
certain conditions.
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Proposition 1 Let Y be an n×(c−1) real matrix such that: (a) the columns of Y are piecewise
constant with respect to the partition E, (b) Y′ΠY = Ic−1 and (c) Y′Π1n = 0. Then Pcut is
equal to tr

(

Y′LY
)

.

The proof of Proposition 1 is given in Appendix A.
For this proof to be useful it is necessary to show that matrices satisfying the three conditions

in Proposition 1 exist. Condition (a) for Y is equivalent to the statement that Y can be expressed
as Y = EΨ where Ψ is some c×(c−1) matrix. Thus, the question becomes whether there exists a
Ψ such that Y satisfies conditions (b) and (c). In Appendix B we provide a general procedure for
constructing such a Ψ. This establishes the following proposition.

Proposition 2 Matrices Y satisfying the three conditions in Proposition 1 exist.

We now obtain a spectral relaxation by dropping condition (a). This yields the following
optimization problem:

min Y∈Rn×(c−1) tr
(

Y′LY
)

,
s.t. Y′ΠY = Ic−1 and Y′Π1n = 0,

(3)

which is a constrained generalized eigenvalue problem.

2.2 Solving the Spectral Relaxation

Letting Y0 = Π
1
2 Y, we can transform (3) into the following problem:

min Y0∈Rn×(c−1) tr(Y′
0Π

− 1
2 LΠ− 1

2 Y0),

s.t. Y′
0Y0 = Ic−1 and Y′

0Π
1
2 1n = 0.

(4)

The solution to this constrained eigenvalue problem is given in the following theorem.

Theorem 1 Suppose that L is a real symmetric matrix such that L1n = 0 and suppose that the

diagonal entries of Π are all positive. Let µ1 = αΠ
1
2 1n be the eigenvector associated with the eigen-

value γ1 = 0 of Π− 1
2 LΠ− 1

2 , where α2 = 1/(1′
nΠ1n). Let the remaining eigenvalues of Π− 1

2 LΠ− 1
2

be arranged so that γ2 ≤ · · · ≤ γn, and let the corresponding orthonormal eigenvectors be denoted
by µi, i = 2, . . . , n. Then the solution of problem (4) is Ȳ0 = UQ where U = [µ2, . . . ,µc] and

Q is an arbitrary (c−1)×(c−1) orthonormal matrix, with min{tr(Y′
0Π

− 1
2 LΠ− 1

2 Y0)} =
∑c

i=2 γi.

Furthermore, if γc < γc+1, then Ȳ0 is a strict local minimum of tr(Y′
0Π

− 1
2 LΠ− 1

2 Y0).

It follows from the theorem that the solution of Problem (3) is Y = Π− 1
2 UQ. The proof of

Theorem 1 is given in Appendix C. It is important to note for our later work that this theorem
does not require L to be Laplacian or even positive semidefinite.

The condition γc < γc+1 implies a non-zero eigengap (Chung, 1997). In practice, the eigengap
is often used as a criterion to determine the number of classes in clustering scenarios. An idealized
situation is that the multiplicity of the eigenvalue zero is c.
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Algorithm 1 Spectral Clustering with Procrustean Rounding

1: Input : An affinity matrix W and a diagonal matrix Π

2: Relaxation: Obtain Y = Π− 1
2 UQ from Problem (3)

3: Initialize: Choose the initial partition E

4: Rounding : Repeat the following procedure until convergence:

(a) Recompute EG, implement the SVD of U′EG as U′EG = ΘΛV′ and let Q = ΘV′

(b) Recompute Y = [yij ] = Π− 1
2 UQ, compute ti = argmaxj yij , and recompute E by allocat-

ing the ith data point to class ti if maxj yij > 0 and to class c otherwise

5: Output {t1, . . . , tn}.

3 Rounding Schemes

We now consider the problem of rounding—transforming the real-valued solution of a spectral
relaxation problem into a discrete set of values that can be interpreted as a clustering. In this
section we present two different solutions to the rounding problem, one based on Procrustes analysis
and the other based on the K-means algorithm.

3.1 Procrustean Transformation for Rounding

In Theorem 1 we have shown that the solution of the spectral relaxation problem is a matrix

Y = Π− 1
2 UQ, where Q is an arbitrary orthogonal matrix. We have also seen, in Proposition 1,

that a matrix Y in which the columns of Y are piecewise constant with respect to a partition E

provides a representation of the objective function value Pcut. If we had such a matrix Y in hand
we could straightforwardly find the partition E: Letting ti = argmaxj{yij}, allocate xi to the tith
class if yiti > 0 and to the cth class otherwise. On the other hand, if we had the partition we

could attempt to find an orthogonal matrix Q such that Y = Π− 1
2 UQ is as close as possible to

the partition. This latter problem can be treated as a problem in Procrustes analysis (Gower and
Dijksterhuis, 2004).

Specifically, given an indicator matrix E we pose the following Procrustes problem:

argmin
Q

L(Q) = tr(EG − UQ)(EG − UQ)′, (5)

where G =
[

Ic−1 − 1
c1c−11

′
c−1,−1

c1c−1

]′
. This problem has an analytical solution: Denote the

singular value decomposition of U′EG as U′EG = ΘΛV′. Then the minimizing value of Q in L
is given by Q = ΘV′ (see, e.g., Mardia et al., 1979, page 416).

We summarize this Procrustean approach to rounding in algorithmic form in Algorithm 1 in
the context of a generic spectral clustering algorithm.

Yu and Shi (2003) have presented a rounding algorithm that is similar to the Procrustean ap-
proach we have presented but different in detail. The authors work with an n×c matrix Z and
solve the relaxation min tr(Z′LZ) subject to Z′DZ = Ic. Given the solution Z of this relaxation,

the authors then compute Ẑ = [ẑij ] = dg(ZZ′)−
1
2 Z. Their rounding scheme is to allocate the ith

data point to class ti if ti = argmaxj ẑij . This method can be viewed as imposing a constraint;

in particular, note that the norms of the rows of Ẑ are equal to one. To motivate this constraint,
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the authors assume that the solution Z can be expressed as a rescaling of Ẑ: Z = Ẑ(Ẑ′DẐ)−1/2.

Inverting this expression yields Ẑ = dg(ZZ′)−
1
2 Z. But it is not clear that a solution Z of the relax-

ation can be expressed in this form; the constraints on Ẑ are not incorporated into the relaxation.
The use of Ẑ defined in this way must be viewed as a heuristic post-processing procedure. The
Procrustean approach that we have presented in this section provides a resolution of this difficulty;
that approach requires no post-processing of the matrix obtained from the spectral relaxation.

We return to the Procrustean approach in Section 5, where we provide additional justification
for Procrustean rounding based on a connection to margin maximization.

3.2 K-means for Rounding

Another approach to removing the “nuisance” orthogonal matrix Q is to consider rounding meth-
ods that are invariant to rotation. The standard K-means algorithm provides an example, and
numerous authors have proposed using K-means on the embedding obtained from spectral relax-
ation as a heuristic rounding procedure (von Luxburg, 2007). Bach and Jordan (2006) have made
this approach more formal by showing that (weighted) K-means arises when the rounding problem
is formalized in terms of a difference between projection matrices. In this section we review this
formulation within our non-redundant representation of spectral relaxation.

Let us rewrite Pcut as

Pcut = tr(E′HπLH′
πE(E′ΠE)−1),

where we use the fact that HπLH′
π = L. Defining Eπ , H′

πE(E′ΠE)−
1
2 , we observe that the

number of degrees of freedom of both Y and Eπ is (n−1)(c−1). Moreover, given that E′
πΠEπ =

Ic − (E′ΠE)−
1
2 E′ππ′E(E′ΠE)−

1
2 /(π′1n) and π′E(E′ΠE)−1E′π = π′1n, there exists a c×c per-

mutation matrix P such that

PE′
πΠEπP

′ =

[

Ic−1 0

0 0

]

=

[

Y′

0

]

Π[Y,0];

this suggests viewing Y as an approximation to Eπ in the metric given by Π. We quantify this by
defining the following distortion between the projection matrices defined by Y and Eπ:

Jk(Eπ,Y) =
1

2
‖YΠY′ − EπΠE′

π‖2
F = c−1 − tr(Y′ΠE(E′ΠE)−1E′ΠY).

This objective function can be represented as the solution of a weighted K-means problem, as
shown by the following result which is due to Bach and Jordan (2006):

Theorem 2 Let Y = [y1, . . . ,yn]′ be a solution of Problem (3). For any partition {V1, . . . , Vc},
the criterion F (m1, . . . ,mc) =

∑c
j=1

∑

i∈Vj
‖yi − mj‖2 achieves its minimum Jk(Eπ,Y) at mj =

1
P

i∈Vj
πi

∑

i∈Vj
πiyi.

Thus by updating the mean vectors mj in the weighted K-means algorithm we match the criterion
Jk(Eπ,Y), and by updating the partition using weighted K-means we go downhill in the criterion.

Note that in the special case of the Rcut formulation, we obtain the conventional unweighted
K-means algorithm (given that πi = 1 in that case).

We summarize the K-means approach to rounding in algorithmic form in Algorithm 2.
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Algorithm 2 Spectral Clustering with K-means Rounding

1: Input : An affinity matrix W and a diagonal matrix Π

2: Relaxation: Obtain Y = Π− 1
2 UQ from Problem (3)

3: Initialize: Choose the initial partition E

4: Rounding : Repeat the following procedure until convergence:

(a) Compute mj = 1
P

i∈Vj
πi

∑

i∈Vj
πiyi.

(b) Find ti = argminj ‖yi −mj‖, and recompute E by allocating the ith data point to class ti

5: Output {t1, . . . , tn}.

4 Spectral Clustering and Minimum-Variance Criteria

In this section and the following two sections we present some relationships between spectral clus-
tering and various topics in statistics. Our goal is both to illuminate the spectral approach and to
suggest directions for further research.

Minimum-variance clustering is a classical approach to clustering (Webb, 2002). In this section,
following Zha et al. (2002) and Dhillon et al. (2007), we present spectral solutions to the minimum-
variance clustering problem, and we establish connections between minimum-variance clustering
and the Pcut framework.

Let {x1, . . . ,xn} ∈ X ⊂ R
d denote the observed data. The pooled within-class covariance

matrix SW is given by

SW =
1

n

c
∑

j=1

∑

i∈Vj

(xi − mj)(xi − mj)
′,

where mj = 1
nj

∑

i∈Vj
xi. Consider the trace of the within-class covariance matrix:

tr(SW ) =
1

n

c
∑

j=1

∑

i∈Vj

‖xi − mj‖2.

Clustering algorithms which are based on the minimization of this trace are referred to as minimum-
variance methods.

In order to establish a connection with the spectral relaxation presented in Section 2, we define
a weighted pooled within-class covariance matrix in an reproducing kernel Hilbert space (RKHS)
induced by a reproducing kernel K. In particular, assume that we are given the reproducing kernel
K : X×X → R such that K(xi,xj) = φ(xi)

′φ(xj) for xi,xj ∈ X , where φ(x) is called a feature
vector corresponding to a data point x ∈ X . In the sequel, we use the tilde notation to denote
feature vectors. Thus, the data matrix in the feature space is denoted as X̃ = [x̃1, x̃2, . . . , x̃n]′. The
centered kernel matrix takes the form K = HnX̃X̃′Hn; note that it is positive semidefinite and
satisfies K1n = 0.
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Generalizing slightly, we introduce weighted versions of the sample covariance matrix S̃, the
between-class covariance matrix S̃B and the within-class covariance matrix S̃W :

S̃ =
1

∑n
i=1 πi

n
∑

i=1

πi(x̃i − m̃)(x̃i − m̃)′,

S̃B =
1

∑n
i=1 πi

c
∑

j=1

∑

i∈Vj

πi(m̃j − m̃)(m̃j − m̃)′,

S̃W =
1

∑n
i=1 πi

c
∑

j=1

∑

i∈Vj

πi(x̃i − m̃j)(x̃i − m̃j)
′,

where the πi are known positive weights, m̃ = 1
Pn

i=1 πi

∑n
i=1 πix̃i and m̃j = 1

P

i∈Vj
πi

∑

i∈Vj
πix̃i. It

is clear that S̃W = S̃ − S̃B.
We now formulate a minimum-variance clustering problem in the RKHS as the minimization

of tr(S̃W ), which is given by

tr(S̃W ) =
1

∑n
i=1 πi

c
∑

j=1

∑

i∈Vj

πi‖x̃i − m̃j‖2.

Like the minimization of Pcut this minimization is computationally infeasible in general. It is
therefore natural to consider minimizing tr(S̃W ) by using the spectral relaxations presented in
Section 2.2. We present a way to do this in the following section.

4.1 Spectral Relaxation in the RKHS

Let us rewrite S̃ and S̃B as

S̃ =
1

π′1n
X̃′HπΠH′

πX̃ and S̃B =
1

π′1n
X̃′HπΠE

(

E′ΠE
)−1

E′ΠH′
πX̃,

where Hπ = In − 1
π′1n

π1′
n. This yields

S̃W =
1

π′1n

[

X̃′HπΠH′
πX̃ − X̃′HπΠE

(

E′ΠE
)−1

E′ΠH′
πX̃

]

.

The minimization of tr(S̃W ) is thus equivalent to the maximization of

T = tr
(

E′ΠH′
πKHπΠE

(

E′ΠE
)−1

)

, (6)

because X̃′HπΠH′
πX̃ is independent of E and we have HnHπ = Hπ. Let ∆ = [δ2ij ], where δij is

the squared distance between fi and fj , i.e.,

δ2ij = (fi − fj)
′(fi − fj)

′ = K(xi,xi) +K(xj ,xj) − 2K(xi,xj).

Given that −1
2H

′
π∆Hπ = H′

πKHπ, the minimization of tr(S̃W ) is thus equivalent to that of
tr

(

E′ΠH′
π∆HπΠE(E′ΠE)−1

)

.
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Recall that in the proof of Proposition 1, L is required to satisfy only the conditions L = L′

and L1n = 0. Note that ΠH′
πKHπΠ1n = 0. Thus, if Y is an n×(c−1) matrix subject to the

three conditions in Proposition 1, we have T = tr(Y′ΠH′
πKHπΠY). This allows us to relax the

maximization of T with respect to E as follows:

max Y∈Rn×(c−1) tr(Y′ΠH′
πKHπΠY) = tr(Y′ΠKΠY),

s.t. Y′ΠY = Ic−1 and Y′Π1n = 0,
(7)

where the second equality in the objective is due to the identity Y′ΠH′
π = Y′Π. Letting Y0 =

Π
1
2 Y leads to

max Y0∈Rn×(c−1) tr(Y′
0Π

1
2 H′

πKHπΠ
1
2 Y0),

s.t. Y′
0Y0 = Ic−1 and Y′

0Π
1
2 1n = 0.

(8)

This optimization problem is solved in Appendix D. In particular, let U be an n×(c−1) matrix

whose columns are the top c−1 eigenvectors of Π
1
2 H′

πKHπΠ
1
2 . The solution of Problem (8) is

then Y0 = UQ where Q is an arbitrary (c−1)×(c−1) orthonormal matrix. Hence, the solution of

Problem (7) is Y = Π− 1
2 UQ.

4.2 Minimum Variance Formulations versus Pcut Formulations

Since the Laplacian matrix L is symmetric and positive semidefinite, its Moore-Penrose (MP)
inverse is also positive semidefinite. Thus we can regard L as the MP inverse of a kernel matrix
K and investigate the relationship between the spectral relaxations obtained from the minimum
variance and the Pcut formulations. In fact, we have the following theorem, whose proof is given
in Appendix E.

Theorem 3 Assume that L+ = K. If rk(L) = rk(K) = n−1, then Y is the solution of Problem 3
if and only it is the solution of Problem 7.

Thus, an equivalent formulation of spectral clustering based on the Pcut criterion is obtained
by considering the minimum variance criterion with K = L+. Note that Π consists of the diagonal
elements of K+ in the Ncut setting, so it is not expedient computationally to obtain Π from
K—we would need to calculate K+. We thus suggest defining Π = In in the minimum-variance
setting, corresponding to the ratio cut formulation.

It is also possible to start from a minimum variance formulation (with Π = In) and obtain a
Rcut problem. However, in the corresponding Rcut problem, the matrix K+ is not guaranteed
to be Laplacian, because the off-diagonal entries of K+ are possibly positive for an arbitrary kernel
matrix K. In this case, we can let L = K++nβHn where β = min {maxi6=j{[K+]ij}, 0}. Such
an L is Laplacian. Moreover, we have tr(Y′(K+ + nβHn)Y) = tr(Y′K+Y) + n(c−1)β due to
Y′Y = Ic−1 and Y′1n = 0. Since min (tr(Y′(K+ + nβHn)Y)) is equivalent to min (tr(Y′K+Y)),
it is not necessary to compute the value of β.

It is worth noting that the condition rk(L) = rk(K) = n−1 is necessary. Without this condition,

Π− 1
2 LΠ− 1

2 is a generalized inverse of Π
1
2 H′

πL
+HπΠ

1
2 , because

Π
1
2 H′

πL
+HπΠ

1
2 Π− 1

2 LΠ− 1
2 Π

1
2 H′

πL
+HπΠ

1
2 = Π

1
2 H′

πL
+HπΠ

1
2 ,

but it is not necessarily the MP inverse. In this case, it is no longer the case that Π− 1
2 LΠ− 1

2 and

Π
1
2 H′

πL
+HπΠ

1
2 are guaranteed to have the same eigenvectors associated with nonzero eigenvalues.

10



Thus, in this case, even if K = L+, the solutions of (7) and (3) are different. In summary we see
that the spectral clustering formulations based on the minimum-variance criteria and Pcut, while
closely related, are not fully equivalent.

Dhillon et al. (2007) pursue a slightly different connection between minimum-variance criteria
and spectral relaxation. They formulate the minimum-variance criterion via the maximization of

T ′ = tr(E′ΠKΠE(E′ΠE)−1), (9)

which is readily shown to be equal to T + π′Kπ/(π′1n), where T is defined by (6). Thus the
maximization of T ′ is equivalent to the maximization of T . Dhillon et al. (2007) then formulate
the cut minimization problem as an equivalent maximization problem:

max
(

E′Π(Π−1 − Π−1LΠ−1)ΠE(E′ΠE)−1
)

,

and treat Π−1−Π−1LΠ−1 as K in T ′. However, Π−1−Π−1LΠ−1 is generally indefinite, a difficulty
that the authors circumvent by letting K = ρIn−L in Rcut and K = ρD−1+D−1WD−1 in Ncut,
where ρ is a constant chosen to make K positive semidefinite.

The idea of considering a kernel matrix that is the MP inverse of a Laplacian matrix will
return in later sections, in particular in Section 5.1 where we will see that it allows us to provide a
geometrical interpretation for spectral clustering, and in Section 6, where we present a probabilistic
interpretation of spectral relaxation.

5 Spectral Clustering: A Margin-based Perspective

In this section we consider a margin-based perspective on spectral clustering. First, we show
that the margin-based perspective provides us with insight into the relationship between spectral
embedding and rounding. In particular, we show that the problems in (3) and (7) can be understood
in terms of the fitting of hyperplanes in an RKHS. For a data point x, we show that the elements
of the embedding y are proportional to the signed distances of feature vector x̃ to each of these
hyperplanes. This provides support for the Procrustean rounding in which rounding is achieved
by non-maximum suppression of the elements of y. Second, we provide some additional direct
justification for the Procrustean approach, showing that the rounding problem can be analyzed in
terms of the approximation of a margin-based multiway classification criterion.

5.1 Hyperplanes in the RKHS

Let us consider a multiway classification problem. That is, we consider a problem in which data
points are pairs, (xi, ti), where ti is the label of the ith data point. Using the same notation as in
Section 4, the multiway classification problem has the following standard formulation in an RKHS
based on a kernel function K:

min
β0,B

tr(B′KB) +
γ

n

n
∑

i=1

fti(B
′ki + β0), (10)

where fj(·) is a convex surrogate of the 0−1 loss, ki = (K(x1,xi), . . . ,K(xn,xi))
′ is the ith column

of the kernel matrix K, B = [b1, . . . ,bc−1] is an n×(c−1) matrix of regression vectors, β0 is a
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(c−1)×1 vector of intercepts, and γ > 0 is a regularization parameter. We can use this optimization
problem as the basis of a clustering formulation by simply omitting the term γ

n

∑n
i=1 fti(·), reflecting

the fact that we have no labeled data in the clustering setting. We obtain

min B tr(B′KB)

s.t. B′KΠ1n = 0 and B′KΠKB = Ic−1.
(11)

We now consider problem (11) from two points of view. From the first point of view, we let
Y = KB and transform (11) into

min Y tr(Y′K+Y)

s.t. Y′Π1n = 0 and Y′ΠY = Ic−1,
(12)

where we have used the identity K = KK+K. It is readily seen that (12), and hence (11), is
identical with the spectral relaxation in (3) by taking K+ = L. We also obtain a relationship
between (12) and (7) from Section 4.2; in particular, in the special case in which rk(K) = n−1, it
follows from Theorem 3 that (12) and (7) are equivalent.

From a second point of view, we let S = X̃′B (recall that X̃ is the data matrix in the feature
space). The problem (11) is then transformed into

min S tr(S′S)

s.t. S′X̃′Π1n = 0 and S′X̃′ΠX̃S = Ic−1.

(13)

Letting S = [s1, . . . , sc−1] denote the solution of (13), the equations s′jx̃ = 0, j = 1, . . . , c − 1,
define hyperplanes that pass through the weighted centroid

∑n
i=1 πix̃i of the feature vectors x̃i.

Moreover, the signed distance between feature vector x̃i and the hyperplane s′jx̃ = 0 is s′jx̃i. Recall

that Y = [yij ] = KB = X̃X̃′B = X̃S. We thus have yij = s′jx̃i. That is, yij is the signed distance
of x̃i to the jth hyperplane. We can therefore interpret the spectral relaxation in (3) and (7) as
yielding vectors whose elements are—using the language of multiway classification—margin vectors.
Given this interpretation, it is reasonable to allocate labels by finding the maximum element of
(yi1, . . . , yi,c−1, 0). This motivates the Procrustean approach to rounding, which can be viewed as
identifying boundaries between clusters by projecting feature vectors onto hyperplanes in an RKHS.
A graphical interpretation of this result is provided in Figure 1.

5.2 Margin-based Rounding Scheme

We can also provide a direct connection between classification and rounding. Let us return to the
objective function in (10), which we rewrite as

min
Y

tr(Y′K+Y) +
γ

n

n
∑

i=1

fti(yi)

by letting Y = KB and setting β0 = 0. Assume that we have obtained a matrix Y from spectral
relaxation and recall that Y depends on an arbitrary orthogonal matrix Q. From the classification
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Figure 1: Illustrations of spectral clustering in the feature space for a three-class separable example.
The clustering is based on the signed distances of the feature vector x̃ = φ(x) to suitably-defined
hyperplanes. (a) Hyperplanes in the feature space are represented by their normals, aj , j = 1, 2, 3,
subject to the sum-to-zero constraints. These hyperplanes are computed from the vectors s1 and s2

obtained from spectral relaxation via a1 = s1− 1
3(s1+s2), a2 = s2− 1

3(s1+s2), and a3 = −1
3(s1+s2).

(b) The hyperplanes defined by the vectors s1 and s2. Note that s1 = a1−a3 and s2 = a2−a3.

perspective we can view the subsequent rounding problem as the problem of minimizing the clas-
sification loss 1

n

∑n
i=1 fti(yi) under the constraint QQ′ = Ic−1. In this section we explore some of

the consequences of this perspective.
In the multiway classification problem, we define class-conditional probabilities Pj(x) for the c

classes j = 1, . . . , c. Using this notation, we define the expected error at x as follows:

R(x,y) =

c
∑

j=1

I[t6=j]Pj(x), (14)

where t = argmaxj yj or t = c if max{yj} < 0 and where I[#] defines the 0 − 1 loss: it is 1 if #
is true and 0 otherwise. Since I[·] is a non-convex objective function that leads to an intractable
optimization problem, the standard practice in the classification literature is to replace I[·] with a
“surrogate loss function” fj(y) that is an upper bound on the 0−1 loss (Bartlett et al., 2006, Shen
and Wang, 2007).

The surrogate loss function that we consider in the current paper is the following exponential
loss:

fj(y) =
∑

l 6=j

exp(yl−yj), (15)

where for convenience we extend y to a c-dimensional vector in which yc = 0. Note that the
variables to be optimized are the entries of the matrix Q. Clearly, fj(y) is an upper bound of I[t6=j],
because if x does not belong to class j, there exists at least one yl such that l 6= j and yl − yj ≥ 0,
and hence exp(yl−yj) ≥ 1. This surrogate loss function also has an important Fisher consistency
property:
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Proposition 3 Assume Pj(x) > 0 for j = 1, . . . , c. We then have

ŷj = argmaxy

c
∑

j=1

∑

l 6=j

exp(yl−yj)Pj(x) =
1

2
log

Pj(x)

Pc(x)
.

The proof of Proposition 3 is a straightforward calculation, so we omit it. This proposition shows
that the surrogate loss function that we have chosen is justified from the point of view of classifi-
cation as yielding a Bayes consistent rule (Bartlett et al., 2006, Zou et al., 2006).

Returning to the rounding problem, we now consider the labels {ti} as temporarily fixed and
consider the empirical risk function defined over the set of pairs (xi, ti) given by

J(Q) =
1

n

n
∑

i=1

∑

l 6=ti

exp(yil − yiti).

We wish to optimize this empirical risk with respect to Q. This problem does not have a closed-form
solution under the constraint QQ′ = Ic−1. However, we can consider a Taylor expansion around
yij = 0. We have:

J(Q) ≈ (c−1) − c

n

n
∑

i=1

gti
′yi + c2

n
∑

i=1

π−1
i ,

where gj is the jth column of G′ =
[

Ic−1 − 1
c1c−11

′
c−1,−1

c1c−1

]

, and where we have used the fact
that y′

igtigti
′yi = π−1

i µ′
iQgtigti

′Q′µi ≤ 1/πi because Ic−1−gtigti
′ is positive semidefinite. We thus

see that the maximization of the linear term
∑n

i=1 gti
′yi with respect to Q yields an approximate

procedure for minimizing J(Q). But this is precisely the Procrustean problem (5) discussed in
Section 3.

It would also be possible to attempt to optimize J(Q) directly by making use of Newton or
conjugate gradient methods on the Stiefel manifold (Edelman et al., 1999).

6 Spectral Relaxation: The View from Gaussian Intrinsic Autore-
gression

In this section we show that spectral relaxation can be interpreted as a model-based statistical
procedure. In particular, we present a connection between spectral relaxation and Gaussian intrinsic
autoregression models.

Our focus is the spectral relaxation problem presented in Section 2, specifically the constrained
eigenvalue problem in (3).

Recall that the Laplacian matrix L is a positive semidefinite matrix; moreover, the pseudoinverse
L+ is positive semidefinite and can be viewed as a kernel matrix. We found this perspective useful
in our discussion of minimum-variance clustering in Section 4.2; note also that Saerens et al. (2004)
have explored connections between spectral embedding and random walks on graphs using the fact
that the elements of L+ are closely related to the commute-time distances obtained from a random
walk on the graph. In this section, we take the interpretation of L+ in a different direction, using
it to make the connection to Gaussian intrinsic autoregressions.
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Denote K = L+ where L = D−W. Let us model the n×(c−1) matrix Y as a singular matrix-
variate normal distribution Nn,c−1(0, σ

2K⊗Ic−1) where we follow the notation for matrix-variate
normal distributions in Gupta and Nagar (2000). That is,

p(Y) ∝ exp
(

− 1

2σ2
tr(Y′LY)

)

.

Let us set σ2 = 1/tr(ΠK) so that E(Y′ΠY) = σ2tr(ΠK)Ic−1 = Ic−1. Finally, we impose the
constraint Y′Π1n = 0 in order to remove the redundancy K+1n = 0 in K+. We thus obtain the
following proposition.

Proposition 4 The relaxation problem in (3) is equivalent to the maximization of the log likelihood
p(Y) under the constraints Y′ΠY = Ic−1 and Y′Π1n = 0.

We obtain a statistical interpretation of spectral relaxation from the fact that a multivari-
ate normal distribution can be equivalently expressed as a Gaussian conditional autoregression
(CAR) (Besag, 1974, Mardia, 1988). Indeed, given Y ∼ Nn,c−1(0, σ

2K⊗Ic−1), we have that the
yi can be characterized as (c−1)-dimensional CARs with

E(yi|yj , j 6= i) = −
∑

j 6=i

lij
lii

yj =
n

∑

j=1

wij

lii
yj , (16)

Var(yi|yj , j 6= i) =
σ2

lii
Ic−1.

That is, we have yi|{yj : j 6= i} ∼ Nc−1(
∑n

j=1
wij

lii
yj ,

σ2

lii
Ic−1), for i = 1, . . . , n. Since K is positive

semidefinite but not positive definite, Besag and Kooperberg (1995) referred to such conditional
autoregressions as Gaussian intrinsic autoregressions.

The CAR model implicitly requires wii = 0 and lii =
∑n

j=1wij . In spectral embedding and
clustering (Guattery and Miller, 2000, Belkin and Niyogi, 2002, Ng et al., 2002), the wij are usually
used to assert adjacency or similarity relationships between the yi. We will see shortly that these
adjacency or similarity relationships have an interpretation as conditional independencies.

Since D−W is positive semidefinite, D− ωW is positive definite for ω ∈ (0, 1). This fact has
been used to devise CAR models based on D−ωW such that E(yi|yj , j 6= i) = ω

∑n
j=1

wij

lii
yj (see,

e.g., Carlin and Banerjee (2003)). We now have

E(yiy
′
j |yl, l 6= i, j) =

ωlij
ω2l2ij − liiljj

σ2Ic−1.

As a result, lij = 0 (or wij = 0) implies that yi ⊥⊥ yj |{yl : l 6= i, j}; i.e., yi is conditionally
independent of yj given the remaining vectors. This Markov property also holds for Gaussian
intrinsic autoregressions (Besag and Kooperberg, 1995).

This perspective sheds light on some of the relationships between the Ncut and Rcut for-
mulations of spectral relaxation. Recall that since Π = D in the Ncut setting, we impose the
constraints Y′DY = Ic−1 and Y′D1n = 0. On the other hand, the Rcut formulation uses the
constraints Y′Y = Ic−1 and Y′1n = 0 because Π = In. Theorem 1 shows that the solution of the

Ncut is based on Π− 1
2 LΠ− 1

2 = In − D− 1
2 WD− 1

2 , which is a so-called normalized graph Lapla-
cian. The solution of the Rcut problem is based on the unnormalized graph Laplacian L. Now
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Proposition 1 reveals a problematic aspect of the Ncut formulation—piecewise constancy of the
columns of Y is accompanied by a lack of orthogonality of these columns. Two natural desiderata of
spectral clustering are in conflict in the Ncut formulation. This conflict between orthogonality and
piecewise-constancy is not present for Rcut. However, the existing empirical results showed that
the normalized graph Laplacian tends to outperform the unnormalized graph Laplacian. Moreover,
von Luxburg et al. (2008) provided theoretical evidence of the superiority of the normalized graph
Laplacian.

This seeming paradox can be resolved by using an alternative choice for L in the Rcut formu-
lation. Let us set L = (In−C)′(In−C), where C = [cij ] is an n×n nonnegative matrix such that
cii = 0 for all i and C1n = 1n. Such a L is positive semidefinite but no longer Laplacian. Since
L1n = 0, we can still solve the spectral relaxation problem (4) using Theorem 1.

Our experimental results in Section 7 show that this novel Rcut formulation is very effective.
It is also worth noting that we can connect this formulation to the simultaneous autoregression
(SAR) model of Besag (1974). In particular, the yi are now specified by n simultaneous equations:

yi =

n
∑

j=1

cijyj + ǫi, i = 1, . . . , n,

where the ǫi are independent normal vectors from Nc−1(0, σ
2Ic−1). This equation can be written

in matrix form as follows:

Y = CY + Σ with Σ = [ǫ1, . . . , ǫn]′ ∼ Nn,c−1

(

0, σ2In⊗Ic−1

)

.

We thus have Y ∼ Nn,c−1

(

0, σ2K⊗Ic−1

)

with K+ = (In−C)′(In−C). In practice, we are especially

concerned with the case in which C = D−1W. It is worth noting that In − D− 1
2 WD− 1

2 and
In − D−1W have the same eigenvalues, while the squared singular values of In − D−1W are the
eigenvalues of (In−D−1W)′(In−D−1W). We thus obtain an interesting new relationship between
the Ncut formulation and the Rcut formulation.

7 Experiments

Although our principal focus has been to provide a unifying perspective on spectral clustering, our
analysis has also provided novel spectral algorithms, and it is of interest to compare the performance
of these algorithms to existing algorithms. In this section we report the results of experiments con-
ducted with six publicly available datasets: five datasets from the UCI machine learning repository
(the dermatology data, the vowel data, the NIST optical handwritten digit data, the letter data
and the image segmentation data) as well as a set of gene expression data analyzed by Yeung et al.
(2001).

In the dermatology data, there are 366 patients, 8 of whom are excluded due to missing infor-
mation, with 34 features. The data are clustered into 6 classes. We standardized the data to have
zero mean and unit variance. The NIST dataset contains the handwritten digits 0− 9, where each
instance consists of a 16×16 pixel and where digits are treated as classes. We selected 1000 digits,
with 100 instances per digit, for our experiments. The vowel data set contains the eleven steady
state vowels of British English. The letter dataset consists of images of the letters “A” to “Z.” In
our experiments we selected the first 10 letters with 195, 199, 182, 207, 203, 210, 226, 196, 188
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Table 1: Summary of the Benchmark Datasets: n—the number of samples; d—the number of
features; c—the number of classes.

Gene Dermatology Vowel NIST Letter Segmentation

n 384 358 990 1000 1978 2100
d 17 34 10 256 16 19
c 5 6 11 10 10 7

and 172 instances, respectively. The image segmentation data consists of seven types of images:
“brickface,” “sky,” “foliage,” “cement,” “window,” “path” and “grass.” The gene dataset contains
384 genes with 17 time points over two cell cycles. The data were standardized to have mean zero
and unit variance (Yeung et al., 2001). We treated the five phases of the cell cycle as five nominal
classes for these data, classifying genes into these classes according to their expression level peaks.
Table 1 gives a summary of these datasets.

We compared our rounding algorithm based on Procrustean transformation (see Algorithm 1)
with those based on the rounding procedures given in Bach and Jordan (2006) and Yu and Shi
(2003), conducting comparisons using the Ncut, Rcut and minimum-variance criteria. We refer
to the weighted K-means and the K-means algorithms of Bach and Jordan (2006) as BJ-wkm and
BJ-km, respectively. Note that the spectral clustering algorithm based on the Ncut formulation
and K-means rounding is equivalent to that presented by Ng et al. (2002). We initialized the
K-means algorithms by the orthogonal initialization method in Ng et al. (2002). For the rounding
scheme of Yu and Shi (2003), we used two initialization methods: the orthogonal initialization
method and initialization to the identity matrix. We refer to the corresponding algorithms as YS-1
and YS-2. We also used these two initialization methods in our algorithm (Algorithm 1), referring
to the results in these two cases as Margin-1 and Margin-2.

7.1 Setup and Evaluation Criterion

We defined the adjacency matrix W = [wij ] as wij = exp(−‖xi − xj‖2/β) with β > 0. The kernel
matrix is defined as K = HnWHn. For the margin-based algorithms, however, we set wii = 0
for i = 1, . . . , n; in this case the kernel matrix is defined as K = Hn(In + W)Hn. For simplicity,
we do not distinguish between these two cases in our notation in the remainder of this section. In
the minimum-variance formulation we always set Π = In. With these settings, the BJ-wkm and
BJ-km algorithms are based on the spectral decomposition of In−D− 1

2 WD− 1
2 . The YS-1 and

YS-2 algorithms are based on the spectral decomposition of In−D−1W, and the Margin-1 and
Margin-2 algorithms are based on the spectral decomposition of In−D− 1

2 WD− 1
2 .

Although L = D − W is one natural choice in the Rcut setting, we instead adopted the
suggestion in Section 6 and defined L as

L = (In − D−1W)′(In − D−1W). (17)

To simplify the comparison among procedures, we fixed β to specific sets of values for each of
the data sets, exploring a range of values to investigate the relative sensitivities to the choice of β for
the different clustering algorithms. Our specific choices for both the Ncut and Rcut criteria were
β ∈ {1, 10} for the gene data, β ∈ {1, 10, 100} for the “vowel” data, β ∈ {5000, 10000, 20000} for the
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“image segmentation” data, and β ∈ {10, 100, 1000} for the “dermatology,” “NIST” and “letter”
datasets. Since the minimum-variance criterion directly operates on K, we choose a different set
of values when working with this criterion; in particular, we used β ∈ {10, 100} for the gene data,
β ∈ {100, 1000} for the “dermatology” data, β ∈ {1, 10, 100} for the “vowel” data, β ∈ {500, 1000}
for NIST data, β ∈ {10, 100, 1000} for the “letter” data, and β ∈ {10, 100, 1000} for the “image
segmentation” data.

To evaluate the performance of the various clustering algorithms we employed the Rand index
(RI) (Rand, 1971). Given a set of n objects S = {O1, . . . , On}, suppose that U = {U1, . . . , Ur} and
V = {V1, . . . , Vs} are two different partitions of the objects in S such that ∪r

i=1Ui = S = ∪s
j=1Vj

and Ui ∩ Ui′ = ∅ = Vj ∩ Vj′ for i 6= i′ and j 6= j′. Let a be the number of pairs of objects that
are in the same set in U and in the same set in V , and b the number of pairs of objects that are
in different sets in U and in different sets in V . The Rand index is given by RI = (a + b)/

(

n
2

)

. If
RI = 1, the two partitions are identical.

Since the ground-truth partitions are available for our six datasets, we directly calculated RI
between the true partition and the partition obtained from each clustering algorithm. We conducted
50 replicates of each of the algorithms that require random initialization (this is not necessary for
YS-2 and Margin-2, which are initialized to the identity matrix). Note that for the Rcut and
minimum-variance criteria, BJ-wkm and BJ-km become identical because in these cases Π = In.

7.2 Performance Analysis

Figure 2 displays the results for all six algorithms using the Ncut criterion. We see that the
margin-based algorithms are competitive with the other algorithms. The poorest performer in this
setting is BJ-wkm, which is highly sensitive to the value of β. In particular, when β = 10 for the
“gene” dataset, β ∈ {10, 100} for the vowel data, β ∈ {1000, 100, 10} for the “letter” data, and
β = 1000 for both the “dermatology” and “NIST” datasets, this algorithm almost failed. A possible
interpretation for this result is the conflict between orthogonality and piecewise constancy implied
in the Ncut setting (see Proposition 1). Indeed, as can be seen from Figure 2, the situation is

more favorable for the BJ-km rounding algorithm; in this case D− 1
2 Y(Y′D−1Y)−

1
2 is used, which

diminishes the conflict between orthogonality and piecewise constancy. Similarly, the conflict is
diminished for the YS rounding algorithms and our margin-based rounding methods (because

argmaxj d
− 1

2
j yij is equivalent to argmaxj yij).

Recall that the YS-1 and YS-2 algorithms need to use a heuristic post-processing procedure;
i.e., the algorithms operate on Ẑ = dg(ZZ′)−

1
2 Z. We found that the performance of the algorithms

depends strongly on this procedure.
Figures 3 and 4 display the experimental results using the Rcut and minimum-variance criteria,

respectively. We see again that the margin-based algorithms are competitive with the other algo-
rithms; indeed for several of the data sets the margin-based algorithms yield better performance
than the other algorithms.

We see from Figures 3 and 4 that BJ-km is competitive with the other algorithms. This shows
that the choice of L given in (17) is an effective choice.

We again found it to be the case that the heuristic post-processing procedure was needed for
YS-1 and YS-2 to yield good clustering performance.

The performance of Margin-1 and Margin-2 were similar across the datasets and criteria, show-
ing the relative insensitivity of the margin-based approach to the initialization. Note in particular
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the larger degree of variability between the performance of YS-1 and YS-2. Note also that the
margin-based approach was in general less sensitive to the value of β than the other algorithms.

Finally, recall that L in (17) for the Rcut setting and L = K+ obtained from the minimum-
variance setting are positive semidefinite but they are not Laplacian matrices, because the off-
diagonal elements of the W = L − D are possibly negative. Nonetheless, our experimental results
showed that these two choices are still effective. Thus cuts can be defined through non-Laplacian
matrices. Although such cuts lose their original interpretation in terms of the graph partition,
as we have shown they do have a clear statistical interpretation in terms of Gaussian intrinsic
autoregression models.

8 Discussion

In this paper we have presented a margin-based perspective on multiway spectral clustering. We
have shown that both aspects of spectral clustering—relaxation and rounding—can be given an
interpretation in terms of margins. The major advantage of this perspective is that it ties spectral
clustering to the large literature on margin-based classification. The margin-based perspective
has several additional consequences: (1) it permits a deeper understanding of the relationship
between the normalized cut and ratio cut formulations of spectral clustering; (2) it strengthens the
connections between the minimum-variance criterion and spectral clustering; and (3) it yields a
statistical interpretation of spectral clustering in terms of Gaussian intrinsic autoregressions. Also,
the preliminary empirical evidence that we presented suggests that the algorithms motivated by
the margin-based perspective are competitive with existing spectral clustering algorithms.

One of the most useful consequences of the margin-based perspective is the interpretation that it
yields of spectral clustering in terms of projection onto hyperplanes in a reproducing kernel Hilbert
space (see Figure 1). This interpretation shows that the performance of the margin-based clustering
algorithms depends on the separability of the feature vectors. This suggests that the algorithmic
problem of choosing the similarity matrix W or kernel matrix K so as to increase separability is
an important topic for further research; see Bach and Jordan (2006) and Meilă and Shi (2000) for
initial work along these lines.

Although we have focused on undirected graphs in our treatment, it is also worth noting the
possibility of considering clustering in a directed graph with the asymmetric weighted matrix
D−1W (Meilă and Pentney, 2007). This can be related to our discussion in Section 6, where
we suggested the use of the matrix L = (In − D−1W)′(In − D−1W) in the Rcut setting. The
experimental results in Section 7 showed that such a suggestion is promising. Moreover, although
L is no longer Laplacian, the corresponding spectral relaxation can be interpreted as a simultane-
ous autoregression model. The relationship between simultaneous autoregression and conditional
autoregression (Ripley, 1981) may provide connections between spectral clustering in undirected
graphs and directed graphs. We intend to explore this issue in future work.

In delineating a relationship between the Pcut criterion and the kernel minimum-variance
criterion, we have proven that the relaxation problems (3) and (7) have the same solution whenever
rk(L) = n−1 and L+ = K. This leads to the question as to whether the original unrelaxed
problems—i.e., the minimization of Pcut and the maximization of T with respect to discrete
partition matrix E— have the same solution under the conditions rk(L) = n−1 and L+ = K. This
is currently an open problem.
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(b) Dermatology data
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(e) Letter data
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(f) Segmentation data

Figure 2: Clustering results (Rand index) with normalized cuts. “BJ-WKM”: the weighted K-
means rounding of Bach and Jordan (2006); “BJ-KM”: the K-means rounding of Bach and Jordan
(2006); “YS-1”: the rounding scheme of Yu and Shi (2003) with the orthogonal initialization
method; “YS-2”: the rounding scheme of Yu and Shi (2003) with initialization to the identity
matrix; “Margin-1”: the rounding scheme in Section 3.1 with the orthogonal initialization method;
“Margin-2”: the rounding scheme in Section 3.1 with initialization to the identity matrix.
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(d) NIST data
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(f) Segmentation data

Figure 3: Clustering results (Rand index) with ratio cuts. See the caption of Figure 2 for explanation
of the acronyms.
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(f) Segmentation data

Figure 4: Clustering results (Rand index) with the minimum-variance criterion. See the caption of
Figure 2 for explanation of the acronyms.
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A The Proof of Proposition 1

Since the columns of Y are piecewise constant with respect to the partition E, we can express

Y as Y = EΨ for some Ψ ∈ R
c×(c−1). Let Y0 = Π

1
2 Y, Ψ0 = [Ψ, α1c], a c×c matrix, and Z =

[Y0, αΠ
1
2 1n], where α = 1/

√

1′
nΠ1n. We have Π− 1

2 Z = EΨ0 and Z′Z = [Y0, αΠ
1
2 1n]′[Y0, αΠ

1
2 1n] =

Ic due to E1c = 1n, Y′
0Y0 = Y′ΠY = Ic−1 and Y′

0Π
1
2 1n = Y′Π1n = 0. Furthermore, we have

Ψ′
0E

′ΠEΨ0 = Z′Z = Ic. Since Ψ0 and E′ΠE are square, Ψ0 and E′ΠE are invertible. Hence
Ψ0Ψ

′
0 = (E′ΠE)−1. We now have

tr(Y′LY) = tr(Y′
0Π

− 1
2 LΠ− 1

2 Y0) = tr(Z′Π− 1
2 LΠ− 1

2 Z)

= tr(Ψ′
0E

′LEΨ0) = tr(E′LEΨ0Ψ
′
0) = tr(E′LE(E′ΠE)−1),

completing the proof.

B The Proof of Proposition 2

In this section we provide a constructive proof of Proposition 2 by establishing the existence of Ψ.
We also provide an example of the construction in the special case of c = 4 and Π = In.

Let (E′ΠE)−1 = diag(1/β1, . . . , 1/βc) and β = (β1, . . . , βc)
′. We then have 1′

nΠ1n = π′1n =
β′1c and E′Π1n = β. In the proof in Appendix A, we obtain Ψ0Ψ

′
0 = (E′ΠE)−1. Thus,

ΨΨ′ = diag(1/β1, . . . , 1/βc) −
1

π′1n
1c1

′
c (denoted A).

In order to make the above equation hold, it is necessary for A to be positive semidefinite. Given
any nonzero b = (b1, . . . , bc)

′ ∈ R
c, we have

b′diag(β)Adiag(β)b/(π′1n) =
c

∑

j=1

βj

π′1n
b2j −

(

∑

j=1

βj

π′1n
bj

)2
≥ 0,

since the function f(x) = x2 is convex. This implies that A positive semidefinite. Furthermore,
it is easy to obtain Aβ = 0. Using the SVD of A, we are always able to obtain a Ψ such that
ΨΨ′ = A and Ψ′β = 0. Consequently, we have

1′
nΠEΨ = β′Ψ = 0 and Ψ′E′ΠEΨ = Ic−1.

The latter equality comes from Ic = Ψ′
0E

′ΠEΨ0 =

[

Ψ′

α1′
c

]

E′ΠE[Ψ, α1c] =

[

Ψ′E′ΠEΨ 0

0 1

]

.

Example 1 Let η = π′1n and ηj =
∑

i∈Vj
πi. Assume that Ψ = (ψ1, . . . ,ψc−1)

′ where ψ′
1 =

(√
η−η1√
ηη1

,−
√

η1√
η(η−η1)

1′
c−1

)

and

ψ′
l =



0 ∗ 1′
l−1,

√

∑c
j=l+1 ηj

√

ηl
∑c

j=l ηj

,

√
ηl

√

∑c
j=l ηj

∑c
j=l+1 ηj

1c−l
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for l = 2, . . . , c−1. For instance, if c = 4, we have

Ψ =

















√
η−η1√
ηη1

0 0

−
√

η1√
η(η−η1)

√
η3+η4√

η2(η−η1)
0

−
√

η1√
η(η−η1)

−
√

η2√
(η3+η4)(η−η1)

√
η4√

(η3+η4)η3

−
√

η1√
η(η−η1)

−
√

η2√
(η3+η4)(η−η1)

−
√

η3√
(η3+η4)η4

















.

It is easily verified that Y = EΨ satisfies the conditions (a)-(c) listed in Proposition 1. Let
a1, . . . ,ac denote the row vectors of Ψ. We note that an arbitrary collection of c−1 vectors from the
set a1, . . ., ac are linearly independent. The convex hull of a1, . . ., ac is thus a (c−1)-dimensional
simplex. (A d-dimensional simplex is the convex hull of an affinely independent point set in R

d. A
regular d-dimensional simplex is the convex hull of d+1 points with all pairs of points having equal
distances.) In addition, we have that the squared distance between ai and aj is

‖ai − aj‖2 =
1

ηi
+

1

ηj
, for i 6= j.

Note that we have η = n and ηj = nj when Π = In. In particular, if Π = In and n1 = · · · = nc = n
c ,

the ai constitute the vertices of a (c−1)-dimensional regular simplex.

C The Proof of Theorem 1

This theorem is a variation on a standard result in linear algebra; for completeness we present a

proof. Let S = Π− 1
2 LΠ− 1

2 and consider the following Lagrangian:

L(Y0,A,b) = tr(Y′
0SY0) − tr(A(Y′

0Y0 − Ic−1)) − b′Y′
0Π

1
2 1n,

where A is a (c−1)×(c−1) symmetric matrix of Lagrange multipliers and b is a (c−1)×1 vector of
Lagrange multipliers. We differentiate to obtain:

∂L

∂Y0
= 2SY0 − 2Y0A − Π

1
2 1nb

′.

Letting ∂L
∂Y0

= 0 leads to

2SY0 − 2Y0A − Π
1
2 1nb

′ = 0,

from which we have
21′

nΠ
1
2 SY0 − 21′

nΠ
1
2 Y0A − 1′

nΠ1nb
′ = 0.

This implies b = 0. Accordingly, we obtain

SY0 = Y0A.

We now take the eigendecomposition of A, letting A = Q′Γ1Q where Q is a (c−1)×(c−1) or-
thonormal matrix and Γ1 is a (c−1)×(c−1) diagonal matrix. We note that the diagonal entries
of Γ1 and the columns of Y0Q

′ are the eigenvalues and the associated eigenvectors of S. Clearly,
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Π
1
2 1n is the eigenvector of S associated with eigenvalue 0. We now let Γ1 = diag(γ2, . . . , γc). We

thus have Ȳ0 = [µ2, . . . ,µc]Q. Obviously, Ȳ0 satisfies Ȳ′
0Ȳ0 = Ic−1 and Ȳ′

0Π
1
2 1n = 0 due to

µ′
iΠ

1
2 1n = 0 for i 6= 1.

To verify that Ȳ0 is the solution of problem (4), we consider the Hessian matrix of L with
respect to Y0. Let vec(Y′

0) = (y11, . . . , y1,c−1, y21, . . . , yn,c−1)
′. The Hessian matrix is then given

by

H(Y0) =
∂2L

∂vec(Y′
0)∂vec(Y′

0)
′ = Ic−1⊗S − A⊗In.

Let B be an arbitrary nonzero n×(c−1) matrix such that B′[µ1, . . . ,µc] = 0. We can always
express B = [µc+1, . . . ,µn]Φ where Φ = [φ1, . . . ,φc−1] is an (n−c)×(c−1) matrix. Denoting
Γ2 = diag(γc+1, . . . , γn), we have

vec((BQ)′)′H(Ȳ0)vec((BQ)′)

= tr(Q′B′SBQ) − tr(AQ′B′BQ)

= tr(B′SB) − tr(Γ1B
′B) = tr(Φ′Γ2Φ)−tr(Γ1Φ

′Φ)

=
c−1
∑

i=1

φ′
iΓ2φi −

c−1
∑

i=1

γi+1φ
′
iφi

=
c−1
∑

i=1

φ′
i(Γ2 − γi+1In−c)φi ≥ 0.

If γc > γc+1, then the matrices Γ2−γi+1In−c, i = 1, . . . , c−1, are positive definite. Thus, the above

inequality is strict. This shows that Ȳ0 is a strict local minimum of tr(Y′
0Π

− 1
2 LΠ− 1

2 Y0) under

the conditions Y′
0Y0 = Ic−1 and Y′

0Π
1
2 1n = 0. �

D The Solution of Problem (8)

Let T = Π
1
2 H′

πKHπΠ
1
2 and consider the following Lagrangian:

L(Y0,A,b) = tr(Y′
0TY0) − tr(A(Y′

0Y0 − Ic−1)) − b′Y′
0Π

1
2 1n,

where A is a (c−1)×(c−1) symmetric matrix of Lagrange multipliers and b is a (c−1)×1 vector of
Lagrange multipliers. Differentiating, we obtain:

∂L

∂Y0
= 2TY0 − 2Y0A − Π

1
2 1nb

′.

Letting ∂L
∂Y0

= 0 leads to

2TY0 − 2Y0A − Π
1
2 1nb

′ = 0,

from which we have
21′

nΠ
1
2 TY0 − 21′

nΠ
1
2 Y0A − 1′nΠ1nb

′ = 0.

Since 1′
nΠ

1
2 T = 1′

nΠH′
πKHπΠ

1
2 = 1′

nHπΠKHπΠ
1
2 = 0, we obtain b = 0. This implies

TY0 = Y0A.

Now following the proof in Appendix C, we find that the top c−1 eigenvectors of T provide the
solution for Y0 in Problem (8).
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E The Proof of Theorem 3

Our proof is based on the following lemma.

Lemma 1 Assume that A is an n×n symmetric matrix with rk(A) = n−1 and A1n = 0. Let A+

be the MP inverse of A. Then Π
1
2 H′

πA
+HπΠ

1
2 is the MP inverse of Π− 1

2 AΠ− 1
2 .

Proof We first prove A+A = AA+ = Hn. Let N = A′A. It is clear that NHn = HnN = N. It
thus follows from Corollary 4.5.18 in Horn and Johnson (1985) that there exists an n×n orthonormal
matrix U such that

U′NU =

(

∆n−1 0

0 0

)

and U′HnU =

(

In−1 0

0 0

)

,

where ∆n−1 is an (n−1)×(n−1) diagonal matrix with positive diagonal entries, and U = [U1,
1√
n
1n]

with U′
1U1 = In−1 and U11n = 0. Here we use the fact that 1n is the eigenvector of N and of Hn

with associated eigenvalue 0. Accordingly, we have

N = U1∆n−1U
′
1 and Hn = U1U

′
1,

from which it follows that
N+ = U1∆

−1
n−1U

′
1

and hence N+N = U1U
′
1 = Hn. On the other hand, since A+ = (A′A)+A′, we have A+A =

N+N = Hn. Since A is symmetric, we also have AA+ = Hn.
Using the identity A+A = AA+ = Hn and AH′

π = A = HπA, we have

Π− 1
2 AΠ− 1

2 Π
1
2 H′

πA
+HπΠ

1
2 = Π− 1

2 HπΠ
1
2

= Π
1
2 H′

πΠ
− 1

2 = Π
1
2 H′

πA
+HπΠ

1
2 Π− 1

2 AΠ− 1
2 .

We further obtain

Π− 1
2 AΠ− 1

2 Π
1
2 H′

πA
+HπΠ

1
2 Π− 1

2 AΠ− 1
2 = Π− 1

2 AΠ− 1
2

and
Π

1
2 H′

πA
+HπΠ

1
2 Π− 1

2 AΠ− 1
2 Π

1
2 H′

πA
+HπΠ

1
2 = Π

1
2 H′

πA
+HπΠ

1
2 .

Thus Π
1
2 H′

πA
+HπΠ

1
2 is the MP inverse of Π− 1

2 AΠ− 1
2 .

Since L+ is the MP inverse of L, L+ is positive semidefinite and it satisfies L+1n = 0 and

rk(L+) = n−1. It is obvious that rk
(

Π− 1
2 LΠ− 1

2

)

= n−1 and rk
(

Π
1
2 H′

πL
+HπΠ

1
2

)

= n−1. More-

over, Π
1
2 1n is eigenvector of both Π− 1

2 LΠ− 1
2 and Π

1
2 H′

πL
+HπΠ

1
2 with associated eigenvalue 0. In

addition, if λ 6= 0 is eigenvalue of Π− 1
2 LΠ− 1

2 with associated eigenvector u, then λ−1 is eigenvalue

of Π
1
2 H′

πL
+HπΠ

1
2 with associated eigenvector u. It thus follows from Lemma 1 that (8) has the

same solution as (4) whenever L+ = K. As a result, (7) has the same solution as (3).
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