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Abstract

Lasso is a popular method for variable selection in regression. Much theoretical under-
standing has been obtained recently on its model selection or sparsity recovery properties
under sparse and homoscedastic linear regression models. Since these standard model as-
sumptions are often not met in practice, it is important to understand how Lasso behaves
under nonstandard model assumptions.

In this paper, we study the sign consistency of the Lasso under one such model where
the variance of the noise scales linearly with the expectation of the observation. This
sparse Poisson-like model is motivated by medical imaging. In addition to studying the
sign consistency, we also give sufficient conditions for `∞ consistency. With theoretical and
simulation studies, we provide conditions for when the Lasso should not be expected to be
sign consistent. One interesting finding is that β∗ can not be spread out. Precisely, for both
deterministic design and random Gaussian design, the sufficient conditions for the Lasso to
be sign consistent require ‖β∗‖2/[M(β∗)]2 to be not too big, where M(β∗) is the smallest
nonzero element of |β∗|. By special designs of X, we show that ‖β∗‖2/[M(β∗)]2 = o(n) is
almost necessary. For Positron Emission Tomography (PET), this suggests that when there
are dense areas of the positron emitting substance, less dense areas are not well detected by
the Lasso; this is of particular concern when imaging tumors; the periphery of the tumor
will produce a much weaker signal than the center, leading to a big ‖β∗‖2/[M(β∗)]2.

We compare the sign consistency of the Lasso under the Poisson-like model to its
sign consistency on the standard model which assumes the noise is homoscedastic. The
comparison shows that when β∗ is spread out, the Lasso performs worse for data from the
Poisson-like model than those from the standard model, confirming our theoretical findings.
Keywords: Lasso, Poisson-like Model, Sign Consistency, Heteroscedasticity

1. Introduction

The Lasso (Tibshirani, 1996) is now widely used in high dimensional regression for vari-
able selection. Its model selection performance has been well studied under sparse and
homoskedastic regression models. Several researchers have shown that under sparsity and
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regularity conditions, the Lasso can select the true model asymptotically even when p À n
(Meinshausen and Buhlmann, 2006; Zhao and Yu, 2006; Wainwright, 2009; Tropp, 2006;
Donoho et al., 2006).

To define the Lasso estimate, suppose we observe independent pairs {(Yi, xi)} ∈ R×Rp

for i = 1, 2, . . . , n following linear regression model

Yi = xT
i β∗ + εi, (1)

where xT
i is a row vector representing the predictors for the ith observation, Yi is the

corresponding ith response variable, εi are i.i.d. mean zero noise terms and independent of
the predictors, and β∗ ∈ Rp. Let us use X ∈ Rn×p to denote the n× p design matrix with
xT

k = (Xk1, . . . ,Xkp) as its kth row and with Xj = (Xj1, . . . ,Xjn)T as its jth column, then

X =




xT
1

xT
2
...

xT
n


 = (X1, X2, . . . , Xp) .

Let Y = (Y1, . . . , Yn)T and ε = (ε1, ε2, . . . , εn)T ∈ Rn. The Lasso estimate is then defined
as the solution to a penalized least squares problem (with regularization parameter λ):

β̂(λ) = arg min
β

1
2n
‖Y −Xβ‖2

2 + λ‖β‖1, (2)

where for some vector x ∈ Rk, ‖x‖r = (
∑k

i=1 |xi|r)1/r. In previous research with the Lasso
(Knight and Fu, 2000; Meinshausen and Buhlmann, 2006; Zhao and Yu, 2006; Wainwright,
2009; Tropp, 2006; Donoho et al., 2006), the above model has been assumed where the noise
terms are i.i.d. and independent of the predictors (hence homoskedastic). We call this the
standard model.

Lustig et al. (2008) applied compressed sensing, a sparse method similar to the Lasso,
to Magnetic Resonance Imaging (MRI). Candes and Tao (2007) suggests that the standard
model could be useful for medical imaging technology like MRI. In this scenario, one hopes
to collect far fewer measurements than usually required. However, the standard model is
not the only model used for medical imaging. For imaging methods PET and SPECT the
Poisson model is more appropriate (Fessler, 2000).

In PET, a subject is injected with a biochemical metabolite which is attractive to the
tissue being studied. The biochemical metabolite is labeled with a positron emitting ra-
dioactive material. As the metabolite gathers around the tissue, so does the positron emit-
ting radioactive material. The positron emissions are modeled by a Poisson process with an
intensity rate which varies over the subject in direct relationship to the varying levels of bio-
chemical metabolite. Therefore, an estimate of the intensity rate is an estimate of the level
of biochemcial metabolite. Unfortunately, we do not observe the positron emission Poisson
process directly. When a positron is emitted, it annihilates a nearby electron, sending two
X-ray photons in nearly opposite directions (at the speed of light) Vardi et al. (1985). We
observe these X-rays with several sensors in a ring around the subject. In our model, the
sample size n represents the number of sensors; β∗j represents the Poisson intensity rate for
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a small cubic volume (a voxel) inside the subject; the design matrix X specifies the physics
of the tomography and emissions process; finally, p is the number of voxels wanted, the
more voxels, the finer the resolution of the final image.

With Poissonian noise, the variance of the noise is equal to the mean of the measurement.
Motivated by the Poissonian model, we study Lasso under the following Poisson-like model:

Y = Xβ∗ + ε,
E(ε | X) = 0,

Cov(ε | X) = σ2 × diag(|Xβ∗|),
ε X(Sc) | X(S),

(3)

where σ2 > 0 and the sparsity index set is defined as

S = {1 ≤ j ≤ p : βj 6= 0}.

In the definition of the Poisson-like model, ε conditioned on X consists of independent
Gaussian variables; Cov(ε | X), the variance-covariance matrix of ε conditioned on X,
is diag(|Xβ∗|), an n × n diagonal matrix with the vector |Xβ∗| down the diagonal; and
X(S) and X(Sc) denote two matrices consisting of the relevant column vectors (nonzero
coefficients) and irrelevant column vectors (zero coefficients) respectively. Define β∗(S) =
{β∗j : β∗j 6= 0}, β∗(Sc) = {β∗j : β∗j = 0}. This is a heteroscedastic model.

Since the Lasso provides a computationally feasible way to select a model (Osborne et al.,
2000; Efron et al., 2004; Rosset, 2004; Zhao and Yu, 2007), it can be applied in the non-
standard settings to give sparse solutions. It is possible that an altered version of the Lasso
could better suit different non-standard settings. In the classical setup when n is growing
and p is fixed, with heteroskedastic data, ordinary least squares is not desirable (Freedman,
2005). It is sometimes recommended to use weighted least squares instead of ordinary least
squares. If we know the Poisson model holds, one could propose a similar fix for the Lasso
for heteroscedastic data. However, we believe it is important to understand how the Lasso
behaves before we propose fixes. Moreover, we would like to use this realistic Poisson model
to start understanding how sensitive the Lasso is to nonstandard model assumptions.

With the Poisson-like model, for general scalings of p, q, n, and β∗, where q = # S is
the number of true predictors in the linear model, we investigate when the Lasso is sign
consistent and when it is not with theoretical and simulation studies. We also give sufficient
conditions for the Lasso to be `∞ consistent. As far as we know, this is the first study of
sign consistency and `∞ consistency using the Lasso in a non-homoscadestic setting, for
general scalings of p, q, n and β∗.

1.1 Overview of Previous Work

The Lasso (Tibshirani, 1996) has been a popular technique to simultaneously select a model
and provide regularized estimated coefficients. There is a substantial literature on the use of
the Lasso for sparsity recovery and subset selection under the standard model. We provide
only a very brief overview here.

In noiseless setting (when ε = 0), with contributions from a broad range of researchers
(Chen et al., 1998; Donoho and Huo., 2001; E. Candes and Tao., 2004; Elad and Bruckstein.,
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2002, 2003; Tropp., 2004), there is now much understanding of sufficient conditions on de-
terministic predictors {Xi, i = 1, . . . , n} and sparsity index S = {j : β∗j 6= 0} for which the
true β∗ can be recovered exactly. Results by Donoho (2004), as well as Candes and Tao
(2005) provide high probability results for random ensembles of X. More specifically, as
independently established by both sets of authors using different methods, if entries of X
are i.i.d. from standard normal distribution N(0, 1), with the number of predictors p scaling
linearly in terms of the number of observations (i.e., p = γn, for some γ > 1), there exists
a constant α > 0 such that all sparsity patterns with q ≤ αp can be recovered with high
probability.

There is also a substantial body of work focusing on the noisy setting (where ε is random
noise). Knight and Fu (2000) analyze the asymptotic behavior of the optimal solution for
fixed dimension (p); not only for L1 regularization, but for Lr regularization with r ∈ (0, 2].
Both Tropp (2006) and Donoho et al. (2006) provide sufficient conditions for the support
of the optimal solution to the Lasso problem (2) to be contained within the support of β∗.
Recent work on the use of the Lasso for model selection by Meinshausen and Buhlmann
(2006), focuses on Gaussian graphical models. Zhao and Yu (2006) considers linear regres-
sion and more general noise distributions. For the case of Gaussian noise and Gaussian
predictors, both papers established that under particular mutual incoherence conditions
and the appropriate choice of the regularization parameter λ, the Lasso can recover the
sparsity pattern with probability converging to one for particular regimes of n, p and q.
Zhao and Yu (2006) termed the mutual incoherence condition Irrepresentable Condition
which they show is almost necessary when p is fixed. The Irrepresentable Condition was
found in Fuchs (2005) and Zou (2006) as well. For i.i.d. Gaussian noise, Wainwright (2009)
established a sharp relation between the problem dimension p, the number q of nonzero
elements in β∗, and the number of observations n that are required for sign consistency.

1.2 Our Contributions

Before giving our contributions, we first give some definitions used throughout this paper.
Define

sign(x) =





1 if x > 0
0 if x = 0

−1 if x < 0.

We say that β̂(λ) =s β∗ if and only if sign(β̂(λ)) = sign(β∗) elementwise.

Definition 1 The Lasso is sign consistent if there exists a sequence λn such that,

P
(
β̂(λn) =s β∗

)
→ 1, as n →∞.

We study the sign consistency of the Lasso applied to data from the Poisson-like model.
We give non-asymptotic results for both the deterministic design and the Gaussian random
design. The non-asymptotic results give the probability that β̂(λ) =s β∗, for any λ, p, q,
and n. A class of models which describes the relationship between n, p, q, and design
matrix X are specified for the case of a deterministic design such that within this class
the Lasso is sign consistent and `∞ consistent. A similar class is given for the Gaussian
random design case. We also give necessary conditions for the Lasso to be sign consistent
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under the Poisson-like model. We show that the Irrepresentable Condition is necessary for
the Lasso’s sign consistency under the Poisson-like Model. This condition is also necessary
under the standard model (Wainwright, 2009; Zhao and Yu, 2006; Zou, 2006). The sufficient
conditions for both the deterministic design and random Gaussian design requires that ‖β∗‖2

is not too large and M(β∗) is not too small. Specifically, for deterministic design, assume
that

Λmin

(
1
n

X(S)T X(S)
)
≥ Cmin > 0,

where Λmin(·) denotes the minimal eigenvalue of a matrix and Cmin is some positive constant;
for random Gaussian design, assume that

Λmin(Σ11) ≥ C̃min > 0 and Λmax(Σ) ≤ C̃max < ∞,

where Σ11 ∈ Rq×q is the variance-covariance matrix of the true predictors, Σ ∈ Rp×p is the
variance-covariance matrix of all predictors, Λmax(·) denotes the maximal eigenvalue of a
matrix, and C̃min and C̃max are some positive constants. Then, the sufficient condition for
deterministic design requires that, for some arbitrary 0 < α < 1,

‖β∗‖2

[M(β∗)]
2
α

≤ nη2

2σ2 maxi ‖xi‖2( C
−1/2
min +

√
q C−1

min)2 log(p + 1)
.

The sufficient condition for random Gaussian design requires that

‖β∗‖2

[M(β∗)]2
≤ nC̃min

4σ2 log n
√

2max(16q, 4 log n)
,

and
‖β∗‖2

[M(β∗)]2/α
≤ nC̃

2/α
min

3σ222/αq log(p− q + 1)
√

C̃max

.

With a special design, we show that

‖β∗‖2

[M(β∗)]2
= o (n)

is almost necessary for the Lasso to be sign consistent. These findings show ‖β∗‖2 is an
important factor to both the sufficient conditions and necessary conditions. These results are
different from the results for the standard model and they give insight into when the Lasso
will not be sign consistent for the Poisson-like model. For Positron Emission Tomography
(PET), the necessary condition means that if there are regions of very dense emissions
(corresponding to very big β∗j ) and there are regions of very low (but still positive) emissions,
then it is hard to reconstruct the positron emission Poisson intensity rate β∗ with the Lasso.
If the tissue of interest is a tumor, it might be difficult to estimate β∗ with the Lasso, because
there might be some area in the tumor with very dense emissions than other parts and the
normal tissues.

With Gaussian design, we also find that it is necessary that the sample size n must grow
faster than a lower bound defined as c q log(p− q). Where c is a constant which depends on
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the variance-covariance matrix of the predictors. This condition is also needed under the
standard model (Wainwright, 2009).

We use several techniques from Wainwright (2009), but the proofs in this paper are
more difficult because of the heteroscedasticity. To control the variances of the the noise,
we apply random matrix results regarding the Gaussian distribution and large deviation
results regarding the χ2 distribution.

The remainder of the paper is organized as follows. Section 2 analyzes the Lasso esti-
mator under deterministic designs. Section 3 considers the case where the rows of X are
i.i.d. Gaussian vectors. For both the deterministic and random designs we give sufficient
conditions for the Lasso to be sign consistent and `∞ consistent. We also give necessary
conditions for the Lasso’s sign consistency. We then give simulations in Section 4 which
demonstrate our theoretical findings. We conclude in Section 5.

2. Deterministic Design

In this section we consider X to be nonrandom. We study when the Lasso is sign consistent
and when it is not sign consistent under the Poisson-like model. First, some notation,

xi(S) = eT
i X(S),

where ei is the unit vector with ith element one and the rest zero. Because S = {j : β∗j 6= 0}
is the sparsity index set, xi(S) is a row vector of dimension # S = q. Define

M(β∗) = min
j∈S

|β∗j | and
−→
b = sign(β∗(S)).

Suppose the Irrepresentable Condition holds. That is, for some constant η ∈ (0, 1],
∥∥∥∥X(Sc)T X(S)

(
X(S)T X(S)

)−1−→
b

∥∥∥∥
∞
≤ 1− η. (4)

The `∞ norm of a vector, ‖ · ‖∞, is defined as the vector’s largest element in absolute value.
In addition, assume that

Λmin

(
1
n

X(S)T X(S)
)
≥ Cmin > 0, (5)

where Λmin denotes the minimal eigenvalue and Cmin is some positive constant. Condition
(5) guarantees that matrix X(S)T X(S) is invertible. These conditions are also needed in
Wainwright (2009) for sign consistency of the Lasso under the standard model. Now define

Ψ(X, β∗, λ) = λ

[
η (Cmin)−1/2 +

∥∥∥∥∥
(

1
n

X(S)T X(S)
)−1−→

b

∥∥∥∥∥
∞

]
.

With this, we have:

Theorem 2 Suppose that data (X, Y ) follows Poisson-like model described by equations
(3) and each column of X is normalized to l2-norm

√
n. Assume that (4) and (5) hold.

Then for any λ such that
M(β∗) > Ψ(X, β∗, λ),
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each of the following properties holds with probability greater than

1− 2 exp
{
− nλ2η2

2σ2‖β∗‖2 max1≤i≤n ‖xi(S)‖2
+ log(p)

}
,

(a) The Lasso has a unique solution β̂(λ) with β̂(λ) =s β∗,

(b)
∥∥∥β̂(λ)− β∗

∥∥∥
∞
≤ Ψ(X, β∗, λ).

A proof of Theorem 2 can be found in Appendix A.1.
Theorem 2 gives a non-asymptotic result on the Lasso’s sparsity pattern recovery prop-

erty. The next corollary gives a well behaved class of models such that for a given choice of
λ, when sample size n goes to infinity, the Lasso estimate recovers the sparsity pattern and
‖β̂(λ) − β∗‖∞ → 0 in probability. This class of models restricts the relationship between
the data (X), the coefficients (β∗), and the distribution of the noise (ε).

For any constant 0 < α < 1, define,

Γ(X, β∗, σ2, α) =

(
2σ2‖β∗‖2 maxi ‖xi‖2( C

−1/2
min +

√
q C−1

min)
2 log(p + 1)

nη2

)α/2

.

Corollary 3 As in Theorem 2, suppose that data (X, Y ) follows Poisson-like model de-
scribed by equations (3) and each column of X is normalized to l2-norm

√
n. Assume that

(4) and (5) hold. If in addition,

M(β∗) ≥ Γ(X, β∗, σ2, α),

for some arbitrary 0 < α < 1, then by taking λ such that

λ =
Γ(X, β∗, σ2, α)

η C
−1/2
min +

√
q C−1

min

, (6)

we have that each of the following holds with probability greater than

1− 2 exp
{
−

(
Γ(X, β∗, σ2, α)2−2/α − 1

)
log(p + 1)

}
,

(a) β̂(λ) =s β∗,

(b) ‖β̂(λ)− β∗‖∞ < Γ(X, β∗, σ2, α).

If Γ(X, β∗, σ2, α) → 0, then the probability of these events converges to one.

The proof of this corollary can be found in Appendix A.2.
This corollary gives a class of heteroscedastic models for which the Lasso gives a sign

consistent and `∞ consistent estimate of β∗. Sign consistency is important because it
suggests which predictors should be included in the model and whether they have a positive
or negative influence on the response. `∞ consistency is important because it says that each
element of β̂(λ) cannot be far away from the corresponding element of β∗. From Corollary
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3, this class requires that M(β∗) not be too small; it should be greater than Γ(X, β∗, σ2, α).
To be precise, condition M(β∗) ≥ Γ(X, β∗, σ2, α) suggests that there exists some 0 < α < 1,

‖β∗‖2

[M(β∗)]
2
α

≤ nη2

2σ2 maxi ‖xi‖2( C
−1/2
min +

√
q C−1

min)2 log(p + 1)
.

In analyzing the sign consistency of the Lasso under the standard model, Wainwright (2009)
also requires that M(β∗) not be too small. However, one big difference is that for the
Poisson-like model in this paper, the results also depend on ‖β∗‖2.

The next corollary addresses the classical setting, where p, q, and β∗ are all fixed and n
goes to infinity. This is a straightforward result from Corollary 3 and yields better under-
standing of the Lasso applied to data from the Poisson-like model. Since M(β∗) and ‖β∗‖2

do not change with n, Γ(X, β∗, σ2, α) → 0 in Corollary 3 when 1
n max1≤i≤n ‖xi(S)‖2 → 0.

Then we have:

Corollary 4 As in Theorem 2, suppose that data (X, Y ) follows Poisson-like model de-
scribed by equations (3) and each column of X is normalized to l2-norm

√
n. Assume that

(4) and (5) hold. In the classical case when p, q and β∗ are fixed, if

1
n

max
1≤i≤n

‖xi(S)‖2 → 0, (7)

then by choosing λ as in equation (6),

P
[
β̂(λ) =s β∗

]
→ 1, and ‖β̂(λ)− β∗‖∞ → 0 in probability,

as n →∞.

Condition (7) is not strong and it is easy to be satisfied. Suppose

0 < Λmax

(
1
n

X(S)T X(S)
)
≤ Cmax,

where Λmax(·) is the maximum eigenvalue of a matrix and Cmax is a positive constant, then
∥∥∥∥

1√
n

xi(S)
∥∥∥∥

2

2

=
∥∥∥∥

1√
n

eT
i X(S)

∥∥∥∥
2

2

≤ Λmax

(
1
n

X(S)T X(S)
)
≤ Cmax.

Consequently,

1
n

max
1≤i≤n

‖xi(S)‖2 =
1√
n

max
1≤i≤n

∥∥∥∥
1√
n

xi(S)
∥∥∥∥

2

≤ 1√
n

Cmax → 0.

Corollary 4 states that in the classical settings, the Lasso can consistently select the true
model under the Poisson-like model.

So far the results have given sufficient conditions for sign consistency of the Lasso. To
understand how the Lasso might be sensitive to the heteroscedastic model, the next theorem
gives necessary conditions which show that ‖β∗‖2 is in fact an important quantity for the
Poisson-like model, due to the presence of β∗ in Cov(ε|X).
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Theorem 5 (Necessary Conditions) Suppose that data (X, Y ) follows Poisson-like model
described by equations (3) and each column of X is normalized to l2-norm

√
n. Assume

that (5) holds.

(a) Consider 1
nX(S)T X(S) = Iq×q. For any j, define

c2
n,j =

n2β∗j
2

σ2eT
j

[
X(S)T diag(|Xβ∗|)X(S)

]
ej

. (8)

Define cn = minj cn,j. Then, for sign consistency, it is necessary that cn →∞. Specif-
ically,

P
[
β̂(λ) =s β∗

]
≤ 1− exp

{−c2
n/2

}
√

2π(1 + cn)
.

(b) If the Irrepresentable Condition (4) does not hold, specifically,

∥∥∥∥X(Sc)T X(S)
(
X(S)T X(S)

)−1−→
b

∥∥∥∥
∞

= 1 + ζ for some ζ ≥ 0, (9)

then, the Lasso estimate is not sign consistent: P
[
β̂(λ) =s β∗

]
≤ 1

2 ;

A proof of Theorem 5 can be found in Appendix A.3.
Statement (a) says that under the Poisson-like model, the Lasso is sensitive to the scale

of β∗j , i = 1, . . . q. This is quite different from the results on the standard model which state
that the Lasso is only sensitive to the smallest |β∗j | and not sensitive to the largest |β∗j |. This
makes sense, because when β∗j becomes big in the standard model, the signal will increase
while the noise keeps at the same level. But for Poisson-like data, when β∗j grows, both the
signal and the noise will grow. Statement (b) says that the Irrepresentable Condition (4)
is necessary for the Lasso’s sign consistency. This necessary condition can also be found
in both Zhao and Yu (2006) and Wainwright (2009). Zhao and Yu (2006) points out that
the Irrepresentable Condition is almost necessary and sufficient for the Lasso to be sign
consistent under the standard model when p and q are fixed. Wainwright (2009) says that
it is necessary for the Lasso’s sign consistency under the standard model for any p and q. To
understand the quantity cn,j , we can consider (Xj)j∈S to follow a joint normal distribution
N(0, Iq×q), under which we have the following result.

Proposition 1 Suppose that (Xj)j∈S follow a joint normal distribution N(0, Iq×q). For n
observations of the random vector (Xj)j∈S , cn,j as defined in (8) has the following property,

P

[
c2
n,j ³

n[β∗j ]2

σ2‖β∗‖2

]
→ 1,

where the notation A ³ B means that there exists two positive constants c1 and c2, such
that c2B ≤ A ≤ c1B.
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The proof of Proposition 1 can be found in Appendix A.4.
Theorem 5 says that cn,j → ∞ is a necessary condition for sign consistency when

X(S)T X(S)/n = I. To understand the quantity cn,j , this proposition gives an approxima-
tion by assuming a probabilistic model on X(S). It shows that it is reasonable to suspect
cn,j → ∞ if and only if ‖β∗‖2/[M(β∗)]2 = o(n). Therefore, ‖β∗‖2/[M(β∗)]2 = o(n) is al-
most necessary for sign consistency. This is not an exact necessary condition because X(S)
is approximated by a random matrix in Proposition 1. We will study how the Lasso is
sensitive to M(β∗) and ‖β∗‖2 with simulation studies in Section 4.

3. Gaussian Random Design

We now turn to the Gaussian random design where rows of X are i.i.d. from a p-dimensional
multivariate Gaussian distribution with mean 0 and variance-covariance matrix Σ, which
has unit diagonal entries. Define the variance-covariance matrix of the relevant predictors
to be Σ11 and the covariance between the irrelevant predictors and the relevant predictors
to be Σ21. Specifically,

Σ11 = E

(
1
n

X(S)T X(S)
)

and

Σ21 = E

(
1
n

X(Sc)T X(S)
)

.

Let Λmin(·) denote the minimum eigenvalue of a matrix and Λmax(·) denote the maximum
eigenvalue of a matrix. To get the main results which allow p to grow with n, we need the
following regularity conditions on the p × p matrix Σ. First, for some positive constants
Cmin and Cmax which do not depend on n,

Λmin(Σ11) ≥ C̃min and Λmax(Σ) ≤ C̃max, (10)

and second, the Irrepresentable Condition,

‖Σ21(Σ11)−1sign(β∗(S))‖∞ ≤ 1− η, (11)

for some constant η ∈ (0, 1]. These are standard assumptions
in previous work under standard models. Define,

V ∗(n, β∗, λ, σ2) =
2λ2q

nC̃min

+
3σ2

√
C̃max‖β∗‖2

n
,

A(n, β∗, σ2) =

√
4σ2‖β∗‖2 log n

√
2max(16q, 4 log n)

nC̃min

and

Ψ̃(n, β∗, λ, σ2) = A(n, β∗, σ2) +
2λ
√

q

C̃min

.

With these quantities defined above, we have
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Theorem 6 Consider the Poisson-like model described by (3), under Gaussian random
design. Suppose that the variance-covariance matrix Σ satisfies condition (10) and condition
(11) with unit diagonal. Further, suppose that q/n → 0. Then for any λ such that

M(β∗) > Ψ̃(n, β∗, λ, σ2),

each of the following properties holds with probability greater than

1− 2 exp
{
− λ2η2

2V ∗(n, β∗, λ, σ2)C̃max

+ log(p− q)
}
− (2q + 3) exp{−0.03n} − 1 + 4q

n
,

(a) β̂(λ) =s β∗,

(b)
∥∥∥β̂(λ)− β∗

∥∥∥
∞
≤ Ψ̃(n, β∗, λ, σ2).

A proof of Theorem 6 can be found in Appendix A.5.
Theorem 6 gives a non-asymptotic result of the Lasso’s sparsity pattern recovery prop-

erty when the predictors are from Gaussian random ensemble. The next corollary gives a
well behaved class of models such that for a given choice of λ, when sample size n goes to
infinity, the Lasso estimate recovers the sparsity pattern and is `∞ consistent. This class
of models restricts the relationship between the data (X), the coefficients (β∗), and the
distribution of the noise (ε). For any α ∈ (0, 1), define

Γ̃(n, β∗, σ2, α) =

(
3σ2q‖β∗‖2 log(p− q + 1)

√
C̃max

n

)α/2

.

Corollary 7 As in Theorem 6, consider the Poisson-like model described by (3), under
Gaussian random design. Suppose the variance-covariance matrix Σ satisfies condition (10)
and condition (11) with unit diagnal. Further, suppose that q/n → 0. If in addition,

M(β∗) ≥ A(n, β∗, σ2) +
2Γ̃(n, β∗, σ2, α)

C̃min

,

then by taking λ such that

λ =
Γ̃(n, β∗, σ2, α)√

q
,

we have that each of the following holds with probability greater than

1− 2 exp



−

log(p− q + 1)η2

2[2q log(p−q+1)

nC̃min
+ Γ̃(n, β∗, σ2, α)α/2−2]C̃max

+ log(p− q)





−(2q + 3) exp{−0.03n} − 1 + 4q

n

(a) β̂(λ) =s β∗,
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(b) ‖β̂(λ)− β∗‖∞ < 2Γ̃(n, β∗, σ2, α)/C̃min + A(n, β∗, σ2).

If
(σ2‖β∗‖2 + 1)q log(p− q + 1)/n → 0, (12)

then the probability of these events converges to one. If in addition A(n, β∗, σ2) → 0 and
Γ̃(n, β∗, σ2, α) → 0, then β̂(λ) is `∞ consistent.

A proof of Corollary 7 can be found in Appendix A.6.
This corollary gives a class of heteroscedastic models for which the Lasso gives a sign

consistent and `∞ consistent estimate of β∗, when the predictors are from a Gaussian
random ensemble. This class requires that M(β∗) is not too small and ‖β∗‖2 not be too
large. The sufficient conditions require that M(β∗) ≥ A(n, β∗, σ2), which suggests that

‖β∗‖2

[M(β∗)]2
≤ nC̃min

4σ2 log n
√

2max(16q, 4 log n)
;

and the sufficient conditions also require that M(β∗) ≥ 2Γ̃(nβ∗, σ2, α)/C̃min, which suggests
that

‖β∗‖2

[M(β∗)]2/α
≤ nC̃

2/α
min

3σ222/αq log(p− q + 1)
√

C̃max

.

To make the Lasso sign consistent, the sufficient condition (12) also needs n to grow faster
than q log(p− q + 1). The next theorem gives necessary conditions for the Lasso to be sign
consistent. It says that if n is less than 2(θl− v)q log(p− q), where θl and v are two positive
constants defined in next theorem, then the Lasso cannot be sign consistent for any λ > 0.

Theorem 8 (Necessary Conditions) Consider the Poisson-like model described by (3),
under Gaussian random design. Suppose the variance-covariance matrix Σ satisfies condi-
tion (10).

(a) Suppose the Irrepresentable Condition (11) holds, and q/n → 0. Define

θl =
(
√

C̃max −
√

C̃max − C̃min)2

(2− η)2C̃max

.

If for any v > 0, n < 2(θl − v)q log(p− q), then P
[
β̂(λ) =s β∗

]
→ 0, for any λ.

(b) If the Irrepresentable Condition (11) does not hold, specifically,

‖Σ21(Σ11)−1sign(β∗(S))‖∞ = 1 + ζ for some ζ ≥ 0, (13)

then, the Lasso estimate is not sign consistent: P
[
β̂(λ) =s β∗

]
≤ 1

2 ;

A proof of Corollary 8 can be found in Appendix A.7.
Claim (a) gives a necessary relationship between p, q, and n for the Lasso can be sign

consistent. Claim (b) says that the Irrepresentable Condition (11) is a necessary condition
for the Lasso’s sign consistency.
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In both deterministic design and Gaussian random design, we find that the sufficient
conditions for the Lasso to be sign consistent require that ‖β∗‖2/[M(β∗)]2 grow slow enough.
By a special design, we showed that ‖β∗‖2/[M(β∗)]2 = o(n) is almost necessary. When using
the Lasso on data which follows the Poisson-like model, one should be careful when β∗ is
spread out. If ‖β∗‖2/[M(β∗)]2 is large, then the Lasso might not be able to select the true
model. We will show the effect of ‖β∗‖2/[M(β∗)]2 with simulations in the next section.

4. Simulation Studies

We present two simulations which investigate how the spread of β∗ affects sign consistency
and compares the standard model to the Poisson-like model. Our findings show that the β∗

can not be spread out, that is ‖β∗‖2/[M(β∗)]2 can not be too big. In the first example, we
investigate how changing the values of M(β∗) and ‖β∗‖2 result in changing the probability
of sign consistency. The second experiment compares how the standard model and the
Poisson-like model react to changing the value of ‖β∗‖2. All simulations were done in R
with the LARS package (Efron et al., 2004).

Example 1 (Changing cn,j) In this example, we study how the Lasso is sensitive to
the spread of β∗, which is measured as Sp (spread) defined as

Sp =
‖β∗‖2

[M(β∗)]2
. (14)

It can be argued that the bigger Sp, the β∗ is more spread out. Our theoretical results in
the previous sections suggest that when Sp is big, the probability that the Lasso is sign
consistent might be small.

Consider an initial model with the parameters such that n = 400, p = 1000, q = 20,
σ2 = 1, and each element of the design matrix X is drawn independently from N(0, 1).
Once X is drawn, it will be fixed. β∗ is designed this way,

β∗j =





βmax if j ≤ 10
βmin if 11 ≤ j ≤ 20
0 otherwise

for βmax = 40 and βmin = 5. In this initial model, ‖β‖2 = 127, Sp = 127/52 = 5.10.
By changing βmin or ‖β∗‖2, we change the value of Sp. First, we fix M(β∗) = βmin = 5,

and change the value of βmax. In this example, we take

βmax ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300}.
Later we fix ‖β‖2 = 127, and then choose βmin, such that Sp does not change from the first
design. Part values of the parameters for the two designs are described in the following two
tables.

For each design, we draw a plot of “success” versus Sp in Figure 1. The horizontal axis
in Figure 1 is Sp. Each point along the solid line in Figure 1 corresponds to Design 1, and
each point along the dashed line corresponds to Design 2. Success is defined as the existence
of a λ which makes β̂(λ) =s β∗. The probability of success for each point is estimated with
1000 trials.
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Table 1: This describes the relationship between ‖β∗‖2,M(β∗), and Sp for the first simu-
lation design. M(β∗) = 5 is fixed. With βmax changing, ‖β∗‖2 changes, so does
Sp = ‖β∗‖2/[M(β∗)]2.

βmax 5 20 40 60 80 100 150 200 250 300
‖β∗‖2 22 65 127 190 253 316 475 633 791 949

Sp 0.89 2.61 5.10 7.62 10.14 12.66 18.98 25.31 31.63 37.95

Table 2: This describes the relationship between ‖β∗‖2,M(β∗), and Sp for the second sim-
ulation design. ‖β∗‖2 = 127 is fixed. Sp are keeping at the same values as in
Design 1. Then βmin and βmax are decided by Sp and ‖β∗‖2. βmin =

√
‖β∗‖2/Sp

and βmax =
√
‖β∗‖2/10− β2

min.

βmin 11.94 6.99 5.00 4.09 3.55 3.17 2.59 2.24 2.01 1.83
βmax 38.50 39.70 40.00 40.10 40.16 40.19 40.23 40.25 40.26 40.27

Sp 0.89 2.61 5.10 7.62 10.14 12.66 18.98 25.31 31.63 37.95

Figure 1 shows as Sp increases, the probability of success decreases. What is especially
remarkable is that the dashed and solid lines are nearly identical.

Example 2 (Comparison to Standard Model) As seen in the theorems and the
previous example, ‖β∗‖2 is an important quantity for sign consistency under the Poisson-like
model. In this example, we compare the sign consistency of the Lasso on the Poisson-like
model to the sign consistency of the Lasso on the standard model when the value of ‖β∗‖2

changes.
The following parameters do not change throughout this example: n = 400, p = 1000,

q = 20, σ2 = 1, and the design matrix has independent N(0, 1) entries. We only want to
change ‖β∗‖2, we do this by changing βmax:

β∗j =





βmax if j ≤ 10
5 if 11 ≤ j ≤ 20
0 otherwise.

Under the initial model, βmax = 10. This is the point furthest to the left of Figure 2. For
this initial value of βmax, ‖β∗‖2 =

√
1250 ≈ 35.4. For each subsequent point, βmax is chosen

so that ‖β∗‖2 is a multiple of
√

1250. On the horizontal axis is how many times larger it
should be. So, for the kth point, βmax is set so that ‖β∗‖2 = k

√
1250.

The final parameter to choose is the variance of the noise term in the standard model.
It is chosen so that the expected standard deviation of the noise terms are equal under the
initial model. If Z is a N(0, 1) variable,

E
√
|Xiβ∗| = E

√
‖β∗‖2|Z| =

√
‖β∗‖2E

√
|Z| ≈ 4.9.

Success is defined as the existence of a λ which makes β̂(λ) =s β∗. The probability of
success for each point is estimated with 1000 trials.
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Figure 1: Probability of Success vs. Sp. For the solid line, ‖β∗‖2 decreases while M(β∗) is
kept constant. For the dashed line, M(β∗) increases while ‖β∗‖2 is kept constant.
The values of M(β∗) and ‖β∗‖2 are chosen so that Sp as defined in (14) takes the
values specified on the horizontal axis. Each probability is estimated with 1000
simulations.

What we see in Figure 2 is that increasing ‖β∗‖2 can have adverse effects on the sign con-
sistency performance of the Lasso under the Poisson-like model. However, the performance
on the standard model is almost constant.

The reason that sign consistency fails for the Poisson-like model when ‖β∗‖2 grows is
that the variance of the noise also grows. As the variance of the noise grows, it becomes
more and more difficult to detect the smallest elements of β∗. This does not occur in the
standard model because ‖β∗‖2 does not affect the variance of the noise.

5. Conclusion

In this paper, we studied the sign consistency of the Lasso when the data is from a non-
standard Poisson-like linear model which has heteroscedastic errors. This setup is different
from the standard homoscedastic error model in preivous research. The Poisson-like model is
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Figure 2: Probability of Success vs. the length of β∗. The solid line is the probability of
success for the standard model and the dashed line is the probability of success
for the Poisson-like model. The length of β∗, ‖β∗‖2 for the first point is

√
1250.

For the kth point, ‖β∗‖2 = k
√

1250.

motivated by attempts of practitioners using the Lasso in high-dimensional medical imaging
problems.

We gave non-asymptotic results for the Lasso’s sign consistency property for both deter-
ministic design and random Gaussian ensemble, under the Poisson-like model. Followed by
these non-asymptotic results, a class of models dependent on the parameters β∗, p, q, n, σ2,
and the design matrix are specified. Under the specified models, a suitable λ was chosen
such that the Lasso is sign consistent and `∞ consistent. We also studied how sensitive the
Lasso is to the heteroscedastic model by finding necessary conditions. Both the determin-
istic design and the Gaussian random design show that ‖β∗‖2/[M(β∗)]2 is an important
factor. When it is too large, then the Lasso might not be sign consistent. With one special
design, we show that ‖β∗‖2/[M(β∗)]2 = o(n) is almost necessary for the Lasso to be sign
consistent. We call this condition spread-control condition. In PET, a patient is injected
with a positron emitting substance which is attracted to a tissue of interest. Our results
show that if there are regions of very dense emissions, then it is difficult for the Lasso to
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detect regions of lower (but still positive) emissions. This is of particular interest when
imaging tumors because the periphery of the tumor will have lower emissions than the cen-
ter. By simulation studies, we demonstrated our theoretical findings. We showed that when
β∗ is spread out, the probability that the Lasso is sign consistent is very small. We also
showed that when minimum of β∗j is fixed, the growing ‖β∗‖2 has an adverse effect on the
sign consistency performance of the Lasso under the Poisson-like model, while it almost has
no any effect on the performance of the Lasso under the standard model.

We have not addressed possible improvements to the Lasso for heteroskedastic data.
However, here are two possibilities. First, you might find a transformation of your variables
which makes the errors more homoskedastic. Second, the Lasso estimator minimizes the
residual sum of squares plus an `1 penalty. The residual sum of squares could be replaced
with the weighted residual sum of squares, where the weights are inversely proportional to
the variance of the noise. These suggestions are similar to those for least squares regression
in classical case where p is fixed. They lead to a future study of the Poisson-like model.
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Appendix A. Proofs

A.1 Proof of Theorem 2

To prove the theorem, we need the next Lemma which gives necessary and sufficient con-
ditions for the property R(X, β∗, ε, λ). They are important to the asymptotic analysis.
Wainwright (2009) gives this condition which follows from KKT conditions.

Lemma 9 For linear model Y = Xβ∗+ε, assume that the matrix X(S)T X(S) is invertible.
Then for any given λ > 0 and any noise term ε ∈ Rn, there exists a Lasso estimate β̂(λ)
which satisfies β̂(λ) =s β∗, if and only if the following two conditions hold

∣∣∣∣X(Sc)T X(S)(X(S)T X(S))−1

[
1
n

X(S)T ε− λsign(β∗(S))
]
− 1

n
X(Sc)T ε

∣∣∣∣ ≤ λ, (15)

sign

(
β∗(S) + (

1
n

X(S)T X(S))−1

[
1
n

X(S)T ε− λsign(β∗(S))
])

= sign(β∗(S)), (16)

where the vector inequality and equality are taken elementwise. Moreover, if (15) holds
strictly, then

β̂ = (β̂(1), 0)

is the unique optimal solution to the Lasso problem (2), where

β̂(1) = β∗(S) + (
1
n

X(S)T X(S))−1

[
1
n

X(S)T ε− λsign(β̂(1))
]

. (17)

As in Wainwright (2009), we state sufficient conditions for (15) and (16). Define

−→
b = sign(β∗(S)),

and denote by ei the vector with 1 in the ith position and zeroes elsewhere. Define

Ui = eT
i (

1
n

X(S)T X(S))−1

[
1
n

X(S)T ε− λ
−→
b

]
,

Vj = XT
j

{
X(S)(X(S)T X(S))−1λ

−→
b −

[
X(S)(X(S)T X(S))−1X(S)T − I)

] ε

n

}
.

By rearranging terms, it is easy to see that (15) holds strictly if and only if

M(V ) =
{

max
j∈Sc

|Vj | < λ

}
(18)

holds. If we define M(β∗) = minj∈S |β∗j | (recall that S = {j : β∗j 6= 0} is the sparsity index),
then the event

M(U) =
{

max
i∈S

|Ui| < M(β∗)
}

, (19)

is sufficient to guarantee that condition (16) holds. So, under condition (18) and (19), by
(17) the unique solution β̂(λ) satisfies

‖β̂(λ)− β‖∞ = max
i
|Ui|.
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Finally, a proof of theorem 2.

Proof This proof is divided into two parts. First we analysis the asymptotic probability
of event M(V ), and then we analysis the event of M(U).

Analysis of M(V ) : Note from (18) that M(V ) holds if and only if maxj∈Sc |Vj |
λ < 1.

Each random variable Vj is Gaussian with mean

µj = λXT
j X(S)(X(S)T X(S))−1−→b .

Define Ṽj = XT
j

[
I −X(S)(X(S)T X(S))−1X(S)T )

]
ε
n , then Vj = µj + Ṽj . Using condi-

tion (4), we have |µj | ≤ (1− η)λ for all j ∈ Sc, from which we obtain that

1
λ

max
j∈Sc

|Ṽj | < η ⇒ maxj∈Sc |Vj |
λ

< 1.

By the Gaussian comparison result (34) stated in Lemma 16, we have

P

[
1
λ

max
j∈Sc

|Ṽj | ≥ η

]
≤ 2(p− q) exp{− λ2η2

2maxj∈Sc E(Ṽ 2
j )
}.

Since
E(Ṽ 2

j ) =
1
n2

XT
j H[V AR(ε)]HXj ,

where H = I − X(S)(X(S)T X(S))−1X(S)T which has maximum eigenvalue equal to 1,
and V AR(ε) is the variance-covariance matrix of ε, which is a diagonal matrix with the ith
diagonal element equal to σ2 × |xT

i β∗|.
Since |xT

i β∗| ≤
√
‖xi(S)‖2

2‖β∗‖2
2 ≤ maxi ‖xi(S)‖2‖β∗‖2, an operator bound yields

E(Ṽ 2
j ) ≤ σ2

n2
max

i
‖xi(S)‖2‖β∗‖2‖Xj‖2

2 =
σ2

n
max

i
‖xi(S)‖2‖β∗‖2.

Therefore,

P

[
1
λ

max
j
|Ṽj | ≥ η

]
≤ 2(p− q) exp

{
− nλ2η2

2σ2 maxi ‖xi(S)‖2‖β∗‖2

}
.

So, we have

P

[
1
λ

max
j
|Vj | < 1

]
≥ 1− P

[
1
λ

max
j
|Ṽj | ≥ η

]

≥ 1− 2(p− q) exp
{
− nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2

}
.

Analysis of M(U) :

max
i
|Ui| ≤ ‖( 1

n
X(S)T X(S))−1 1

n
X(S)T ε‖∞ + λ‖( 1

n
X(S)T X(S))−1−→b ‖∞
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Define Zi := eT
i ( 1

nX(S)T X(S))−1 1
nX(S)T ε. Each Zi is a normal Gaussian with mean 0 and

variance

var(Zi) = eT
i (

1
n

X(S)T X(S))−1 1
n

X(S)T [V AR(ε)]
1
n

X(S)(
1
n

X(S)T X(S))−1ei

≤ σ2‖β∗‖2 maxi ‖xi(S)‖2

nCmin
.

So, for any t > 0, by (34)

P (max
i∈S

|Zi| ≥ t) ≤ 2q exp{− t2nCmin

2σ2‖β∗‖2 maxi ‖xi(S)‖2
},

by taking t = λη√
Cmin

, we have

P (max
i∈S

|Zi| ≥ λη√
Cmin

) ≤ 2q exp
{
− nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2

}
.

Recall the definition of Ψ(X, β∗, λ) = λ

[
η (Cmin)−1/2 +

∥∥∥∥
(

1
nX(S)T X(S)

)−1−→
b

∥∥∥∥
∞

]
, we

have

P (max
i
|Ui| ≥ Ψ(X, β∗, λ)) ≤ 2q exp

{
− nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2

}
.

By condition M(β∗) > Ψ(X, β∗, λ), we have

P (max
i
|Ui| < M(β∗)) ≥ 1− 2q exp

{
− nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2

}
.

At last, we have

P [M(V )& M(U)] ≥ 1− 2p exp
{
− nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2

}

A.2 Proof of Corollary 3

Proof Recall the definition of Γ(X, β∗, σ2, α):

Γ(X, β∗, σ2, α) =

(
2σ2‖β∗‖2 maxi ‖xi‖2(η C

−1/2
min +

√
q C−1

min)
2 log(p + 1)

nη2

)α/2

.

So,

nη2

2σ2‖β∗‖2 maxi ‖xi(S)‖2
= Γ(X, β∗, σ2, α)−2/α(η C

−1/2
min +

√
q C−1

min)
2 log(p + 1)
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By taking

λ =
Γ(X, β∗, σ2, α)

η C
−1/2
min +

√
q C−1

min

,

we have
Ψ(X, β∗, λ) ≤ λ

[
η C

−1/2
min +

√
qC−1

min

]
= Γ(X, β∗, σ2, α),

and
nλ2η2

2σ2‖β∗‖2 maxi ‖xi(S)‖2
= Γ(X, β∗, σ2, α)2−2/α log(p + 1).

So, the probability bound in Theorem 3 greater than

1− 2 exp
{
−

(
Γ(X, β∗, σ2, α)2−2/α − 1

)
log(p + 1)

}
,

which goes to one when Γ(X, β∗, σ2, α) → 0.

A.3 Proof of Theorem 5

Proof First prove (b). Without loss of generality, assume for some j ∈ Sc, XT
j X(S)

(
X(S)T X(S)

)−1−→
b =

1+ζ, then Vj = λ(1+ζ)+ Ṽj , where Ṽj = −[X(S)
(
X(S)T X(S)

)−1
X(S)T −I] ε

n is a Gaus-

sian random variable with mean 0, so P (Ṽj > 0) = 1
2 . So, P (Vj > λ) ≥ 1

2 , which implies
that for any λ, Condition (15) (a necessary condition) is violated with probability greater
than 1/2.

For claim (a). Condition (16),

sign

(
β∗(S) + (

1
n

X(S)T X(S))−1

[
1
n

X(S)T ε− λsign(β∗(S))
])

= sign(β∗(S))

is also a necessary condition for sign consistency. Since 1
nX(S)T X(S) = Iq×q, (16) becomes

sign

(
β∗(S) +

[
1
n

X(S)T ε− λsign(β∗(S))
])

= sign(β∗(S)),

which implies that

sign

(
β∗(S) +

1
n

X(S)T ε

)
= sign(β∗(S)). (20)

Without loss of generality, assume for some j ∈ S, β∗j > 0. Then (20) implies β∗j + Zj > 0,

where Zj = eT
j

1
nX(S)T ε is a Gaussian random variable with mean 0, and variance

var(Zj) = eT
j

1
n

X(S)T V AR(ε)
1
n

X(S)ej

=
σ2eT

j

[
X(S)T diag(|Xβ∗|)X(S)

]
ej

n2

=
β∗j

2

c2
n,j

,
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where the last equality uses the definition of c2
n,j in Theorem 5. To Summarize,

P [β̂(λ) =s β∗] ≤ P [β∗j + Zj > 0]
= P [Zj > −β∗j ]
= P [Zj < β∗j ]

= 1−
∫ ∞

β∗j

1√
2πvar(Zj)

exp{− x2

2var(Zj)
}dx

= 1−
∫ ∞

β∗j /
√

var(Zj)

1√
2π

exp{−x2

2
}dx

≤ 1− 1√
2π

∫ ∞

β∗j /
√

var(Zj)
(

x

1 + x
+

1
(1 + x)2

) exp{−x2

2
}dx

= 1−
exp

{
− β∗j

2

var(Zj)

}

√
2π(1 +

β∗j√
var(Zj)

)

= 1−
exp

{
− c2n,j

2

}

√
2π(1 + cn,j)

.

A.4 Proof of Proposition 1

Proof Let Zj = eT
j X(S)T diag(|Xβ∗|)X(S)ej . Since

eT
j X(S)T diag(|Xβ∗|)X(S)ej =

n∑

i=1

|xT
i β∗|X2

ij ,

|xT
i β∗|X2

ij |xT
k β∗|X2

ki

for any i 6= k. So, we have

E(Zj) =
n∑

i=1

E(|xT
i β∗|X2

ij),

and

var(Zj) =
n∑

i=1

var(|xT
i β∗|X2

ij).

Since var(xT
i β∗) = ‖β∗‖2

2, var(Xij) = 1, ρ(xT
i β∗, Xij) =

β∗j
‖β∗‖2 , by Lemma 10, we have

c3‖β∗‖2 ≤ E(|xT
i β∗|X2

ij) ≤ c1‖β∗‖2,

and
3‖β∗‖2

2 ≤ E([|xT
i β∗|X2

ij ]
2) ≤ 15‖β∗‖2

2.
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So,

P [|Zj − E(Zj)| > 1
2
E(Zj)] ≤ 4 var(Zj)

E(Zj)2

≤ 4× 15n‖β∗‖2
2

[c3n‖β∗‖2]2

=
60
c2
3n

.

So, we have

P

[
c3n

2
‖β∗‖2 ≤ Zj ≤ 3c1n

2
‖β∗‖2

]
≥ 1− 60

c2
3n

.

From which we have

P

[
2nβ∗j

2

3c1σ2‖β∗‖2
≤ n2β∗j

2

σ2Zj
≤ 2nβ∗j

2

c3σ2‖β∗‖2

]
≥ 1− 60

c2
3n

.

Substituting c2
n,j = n2β∗j

2/(σ2Zj), yields the results.

Lemma 10 Suppose that random variables X and Y , follow a joint normal distribution,
with means E(X) = 0 and E(Y ) = 0, variances var(X) = σ2

X and var(Y ) = σ2
Y , and

correlation ρ(X, Y ) = ρ. Then we have

E(|X|Y 2) = c3ρ
2σXσ2

Y + c1(1− ρ2)σXσ2
Y ,

and
E(|X|2Y 4) = (12ρ2 + 3)σ2

Xσ4
Y .

The proof of this lemma can be found in Appendix A.8.

A.5 Proofs of Theorem 6

To prove Theorem 6, we need some preliminary results.

Lemma 11 Conditioned on X(S) and ε, the random vector V is Gaussian. Its mean vector
is upper bound as

| E[V |ε,X(S)] |≤ λ(1− η)1. (21)

Moreover, its conditional covariance takes the form

cov[V |ε,X(S)] = MnΣ2|1 = Mn[Σ22 − Σ21(Σ11)−1Σ12], (22)

where

Mn = λ2−→b T (X(S)T X(S))−1−→b +
1
n2

εT [I −X(S)(X(S)T X(S))−1X(S)T ]ε. (23)
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Lemma 12 Let M1 = λ2−→b T (X(S)T X(S))−1−→b and M2 = 1
n2 εT [I−X(S)(X(S)T X(S))−1X(S)T ]ε,

then Mn = M1 + M2. We have

P

[
λ2q

2nC̃max

≤ M1 ≤ 2λ2q

nC̃min

]
≥ 1− exp{−0.03n}, (24)

P

[
M2 ≥ 3σ2

√
C̃max‖β∗‖2

n

]
≤ 1

n
. (25)

Lemma 13

P

[
max

i=1,...n
‖xi(S)‖2

2 ≥ 2C̃max max (16q, 4 log n)
]
≤ 1

n
. (26)

Proofs of these lemmas can be found in Appendix A.8. Now, we prove Theorem 6.
Analysis of M(V ): Define the event T = {Mn ≥ v∗}, where

v∗ =
2λ2q

nC̃min

+
3σ2

√
C̃max‖β∗‖2

n
.

By Lemma 12, we have P [T ] ≤ exp{−0.03n}+ 1
n .

Let µj = E[Vj |ε,X(S)], Zj = Vj − µj , and Z = (Zj)j∈Sc , then E[Z|X(S), ε] = 0 and
cov(Z|X(S), ε) = cov(V |X(S), ε) = MnΣ2|1.

max
j∈Sc

|Vj | = max
j∈Sc

|µj + Zj |
≤ max

j∈Sc
[|µj |+ |Zj |]

≤ (1− η)λ + max
j∈Sc

|Zj |.

From this inequality, we have

{max
j∈Sc

|Zj | < ηλ} ⊂ {max
j∈Sc

|Vj | < λ}.

Define Z̃ to be a zero-mean Gaussian with covariance v∗Σ2|1. Since

P

[
max
j∈Sc

|Zj | ≥ ηλ | T c

]
≤

∑

j

P [|Zj | > ηλ | T c]

≤ (p− q)P
[
max
j∈Sc

|Z̃j | > ηλ

]

≤ 2(p− q) exp{− η2λ2

2v∗C̃max

},

we have

P [max
j∈Sc

|Vj | ≥ λ] ≤ P

[
max
j∈Sc

|Zj | ≥ λ | T c

]
+ P [T ]

≤ 2(p− q) exp{− η2λ2

2v∗C̃max

}+ exp{−0.03n}+
1
n

.
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This says that

P [M(V )] ≥ 1− 2(p− q) exp{− η2λ2

2v∗C̃max

} − exp{−0.03n} − 1
n

.

Analysis of M(U): Now we analyze maxj∈S |Uj |.

max
j
|Uj | ≤

∥∥∥∥(
1
n

X(S)T X(S))−1 1
n

X(S)T ε

∥∥∥∥
∞

+ λ

∥∥∥∥(
1
n

X(S)T X(S))−1−→b
∥∥∥∥
∞

.

Define Λi(·) to be the ith largest eigenvalue of the matrix. Since

λ

∥∥∥∥(
1
n

X(S)T X(S))−1−→b
∥∥∥∥
∞
≤ λ

√
q

Λmin( 1
nX(S)T X(S))

,

by Equation (37) in Lemma 20,

P

[
1
2
C̃min ≤ Λi(

1
n

XT X) ≤ 2C̃max

]
≥ 1− 2 exp(−0.03n),

we have

P

[
λ

∥∥∥∥(
1
n

X(S)T X(S))−1−→b
∥∥∥∥
∞
≤ 2λ

√
q

C̃min

]
≥ 1− 2 exp(−0.03n).

Let
Wi = eT

i (
1
n

X(S)T X(S))−1 1
n

X(S)T ε,

then conditioned on X(S), Wi is a Gaussian random variable with mean 0, and variance

var(Wi|X(S)) = eT
i (

1
n

X(S)T X(S))−1 1
n

X(S)T [V AR(ε)]
1
n

X(S)(
1
n

X(S)T X(S))−1ei

≤ σ2‖β∗‖2 maxi ‖xi(S)‖2

nΛmin( 1
nX(S)T X(S))

.

Using (37)

P

[
1
2
C̃min ≤ Λi(

1
n

XT X) ≤ 2C̃max

]
≥ 1− 2 exp(−0.03n),

and Lemma 13, we have

σ2‖β∗‖2 maxi ‖xi(S)‖2

nΛmin( 1
nX(S)T X(S))

≤
2σ2‖β∗‖2

√
2C̃max max (16q, 4 log n)

nC̃max

with probability no less than 1− 2 exp{−0.03n} − 1
n .

Define event

T =





σ2‖β∗‖2 maxi ‖xi(S)‖2

nΛmin( 1
nX(S)T X(S))

≤
2σ2‖β∗‖2

√
2C̃max max (16q, 4 log n)

nC̃min



 ,
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then P (T ) ≥ 1− 2 exp{−0.03n} − 1
n . From the proof of Lemma 16, for any t > 0,

P (|Wi| > t | X(S), T ) ≤ 2 exp(− t2

2var(Wi | X(S), T )
).

The above is also true if we replace var(Wi | X(S), T ) with any upper bound. So, we have

P (|Wi| > t | X(S), T ) ≤ 2 exp




− t2

22σ2‖β∗‖2
√

2C̃max max (16q,4 log n)

nC̃min





.

So,

P (|Wi| > t) ≤ P (|Wi| > t |T ) + P (T )

≤ 2 exp




− t2

22σ2‖β∗‖2
√

2C̃max max (16q,4 log n)

nC̃min





+ 2 exp{−0.03n}+
1
n

.

By takeing t = A(n, β∗, σ2) :=

√
4σ2‖β∗‖2 log n

√
2max(16q,4 log n)

nC̃min
, we have

P

[
max

i
|Wi| > A(n, β∗, σ2)

]
≤ 2q

n
+ 2q exp{−0.03n}+

q

n

=
3q

n
+ 2q exp{−0.03n}.

Summarize,

P

[
max

i
Ui ≥ A(n, β∗, σ2) +

2λ
√

q

C̃min

]

≤ 3q

n
+ 2q exp{−0.03n}+

q

n
+ 2 exp{−0.03n} .

At last, we have

P [M(V ) & M(U)] ≤ 1− 2(p− q) exp{− η2λ2

2v∗C̃max

} − (2q + 3) exp{−0.03n} − 1 + 4q

n
.

A.6 Proofs of Corollary 7

Proof By taking λ = Γ̃(n,β∗,σ2)√
q , where

Γ̃(n, β∗, σ2) =

(
3σ2q‖β∗‖2 log(p− q + 1)

√
C̃max

n

)α/2

,
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and α < 1, we have

λ2

V ∗(n, β∗, λ, σ2)
=

λ2

2λ2q

nC̃max
+ 3σ2

√
C̃max‖β∗‖2

n

=
1

2q

nC̃max
+ 3σ2

√
C̃max‖β∗‖2
nλ2

=
log(p− q + 1)

2q log(p−q+1)

nC̃max
+ Γ̃(n, β∗, σ2, α)2/α−2

.

By Condition (12), q log(p− q + 1)/n → 0 and Γ̃(n, β∗, σ2, α) → 0,

λ2

V ∗(n, β∗, λ, σ2) log(p− q + 1)
→∞.

This guarantees P [β̂(λ) =s β∗] → 1. In fact, the probability bound in Theorem 6 now
becomes,

1− 2 exp
{
− λ2η2

2V ∗(n, β∗, λ, σ2)C̃max

+ log(p− q)
}
− (2q + 3) exp{−cn} − 1 + 4q

n

= 1− 2 exp



−

log(p− q + 1)η2

2[2q log(p−q+1)

nC̃max
+ Γ̃(n, β∗, σ2, α)α/2−2]C̃max

+ log(p− q)





−(2q + 3) exp{−cn} − 1 + 4q

n

By the choice of λ, we have that Ψ(n, β∗, λ, σ2) = A(n, β∗, σ2) + 2Γ̃(n,β∗,σ2)

C̃min
, which goes

to 0, if (12) holds and A(n, β∗, σ2) → 0.

A.7 Proof of Theorem 8

Proof First, prove part (b). Without loss of generality, assume

eT
j Σ21(Σ11)−1sign(β∗(S)) = 1 + ζ,

for some j ∈ Sc. Since E[V |X(S), ε] = λΣ21(Σ11)−1sign(β∗(S)), Vj , conditioned on X(S)
and ε, is a Gaussian random variable with mean λ(1+ ζ). So P [Vj ≥ λ(1+ ζ)|X(S), ε] = 1

2 ,
which implies P [Vj > λ|X(S), ε] ≥ 1

2 . Then we have P (Vj > λ) ≥ 1
2 . So for any λ,

P [β̂(λ) =s β∗] ≤ P [max
j

Vj ≤ λ] ≤ 1
2
.

Now, a proof for claim (a). Let Vj = E[Vj ]+Ṽj , then |E[V |X(S), ε]| =
∣∣λΣ21(Σ11)−1sign(β∗(S))

∣∣ ≤
λ by Condition (11), and Ṽj is a zero-mean random variable. Since

max
j∈Sc

|Vj | ≥ max
j∈Sc

|Ṽj | −max
j∈Sc

|E[Vj ]|

≥ max
j∈Sc

|Ṽj | − (1− η)λ,
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So,

P

[
max
j∈Sc

|Vj | > λ

]
≥ P

[
max
j∈Sc

|Ṽj | > (2− η)λ
]

.

Conditioned on X(S) and ε, the random vector (Vj)j∈Sc is Gaussian with covariance ma-
trix MnΣ2|1; thus the zero-mean version (Ṽ )j∈Schas the same covariance matrix. Defining

the event T = {M1 > λ2q
2nCmax

}, we have P [T ] → 0 by Lemma 12, and

P

[
max
j∈Sc

|Ṽj | > (2− η)λ
]

≥ (1− P [T ])P
[
max
j∈Sc

|Ṽj | > (2− η)λ | T c

]

≥ (1− P [T ])P
[
max
j∈Sc

|Zj(v∗)| > (2− η)λ
]

,

where each Zj(v∗) is the conditioned version of Ṽj with the scaling factor Mn in the variance
fixed to v∗ = λ2q

2nCmax
.

Lemma 14 Under the stated assumptions in Theorem 8, λ2

v∗ → +∞, and there exists some
γ > 0 such that 1

λE[maxj∈Sc Zj(v∗)] > (2− η)[1 + γ] for all sufficiently large n.

Lemma 15 For any ξ > 0, we have

P

[
max
j∈Sc

Zj(v∗) < E[max
j∈Sc

Zj(v∗)]− ξ

]
≤ exp

(
− ξ2

2v∗

)
. (27)

Using these two lemmas, we complete the proof as follows. Set ξ = (2−η)γλ
2 in inequality

(27) to obtain that

P

[
max
j∈Sc

Zj(v∗) ≥ (2− η)(1 +
γ

2
)λ

]
≥ 1− exp

(
−(2− η)2γ2λ2

8v∗

)
,

which converges to 1, since λ2

v∗ → +∞ from Lemma 14. So,

P

[
max
j∈Sc

|Vj | > λ

]
≥ P

[
max
j∈Sc

|Ṽj | > (2− η)λ
]
→ 1.

A.8 Proofs of Lemma 10-Lemma 15

Proof of Lemma 10
Proof Y can be decomposed into two parts Y = aX + e, where a = ρ σY

σX
is a constant,

and e is a normal random variable independent of X, with mean 0, and variance E(e2) =
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(1− ρ2)σ2
Y .

E(|X|Y 2) = E(|X|(a2X2 + 2aXe + e2))
= a2E(|X|3) + E(|X|)E(e2)

= ρ2(
σY

σX
)2σ3

Xc3 + c1σX(1− ρ2)σ2
Y

= c3ρ
2σXσ2

Y + c1(1− ρ2)σXσ2
Y ,

where c1 = E(|Z|), c3 = E(|Z|3); Z is a variable with standard normal distribution.
The same way, X can be decomposed as X = bY + e2, where b = ρσX

σY
, e2 Y , and

E(e2
2) = (1− ρ2)σ2

X . Then we have

E(|X|2Y 4) = E((b2Y 2 + 2bY e2 + e2
2)Y

4)
= b2E(|Y |6) + E(Y 4)E(e2

2)

= ρ2(
σX

σY
)2(15σ6

Y ) + 3σ4
Y (1− ρ2)σ2

X

= (12ρ2 + 3)σ2
Xσ4

Y .

Proof of Lemma 11
Proof Conditioned on X(S) and ε, the only random component in Vj is the column in
the column vector Xj , j ∈ Sc. We know that (X(Sc)|X(S), ε) ∼ (X(Sc)|X(S)) is Gaussian
with mean and covariance

E[X(Sc)T |X(S), ε] = Σ21(Σ11)−1X(S)T , (28)
var(X(Sc)|X(S)) = Σ2|1 = Σ22 − Σ21(Σ11)−1Σ12. (29)

Consequently, we have,

|E[V |X(S), ε]|
=

∣∣∣Σ21(Σ11)−1X(S)T
{

X(S)(X(S)T X(S))−1λ
−→
b

−
[
X(S)(X(S)T X(S))−1X(S)T − I

] ε

n

}∣∣∣
= |Σ21(Σ11)−1λ

−→
b |

≤ λ(1− δ)1,

where the last inequality uses condition (11).
Now, we compute the elements of the conditional covariance

cov(Vj , Vk|ε,X(S)).

Let ~α = X(S)(X(S)T X(S))−1λ
−→
b −

[
X(S)(X(S)T X(S))−1X(S)T − I)

]
ε
n , then Vj =

XT
j ~α. So we have

cov(Vj , Vk|ε,X(S)) = ~αT cov(XT
j , XT

k |ε,X(S))~α = [var(X(Sc)|X(S))]jk ~αT ~α.
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Consequently,

cov(V |ε,X(S)) = ~αT ~α var(X(Sc)|X(S)) = ~αT ~αΣ2|1 = ~αT ~α[Σ22 − Σ21(Σ11)−1Σ12].

By careful calculation, we have ~αT ~α = Mn.

Proof of Lemma 12
Proof Recall that M1 = λ

−→
b T (X(S)T X(S))−1−→b . So,

λq

Λmax(X(S)T X(S))
≤ M1 ≤ λq

Λmin(X(S)T X(S))
.

From (37)

P

[
1
2
C̃min ≤ Λi(

1
n

XT X) ≤ 2C̃max

]
≥ 1− 2 exp(−0.03n),

then we have,

P

[
λq

2nCmax
≤ M1 ≤ 2λq

nC̃max

]
≥ 1− 2 exp(−0.03n).

Define % = E[|Z|], where Z ∼ N(0, 1), then for any random variable R ∼ N(0, σ2),
E[|R|] = σ%. Since xT

i β ∼ N(0, βT
1 Σ11β

∗(S)), we have

E[|xT
i β|] =

√
βT

1 Σ11β∗(S)%.

We know that M2 ≤ 1
n2 εT ε. Since E[ε2i ] = E[E[ε2i |X(S)]] = E[σ2|xT

i β|] = σ2
√

β∗(S)T Σ11β∗(S)%,

and E[ε4i ] = E[E[ε4i |X(S)]] = 3E[σ4|xT
i β|2] = 3σ4β∗(S)T Σ11β

∗(S), we have

P




∑
i ε

2
i

n2
≥

σ2(% +
√

3− %2)
√

β∗(S)T Σ11β∗(S)

n




= P

[∑

i

ε2i − nσ2%

√
β∗(S)T Σ11β∗(S) ≥ nσ2

√
3− %2

√
β∗(S)T Σ11β∗(S)

]

≤ nvar(ε2i )

n2σ4(3− %2)β∗(S)T Σ11β∗(S)

=
3σ4β∗(S)T Σ11β

∗(S)− σ4β∗(S)T Σ11β
∗(S)%2

nσ4(3− %2)β∗(S)T Σ11β∗(S)

=
1
n

So,

P


M2 ≥

σ2(% +
√

3− %2)
√

β∗(S)T Σ11β∗(S)

n


 ≤ 1

n
.
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While
√

βT
1 Σ11β∗(S) ≤

√
C̃max‖β‖2 and % = E(|Z|) ≤

√
E(|Z|2) = 1, where Z is a

standard normal random variable, so

σ2(% +
√

3− %2)
√

β∗(S)T Σ11β∗(S)

n
≤ 3σ2

√
C̃max‖β‖2

n
.

Then we have

P [M2 ≥ 3σ2
√

C̃max‖β‖2

n
] ≤ 1

n
.

Proof of Lemma 13
Proof

By lemma 17, we have for any t > q,

P

[
max

i=1,...n
‖Σ−

1
2

11 xi(S)‖2
2 ≥ 2t

]
≤ n exp(−t

[
1− 2

√
q

t

]
).

Take t = max (16q, 4 log n), we have

exp(−t
[
1− 2

√
q
t

]
) ≤ exp(−t

[
1− 2

√
1
16

]
)

= exp(− t
2)

≤ 1
n2 ,

so,

P

[
max

i=1,...n
‖Σ−

1
2

11 xi(S)‖2
2 ≥ 2max (16q, 4 log n)

]
≤ 1

n
.

Since ‖Σ−
1
2

11 xi(S)‖2
2 ≥ 1

C̃max
‖xi(S)‖2

2, we have

P

[
max

i=1,...n
‖xi(S)‖2

2 ≥ 2C̃max max (16q, 4 log n)
]
≤ 1

n
. (30)

Proof of Lemma 14
Proof Recall that the Gaussian random vector Z is zero-mean with covariance v∗Σ2|1,
where v∗ = λ2

2nCmax
. For any index i, let ei be equal to 1 in position i, and zero otherwise.

For any two indices i 6= j, we have

∆Z(i, j) = E(Zi − Zj)2

= v∗(ei − ej)T Σ2|1(ei − ej)
≤ 2v∗λmax(Σ2|1)

≤ 2v∗C̃max
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Now let (Xi)i∈Sc be an i.i.d. zero-mean Gaussian vector with var(Xi) = C̃maxv
∗, so

that ∆X(i, j) = E(Xi −Xj)2 = 2C̃maxv
∗. If we set

∆∗ = max
i,j∈Sc

|∆X(i, j)−∆Z(i, j)|,

then, by applying a known error bound for the Sudakov-Fernique inequality (Chatterjee.,
2005), we are guaranteed that

E(max
j∈Sc

Zj) ≥ E(max
j∈Sc

Xj)−
√

∆∗ log(p− q). (31)

We now show that the quantity ∆∗ is upper bounded by

∆∗ ≤ 2v∗(C̃max − C̃min). (32)

Using the inversion formula for block-partitioned matrices, we have

Σ2|1 = Σ22 − Σ21Σ−1
11 Σ12 =

[
[Σ−1]22

]−1
.

Consequently,

E(Zi − Zj)2 = v∗(ei − ej)Σ2|1(ei − ej)T

≥ 2v∗Λmin(Σ2|1)

= 2v∗/Λmax([Σ−1]22)
≥ 2v∗/Λmax([Σ−1])
= 2v∗C̃min.

So,

∆∗ = max
i,j∈Sc

|∆X(i, j)−∆Z(i, j)|

= max
i,j∈Sc

|2v∗C̃max −∆Z(i, j)|

≤ 2v∗(C̃max − C̃min).

An argument on page 80 of Ledoux and Talagrand (1991) can be used to show the
following result which appears in Wainwright (2009): for any δ′ > 0, there exists an N(δ′),
for all N > N(δ′),

E(max
j∈Sc

Xj) ≥ (1− δ′)
√

2v∗C̃max log N.

Applying this lower bound to the bound (31), we have

1
λ

E(max
j∈Sc

Zj) ≥ 1
λ

[
(1− δ′)

√
2v∗C̃max log N −

√
∆∗ log N

]

≥ 1
λ

[
(1− δ′)

√
2v∗C̃max log N −

√
2v∗(C̃max − C̃min) log N

]

=
[
(1− δ′)

√
C̃max −

√
C̃max − C̃min

]√
2v∗

λ2
log N.
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Since v∗
λ2 = q

nCmax
, we now apply the condition

2q log N

n
>

1
θl − v

=
C̃max(2− η)2

(
√

C̃max −
√

C̃max − C̃min)2 − vCmax(2− η)2

to obtain that

1
λ

E(max
j∈Sc

Zj) ≥
[
(1− δ′)

√
C̃max −

√
C̃max − C̃min

]√
2v∗

λ2
log N

=
[
(1− δ′)

√
C̃max −

√
C̃max − C̃min

]√
2q log N

nCmax

≥ (1− δ′)
√

C̃max −
√

C̃max − C̃min√
(
√

C̃max −
√

C̃max − C̃min)2 − vCmax(2− η)2
(2− η) (33)

Let F (δ′) be the lower bound on the RHS (33). Note that F is a continuous function, and
moreover that

F (0) =

√
C̃max −

√
C̃max − C̃min√

(
√

C̃max −
√

C̃max − C̃min)2 − vCmax(2− η)2
(2− η) > (2− η).

Therefore, by the continuity of F (·) and the arbitrariness of δ′, we can choose δ′ > 0 suffi-
ciently small to ensure that for some γ > 0 , we have 1

λE(maxj∈Sc Zj) > (2− η)[1 + γ] for
all sufficiently large n.

Proof of Lemma 15
Proof Consider the function f : RN → N given by

f(w) = max
1≤j≤N

[
√

v∗Σ2|1w]j ,

then, for a Gaussian random vector V ∼ N(0, IN×N ), we have f(V ) = maxj∈Sc Z̃j .
We now bound the Lipschitz constant of f . Let R =

√
Σ2|1, then for each w, v ∈ RN ,

|[
√

v∗Rw]j − [
√

v∗Rv]j | =
√

v∗[
∑

k

Rjk(wk − vk)]

≤
√

v∗
√∑

k

R2
jk‖w − v‖2

≤
√

v∗‖w − v‖2,

where the last inequality holds since
∑

k R2
jk = [Σ2|1]jj ≤ 1.

|f(w)− f(v)| = |max
j

[
√

v∗Rw]j −max
j

[
√

v∗Rv]j |

≤ max
j
|[
√

v∗Rw]j − [
√

v∗Rv]j |
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Therefore, by Gaussian concentration of measure for Lipschitz functions [Massart. (2003.)],
we conclude that for any ζ > 0, it holds that

P [f(V ) > ζ + E[f(V )]] ≤ exp
(
− ζ2

2v∗

)
, and

P [f(V ) > E[f(V )]− ζ] ≤ exp
(
− ζ2

2v∗

)

Appendix B. Some Gaussian Comparison Results

Lemma 16 For any mean zero Gaussian random vector (X1, . . . , Xn), and t > 0, we have

P ( max
1≤i≤n

|Xi| ≥ t) ≤ 2n exp{− t2

2maxi E(X2
i )
} (34)

Proof Note that the generate function of Xi is

E(etXi) = exp{E(X2
i )t2

2
}.

So, for any t > 0,

P (Xi ≥ x) = P (etXi ≥ etx) ≤ E(etXi)
etx

= exp{E(X2
i )t2

2
− xt},

by taking t = x
E(X2

i )
, we have

P (Xi ≥ x) ≤ exp{− x2

2E(X2
i )
}.

So,

P (|Xi| ≥ t) = 2P (Xi ≥ t) ≤ 2 exp{− t2

2E(X2
i )
} ≤ 2 exp{− t2

2maxi E(X2
i )
}.

So,

P ( max
1≤i≤n

|Xi| ≥ t) ≤ 2n exp{− t2

2maxi E(X2
i )
}.

Appendix C. Large deviation for χ2 distribution

Lemma 17 Let Z1, . . . , Zn be i.i.d. χ2-variates with q degrees of freedom. Then for all
t > q, we have

P

[
max

i=1,...,n
Zi > 2t

]
≤ n exp(−t

[
1− 2

√
q

t

]
). (35)

The proof of this lemma can be found in Obozinski et al. (2008).
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Appendix D. Some useful random matrix results

In this appendix, we use some known concentration inequalities for the extreme eigenvalues
of Gaussian random matrices (Davidson and Szarek, 2001) to bound the eigenvalues of a
Gaussian random matrix. Although these results hold more generally, our interest here is
on scalings (n, q) such that q/n → 0.

Lemma 18 (Davidson and Szarek (2001)) Let Γ ∈ Rn×q be a random matrix whose
entries are i.i.d. from N(0, 1/n), q ≤ n. Let the singular values of Γ be s1(Γ) ≥ . . . ≥ sq(Γ).
Then

max
{

P

[
s1(Γ) ≥ 1 +

√
q

n
+ t

]
, P

[
sq(Γ) ≤ 1−

√
q

n
− t

]}
< exp{−nt2/2}.

Using Lemma 18, we now have some useful results.

Lemma 19 Let U ∈ Rn×q be a random matrix with elements from the standard normal
distribution (i.e., Uij ∼ N(0, 1), i.i.d.) Assume that q/n → 0. Let the eigenvalues of 1

nUT U
be Λ1( 1

nUT U) ≥ . . . ≥ Λq( 1
nUT U). Then there exist a constant c, when n is big enough,

P

[
1
2
≤ Λi(

1
n

UT U) ≤ 2
]
≥ 1− 2 exp(−0.03n). (36)

Proof Let Γ = 1√
n
U , then Λi( 1

nUT U) = s2
i (Γ). By Lemma 18,

P

[
sq(Γ) ≤ 1−

√
q

n
− t

]
< exp{−nt2/2},

by taking t = t0 = 1−
√

2
2 − 0.1, we have

P

[
sq(Γ) ≤

√
2

2
+ 0.1−

√
q

n

]
< exp{−nt20/2}.

Since q/n → 0 by assumption, we have when n is big enough, q/n < 0.1, then

P

[
sq(Γ) <

√
2

2

]
< exp{−nt20/2},

which implies that, for any i = 1, . . . , q,

P

[
Λi(

1
n

(UT U)) <
1
2

]
< exp{−nt20/2}.

Followed the same procedures,

P

[
Λi(

1
n

(UT U)) > 2
]

< exp{−nt21/2},

for t1 =
√

2− 1.1. Then inequality (36) holds immediately.
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Corollary 20 Let X ∈ Rn×q be a random matrix, of which, the rows are i.i.d. from the
normal distribution with mean 0 and covariance Σ. Assume that C̃min ≤ Λi(Σ) ≤ C̃max and
q/n → 0, then there exist a constant c, when n is big enough,

P

[
1
2
C̃min ≤ Λi(

1
n

XT X) ≤ 2C̃max

]
≥ 1− 2 exp(−0.03n). (37)

Proof Let U = XΣ−
1
2 , then var(U) = Iq×q and U satisfies the condition in Lemma 19.

Then

P

[
1
2
≤ Λi(

1
n

UT U) ≤ 2
]
≥ 1− 2 exp(−0.03n),

for some constant c. Since

C̃minΛi(
1
n

UT U) ≤ Λi(
1
n

XT X) ≤ C̃maxΛi(
1
n

UT U),

result (37) is obtained immediately.
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