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Abstract

We consider the problem of constructing confidence intervals for the mean of a Negative Bi-
nomial random variable based upon sampled data. When the sample size is large, it is a common
practice to rely upon a Normal distribution approximation to construct these intervals. However,
we demonstrate that the sample mean of highly dispersed Negative Binomials exhibits a slow con-
vergence in distribution to the Normal as a function of the sample size. As a result, standard tech-
niques (such as the Normal approximation and bootstrap) will construct confidence intervals for
the mean that are typically too narrow and significantly undercover at small sample sizes or high
dispersions. To address this problem, we propose techniques based upon Bernstein’s inequality or
the Gamma and Chi Square distributions as alternatives to the standard methods. We investigate
the impact of imposing a heuristic assumption of boundedness on the data as a means of improving
the Bernstein method. Furthermore, we propose a ratio statistic relating the Negative Binomial’s
parameters that can be used to ascertain the applicability of the Chi Square method and to provide
guidelines on evaluating the length of all proposed methods. We compare the proposed methods
to the standard techniques in a variety of simulation experiments and consider data arising in the
serial analysis of gene expression and traffic flow in a communications network.

KEYWORDS: Bernstein’s inequality, Chi Square distribution, confidence intervals, Gamma dis-
tribution, negative binomial distribution, serial analysis of gene expression (SAGE)
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1 Introduction

Given a sample of n independent, identically distributed (i.i.d.) random vari-
ables with finite variance, the Central Limit Theorem (CLT) states that the
distribution of the sample mean X̄ is approximately Normal when the sam-
ple size n is large. As discussed in Rosenblum and van der Laan (2008), the
Normal approximation and a bootstrap method are standard techniques used
in the construction of confidence intervals for the mean µ even for moderately
small sample sizes (e.g. n = 30). However, any application of Normal theory
in these settings relies upon an assumption that n is large enough to render the
differences between the distributions of X̄ and the Normal inconsequential. At
moderate sample sizes, this CLT assumption cannot be assured in the case of
random variables with highly skewed distributions (Wilcox, 2005). In particu-
lar, we will demonstrate that a sample mean constructed from i.i.d. Negative
Binomial random variables of high dispersion exhibits a probability mass func-
tion with an extremely heavy right tail. Moreover, the variability of estimates
of the standard error of X̄ provides an additional degree of uncertainty. In
practice, researchers who rely on a relatively small number of independent sam-
ples (such as the investigation of (Lloyd-Smith et al., 2005) on the secondary
transmission of infectious disease) should exercise caution to ensure that their
conclusions are not greatly impacted by biased estimates of variability. Be-
cause X̄ exhibits a skewed distribution, the Normal approximation may result
in poor coverage and correspondingly poor inferences. Similarly, the bootstrap
Bias Corrected and Accelerated (BCA) method (Efron and Tibshirani, 1994)
also relies upon imbedded Normal theory that is impacted by skewness. This
paper investigates the performance of these methods through simulation stud-
ies and proposes a variety of improvements based upon Bernstein’s Inequality,
a Gamma model, and the Chi Square (χ2) distribution for the construction
of confidence intervals for the mean of Negative Binomial random variables of
high dispersion.

For any significance level α ∈ (0, 1), standard techniques for constructing
1− α confidence intervals often rely upon inverting hypothesis testing proce-
dures under specific parametric assumptions (Casella and Berger, 1990; Clop-
per and Pearson, 1934; Crow and Gardner, 1959; Sterne, 1954). When these
assumptions are satisfied, the resulting 1− α confidence intervals are exact in
that the infimum coverage probability over all sample sizes is at least 1 − α
(Blyth and Still, 1963). Rosenblum and van der Laan (2008) investigate the
use of exact methods in constructing confidence intervals when the assump-
tions underlying standard techniques are not valid. In particular, they employ
tail probability bounds such as Bernstein’s Inequality (Bernstein, 1934), Ben-
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nett’s Inequality (Bennett, 1962), and methods based on the work of Hoeffding
(1963) and Berry-Esseen (Berry, 1941; Esseen, 1942). These bounds all require
much weaker hypotheses that do not involve distributional assumptions on the
data. As a result, Rosenblum and van der Laan (2008) are able to construct
confidence intervals for a wide variety of parameters based upon the corre-
sponding estimators’ empirical influence curves. Such intervals will in general
be more conservative than those based upon the Normal distribution but are
not necessarily exact due to the influence curve approximation.

However, determining confidence intervals for the mean of i.i.d. Nega-
tive Binomial random variables of high dispersion is not so straightforward,
particularly for small sample sizes. Even the relatively weak assumptions un-
derlying methods such as the variant of Bernstein’s Inequality employed by
Rosenblum and van der Laan (2008) are not necessarily valid for Negative Bi-
nomials because the maximum deviation from the mean is not bounded. Since
this assumption is violated in our setting, the resulting confidence intervals are
not guaranteed to cover well. Therefore, we also investigate the Chi Square
and Gamma distributions as practical alternatives to standard techniques and
refinements to Bernstein confidence intervals that can lead to improved cov-
erage of 1− α confidence intervals. We use simulation studies to compare the
performance of these proposed techniques to those of standard methods for
constructing confidence intervals for the mean of i.i.d. Negative Binomial ran-
dom variables when the dispersion is high and the sample size n is small. We
subsequently consider examples arising in the serial analysis of gene expression
(SAGE) and network traffic flow data.

Section 2 reviews the Negative Binomial distribution. Section 3 describes
Bernstein’s Inequality’s role in constructing 1− α confidence intervals for the
mean, proves a limit theorem on the convergence of X̄ to a Gamma distri-
bution at large sample sizes and high dispersions, and also proposes the Chi
Square distribution as an alternative approximation under suitable conditions.
Section 4 summarizes a variety of simulation experiments that compare the
coverage probabilities of the proposed methods, investigates the quality of ap-
proximations to the Negative Binomial’s dispersion parameter, and examines
potential refinements of the Bernstein method. Section 5 applies these tech-
niques to data from the serial analysis of gene expression (SAGE) and network
traffic flow studies. Finally, we will conclude the paper with a discussion in
Section 6.
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2 The Negative Binomial Distribution

A Negative Binomial distribution is conventionally used to compute the prob-
ability that a total of k failures will result before the rth success is observed
when each trial is independent of all others and results in success with a fixed
probability p. As described in Hilbe (2007), a Negative Binomial distribution

may instead be parameterized in terms of a mean parameter µ = r
(

1
p
− 1
)

and a dispersion parameter θ = r. (We will adopt this alternative parameteri-
zation for the remainder of this paper.) Then, for any µ ∈ R+ and θ ∈ R+, the
resulting probability mass function for the Negative Binomial random variable
X ∼ NB(µ, θ) is

P (X = k) =
µk

k!

Γ(θ + k)

Γ(θ)[µ+ θ]k
1(

1 + µ
θ

)θ , k ∈ Z+. (1)

Equation (1) can be shown to converge to the probability mass function of
a Poisson random variable with mean parameter µ as θ → ∞ (Hilbe, 2007).
For this reason, the Negative Binomial may be considered as an over-dispersed
Poisson random variable with the dispersion controlled by the value of θ. Neg-
ative Binomial models are useful as robust alternatives to the Poisson that
allow the variance parameter to exceed the mean. For instance, smaller values
of θ result in a higher dispersion by adding more weight to the right tail of
the probability mass function, which necessarily results in a higher variance.
When the value of θ is very small, the Negative Binomial distribution exhibits
a high degree of skewness. As a result of the extreme dispersion of the Neg-
ative Binomial from the Poisson in this case, the sample mean X̄ of n i.i.d.
NB(µ, θ) observations may not be reasonably close to the Normal in distri-
bution for small values of n. Wilcox (2005) warns that standard confidence
intervals based upon a Normal approximation may result in poor coverage in
scenarios such as this.

3 Gamma, Chi Square, and Bernstein Confi-

dence Intervals

3.1 The Gamma Model

We propose the Gamma distribution as an approximate distribution for the
sample mean X̄ of Negative Binomial random variables. The Gamma approx-
imation may be established in a limit theorem using Laplace transforms. A
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Negative Binomial random variable Xi with parameters µ and θ and PMF (1)
has a Laplace transform given by:

FXi
(λ) ≡ E [exp (−λXi)] =

(
1 + (1− e−λ)µ

θ

)−θ
. (2)

Similarly, the sample mean X̄ of n i.i.d. Negative Binomial random vari-
ables with parameters µ and θ has the Laplace transform

FX̄(λ) =
(

1 + (1− e−λ/n)
µ

θ

)−θn
. (3)

If θn converges to a positive constant γ as n → ∞ and θ → 0, then the
Laplace transform (3) converges to

FX̄(λ) =

(
1 +

λµ

γ

)−γ
. (4)

Meanwhile, a Gamma random variable Y with a probability density func-
tion given by

fa,b(x) =
baxa−1e−bx

Γ(a)
(5)

has a Laplace transform of

FY (λ) =

(
1 +

λ

b

)−a
. (6)

The Laplace transforms (4) and (6) are identical when a = γ and b = γ
µ
.

Therefore, the sample mean of Negative Binomial random variables converges
to a Gamma distribution with shape parameter a and rate parameter b as
n→∞ and θ → 0. Stated another way, the Gamma assumption requires that
θn is sufficiently close to the limiting constant γ to ensure that the distribution
of X̄ is approximated well by the Gamma distribution. When this condition
is satisfied, a Gamma confidence interval is expected to cover well.

Constructing a 1 − α confidence interval using the Gamma distribution
requires estimating the parameters a = γ = θn and b = γ

µ
= θn

µ
in terms of the

estimates of µ and θ that are obtained from the data. Maximum likelihood
estimates for these parameters may be obtained using numeric techniques, or
the Method of Moments estimates µ̂ = X̄ and θ̂ = X̄/((s2/X̄) − 1) may be
employed. We will rely upon the latter choice as a default and provide a
discussion of alternatives in Section 4.2. Once a and b are estimated, a 1− α
confidence interval for µ is given by the (α/2)nd and (1− α/2)th quantiles of
the Gamma distribution.
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3.2 The Chi Square Approximation

We also propose the Chi Square (χ2) distribution as an approximate distribu-
tion for X̄. Under the assumptions of Section 3.1, X̄ approximately follows
a Gamma distribution with parameters a = θn and b = θn

µ
. The Chi Square

family of distributions is a special case of the more general Gamma. The
corresponding case occurs for the sample mean of Negative Binomial random
variables when µ = 2nθ. If we consider the ratio quantity

ratio =
µ

2nθ
, (7)

then, when ratio = 1, the Gamma parameters are a = θn = µ
2

and b =
θn
µ

= 1
2
, which collectively specify a Chi Square distribution with µ degrees of

freedom.
In general, using a one–parameter Chi Square model to approximate a

function of two–parameter Negative Binomial random variables lacks the two–
parameter Gamma model’s flexibility. This necessarily limits the use of Chi
Square confidence intervals to situations in which the ratio quantity is reason-
ably close to 1. With this in mind, we emphasize that the Chi Square model’s
applicability should be carefully investigated before it is utilized in a partic-
ular context. However, when the Chi Square model is reasonable, it allows
for the construction of a confidence interval based only upon the estimator
X̄ of µ. Other techniques such as the Gamma and Normal approximation
also require an estimate s2 of σ2 that is considerably more variable than X̄
at small sample sizes. We will propose some guidelines in Section 4.3 for the
use of the Chi Square approximation based upon a study of the ratio quan-
tity (7)’s relationship to the method’s coverage probability. When applicable,
Chi Square confidence intervals for µ may be constructed by estimating the
degrees of freedom with the sample mean X̄ and then computing the (α/2)nd
and (1− α/2)th percentiles of the corresponding Chi Square distribution.

The Chi Square distribution may also be used to construct confidence in-
tervals for the success probability p under the traditional parametrization of
the Negative Binomial distribution. On page 504, Casella and Berger (1990)
demonstrate that the quantity 2pY converges in distribution to a Chi Square
random variable with 2nr degrees of freedom, where Y is the sum of n i.i.d.
Negative Binomial(r, p) random variables. When the number of successes r is
known, a 1−α confidence interval for p may be written in terms of Y and the
quantiles of the Chi Square distribution.
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3.3 Bernstein’s Inequality

Bernstein’s Inequality (Bernstein, 1934) provides tail probability bounds on
sums of independent random variables. Selecting an appropriate variant re-
quires an examination of the assumptions underlying a particular study. More
classical versions of Bernstein’s Inequality were derived for uniformly bounded
random variables, but Negative Binomial random variables are not bounded
above. We will first address this problem through a version of Bernstein’s In-
equality that does not rely upon an assumption of boundedness. We will then
provide an alternative methodology based upon this assumption. Although it
does not directly apply to Negative Binomial random variables, this Bounded
Bernstein method may be appropriate when a Negative Binomial model is
considered as an approximate distribution for bounded data.

3.3.1 The Unbounded Bernstein Method

We will begin by deriving a confidence limit using a variant of Bernstein’s
Inequality that does not require an assumption of boundedness. As part of
Lemma 8 on pages 366 and 367, Birge and Massart (1998) show that a knowl-
edge of a random variable’s moment generating function is sufficient to apply
the classical version of Bernstein’s Inequality given by Uspensky (1937). Sup-
pose that Zi, 1 ≤ i ≤ n, are i.i.d. negative binomial with parameters µ and θ,
and let Yi = Zi − µ. Then,

logE [exp(yYi)] = −θ log

(
(1− ey)µ

θ
+ 1

)
− yµ. (8)

From (Uspensky, 1937),

P

[
n∑
i=1

Yi ≥ nε

]
≤ exp

[
inf
y≥0

(
−nyε+

n∑
i=1

logE[eyYi ]

)]
. (9)

Substituting (8) into (9), we obtain the following probability bounds:

P

(
n∑
i=1

Yi > nε

)
≤
(

θ + µ

nε+ θ + µ

)−θ (
(θ + µ)(nε+ µ)

µ(nε+ θ + µ)

)−nε−µ
, (10)

and

P

(
n∑
i=1

Yi < −nε

)
≤
(

θ + µ

nε+ θ + µ

)−θ (
µ(nε+ θ + µ)

(θ + µ)(nε+ µ)

)nε+µ
. (11)
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Equation (11) comes from using the classical inequality with Yi replaced
by −Yi. With X̄ serving as the empirical mean of Zi, 1 ≤ i ≤ n, the symmetry
of Equations (10) and (11) imply that we can construct a 1 − α confidence
interval by setting the right side of either equation equal to α/2. This amounts
to constructing an interval of the form X̄ ± ε, where ε is the solution to the
equation (

θ + µ

nε+ θ + µ

)−θ (
(θ + µ)(nε+ µ)

µ(nε+ θ + µ)

)−nε−µ
= α/2. (12)

However, solving Equation (12) is not easily amenable to analytic methods.
For the purposes of implementation, we instead rely upon a simple numeric
root–finding procedure that selects the best among candidate values of ε at
evenly spaced intervals over a range (e.g. searching in increments of 0.1 from
0 to 100) and then searches within a small neighborhood of this candidate for
an improved solution. Although this procedure is not guaranteed to provide a
good approximation of the true value of ε that solves Equation (12), in practice
it often performs reasonably well without requiring significant computation.
However, further investigation of the solution to Equation (12) may lead to
improved performance of the confidence interval.

3.3.2 The Bounded Bernstein Method

We will also construct a Bernstein confidence interval under a heuristic as-
sumption of uniformly bounded data. For notational purposes, we will refer
to the interval constructed for unbounded data as the Unbounded Bernstein
method and that proposed for bounded data as the Bounded Bernstein pro-
cedure. As stated in van der Laan and Rubin (2005), suppose that Z1, . . . , Zn
are independent random variables such that Zi ∈ [a, b] ∈ R with probability

one and 0 <
n∑
i=1

V ar(Zi)/n ≤ σ2. Then, for all ε > 0,

P

(
1

n

n∑
i=1

(Zi − E[Zi]) > ε

)
≤ exp

[
−1

2

(
nε2

σ2 + ε(b− a)/3

)]
, (13)

which in turn implies that

P

(
1

n
|

n∑
i=1

(Zi − E[Zi])| > ε

)
≤ 2 exp

[
−1

2

(
nε2

σ2 + ε(b− a)/3

)]
. (14)
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We seek a 1 − α confidence interval (CI) of the form X̄ ± ε so that the
distance ε extends sufficiently far to ensure with a probability of at least 1−α
that the experiment will result in a confidence interval containing the true
mean µ. The appropriate value of ε may be selected by setting the right hand
side of Equation (14) equal to α. Then, by applying the Quadratic Formula,
the value of ε is given by

ε =

−2
3

(b− a) log(α/2)±
√

4
9
(b− a)2[log(α/2)]2 − 8nσ2 log(α/2)

2n
. (15)

We will select the value of ε that adds the square root in Equation (15).
The appeal of using the Bounded Bernstein method in the construction of 1−α
confidence intervals is that it only requires three assumptions (Rosenblum and
van der Laan, 2008): (i) all observations are independent, (ii) the maximum
deviation from the mean is bounded by a known constant, and (iii) the variance
is bounded by a known constant. By contrast, the CLT assumption under-
lying the Wald method’s Normal approximation and the Gamma assumption
underlying the Gamma and Chi Square methods are considerably stronger
requirements. Therefore, Bounded Bernstein confidence intervals may be ap-
plied more widely than parametric methods. Similarly, confidence intervals
may also be constructed from other tail bounds such as Bennett’s Inequality
(Bennett, 1962, 1963). Hoeffding’s Inequality (Hoeffding, 1963) may in fact
be applied under only assumptions (i) and (ii). The Berry-Esseen Inequality
(Berry, 1941; Esseen, 1942, 1956; van Beek, 1972) also requires just the three
above assumptions but only results in non-vacuous confidence intervals for
n ≥ 1024 (Rosenblum and van der Laan, 2008), which necessarily limits its
application as an alternative to the Normal approximation.

The formulation for ε in Equation (15) depends upon the data’s bounding
range [a, b] and the variance σ2. In the case of i.i.d. observations of Negative
Binomial random variables, the lower bound is a = 0 because these variables
draw from a non-negative sample space. However, Negative Binomial variables
are unbounded, which violates assumption (ii) underlying Bernstein’s Inequal-
ity in the Bounded Bernstein method. Therefore, the Bounded Bernstein
confidence interval is only appropriate if the Negative Binomial distribution
is considered as an approximate distribution for bounded data. Furthermore,
in small sample sizes, the data-based unbiased estimate s2 of the variance σ2

exhibits a high degree of variability and therefore may greatly underestimate
the value of σ2. Without accurate upper bounds for b and σ2, Bounded Bern-
stein 1 − α confidence intervals for µ are not necessarily exact. Rosenblum
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and van der Laan (2008) provide some practical recommendations to address
these concerns by relying upon known information about b and σ2 collected in
previous studies. Other possibilities include selecting b via a heuristic such as
the 99.99th percentile of the Negative Binomial distribution with µ and θ esti-
mated from the data. The only strict requirement for the Bounded Bernstein
method is that we select a value of b at least as large as the maximum observed
value. By default, we will rely upon the following data–based heuristic:

b =
n+ 1

n
max (X1, . . . , Xn) . (16)

This heuristic was selected to provide an estimated upper bound in terms
of the data and the sample size n. This choice of b will be considered in the
simulation studies of Section 4, and Section 4.4 will examine b’s impact on
the coverage probability of corresponding Bounded Bernstein 1−α confidence
intervals.

Although the Bounded Bernstein method is not justified for unbounded
data, the Negative Binomial model is often nonetheless considered as an ap-
proximate distribution for bounded data. The case studies of Section 5 provide
examples in the serial analysis of gene expression and an examination of traffic
flow in a communications network in which the underlying data are bounded
but are reasonably approximated by Negative Binomial models.

4 Simulation Studies: Comparing the Wald,

Bootstrap, Chi Square, Gamma, and Bern-

stein Confidence Intervals for µ

4.1 Coverage Probabilities and Lengths of the Proposed
Methods

We designed two simulation studies to compare the proposed methods for
efficacy. The first simulation compared the Wald (Normal Approximation),
bootstrap, Chi Square, Gamma, and both the Bounded and Unbounded Bern-
stein methods of constructing 1 − α confidence intervals for µ. We selected
the computational parameter sets µ = {5, 10}, θ = {0.1, 1, 10, 10000}, and
n = {10, 20, . . . , 100}, which are summarized in Table 1. Each combination of
values for µ, θ, and n led to a unique and independent simulation experiment.
We selected these values of θ to allow for both high dispersion (when θ is low)
and low dispersion (when θ is high), and we considered both small and moder-
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ate values of n to determine cut-off points at which standard methods like the
Wald and bootstrap would overtake the proposed methods in terms of cover-
age. Each experiment consisted of 10,000 independent trials, and on each trial
we generated n i.i.d. NB(µ, θ) random variables in the R statistical program-
ming language. With α = 0.05, we then computed 95% confidence intervals
for µ based upon the data collected in the trial. The Wald method constructed
confidence intervals by adding and subtracting 1.96 estimated standard errors
to the sample mean. Bootstrap confidence intervals were computed according
to the BCA method (Efron and Tibshirani, 1994) based upon B = 10, 000
resamplings from the data collected in each trial. We estimated the coverage
probability of each method at each choice of parameters by computing the em-
pirical proportion of trials within the experiment that resulted in a confidence
interval containing the true value of µ.

We then undertook a second independent simulation to examine a greater
variety of small θ values and sample sizes. As summarized in Table 1, we
considered values of θ ∈ {0.025, 0.05, 0.075, 0.1, 0.2, 0.3, 0.4, 0.5} at sample sizes
n ∈ {5, 10, . . . , 100} while maintaining the µ values and number of trials as in
the first simulation. In this second simulation, the bootstrap method was not
employed because of its heavy computational requirements and its observed
similarity in coverage to the Wald method in the first simulation. Computing
a single coverage probability with the bootstrap with 10, 000 resamplings in
each of 10, 000 size n data sets requires generating n∗108 random numbers. In
total, Simulations 1 and 2 required nearly a week of continuous computation,
of which all but a few hours were spent on the bootstrap.

Figures 1–6 provide summaries of each method’s coverage and length across
the simulation experiments. In judging the quality of a method’s performance,
we adopt the view that its coverage probability is of primary concern and that
length is a secondary characteristic that can be used to choose among methods
that produce similar results. Because a confidence interval is interpreted as
a plausible range of values for µ in inferential settings, a shorter interval is
typically preferred, but this is only the case so long as the method can be shown
to cover reliably. Therefore, in comparing the simulation results obtained
by the proposed and standard methods, we primarily seek methods that can
produce coverages that are reasonably close to the desired level of 1− α.

As expected, the bootstrap (Figure 1) and Wald (Figure 2) methods appear
to cover well at large sample sizes. When θ ≥ 1, the coverage probability
begins to exceed 0.9 even for sample sizes as small as 20. However, these
standard techniques perform considerably worse at higher dispersions. For
instance, when µ = 5 and θ = 0.05 or smaller, even a sample size of 100 is
insufficient for the Wald method to exhibit a coverage probability of at least
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0.85. Likewise, at the more moderate case of µ = 5 and θ = 0.2, a sample size
of 30 also leads to a coverage of less than 0.85.

Meanwhile, the Bounded Bernstein (Figure 3) and Chi Square (Figure 4)
confidence intervals appear to improve considerably on the standard techniques
in terms of coverage at small sample sizes and high dispersions. When µ = 5
and θ = 0.05, the Bounded Bernstein confidence interval crosses a coverage
threshold of 0.9 and the Chi Square that of 0.95, both as early as n = 60.
These methods appear to exhibit greater coverages uniformly across the small
values of θ considered in Simulation 2. Furthermore, when µ = 5 and θ = 0.2,
the Bounded Bernstein and Chi Square methods both cover above 0.95 at
n = 30.

However, the proposed Gamma (Figure 5) and Unbounded Bernstein (Fig-
ure 6) methods appear to perform erratically. The Unbounded Bernstein’s
coverages do not necessarily improve as the sample size increases. The Gamma
method covers similarly to the Wald method in some regions (though it gener-
ally lags in coverage by a few percent), but its performance drops considerably
at larger values of θ. While both techniques are grounded in theory, we can
postulate a number of reasons why these methods may not cover well. The tail
probability bound used in the variant of Bernstein’s Inequality considered for
the Unbounded version is not necessarily tight, and the numeric root–finding
method used to approximate the value of ε that solves Equation (12) may
introduce additional error. By contrast, the Gamma method only applies if
n is sufficiently large and θ sufficiently small to ensure that θn is close to
a limiting constant γ. This Gamma assumption appears to be violated at
the larger values of θ considered in the simulations. Moreover, both the Un-
bounded Bernstein and Gamma methods rely upon accurate estimates of the
dispersion parameter θ, which are typically unreliable in many of the situations
encountered in the simulation studies. Section 4.2 will examine this issue in
greater detail. With this said, it does appear that the Gamma method covers
reasonably well when both θ is small and n is large, which correspond to the
lower right corner of the coverage plots in Figure 5. Section 4.5 will investigate
the Gamma’s performance in large n and small θ settings in greater detail.

The candidate methods’ coverages in the simulation experiments may be
compared directly by examining Figures 1–6. In comparing any two estimated
coverage probabilities at a specific value of n, µ, and θ, the difference in pro-
portions has a margin of error of no more than 1.39% for a two-sided test
based upon the simulation experiment’s 10,000 trials. This worst-case error
margin is obtained under the extreme assumption that the true coverage of
each method is actually 50%. If the coverage of each method is actually 95%,
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than the margin of error may be considered significant at the 5% level.
Meanwhile, each method’s coverage summaries are accompanied by corre-

sponding plots depicting the average length of the confidence intervals in the
simulation experiments. As expected, the Chi Square and Bounded Bernstein
methods generally produce wider intervals than the Wald and bootstrap under
high dispersion, and this increase in length corresponds to greater coverages.
However, the Chi Square interval does not decrease in length as the sample
size increases because its degrees of freedom is only specified by the sample
mean. For fixed values of µ and θ, the ratio quantity of Equation (7) decreases
for larger sample sizes. Taken together, these facts imply that ratios below
one will result in a Chi Square confidence interval that over–covers the mean.
We will further substantiate this claim in Section 4.3.

Figure 7 provides concrete recommendations on which confidence intervals
perform best across all values of µ, θ, and n considered in the two simulation
experiments. These recommendations are based upon which method exhib-
ited a coverage closest to 95% in the simulation experiments. It is important
to note that these recommendations allow for under-coverage; in the case of
µ = 5, θ = 0.5, and n = 100, the Wald Method covers with an estimated
probability of 93.53% and the Gamma at 92.34% whereas the Bounded Bern-
stein and Chi Square methods cover at 99.39% and 100%, respectively. Also,
it is important to remember that none of the proposed methods perform par-
ticularly well when both n and θ are extremely small. We also provide corre-
sponding recommendation plots for length that indicate approximate cut-offs
at which the Wald confidence interval shrinks to a smaller length than that of
the Chi Square method. Because of their erratic coverages, the recommenda-
tion plot for length does not incorporate results obtained from the Gamma or
Unbounded Bernstein methods.

One caveat to the simulation results presented here is the special case of
a data set containing all zeros. Figure 8 shows the percentage of all–zero
data sets generated in the simulation experiments. When such data arose, we
adopted the convention that all methods should produce a condence interval
containing only the point zero, and therefore the interval would not cover the
mean in this circumstance. This only affected the results at small values of
both n and θ; for instance, in the experiment with µ = 10, θ = 0.025, and
n = 5, 51.44% of all data sets produced contained only zeros. However, most
scientic studies would not produce a condence interval for µ based upon a data
set of all zeros. If one is willing to condition on observing non–zero data, then
the coverage probabilities at these small values of n and θ may be adjusted
by computing the proportion of intervals that covered µ among the non–zero

then this margin of error drops to 0.6%. Any observed difference that is larger
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when µ = 10, θ = 0.025, and n = 5, and so its coverage among the non–zero
data sets is actually 100% ∗ 3366/(10000− 5144) = 69.316%.

Sim. µ θ n trials
1 {5, 10} {0.1, 1, 10, 10000} {10, 20, . . . , 100} 10000
2 {5, 10} {0.025, 0.05, 0.075, 0.1, 0.2, . . . , 0.5} {5, 10, . . . , 100} 10000

Table 1: Parameter values for µ, θ, n, and the number of trials in the two simu-
lation experiments of Section 4. The first simulation compared the Unbounded
and Bounded Bernstein, Chi Square, Gamma, Wald, and bootstrap confidence
interval methods at each combination of the first set of parameter values. The
second simulation compared the Wald, Unbounded and Bounded Bernstein,
Gamma, and Chi Square methods at each combination of the second set of
parameter values.

4.2 The Accuracy of θ Estimates

Both the Gamma model and the Unbounded Bernstein method rely upon an
estimate of θ to produce a 1 − α confidence interval for µ. In addition to
the Method of Moments estimator θ̂ = X̄/((s2/X̄) − 1), Piegorsch (1990)
and Clark and Perry (1989) have proposed iterative maximum likelihood es-
timation (MLE) procedures. Aragón et al. (1992) and Ferreri (1997) provide
conditions for the existence and uniqueness of the MLE. Meanwhile, Pieters
et al. (1977) compares an MLE procedure to the Method of Moments at small
sample sizes. The general consensus of these previous studies is that estimat-
ing θ is a difficult problem; MLE methods appear to break down when the
estimate s2 of σ2 is less than or equal to the estimate X̄ of µ. Although the
MLE estimator was preferred, implementations such as that in the glm.nb
function of the R statistical programming language tend to produce compu-
tational errors that prevented its application in the simulation experiments of
the previous section. Similarly, the Method of Moments estimator frequently
results in a non–positive approximation of the strictly positive parameter θ in
this situation. For the purposes of the simulations, we chose to handle this
issue by truncating all non–positive estimates of θ to the value of 0.001 before
applying the confidence interval procedures.

Figure 9 provides summary information about the Method of Moments
estimates (without truncation) of θ over the range of experiments conducted
in Simulations 1 and 2. For each combination of µ, θ, and n in the simulations,
we provide the average estimation error across the 10,000 simulated data sets.

data set. For instance, the Bounded Bernsteins total coverage was 33.66%
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Figure 1: Simulation results for the Bootstrap method. The plots include sum-
maries of coverage and length for each value of µ. The Bootstrap method was
only considered for the first simulation experiment due to its computational
requirements.
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Figure 2: Simulation results for the Wald method. The plots include sum-
maries of coverage and length for each value of µ. Results from the two simu-
lation experiments are concatenated onto a single plot.
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Figure 3: Simulation results for the Bounded Bernstein method. The plots
include summaries of coverage and length for each value of µ. Results from
the two simulation experiments are concatenated onto a single plot.
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Figure 4: Simulation results for the Chi Square method. The plots include
summaries of coverage and length for each value of µ. Results from the two
simulation experiments are concatenated onto a single plot.
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Figure 5: Simulation results for the Gamma method. The plots include sum-
maries of coverage and length for each value of µ. Results from the two simu-
lation experiments are concatenated onto a single plot.
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Figure 6: Simulation results for the Unbounded Bernstein method. The plots
include summaries of coverage and length for each value of µ. Results from
the two simulation experiments are concatenated onto a single plot.
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Figure 7: Recommendation plots based upon coverage and length in the simu-
lation experiments. Selections were made according to the method whose cov-
erage was closest to 95%. Length recommendations were only chosen among
the Wald, Bootstrap, Chi Square, and Bounded Bernstein methods.
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Figure 8: The proportion of all–zero data sets in the simulation experiments.

For small values of θ, the median estimate is reasonably reliable even at small
sample sizes, but the average and standard deviation can be greatly affected
by extreme data sets. In general, we observed that a sample size of at least
30 or 40 is required to ensure that the Method of Moments estimator is not
highly vulnerable to extreme data sets and may need to be as large as 85 to
ensure reliability in the smallest values of θ studied in the simulations.

While MLE or other improved estimators of θ may lead to stronger per-
formance of the Gamma and Unbounded Bernstein confidence intervals, it
appears that their simulation results were not greatly impacted by the selec-
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tion of the Method of Moments estimator. At moderate sample sizes, the
Method of Moments typically produced estimates that were reasonably close
to the true value of θ, and its more erratic performance at smaller sample sizes
corresponds to cases in which the MLE is also expected to have problems.

4.3 The Applicability of the Chi Square Method

Section 3.2 introduced the Chi Square approximation to the Gamma model of
Section 3.1. This special case occurs when the ratio quantity of Equation (7)
is equal to one. The principle advantage of the Chi Square method is that it
allows for the construction of 1− α confidence intervals without relying upon
the extremely variable estimator s2 of the variance σ2, which is especially useful
at small sample sizes. However, this implies that the length of the interval is
only dependent upon the sample mean, so the Chi Square interval’s length will
be approximately the same regardless of the value of θ. Furthermore, for fixed
values of µ and θ, the ratio quantity decreases as a function of sample size.
Therefore, we expect the Chi Square method to undercover for ratios above
1 and over–cover for ratios below one. We are interested in determining how
robust the Chi Square approximation is to deviations of this ratio.

We conducted a third simulation to gain insight on the Chi Square’s cov-
erage at a variety of ratio quantities. Each experiment consisted of selecting
µ uniformly on (1, 50), θ uniformly on (0, 1), and the sample size n uniformly
on the integers in {5, 6, . . . , 150}. For each combination of n, µ, and θ, we
randomly generated 10, 000 data sets of n i.i.d. NB(µ, θ) random variables,
applied the Chi Square method to each data set, and estimated the method’s
coverage probability by the empirical proportion of Chi Square 95% intervals
that contained the selected value of µ. We conducted a total of 100, 000 such
experiments to collect data at a wide range of ratio quantities.

Figure 10 displays boxplots of the ratio distribution for the simulation
data partitioned into coverage groups. For magnification purposes, the plot
restricts attention to the cases that resulted in a coverage of at least 50%. The

4% of the simulations not pictured generated extremely large ratio quantities:
approximately 1% of all simulations resulted in a ratio larger than 30, and
the maximum observed value was 75, 170. Among the simulations with ratios
less than 8, the correlation between the ratio quantity and the Chi Square
method’s coverage probability was -0.98. As expected, Figure 10 suggests
that ratio values less than 1 typically over–cover the mean while ratios below
1 tend to undercover. It also appears that the Chi Square method will cover
at a rate of at least 80% when the ratio quantity is below 2.
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Figure 9: Quality measurements for the Method of Moments estimates of
θ obtained in the simulation experiments. We present the average absolute
estimation error along with the percentage of θ estimates that fell below zero
in each experiment.

With these observations in mind, it appears that an empirical estimate of
the ratio quantity of Equation (7) can provide some insight into the applica-
bility of the Chi Square method. Ratios less than 1 will typically result in
a confidence interval that over–covers because it is too wide, whereas ratios
greater than 1 indicate intervals that are too narrow and will undercover µ.
Because of its strong relationship with coverage, the ratio quantity can be used
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as a guide in selecting among candidate confidence intervals even when the Chi
Square procedure is not applicable. For instance, if the ratio quantity is 3, the
Chi Square method might only produce an interval with a coverage of 75%,
but the length of this interval can be used as a reference in the comparison
of other candidate procedures so that a wider interval is ultimately selected.
Furthermore, when the ratio quantity is less than 1, the Chi Square interval’s
length can be viewed as a maximum range so that any wider interval may be
immediately excluded.

4.4 The Upper Bound b in Bounded Bernstein Confi-
dence Intervals

Although it is intended to be an exact method, the simulation results of Section
4 show multiple examples in which the Bounded Bernstein confidence intervals
as implemented result in estimated coverage probabilities well below 95%.
These results were based upon the unbiased estimate s2 of the variance σ2 and
an upper bound b given by Equation (16). Because s2 is highly variable at
small sample sizes, it may result in values much smaller than σ2. Likewise, it is
unclear how to optimally select the value of b because the Negative Binomial
random variables in question are unbounded and highly skewed. If we are
primarily concerned with producing exact confidence intervals through the
Bounded Bernstein method, there is no harm in greatly overestimating σ2 and
b. However, in practice we would prefer to construct intervals that are as
narrow as possible while maintaining the minimum desired coverage. In this
section we will examine the impact of selecting various choices of b given an

estimate s2 of σ2 in the context of the two simulation studies of Section 4.1.
A fourth simulation was conducted to repeat the simulations of Section

4.1 for only the Bounded Bernstein method. In this case, a variety of b val-
ues ranging up to 106 were substituted in place of the heuristic of Equation
(16) used previously. Figure 11 depicts the best available value of b and the
resulting coverage for each combination of µ, θ, and n for each simulation ex-
periment. In general, larger values of the upper bound b increase the length
and coverage of the Bounded Bernstein confidence interval, and sufficiently
large values of b can be found to produce an exact method. Especially at high
dispersions and low sample sizes, it appears that the heuristic (16) choice of b
is considerably smaller than would be required to cover appropriately. Based
upon our observation of the simulation results, it appears to be reasonable to
roughly double the value of b given by the heuristic (16). For instance, when
µ = 5, θ = 0.05, and n = 60, the Bounded Bernstein method resulted in a
coverage of 90.85%, which roughly corresponds to a b value of 40. Meanwhile,
a b value of 80 results in a coverage of 96.74%.
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Figure 10: The distribution of ratio quantities (7) by coverage group for Chi
Square 95% confidence intervals. This box plot was constructed from data
collected in the simulation of Section 4.3. The dashed lined represents a ratio
quantity of 1, at which the Chi Square approximation to the distribution of X̄
is exact. The proportion of simulations falling into each category are displayed
below the box plots. The remaining 4% of the simulations that produced
coverages under 50% are not displayed for magnification purposes.
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While refinements of the selection of b can lead to improvements over the
heuristic of Equation (16), it is unclear how this selection should be adjusted
as a function of sample size and the Negative Binomial parameters. However,
such adjustments are considerably more straightforward than revising the es-
timate of variability. For a given estimate s2 of the variance σ2, a sufficiently
large selection of the upper bound b will result in a coverage at or above
the desired level. Therefore, we recommend that the researcher fine-tune the
Bounded Bernstein confidence interval in a situation-dependent manner.

4.5 Large Sample Performance of the Gamma Method
at High Dispersions

Although the Gamma method is grounded in the limit theorem of Section
3.1, its performance in the simulation studies of Section 4.1 was quite erratic.
In most of these experiments, the Gamma method either lagged the Wald in
coverage or produced unreliable confidence intervals. We previously speculated
that this poor performance was due in part to the difficulty of accurately
estimating the dispersion parameter θ at small values. However, at many
combinations of µ and n, the Gamma method’s coverage actually grew worse
for larger values of θ. This phenomenon is easily explained by returning to the
underlying Gamma assumption upon which the method is based. In particular,
the Gamma approximation to the distribution of the sample mean X̄ relies
upon n growing sufficiently large and θ sufficiently small to ensure that θn is
reasonably close to its limiting constant γ. Therefore, as θ grows larger, this
Gamma assumption becomes less reasonable. Moreover, the Gamma method
appeared to perform best in the simulation experiments corresponding to the
largest values of n and smallest values of θ considered (e.g. the lower right
corner of Figure 5).

With this in mind, we designed a fifth simulation to compare the perfor-
mance of the Gamma and Wald methods at a variety of small values of θ and
large values of n. In this setting, the Gamma assumption should be met, and
it is a reasonable question as to what sample sizes are sufficient to overcome
extremely small values of θ to ensure that the CLT assumption underlying
the Wald method is also reasonable. The simulation was modeled after those
undertaken in Section 4.1. The combinations of n, µ, and θ are displayed
in Table 2. Coverages were estimated based upon the empirical proportion
of confidence intervals across 10, 000 trials. The Method of Moments esti-
mator of θ was employed with a minimum value of 10−6 imposed to ensure
non–negativity. All coverages were left unadjusted in the case of data sets
consisting of all zeros. However, because of the large sample sizes, only the

26

Submission to The International Journal of Biostatistics

http://www.bepress.com/ijb



●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

20 40 60 80 100

−4

−2

0

2

4

6

8

Sample Size n

lo
g(

th
et

a)

Optimal B for Bounded Bernstein, mu= 5

●

●

Optimal B < 5
5 <= Optimal B < 10
10 <= Optimal B < 50
50 <= Optimal B < 100
100 <= Optimal B < 1000
Optimal B >= 1000

●

●

●

20 40 60 80 100

−4

−2

0

2

4

6

8

Sample Size n

lo
g(

th
et

a)

Optimal Coverage for Bounded Bernstein, mu= 5

●

●

Optimal Coverage < 0.5
0.5 <= Optimal Coverage < 0.75
0.75 <= Optimal Coverage < 0.85
0.85 <= Optimal Coverage < 0.9
0.9 <= Optimal Coverage < 0.95
Optimal Coverage >= 0.95

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

20 40 60 80 100

−4

−2

0

2

4

6

8

Sample Size n

lo
g(

th
et

a)

Optimal B for Bounded Bernstein, mu= 10

●

●

Optimal B < 5
5 <= Optimal B < 10
10 <= Optimal B < 50
50 <= Optimal B < 100
100 <= Optimal B < 1000
Optimal B >= 1000

●

●

20 40 60 80 100

−4

−2

0

2

4

6

8

Sample Size n

lo
g(

th
et

a)

Optimal Coverage for Bounded Bernstein, mu= 10

●

●

Optimal Coverage < 0.5
0.5 <= Optimal Coverage < 0.75
0.75 <= Optimal Coverage < 0.85
0.85 <= Optimal Coverage < 0.9
0.9 <= Optimal Coverage < 0.95
Optimal Coverage >= 0.95

Figure 11: Refinements to the Bounded Bernstein method that can arise as a
result of the proper selection of the data’s upper bound b. For each value of µ
in the first simulation experiment, the optimal value of b and the corresponding
coverage are depicted above.

combination of µ = 10, θ = 10−4, and n = 500 resulted in a sizable proportion
of data sets consisting only of zeros.

Figure 12 displays a comparison of the Wald and Gamma methods across
the simulation parameters. In general, it appears that the Gamma Assumption
is validated in these large sample sizes and high dispersions, and the coverage
of the Gamma method improves as n grows larger and θ smaller. Moreover,
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the Gamma method appears to improve upon the Wald method in nearly
all of the examples considered. There are many cases in which the Gamma
method both covers better and produces a shorter average interval length
than the Wald method. Therefore, it appears to be the case that the Gamma
approximation converges more quickly than Normal theory in terms of sample
size when the dispersion is high. This may be in part due to the fact that
the Gamma method is guaranteed to produce a non–negative interval and also
lacks the Normal method’s symmetry requirement to approximate a skewed
distribution. Therefore, the Gamma method appears to be a more suitable
method than the Wald for large–sample inference when the dispersion is high.

5 Data Analysis

The Negative Binomial model is particularly applicable as a generalization of
the Poisson random variable that allows for the variance parameter to differ
from the mean. In this section we will consider examples from the serial

Methods Wald, Gamma
µ 10

log10(θ) {−4,−3.75,−3.5,−3.25,−3,−2.75,−2,−1}
n {500, 1000, 1500, . . . , 4500, 5000, 10000}

Trials 10000

min θ̂ 10−6

Table 2: Parameter values for the simulation experiment of Section 4.5.

analysis of gene expression (SAGE) and network traffic flow data and explore
the utility of the proposed methods as alternatives to the Wald and bootstrap
confidence intervals. In doing so, we seek to better elucidate the strengths and
weaknesses of the candidate procedures.

5.1 SAGE Data

A serial analysis of gene expression (SAGE) is used in molecular biology to esti-
mate the relative abundance of messenger ribonucleic acid (mRNA) molecules
based upon the frequency of corresponding 14 base pair tag sequences that are
extracted from a cell (Velculescu et al., 1995). Because the cost of sequenc-
ing can be prohibitive, the sample size is often limited to a small quantity.
Robinson and Smyth (2008) propose a Negative Binomial model for the tag
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Figure 12: Simulation results comparing the Gamma and Wald method for
coverage and length at large sample sizes and high dispersions.

counts of SAGE data and consider the problem of small sample estimation of
the dispersion parameter. In this model, the tag counts are assumed to be
independent Negative Binomial random variables with common dispersion for
the purposes of estimation in spite of the possibility of related biological func-
tions and expression co-regulation (Robinson and Smyth, 2008). We consider
this Negative Binomial model in the context of Sample GSM15034 of SAGE
data stored at the National Center for Biotechnology Information website for
the United States’ National Institutes of Health:
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(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM15034).
The data, which are shown in Table 3, depict the n = 20 most frequent tags

and their corresponding counts in a sample taken from the cells of mus muscu-
lus. The sample mean and standard deviation are X̄ = 306.1 and s = 786.15,
respectively. We estimated the value of θ to be 0.6269 with a standard error
of 0.1676. These estimates were obtained by applying an iterative maximum
likelihood estimation (MLE) procedure within the glm.nb method of the R
statistical programming language to the data. It should also be noted that
MLE procedures typically underestimate variance parameters (and therefore
the dispersion) (Robinson and Smyth, 2008), so θ may in fact be smaller than
0.6269.

However, even if the tag counts in the SAGE data may be assumed to
be independent with a common dispersion, it is not at all clear that they are
identically distributed. Robinson and Smyth (2008) consider a model in which
each tag count has its own mean parameter, and so the data are only i.i.d. if
each tag has the same mean. The Chi Square, Gamma, Wald, and bootstrap
confidence intervals may not necessarily be applicable when the data are not
i.i.d., but both Bernstein methods only require independent data. Further-
more, the Bounded Bernstein method only applies if the data are uniformly
bounded. Such an assumption seems reasonable in this context because the
tag counts cannot exceed the length of the mRNA sequence. Therefore, the
Negative Binomial model may be seen as merely an approximation to the
true distribution of the tag counts, and the Bounded Bernstein method seems
reasonable in this context. Based upon the underlying assumptions of each
technique, Table 4 displays 95% confidence intervals for the mean µ tag count
computed according to the Unbounded and Bounded Bernstein, Chi Square,
Wald, bootstrap, and Gamma methods based upon the SAGE tag count data
of Table 3.

The 95% confidence intervals of Table 4 simultaneously illustrate many of
the strengths and weaknesses of each method. Both the Bounded Bernstein
and Wald intervals include a range of negative numbers as possible values for
the mean µ, which is unreasonable for Negative Binomial random variables
because they draw from a non-negative sample space. By contrast, the Chi
Square, Gamma, and bootstrap results are assured to be non-negative. One
advantage of using the Gamma approximation over the Wald method when its
Gamma assumption is reasonable is that it produces a confidence interval of
similar width that is also guaranteed to be positive. The simulation results of
Section 4 suggest that the Wald, Gamma, and bootstrap confidence intervals
will under-cover µ at small values of n and θ, and so it is not surprising that the
Bounded Bernstein interval is much wider. However, the Chi Square confidence
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interval is considerably more narrow than those of the Wald and bootstrap.
This is not surprising because the ratio quantity (7) has an estimated value
of 12.21. Because this ratio is much larger than 1, we expect the Chi Square
method to significantly undercover µ. The findings of Section 4.3 suggest that
a ratio of 12.21 will result in a coverage well below 50%. Although the Chi
Square method performs poorly in this circumstance, this interpretation of the
ratio quantity provides a strong indication that the wider intervals produced
by other methods are more reasonable for this context.

In selecting among the candidate confidence intervals of Table 4, we rec-

Tag Count
TGAGCAAAGCCACC 3581
CATGTCGACCAGCC 657
TGAGCGCATGGGTC 428
CAGGCAGTGACAGC 170
CAGGTCGCGAAGGG 143
CTGGAGGACCCATG 138
CCACCAGGCAGCTC 122
CGAGCAAATGCCAG 116
CCATGCCAGGCAAT 98
CCCAGCCATCCCAT 78
CCAAAGGAGAGGGC 74
CACCTGGCGTCATG 74
TTAAACGGCGGCTG 66
TGGCCTGAAGAGCA 65
CTAACGGCCGAGAT 62
TGACCTTGCATGTA 54
CTACCGATGGCTGT 53
CAGGACACCACATC 50
CTGGGAGGTCAGGC 48
CTGCCCAATTTGCC 45

Table 3: SAGE Sample GSM15034 taken from mus musculus displaying the
20 most frequent tags and their corresponding counts in the SAGE sample.

ommend choosing the Bounded Bernstein result for two reasons: first, the
simulation studies suggest that this method improves upon the coverage of
the Wald, Gamma, and bootstrap procedures at small values of n and θ. Sec-
ond, the assumption of independent data is more reasonable than that of i.i.d.
data, and only the Unbounded and Bounded Bernstein methods remain robust
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in this setting. Although its negative left endpoint limits the interpretation
of the confidence interval, the Bounded Bernstein method at least suggests
that a wider range of values for µ should be considered than those reported by
the Wald, Gamma, and bootstrap results. In selecting among the remaining
confidence intervals, the bootstrap and Gamma results are expected to exhibit
similar coverage to that of the Wald while maintaining a positive left endpoint.
By contrast, the Chi Square confidence interval does not appear to be a good
fit for this combination of n, µ, and θ.

Lower Limit Upper Limit Other Quantities
Unbounded Bernstein 182.14 430.06 ε quality = 6.90e-07

Bounded Bernstein -455.02 1067.22 –

Chi Square 259.53 356.46 µ̂/(2nθ̂) = 12.21
Gamma 160.82 497.35 –

Wald -38.00 650.20 –
Bootstrap 111.95 1015.75 –

Table 4: 95% confidence intervals for the mean tag count based upon the SAGE
data of Table 3. The Chi Square, Wald, bootstrap, and Gamma confidence
intervals were computed under the assumption of i.i.d. data, whereas the
Unbounded and Bounded Bernstein intervals only assume that the data are
independent. The estimated ratio quantity of 12.21 indicates that the Chi
Square method is likely to significantly undercover µ. The ε quality metric
shows that the selected value of ε in the Unbounded Bernstein method solves
Equation (12) to within 6.90e-07.

5.2 Traffic Flow Data

We now consider an example arising from the analysis of traffic flow data in an
internet communications network. Sanchez and He (2005) seek to estimate the
mean packets per second (PPS) flowing through the network and propose a
Negative Binomial model for the packet counts. The data, which are available
at the Lawrence Berkeley National Laboratory’s website:

(http://ita.ee.lbl.gov/html/contrib/DEC-PKT.html),
consist of packet counts at each of n = 102 consecutive seconds. It is

presumed that packets arrive according to a Poisson process with dispersion,
so a Negative Binomial model is suitable for this analysis. This again raises the
question of whether the data are actually bounded. Communications networks

typically operate under a capacity constraint that suggests bounded data;
therefore, it seems reasonable to assume that the Bounded Bernstein method
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is also appropriate in this scenario. The sample mean and standard deviation
of the data are X̄ = 310.31 and s = 94.54, respectively. We again used the
glm.nb method in R to estimate the dispersion as θ̂ = 10.59 with a standard
error of 1.52. Although this example has a similar sample mean to that of the
SAGE data above, the values of n and θ are considerably larger in this case.

In the simulation studies of Section 4, the most similar case to the current
example is that of n = 100 and θ = 10. At larger values of n and θ, the
simulation results generally suggest that the Wald and bootstrap methods
perform well in terms of coverage, whereas the Bounded Bernstein and Chi
Square techniques generally over–cover the mean µ. Meanwhile, it is unclear
whether the Gamma assumption is reasonable at this combination of n and
θ. Table 5 displays 95% confidence intervals for the mean PPS. The Wald
and bootstrap methods result in very similar confidence intervals. Here the
Bounded Bernstein and Chi Square intervals are considerably wider than those
of the Wald, Gamma, and bootstrap, which all offer similar results. The
Unbounded Bernstein method actually produces the most narrow interval.
While its selected value of ε appears to almost exactly solve Equation (12),
the simulation results suggest that this Unbounded Bernstein method tends
to undercover while the Wald and bootstrap results are reasonably accurate.
With a ratio quantity of 0.14, the Chi Square method is expected to severely
overcover because its approximation is not sufficiently close to the Gamma
model, which suggests that shorter intervals are more appropriate.

The simulation results of Section 4 suggest that the Wald and bootstrap
methods cover µ with a probability very close to the desired 95% for larger
values of n and θ while the Bounded Bernstein and Chi Square methods tend to
over–cover the mean. Because the Wald and bootstrap results are similar, we
recommend selecting either as the preferred confidence interval in this setting.
Therefore, it seems reasonable to believe that the mean traffic flow of the
network is somewhere between approximately 292 and 329 packets per second.
The question remains as to why the Gamma method also produced a similar
interval but exhibited poor coverage in the simulations. It is possible that the
Gamma approximation is sensitive to the estimated value of θ and performs
poorly in some circumstances on account of this estimator’s variability.

6 Discussion

The two data analysis examples presented in the previous section are an impor-
tant reminder that the question of which confidence interval to select should
be addressed in the context of the problem at hand. In constructing confi-
dence intervals for the mean of Negative Binomial random variables, a careful

33

Shilane et al.: Confidence Intervals for Negative Binomials



investigation of the dispersion and sample size must be considered. The simu-
lation studies of Section 4 identify a variety of scenarios in which the proposed
methods improve upon the standard techniques. Interestingly, the methods
largely prove to be complementary. Table 6 provide general guidelines for
selecting a method based upon the dispersion and sample size. When both
n and θ are small, the Bounded Bernstein method generally improves upon
the standard techniques, and Section 4.4 shows that a refined selection of the

Lower Limit Upper Limit Other Quantities
Unbounded Bernstein 306.97 313.66 ε quality = 2.29e-08

Bounded Bernstein 276.02 344.60 –

Chi Square 263.41 361.01 µ̂/(2nθ̂) = 0.14
Gamma 292.08 329.09 –

Wald 291.97 328.66 –
Bootstrap 292.91 329.49 –

Table 5: 95% confidence intervals for the mean packets per second (PPS)
flowing through a communications network. The data were collected from
n = 102 seconds of traffic flow. The ε quality metric shows that the selected
value of ε in the Unbounded Bernstein method solves Equation (12) to within
2.29e-08. Similarly, the estimated ratio value of 0.14 suggests that the Chi
Square method is likely to significantly overcover the mean µ.

upper bound b has the potential to greatly improve the coverage even at the
smallest values of n and θ considered. When θ is small but the sample size
n is large, the Gamma assumption becomes reasonable, and the simulation
of Section 4.5 shows that the Gamma method can often provide both more
reliable coverage and a shorter average length than the Wald method. When
both n and θ are large, the Wald and bootstrap methods generally perform
well. Meanwhile, the Chi Square method best applies at the combination of
µ, θ, and n values that produce a ratio quantity (7) close to 1. In practice,
this subspace of values will be in between the extremes at which the other
methods are recommended. Finally, the simulation results suggest that the
case of small n and large θ represent a decision point at which it’s unclear
whether to prefer the Bounded Bernstein method or rely upon the standard
techniques. Likewise, the boundaries at which each technique overtakes an-
other are not clearly demarcated, and some investigation of a study’s context
should be considered in selecting between methods.
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A number of other considerations apply in selecting among candidate pro-
cedures for constructing 1 − α confidence intervals. These concerns are sum-
marized in Table 6. In terms of computational speed, the bootstrap method
requires B bootstrap resamplings of the data and corresponding sample mean
calculations plus a final sort of the results, which leads to a computational
complexity of O (Bn+B log(B)). In practice, the value of B should be a
reasonably large number such as 10,000, which renders the bootstrap method
significantly more costly than the alternatives. However, in many cases a sin-
gle bootstrap confidence interval may be computed in no more than a minute.

Scenario Preferred Method
Small n, small θ Bounded Bernstein
Large n, small θ Gamma
Small n, large θ Wald, Bootstrap, or Bounded Bernstein
Large n, large θ Wald or Bootstrap

Ratio quantity close to 1 Chi Square

Table 6: General guidelines for selecting among the proposed methods accord-
ing to the scenario.

U.B. B.B. χ2 Wald Boot Γ
Computationally Fast Yes Yes Yes Yes No Yes
Positive CIs Assured No No Yes No Yes Yes

Assumptions on n, µ, or θ No No Yes Yes No Yes
Useful at Small n and θ No Yes Yes No No No
Over–covers at Large n No Yes Yes No No No
Over–covers for High θ No Yes Yes No No No
Requires Independence Yes Yes Yes Yes Yes Yes

Requires i.i.d. Data No No Yes Yes Yes Yes

Table 7: A comparison of the Unbounded Bernstein (U.B.), Bounded Bernstein
(B.B.), Chi Square (χ2), Wald (Normal Approximation), bootstrap (Boot),
and Gamma (Γ) methods for computing 1 − α confidence intervals of the
mean µ based upon n i.i.d. observations of a Negative Binomial random vari-
able in terms of a variety of concerns about the applicability, feasibility, and
interpretability of these methods.

Furthermore, compared to the time required to design and gather data in a
scientific study, even a computation requiring several hours or days to com-
pute a bootstrap confidence interval is reasonable. We are also concerned with
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the interpretability of the confidence intervals produced by each method. In
the case of a small value of µ, the resulting Wald, Unbounded Bernstein, and
Bounded Bernstein confidence intervals may result in a left endpoint that is less
than zero; such a result is of course an implausible value of µ for non-negative
data. By contrast, the Chi Square, Gamma, and bootstrap confidence inter-
vals always result in non–negative left endpoints. In terms of applicability,
the bootstrap and Unbounded and Bounded Bernstein methods only require
very mild assumptions (e.g. finite parameter values and independent or i.i.d.

data), although the Bounded Bernstein’s supposition of uniformly bounded
data is violated when the data truly follow a Negative Binomial distribution.
By contrast, the Chi Square, Gamma, and Wald confidence intervals require
stronger assumptions about n, µ, and θ. The Chi Square approximation is
only applicable when the ratio quantity of Equation (7) is reasonably close
to 1. Meanwhile, the Wald and Gamma methods are only reasonable when
their underlying CLT and Gamma assumptions are respectively true. Finally,
it should be emphasized that the Chi Square, Wald, Gamma, and bootstrap
methods assume i.i.d. data, whereas both Bernstein confidence intervals only
require that the data be independent.

The simulation results clearly demonstrate that the Bounded Bernstein,
Chi Square, and Gamma methods are useful alternatives to the Wald and
bootstrap under high dispersion. However, it is also important to consider
whether these methods’ respective coverage probabilities asymptotically con-
verge to the desired fiduciary limit. The Wald method is well justified at large
sample sizes by the Central Limit Theorem, and bootstrap confidence inter-
vals can be shown to converge in coverage to 1 − α as the sample size n and
number of resamplings B grow large. Provided that θ is sufficiently small,
the Gamma method appears to converge faster than the Wald as a function
of sample size. Such a convergence cannot be expected of the Bounded Bern-
stein and Chi Square methods, though. The simulation results suggest that
these techniques will largely over–cover µ for large sample sizes. Although
the coverage probability of each technique is the most informative measure of
the method’s reliability, these other aspects should be considered in selecting
among candidate procedures for constructing 1− α confidence intervals.

Future investigation in this area may explore a variety of questions raised
by this study. The two Bernstein confidence intervals may be refined through
improvements in probability tail bounds, improved procedures for calculat-
ing ε to solve Equation (12), and improved estimates of the upper limit b,
variance σ2, and the dispersion parameter θ, particularly in the case of small
sample sizes. The limits of the Chi Square distribution’s applicability as a
probability model for X̄ may be better substantiated through both analytical
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and empirical techniques. The length of Chi Square confidence intervals may
also be reduced; for instance, Tate and Klett (1959) demonstrate a variety of
approaches that reduce the length of a Chi Square interval for the variance of
a Normal distribution over that obtained from a procedure allocating equal
probability mass to each tail. A more thorough investigation of the Gamma
model for X̄ would provide greater insight into the relationship between n and
θ required to justify the Gamma assumption. Finally, the proposed techniques
may be generalized to construct confidence intervals for other parameters of a
sample of n i.i.d. Negative Binomial random variables using techniques based
upon the data’s empirical influence curve.
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