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Abstract: We discuss a number of resampling schemes in which m = o(n) observations

are resampled. We review nonparametric bootstrap failure and give results old and new

on how the m out of n with replacement bootstraps and without replacement works. We

extend work of Bickel and Yahav (1988) to show that m out of n bootstraps can be made

second order correct, if the usual nonparametric bootstrap is correct and study how these

extrapolation techniques work when the nonparametric bootstrap doesn't.
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1. Introduction

Over the last 10-15 years Efron's nonparametric bootstrap has become a general tool

for setting con�dence regions, prediction, estimating misclassi�cation probabilities, and

other standard exercises of inference when the methodology is complex. Its theoretical

justi�cation is based largely on asymptotic arguments for its consistency or optimality.

A number of examples have been addressed over the years in which the bootstrap fails

asymptotically. Practical anecdotal experience seems to support theory in the sense that

the bootstrap generally gives reasonable answers but can bomb.

In a recent paper Politis and Romano (1992), following Wu (1990), and independently

G�otze (1993) showed that what we call the m out of n without replacement bootstrap with

m = o(n) typically works to �rst order both in the situations where the bootstrap works

and where it does not.

The m out of n with replacement bootstrap with m = o(n) has been known to work in

all known realistic examples of bootstrap failure. In this paper,

� We show the large extent to which the Politis, Romano, G�otze property is shared by

the m out of n with replacement bootstrap and show that the latter has advantages.

� If the usual bootstrap works the m out of n bootstraps pay a price in e�ciency. We

show how, by the use of extrapolation the price can be avoided.

� We support some of our theory with simulations.
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The structure of our paper is as follows. In section 2 we review a series of examples of

success and failure to �rst order (consistency) of (Efron's) nonparametric bootstrap (non-

parametric). We try to isolate at least heuristically some causes of nonparametric bootstrap

failure. Our framework here is somewhat novel. In Section 3 we formally introduce the m

out of n with and without replacement bootstrap as well as what we call \sample split-

ting", and establish their �rst order properties restating the Politis-Romano-G�otze result.

We relate these approaches to smoothing methods. Section 4 establishes the de�ciency of

the m out of n bootstrap to higher order if the nonparametric bootstrap works to �rst

order and section 5 shows how to remedy this de�ciency to second order by extrapolation.

In section 6 we study how the improvements of section 5 behave when the nonparametric

bootstrap doesn't work to �rst order. We present simulations in section 7 and proofs of

our new results in section 8. The critical issue of choice of m and applications to testing

will be addressed elsewhere.

2. Successes and failure of the bootstrap

We will limit our work to the iid case because the issues we discuss are clearest in this

context. Extension to the stationary mixing case, as done for the m out of n without

replacement bootstrap in Politis and Romano (1994), are possible but the study of higher

order properties as in sections 4 and 5 of our paper is more complicated.

We suppose throughout that we observe X1; : : : ;Xn taking values in X = Rp (or more

generally a separable metric space.) i.i.d. according to F 2 F0. We stress that F0

need not be and usually isn't the set of all possible distributions. In hypothesis testing

applications, F0 is the hypothesized set, in looking at the distributions of extremes, F0 is

the set of populations for which extremes have limiting distributions. We are interested

in the distribution of a symmetric function of X1; : : : ;Xn; Tn(X1; : : : ;Xn; F ) � Tn(F̂n; F )

where F̂n is de�ned to be the empirical distribution of the data. More speci�cally we wish

to estimate a parameter which we denote �n(F ), of the distribution of Tn(F̂n; F ), which we

denote by Ln(F ). We will usually think of �n as real valued, for instance, the variance of
p
n median (X1; : : : ;Xn) or the 95% quantile of the distribution of

p
n( �X � EF (X1)).
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Suppose Tn(�; F ) and hence �n is de�ned naturally not just on F0 but on F which

is large enough to contain all discrete distributions. It is then natural to estimate F by

the nonparametric maximum likelihood estimate, (NPMLE), F̂n, and hence �n(F ) by the

plug in �n(F̂n). This is Efron's (ideal) nonparametric bootstrap. Since �n(F ) � 
(Ln(F ))
and, in the cases we consider, computation of 
 is straightforward the real issue is esti-

mation of Ln(F ). Efron's (ideal) bootstrap is to estimate Ln(F ) by the distribution of

Tn(X�
1 ; : : : ;X

�
n; F̂n) where, given X1; : : : ;Xn, the X�

i are i.i.d. F̂n, i.e. the bootstrap dis-

tribution of Tn. In practice, the bootstrap distribution is itself estimated by Monte Carlo

or more sophisticated resampling schemes, (see deCiccio and Romano (1988) and Hinkley

(1988)). We will not enter into this question further.

Theoretical analyses of the bootstrap and its properties necessarily rely on asymptotic

theory, as n ! 1 coupled with simulations. We restrict analysis to Tn(F̂n; F ) which are

asymptotically stable and nondegenerate on F0. That is, for all F 2 F0, at least weakly

Ln(F )! L(F ) non degenerate

�n(F )! �(F ) (2.1)

as n!1.

Using m out of n bootstraps or sample splitting implicitly changes our goal from es-

timating features of Ln(F ) to features of Lm(F ). This is obviously nonsensical without

assuming that the laws converge.

Requiring non degeneracy of the limit law means that we have stabilized the scale of

Tn(F̂n; F ). Any functional of Ln(F ) is also a functional of the distribution of �nTn(F̂n; F )

where �n ! 0 which also converges in law to point mass at 0. Yet this degenerate limit

has no functional �(F ) of interest.

Finally, requiring that stability need occur only on F0 is also critical since failure to

converge o� F0 in a reasonable way is the �rst indicator of potential bootstrap failure.

2.1. When does the nonparametric bootstrap fail?

If �n doesn't depend on n, the bootstrap works, (is consistent on F0), if � is continuous

at all points of F0 with respect to weak convergence on F . Conversely, the nonparametric
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bootstrap can fail if,

1. � is not continuous on F0.

An example we explore later is �n(F ) = 1(F discrete) for which �n(F̂n) obviously fails

if F is continuous.

Dependence on n introduces new phenomena. In particular, here are two other reasons

for failure we explore below.

2. �n is well de�ned on all of F but � is de�ned on F0 only or exhibits wild discontinuities

when viewed as a function on F . This is the main point of examples 3-6.

3. Tn(F̂n; F ) is not expressible as or approximable on F0 by a continuous function of
p
n(F̂n �F ) viewed as an object weakly converging to a Gaussian limit in a suitable

function space. See Gin�e and Zinn (1989). Example 7 illustrates this failure. Again

this condition is a diagnostic and not necessary for failure as example 6 shows.

We illustrate our framework and discuss prototypical examples of bootstrap success and

failure.

2.2. Examples of bootstrap success

Example 1 Con�dence intervals: Suppose �2(F ) � VarF (X1) <1 for all F 2 F0.

a) Let Tn(F̂n; F ) � p
n( �X � EFX1). For the percentile bootstrap we are interested

in �n(F ) � PF [Tn(F̂n; F ) � t]. Evidently �(F ) = �
�

t
�(F )

�
. In fact, we want to estimate

the quantiles of the distribution of Tn(F̂n; F ). If �n(F ) is the 1 � � quantile then �(F ) =

�(F )z1�� where z is the Gaussian quantile

b) Let Tn(F̂n; F ) =
p
n( �X � EFX1)=s where s2 = 1

n�1
Pn

i=1(Xi � �X)2. If �n(F ) �
PF (Tn(F̂n; F ) � t] then, �(F ) = �(t), independent of F . It seems silly to be estimat-

ing a parameter whose value is known but of course, interest now centers on �0(F ) the next

higher order term in �n(F ) = �(t) + �0(F )p
n
+O(n�1). 2

Example 2 Estimation of variances: Suppose F has unique median m(F ), continuous

density f(m(F )) > 0, EF jXj� < 1, some � > 0 for all F 2 F0 and �n(F ) = VarF (
p
n
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median (X1; : : : ;Xn)). Then �(F ) = [4f2(m(F ))]�1 on F0.

Note that, whereas �n is de�ned for all empirical distributions F in both examples the

limit �(F ) is 0 or 1 for such distributions in the second. Nevertheless, it is well known,

see Efron (1979), that the nonparametric bootstrap is consistent in both examples in the

sense that �n(F̂n)
P! �(F ) for F 2 F0. 2

2.3. Examples of bootstrap failure

Example 3 Con�dence bounds for an extremum: This is a variation on Bickel-

Freedman (1981). Suppose that all F 2 F0 have a density f continuous and positive

at F�1(0) > �1. It is natural to base con�dence bounds for F�1(0) on the bootstrap

distribution of

Tn(F̂n; F ) = n(min
i
Xi � F�1(0)):

Let

�n(F ) = PF [Tn(F̂n; F ) > t] = (1� F (
t

n
+ F�1(0))n:

Evidently

�n(F )! �(F ) = exp(�f(F�1(0))t)

on F0.

The nonparametric bootstrap fails. Let

N�
n(t) =

nX
i=1

1(X�
i �

t

n
+X(1)); t > 0

where X(1) � miniXi. Given X(1), nF̂n(
t
n
+ X(1)) is distributed as 1+ binomial (n �

1;
F ( t

n
+X(1))�F (X(1))

(1�F (X(1)))
) which converges weakly to a Poisson (f(F�1(0))t) variable. More gen-

erally, nF̂n(
�
n
+ X(1)) converges weakly conditionally to 1 + N(�), where N is a homoge-

neous Poisson process with parameter f(F�1(0)). It follows that N�
n(�) converges weakly

(marginally) to a process M(1+N(�)) whereM is a standard Poisson process independent

of N(�). Thus if, in Efron's notation, we use P � to denote conditional probability given F̂n

and let F̂ �
n , be the empirical d.f. of X�

1 ; : : : ;X
�
n then

P �[Tn(F̂
�
n) > t] = P �[N�

n(t) = 0]

6



converges weakly to the random variable P [M(1 + N(t)) = 0jN ] = e�(N(t)+1) rather than

to the desired �(F ). 2

Example 4 Extrema for unbounded distributions: (Athreya and Fukuchi (1994),

Deheuvels, Mason, Shorack (1993))

Suppose F 2 F0 are in the domain of attraction of an extreme value distribution. That

is: for some constants An(F ), Bn(F ),

n(1 � F )(An(F ) +Bn(F )x)! H(x; F )

whereH is necessarily one of the classical three types (David (1981), p.259). e��x1(�x � 0),

�x��1(x � 0), �(�x)�1(x � 0), for �; � 6= 0. Let,

�n(F )�P [(max(X1; : : : ;Xn)�An(F ))=Bn(F )� t]!e�H(t;F )��(F ): (2.2)

Particular choices of An(F ), for example, F�1(1� 1
n
) and Bn(F ) are of interest in inference.

However, the bootstrap doesn't It is easy to see that

n(1 � F̂n(An(F ) + tBn(F )))
w! N(t) (2.3)

whereN is an inhomogeneous Poisson process with parameterH(t; F ). Hence if Tn(F̂n; F ) =

(max(X1; : : : ;Xn)�An(F ))=Bn(F ) then

P �[Tn(F̂
�
n ; F ) � t]

w) e�N(t): (2.4)

It follows that the nonparametric bootstrap is inconsistent for this choice of An, Bn. If it

were consistent, then

P �[Tn(F̂
�
n ; F̂n) � t]

P! e�H(t;F ) (2.5)

for all t and (2.5) would imply that it is possible to �nd random A real and B 6= 0 such

that

N(Bt+A) = H(t; F )

with probability 1. But H(t; F ) is continuous except at 1 point. So (2.4) and (2.5) contra-

dict each other. Again, �(F ) is well de�ned for F 2 F0 but not otherwise. Furthermore,
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small perturbations in F can lead to drastic changes in the nature of H, so that � is not

continuous if F0 is as large as possible.

Essentially the same bootstrap failure arises when we consider estimating the mean of

distributions in the domain of attraction of stable laws of index 1 < � � 2. See Athreya

(1987).

Example 5 Testing and improperly centered U and V statistics: (Bretagnolle

(1983))

Let F0 = fF : F [�c; c] = 1; EFX1 = 0g and let Tn(F̂n) = n �X2 = n
R
xydF̂n(x)dF̂n(y).

This is a natural test statistic for H : F 2 F0. Can one use the nonparametric bootstrap

to �nd the critical value for this test statistic? Intuitively, F̂n 62 F0 and this procedure

is rightly suspect. Nevertheless, in more complicated contexts, it is a mistake made in

practice. David Freedman pointed us to Freedman et al (1994) where the Bureau of the

Census appears to have fallen into such a trap { see Hall and Wilson (1991) for other

examples. The nonparametric bootstrap may, in general, not be used for testing as will be

shown in a forthcoming paper.

In this example, due to Bretagnolle (1983), we focus on F0 for which a general U

or V statistic T is degenerate and show that the nonparametric bootstrap doesn't work.

More generally, suppose  : R2 ! R is bounded and symmetric and let F0 = fF :R
 (x; y)dF (x) = 0 for all yg.
Then, it is easy to see that

Tn(F̂n) =
Z
 (x; y)dW 0

n(x)dW
0
n(y) (2.6)

where W 0
n(x) �

p
n(F̂n(x)� F (x)) and well known that

�n(F ) � PF [Tn(F̂n) � t]! P [
Z
 (xy)dW 0(F (x))dW 0(F (y)) � t] � �(F )

where W 0 is a Brownian Bridge. On the other hand it is clear that,

Tn(F̂
�
n) = n

Z
 (x; y)dF̂ �

n(x)dF̂n(y) (2.7)

=
Z
 (x; y)dW �

n(x)dW
0�
n (y)
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+2
Z
 (x; y)dW 0

n(x)dW
0�
n (y)

+
Z
 (x; y)dW 0

n(x)dW
0
n(y)

where W 0�
n (x) � pn(F̂ �

n(x)� F̂n(x)). It readily follows that,

P �[Tn(F̂ �
n) � t]

w) P [
Z
 (x; y)dW 0(F (x))dW 0(F (y)) (2.8)

+2
Z
 (x; y)dW 0(F (x))d ~W 0(F (y))

+
Z
 (x; y)d ~W 0(F (x))d ~W 0(F (y)) � tj ~W 0]

where ~W 0, W 0 are independent Brownian Bridges.

This is again an instance where �(F ) is well de�ned for F 2 F but �n(F ) doesn't

converge for F 62 F0.

Example 6 Nondi�erentiable functions of the empirical: (Beran and Srivastava

(1985) and D�umbgen (1993))

Let F0 = fF : EFX
2
1 <1g and

Tn(F̂n; F ) =
p
n(h( �X)� h(�(F )))

when �(F ) = EFX1. If h is di�erentiable the bootstrap distribution of Tn is, of course,

consistent. But take h(x) = jxj, di�erentiable everywhere except at 0. It is easy to see then
that if �(F ) 6= 0, Ln(F )!N (0;VarF (X1)) but if �(F ) = 0, Ln(F )! jN (0;VarF (X1))j.

The bootstrap is consistent if � 6= 0 but not if � = 0. We can argue as follows. Under

� = 0, (
p
n( �X� � �X);

p
n �X) are asymptotically independent N (0; �2(F )). Call these

variable Z and Z 0. Then,
p
n(j �X�j�j �Xj) w) jZ+Z 0j�jZ 0j, a variable whose distribution is

not the same as that of jZj. The bootstrap distribution, as usual, converges (weakly) to the

(random) conditional distribution of jZ + Z 0j � jZ 0j given Z 0. This phenomenon was �rst

observed in a more realistic context by Beran and Srivastava. D�umbgen (1993) constructs

similar reasonable though more complicated examples where the bootstrap distribution

never converges. If we represent Tn(F̂n; F ) =
p
n(T (F̂n)� T (F )) in these cases then there

is no linear _T (F ) such that
p
n(T (F̂n) � T (F )) � p

n _T (F )(F̂n � F ) which permits the

argument of Bickel-Freedman (1981). 2
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2.3. Possible remedies

Putter and van Zwet (1993) show that if �n(F ) is continuous for every n on F and there

is a consistent estimate ~Fn of F then bootstrapping from ~Fn will work, i.e. �n( ~Fn) will be

consistent except possibly for F in a \thin" set.

If we review our examples of bootstrap failure, we can see that constructing suitable

~Fn 2 F0 and consistent is often a remedy that works for all F 2 F0 not simply the

complement of a set of the second category. Thus in example 3 taking ~Fn to be F̂n kernel

smoothed with bandwidth hn ! 0 if nh2n ! 0 works. In the �rst and simplest case of

example 4 it is easy to see, Freedman (1981), that taking ~Fn as the empirical distribution

of Xi� �X, 1 � i � n which has mean 0 and thus belongs to F0 will work. The appropriate

choice of ~Fn in the other examples of bootstrap failure is less clear. For instance, example 4

calls for ~Fn with estimated tails of the right order but how to achieve this is not immediate.

A general approach which we believe is worth investigating is to approximate F0 by

a nested sequence of parametric models, (a sieve), fF0;mg, and use the M.L.E. ~Fm(n) for

F0;m(n), for a suitable sequence m(n)!1. See Shen andWong (1994) for example.

The alternative approach we study is to change �n itself as well as possibly its argument.

The changes we consider are the m out of n with replacement bootstrap, the (n�m) out

of n jackknife or
�
n
m

�
bootstrap discussed by Wu (1990) and Politis and Romano (1992),

and what we call the sample splitting.

3. The m out of n bootstraps

Let h be a bounded real valued function de�ned on the range of Tn, for instance,

t! 1(t � t0).

We view as our goal estimation of �n(F ) � EF (h(Tn(F̂n; F ))). More complicated func-

tionals such as quantiles are governed by the same heuristics and results as those we detail

below. Here are the procedures we discuss.

i) The n=n bootstrap (The nonparametric bootstrap)

Let,

Bn(F ) = E�h(Tn(F̂
�
n ; F ))
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= n�n
X

(i1;:::;in)

h(Tn(Xi1 ; : : : ;Xin ; F ))

Then, Bn � Bn(F̂n) = �n(F̂ ) is the m=n bootstrap.

ii) The m=n bootstrap

Let

Bm;n(F ) � n�m
X

(i1;:::;im)

h(Tm(Xi1 ; : : : ;Xim; F ))

Then, Bm;n � Bm=n(F̂n) = �m(F̂n) is the m=n bootstrap.

iii) The
�
n
m

�
bootstrap

Let

Jm;n(F ) =

 
n

m

!�1 X
i1<:::<im

h(Tm(Xi1; : : : ;Xim ; F ))

Then, Jm;n � Jm;n(F̂n) is the
�
n
m

�
bootstrap.

iv) Sample splitting

Suppose n = mk. De�ne,

Nm;n(F ) � k�1
k�1X
j=0

h(Tm(Xjm+1; : : : ;X(j+1)m; F ))

and Nm;n � Nm;n(F̂n) is the sample splitting estimates. For safety in practice one should

start with a random permutation of the Xi.

The motivation behind Bm(n);n for m(n) ! 1 is clear. Since, by (2.1), �m(n)(F ) !
�(F ), �m(n)(F̂n) has as good a rationale as �n(F̂n). To justify Jm note that we can write

�m(F ) = �m(F � : : :� F| {z }
m

) since it's a parameter of the law of Tm(X1; : : : ;Xm; F ). We now

approximate F � : : :�F not by the m dimensional product measure F̂n � : : :� F̂n| {z }
m

but by

sampling without replacement. Thus sample splitting is just k fold cross validation and

represents a crude approximation to F � : : :� F| {z }
m

.

The sample splitting method requires the least computation of any of the lot. Its obvious

disadvantages are that it relies on an arbitrary partition of the sample and that since both

m and k should be reasonably large, n has to be really substantial. This method and

compromises between it and the
�
n
m

�
bootstrap are studied in Blom (1976) for instance.

The
�
n
m

�
bootstrap di�ers from the m=n by oP (1) if m = o(n1=2). Its advantage is that
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it never presents us with the ties which make resampling not look like sampling. As a

consequence, as we note in theorem 1, it is consistent under really minimal conditions. On

the other hand it is somewhat harder to implement by simulation. We shall study both of

these methods further below in terms of their accuracy.

A simple and remarkable result on Jm(n) has been obtained by Politis and Romano

(1992), generalizing Wu (1990). This result was also independently noted and generalized

by G�otze (1993). Here is a version of the G�otze result and its easy proof.

Theorem 1: Suppose m
n
! 0, m!1.

Then,

Jm(F ) = �m(F ) +OP ((
m

n
)
1
2 ): (3.1)

If h is continuous and

Tm(X1; : : : ;Xm; F ) = Tm(X1; : : : ;Xm; F̂n) + op(1) (3.2)

then

Jm = �m(F ) + op(1) (3.3)

Proof: Suppose Tm doesn't depend on F . Then, Jm is a U statistic with kernel h(Tm(x1; : : : ; xm))

and EFJm = �m(F ) and (3.1) follows immediately. For (3.2) note that

EF jJm �
 
n

m

!�1 X
ii<:::<im

h(Tm(Xi1 ; : : : ;Xim ; F ))j � (3.4)

EF jh(Tm(X1; : : : ;Xm; F̂n))� h(Tm(X1; : : : ;Xm; F ))j

and (3.2) follows by bounded convergence. These results follows in the same way and even

more easily for Nm. Note that if Tm doesn't depend on F , EFNm = �m(F ) and,

VarF (Nm) =
m

n
VarF (h(Tm(X1; : : : ;Xm))) > VarF (Jm) 2 (3.5)

Note: It may be shown, more generally under (3.2), that for example distances between

the
�
n
m

�
bootstrap distributionsof Tm(F̂m; F ) and Lm(F ) are also OP (

m
n
)1=2.
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Let X(i)
j = (Xj ; : : : ;Xj)1�i

hi1;:::;ir(X1; : : : ;Xr) =
1

r!

X
1�j1 6=::: 6=jr�r

h(Tm(X
(i1)
j1
; : : : ;X

(ir)
jr ; F )): (3.6)

For vectors i = (i1; : : : ; ir) in the index set

�r;m = f(i1; : : : ; ir) : 1 � i1 � : : : � ir � m; i1 + : : :+ ir = mg:

Then

Bm;n(F ) =
mX
r=1

X
i2�r;m

!m;n(i)
1�
n
r

� X
1�j1<:::<jr�m

hi(Xj1 ; : : : ;Xjr ; F ) (3.7)

where

!m;n(i) =

 
n

r

! 
m

i1; : : : ; ir

!
=nm:

Let

�m;n(F ) = EFBm;n(F ) =
mX
r=1

X
i2�r;m

!m;n(i)EFhi(X1; : : : ;Xr): (3.8)

Finally, let

�m(
r

m
) � maxfjEFhi(X1; : : : ;Xr)� �m(F )j : i 2 �r;mg (3.9)

and de�ne �m(x) by extrapolation on [0; 1]. Note that �m(1) = 0.

Theorem 2: Under the conditions of theorem 1

Bm;n(F ) = �m;n(F ) +OP (
m

n
)
1
2 : (3.10)

If further,

�m(1 � xm�1=2)! 0 (3.11)

uniformly for 0 � x �M , all M <1, and m = o(n), then

�m;n(F ) = �m(F ) + o(1): (3.12)

Finally if,

Tm(X
(in)
1 ; : : : ;X(ir)

r ; F ) = Tm(X
(i1)
1 ; : : : ;X(ir)

r ; F̂n) + oP (1) (3.13)
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whenever i 2 �r;m, m!1 and maxfi1; : : : ; irg = O(m1=2) then, if m!1, m = o(n),

Bm = �m(F ) + op(1): (3.14)

The proof of theorem 2 will be given in the appendix. There too we will sketch that,

in the examples we have discussed and some others, Jm(n), Bm(n), Nm(n) are consistent for

m(n)!1, m
n
! 0.

According to theorem 2, if Tn doesn't depend on F the m=n bootstrap works as well as

the
�
n
m

�
bootstrap if the value of Tm is not greatly a�ected by on the order of

p
m ties in

its argument. Some condition is needed. Consider Tn(X1; : : : ;Xn) = 1(Xi = Xj for some

i 6= j) and suppose F is continuous. The
�
n
m

�
bootstrap gives Tm = 0 as it should. If

m 6= o(
p
n) so that the

�
n
m

�
and m=n bootstraps don't coincide asymptotically the m=n

bootstrap gives Tm = 1 with positive probability. Finally, (3.13) is the natural extension

of (3.2) and is as easy to verify in all our examples.

A number of other results are available for m out of n bootstraps.

Gin�e and Zinn (1989) have shown quite generally that when
p
n(F̂n � F ) is viewed as

a member of a suitable Banach space F and,

a) Tn(X1; : : : ;Xn; F ) = t(
p
n(F̂n � F )) for t continuous

b) F is not too big

then Bn and Bm(n) are consistent.

Praestgaard and Wellner (1993) extend these results to Jm(n) with m = o(n). Finally,

under the Gin�e-Zinn conditions,

kpm(F̂n � F )k = (
m

n
)kpn(F̂n � F )k = OP (

m

n
)1=2 (3.15)

if m = o(n). Therefore,

t(
p
m(F̂m � F̂n)) = t(

p
m(F̂m � F )) + op(1) (3.16)

and consistency of Nm if m = o(n) follows from the original Gin�e-Zinn result.

We close with a theorem on the parametric version of the m=n bootstrap which gives a

stronger property than that of theorem 1.
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Let F0 = fF� : � 2 � � Rpg where � is open and the model is regular. That is, � is

identi�able, the F� have densities f� with respect to a � �nite � and the map � ! p
f�

is continuously Hellinger di�erentiable with nonsingular derivative. By a result of LeCam,

see Bickel, Klaassen, Ritov, Wellner (1992) for instance, there exists an estimate �̂n such

that, for all �, Z
(f

1
2

�̂n
(x)� f

1=2
� (x))2d�(x) = OP�(

1

n
): (3.17)

Theorem 3: Suppose F0 is as above. Let Fm
� � F� � : : :� F�| {z }

m

and k � k denote the

variational norm. Then

kFm
�̂n
� Fm

� k = OP ((
m

n
)1=2) (3.18)

Proof: This is a consequence of the relations (LeCam (1986),

kFm
�0
� Fm

�1
k � H(Fm

�0
; Fm

�1
)[(2�H2(Fm

�0
; Fm

�1
)] (3.19)

where

H2(F;G) =
1

2

Z
(
p
dF �

p
dG)2 (3.20)

and
H2(Fm

�0
; Fm

�1
) = 1� (

R q
f�0f�1d�)

m

= 1� (1�H2(F�0 ; F ))
m:

(3.21)

Substituting (3.21) into (3.20) and using (3.17) we obtain

kFm
�̂n
� Fm

� k = (3.22)

OP�(1 � expOP� (
m

n
))

1
2 (1 + expOP�(

m

n
)
1
2 ) = OP� (

m

n
)
1
2 2

This result is weaker than theorem 1 since it refers only to the parametric bootstrap. It

is stronger since even for m = 1 when sampling with and without replacement coincide

kF̂n � F�k = 1 for all n if F� is continous.

4. Performance of Bm, Jm, and Nm as estimates of �n(F )
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As we have noted if we take m(n) = o(n) then in all examples considered in which Bn

is inconsistent, Jm(n) Bm(n), Nm(n) are consistent. Two obvious questions are,

1) How do we choose m(n)?

2) Is there a price to be paid for using Jm(n), Bm(n), or Nm(n) when Bn is consistent?

We shall turn to the �rst very di�cult question in a forthcoming paper on diagnostics.

The answer to the second is, in general, yes. To make this precise we take the point of view

of Beran (1983) and assume that at least on F0,

�n(F ) = �(F ) + �0(F )n�1=2 +O(n�1) (4.1)

where �(F ) and �0(F ) are regularly estimable on F0 in the sense of Bickel, Klaassen, Ritov

and Wellner (1993) and O(n�1) is uniform on Hellinger compacts. There are a number of

general theorems which lead to such expansions. See, for example, Bentkus, G�otze and van

Zwet (1994).

Somewhat more generally than Beran, we exhibit conditions under which Bn = �n(F̂n)

is fully e�cient as an estimate of �n(F ) and show that them out of n bootstrap with m
n
! 0

has typically relative e�ciency 0.

We formally state a theorem which applies to fairly general parameters �n. Suppose �

is a metric on F0 such that

�(F̂n; F0) = OPF0
(n�1=2) for all F0 2 F0: (4.2)

Further suppose

A. �(F ), �0(F ) are � Fr�echet di�erentiable in F at F0 2 F0. That is,

�(F ) = �(F0) +
Z
 (x; F0)dF (x) + o(�(F;F0)) (4.3)

for  2 L0
2(F0) � fh :

R
h2(x)dF0(x) < 1,

R
h(x)dF0(x) = 0g and �0 obeys a similar

identity with  replaced by another function  0 2 L0
2(F0). Suppose further

B. The tangent space of F0 at F0 as de�ned in Bickel et al. (1993) is L0
2(F0) so that  

and  0 are the e�cient in
uence functions of �, �0. Essentially, we require that in estimating

F there is no advantage in knowing F 2 F0.

Finally, we assume,
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C. For all M <1,

supfj�m(F )� �(F )� �0(F )m�1=2j : �(F;F0) �Mn�1=2; F 2 Fg = O(m�1): (4.4)

a strengthened form of (4.1). Then,

Theorem 4: Under regularity of �, �0 and A and C at F0,

�m(F̂n) � �(F0) + �0(F0)m
�1=2 +

1

n

nX
i=1

( (Xi; F0) +  0(Xi; F0)m
�1=2) (4.5)

+O(m�1) + op(n
�1=2):

If B also holds, �n(F̂n) is e�cient. If in addition, �0(F0) 6= 0, and m
n
! 0 the e�ciency of

�m(F̂n) is 0.

Proof: The expansions of �(F̂n) �0(F̂n) are immediate by Fr�echet di�erentiability and (4.5)

follows by plugging these into (4.1). Since �, �0 are assumed regular,  and  0 are their

e�cient in
uence functions. Full e�ciency of �n(F̂n) follows by general theory as given in

Beran (1983) for special cases or as extending Theorem 2, p.63 of Bickel et al (1993) in an

obvious way. On the other hand, if �0(F0) 6= 0,
p
n(�m(F̂n)� �n(F0)) has asymptotic bias

(
q

n
m
� 1)�0(F0) +O(

p
n
m
) =

q
n
m
(1 + o(1))�0(F0)! �1 and ine�ciency follows. 2

Ine�ciency results of the same type or worse may be proved about Jm and Nm but

require going back to Tm(X1; : : : ;Xm; F ) since Jm and Bn are not related in a simple way.

We pursue this only by way of example 1. If �n(F ) = varF (
p
n( �X��(F )) = �(F ),Bm = Bn

but,

Jm = �2(F̂n)(1� m� 1

n� 1
): (4.6)

Thus, since �0(F ) = 0 here, Bm is e�cient but Jm has e�ciency 0 if mp
n
!1. Nm evidently

behaves in the same way.

It is true that the bootstrap is often used not for estimation but for setting con�dence

bounds. This is clearly the case for example 1b), the bootstrap t where �(F ) is known

in advance. For example, Efron's percentile bootstrap uses the (1 � �)th quantile of the

bootstrap distribution of �X as a level (1��) approximate upper con�dence bound for �. As

is well known by now { see Hall (1993), for example, this estimate although, when suitably
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normalized, e�ciently estimating the (1 � �)th quantile of the distribution of
p
n( �X � �)

does not improve to order n�1=2 over the coverage probability of the usual Gaussian based

�X + z1�� sp
n
. However, the con�dence bounds based on the bootstrap distribution of the t

statistic
p
n( �X��(F ))=s get the coverage probability correct to order n�1=2. Unfortunately,

this advantage is lost if one were to use the 1 � � quantile of the bootstrap distribution

of Tm(F̂m; F ) =
p
m( �Xm � �(F ))=sm where �Xm and s2m are the mean and usual estimate

of variance based on a sample of size m. The reason is that, in this case, the bootstrap

distribution function is;

�(t)�m�1=2c(F̂n)'(t)H2(t) +OP (m
�1) (4.7)

rather than the needed,

�(t)� n�1=2c(F̂n)'(t)H2(t) +OP (n
�1):

The error committed is of order m�1=2. More general formal results can be stated but we

do not pursue this.

The situation for Jm(n) and Nm(n) which function under minimal conditions, is even

worse as we discuss in the next section.

5. Remedying the de�ciencies of Bm(n) when Bn is correct: Ex-

trapolation

In Bickel and Yahav (1988), motivated by considerations of computational economy, we

considered situations in which �n has an expansion of the form (4.1) and proposed using

Bm at m = n0 and m = n1, n0 < n1 << n to produce estimates of �n which behave like

Bn. We sketch the argument for a special case.

Suppose that, as can be shown for a wide range of situations, if m!1,

Bm = �m(F̂n) = �(F̂n) + �0(F̂n)m�1=2 +OP (m
�1): (5.1)

Then, if n1 > n0 !1

�0(F̂n) = (Bn0 �Bn1)(n
�1=2
0 � n

�1=2
1 )�1 +OP (n

�1=2
0 ) (5.2)
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�(F̂n) =
n
�1=2
0 Bn1 � n

�1=2
1 Bn0

n
�1=2
0 � n

�1=2
1

+OP (n
�1
0 ) (5.3)

and hence a reasonable estimate of Bn is,

Bn0;n1 �
n
�1=2
0 Bn1 � n

�1=2
1 Bn0

n
�1=2
0 � n

�1=2
1

+
(Bn0 �Bn1)

n
�1=2
0 � n

�1=2
1

n�1=2:

More formally,

Proposition: Suppose f�mg obey C of section 4 and n0n�1=2 !1. Then,

Bn0;n1 = Bn + op(n
�1=2): (5.4)

Hence, under the conditions of theorem 3 Bn0;n1 is e�cient for estimating �n(F ).

Proof: Under C, (5.4) holds. By construction,

Bn0;n1 = �(F̂n) + �0(F̂n)n�1=2 +OP (n
�1
0 ) +OP (n

�1=2
0 n�1=2)

= �n(F̂n) +OP (n
�1
0 ) +OP (n

�1=2
0 n�1=2) +OP (n�1) = �n(F̂n) +OP (n

�1
0 )

(5.5)

and (5.4) follows. 2

Assorted variations can be played on this theme depending on what we know or assume

about �n. If, as in the case where Tn is a t statistic, the leading term �(F ) in (4.1) is � �0

independent of F , estimation of �(F ) is unnecessary and we need only one value of m = n0.

We are led to a simple form of estimate, since  of theorem 4 is 0,

�̂n0 = (1 � (
n0
n
)1=2)�0 + (

n0
n
)
1
2Bn0: (5.6)

This kind of interpolation is used to improve theoretically the behaviour of Bm0 as an

estimate of a parameter of a stable distribution by Hall and Jing (1993) though we argue

below that the improvement is somewhat illusory.

If we apply (5.4) to construct a bootstrap con�dence bound we expect the coverage

probability to be correct to order n�1=2 but the error is OP ((n0n)�1=2) rather than OP (n�1)

as with Bn. We do not pursue a formal statement.

5.1. Extrapolation of Jm and Nm

We discuss extrapolation for Jm and Nm only in the context of the simplest example 1,

where the essential di�culties become apparent and omit general theorems.
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In work in progress, G�otze and coworkers are developing expansions for general sym-

metric statistics under sampling from a �nite population. These results will permit gen-

eral statements of the same qualitative nature as our discussion of example 1. Consider

�m(F ) = PF [
p
m( �Xm � �(F )) � t]. If EX4

1 <1 and the Xi obey Cram�er's condition,

�m(F ) = �(
t

�(F )
)�K3(F )

'

6
p
m
(

t

�(F )
)H2(

t

�(F )
) +O(m�1); (5.7)

where �2(F ) and K3(F ) are the second and third cumulants of F . By Singh (1981),

Bm = �m(F̂n) has the same expansion with F replaced by F̂n. However, by an easy

extension of results of Robinson (1978) and Babu and Singh (1985),

Jm = �(
t

K̂2m
)� '(

t

K̂
1=2
2m

)
K̂3m

6m1=2
H2(

t

K̂
1=2
2m

) +OP (m
�1) (5.8)

where

K̂2m = �2(F̂n)(1� m� 1

n� 1
) (5.9)

K̂3m = K3(F̂n)(1� m� 1

n� 1
)(1 � 2(m� 1)

n� 2
): (5.10)

The essential character of expansion (5.8), if m
n
= o(1), is

Jm = �(F̂n) +m�1=2�0(F̂n) +
m

n

n +OP (m

�1 + (
m

n
)2 +

m
1
2

n
) (5.11)

where 
n is OP (1) and independent of m. The m
n
terms essentially come from the �nite

population correction to the variance and higher order cumulants of means of samples from

a �nite population. They re
ect the obvious fact that if m
n
! � > 0, Jm is, in general,

incorrect even to �rst order. For instance, the variance of the
�
n
m

�
bootstrap distribution

corresponding to
p
m( �X��(F )) is 1

n

P
(Xi� �X)2(1� m�1

n�1 ) which converges to �
2(F )(1��)

if m
n
! � > 0. What this means is that if expansions (4.1), (5.1) and (5.11) are valid, then

using Jm(n) again gives e�ciency 0 compared to Bn. Worse is that (5.2) with Jn0 , Jn1

replacing Bn0 ; Bn1 will not work since the n1
n
terms remain and make a contribution larger

than n�1=2 if n1
n1=2

! 1. Essentially it is necessary to estimate the coe�cient of m
n
and

remove the contribution of this term also while keeping the three required values of m:

n0 < n1 < n2 such that the error O(
1
n0
+(n2

n
)2) is o(n�1=2). This essentially means that n0,

n1, n2 have order larger than n1=2 and smaller that n3=4.
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This e�ect persists if we seek to use an extrapolation of Jm for the t statistic. The

coe�cient of m
n
as well as m�1=2 needs to be estimated. An alternative here and perhaps

more generally is to modify the t statistic being bootstrapped and extrapolated. Thus

Tm(X1; : : : ;Xm; F ) � pm ( �Xm��(F ))
�̂(1�m�1

n�1
)
1
2
leads to an expansion for Jm of the form,

Jm = �(t) + �0(F̂n)m�1=2 +OP (m
�1 +m=n); (5.12)

and we again get correct coverage to order n�1=2 by �tting the m�1=2 term's coe�cient,

weighting it by n�1=2 �m�1=2 and adding it to Jm.

If we know, as we sometimes at least suspect in symmetric cases, that �(F ) = 0, we

should appropriately extrapolate linearly in m�1 rather than m�1=2.

The sample splitting situation is less satisfactory in the same example. Under (5.1), the

coe�cient of 1p
m
is asymptotically constant. Put another way, the asymptotic correlation

of Bm, B�m as m;n ! 1 for �xed � > 0 is 1. This is also true for Jm under (5.11).

However, consider Nm and N2m (say) if Tm =
p
m( �Xm � �(F )). Let h be continuously

boundedly di�erentiable, n = 2km. Then

cov(Nm;N2m)=
1

k
cov(h(m�1=2(

mX
j=1

(Xj� �X))); h((2m)�1=2
2mX
j=1

(Xj� �X))): (5.13)

Thus, by the central limit theorem,

corr(Nm; N2m)! 1

2

cov

var(Z1)
(h(Z1); h

(Z1 + Z2)p
2

) (5.14)

where Z1, Z2 are independent Gaussian N (0; �2(F )) and �2(F ) = VarF (X1). More gener-

ally, viewed as a process in m for �xed n, Nm centered and normalized is converging weakly

to a non degenerate process. Thus, extrapolation doesn't make sense for Nm.

Two questions naturally present themselves.

(a) How do these games play out in practice rather than theory?

(b) If the expansions (5.1) and (5.11) are invalid beyond the 0th order, the usual situation

when the nonparametric bootstrap is inconsistent, what price do we pay theoretically for

extrapolation?

Simulations giving limited encouragement in response to question (a) are given in Bickel

and Yahav (1988). We give some further evidence in section 7. We turn to question (b) in

the next section.
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6. Behaviour of the smaller resample schemes when Bn is incon-

sistent, and alternatives

The class of situations in which Bn does not work is too poorly de�ned for us to come

to de�nitive conclusions. But consideration of the examples suggests the following,

A. When, as in example 6, �(F ), �0(F ) are well de�ned and regularly estimable on F0

we should still be able to use extrapolation (suitably applied) to Bm and possibly to Jm to

produce better estimates of �n(F ).

B. When, as in all our other examples of inconsistency, �(F ) is not regularly estimable

on F0 extrapolation shouldn't improve over the behaviour of Bn0 , Bn1

C. If n0, n1 are comparable extrapolation shouldn't do particularly worse either.

D. A closer analysis of Tn and the goals of the bootstrap may, in these \irregular" cases,

be used to obtain procedures which should do better than the m=n or
�
n
m

�
or extrapolation

bootstraps.

The only one of these claims which can be made general is C.

Proposition 1: Suppose

Bn1 � �n(F ) � Bn0 � �n(F ) (6.1)

where � indicates that the ratio tends to 1. Then, if n0
n1
6! 1

Bn0;n1 � �n(F ) � Bn0 � �n(F ): (6.2)

Proof: Evidently,
Bn0+Bn1

2 = �n(F )+
(�n) where 
(�n) means that the exact order of the

remainder is �n. On the other hand,

Bn0 �Bn1

n
�1=2
0 � n

�1=2
1

(
1p
n
� 1

2
(

1p
n0

+
1p
n1
))

= 
(�n)(

r
n0
n

+ 
(1))

and the proposition follows. 2

We illustrate the other three claims in going through the examples.
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Example 3: Here, F�1(0) = 0,

�n(F ) = ef(0)t(1 + n�1f 0(0))
t2

2
) +O(n�2) (6.3)

which is of the form (5.1). But the functional �(F ) is not regular and only estimable at

rate n�1=3 if one puts a �rst order Lipschitz condition on F 2 F0. On the other hand,

logBm = m log(1� F̂n(
t

m
)) = m log(1� (F̂n(

t

m
)� F̂n(0))) (6.4)

= �m(F (
t

m
)� F (0))� mp

n

p
n(F̂n(

t

m
)� F (

t

m
))

+OP (m(F̂n(
t

m
)� F (

t

m
))2)

= tf(0) + 
(
1

m
) + 
P (

r
m

n
) +OP (

1

n
)

where as before 
;
P indicate exact order. As Politis and Romano point out, m = 
(n1=3)

yields the optimal rate n�1=3 (under f Lipschitz). Extrapolation doesn't help because theq
m
n
term is not of the form 
n

q
m
n
where 
n is independent of m. On the contrary, as a

process in m,
p
mn(F̂n(

t
m
)�F ( t

m
)) behaves likes the sample path of a stationary Gaussian

process. So conclusion B holds in this case.

Example 4: A major di�culty here is de�ning F0 narrowly enough so that it is meaningful

to talk about expansions of �n(F ), Bn(F ) etc. If F0 in these examples is all distributions in

the domain of attraction of stable laws or extreme value distributions it is easy to see that

�n(F ) can converge to �(F ) arbitrarily slowly. This is even true in example 1 if we remove

the Lipschitz condition on f . By putting on conditions as in example 1, it is possible to

obtain rates. Hall and Jing (1993) specify a possible family for the stable law attraction

domain estimation of the mean mentioned in example 4 in which Bn = 
(n�
1
� ) where

� is the index of the stable law and � and the scales of the (assumed symmetric) stable

distribution are not regularly estimable but for which rates such as n�2=5 or a little better

are possible. The expansions for �n(F ) are not in powers of n�1=2 and the expansion for

Bn is even more complex. It seems evident that extrapolation doesn't help. Hall and Jing

theoretical results and simulations show that Bm(n) though consistent, if m(n)=n ! 0, is
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a very poor estimate of �n(F ). They obtain at least theoretically superior results by using

interpolation between Bm and the, \known up to the value of the stable law index �",

value of �(F ). However, the conditions de�ning F0 which permit them to deduce the order

of Bn are uncheckable so that this improvement appears illusory.

Example 6: The discontinuity of �(F ) at �(F ) = 0 under any reasonable speci�cation of

F0 makes it clear that extrapolation cannot succeed. The discontinuity in �(F ) persists

even if we assume F0 = fN (�; 1) : � 2 Rg and use the parametric bootstrap. In the

parametric case it is possible to obtain constant level con�dence bounds by inverting the

tests for H : j�j = j�0j vs K : j�j > j�0j using the noncentral �21 distribution of (
p
n �X)2.

Asymptotically conservative con�dence bounds can be constructed in the nonparametric

case by forming a bootstrap con�dence interval for �(F ) using �X and then taking the image

of this interval into �! j�j. So this example illustrates points B and D.

We shall discuss claims A and D in the context of example 5 or rather its simplest case

with Tn(F̂n; F ) = n �X2. We begin with,

Proposition 2: Suppose EFX
4
1 < 1, EFX1 = 0, and F satis�es Cram�er's condition.

Then,

Bm � P �[jpm �X]2 � t2] = 2�(
t

�̂
)� 1 + '0(

t

�̂
)m

�X2

�̂2
(6.5)

�K̂3

6
'H2(

t

�̂
) �X +OP (

m

n3=2
) +OP (

m2

n2
) +OP (m

�1):

If m = 
(n1=2) then

P �[jpm �Xj2 � t2] = PF [n �X2 � t] +OP (n
�1=4) (6.6)

and no better choice of fm(n)g is possible. If n0 < n1, n0n�1=2 !1, n1 = o(n3=4),

Bn0;n1 � Bn0 � n0f(Bn1 �Bn0)=(n1 � n0)g = PF [n �X2 � t] +OP (n
�1=2): (6.7)

Proof: We make a standard application of Singh (1981). If �̂2 � 1
n

P
(Xi � �X)2, K̂3 �

1
n

P
(Xi � �X)3 we get, after some algebra.

P �[m �X2
m � t2] = 2�(

t

�̂
)� 1 +

'0

2
(
t

�̂
)m �X2 � K̂3

6
['H2](

t

�̂
) �X (6.8)
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+OP (
m2

n2
) +OP (

m

n3=2
) +OP (m

�1)

and (6.5) follows. Since m �X2 = 
P (
m
n
), (6.6) follows. Finally, from (6.5), if n0n�1=2,

n1n
�1=2 !1

Bn0 � n0f(Bn1 �Bn0)=(n1 � n0)g = 2�(
t

�̂
)� 1 (6.9)

�K3

6
'H2(

t

�̂
) �X +OP (n

�3=4) +OP (n
�1=2) +OP (n

�1=2):

Since �X = OP (n�1=2), (6.7) follows. 2

Example 5: As we noted the case Tn(F̂n; F ) = n �X2 is the prototype of the use of the m=n

bootstrap for testing discussed in Bickel and Ren (1995). >From (6.7) of proposition 2 it is

clear that extrapolation helps. However, it is not true that Bn0;n1 is e�cient since it has an

unnecessary component of variance K̂3
6
['H2](

t
�̂
) �X which is negligible only ifK3(F ) = 0. On

the other hand it is easy to see that e�cient estimation can be achieved by resampling not

the Xi but the residuals Xi� �X, that is, a consistent estimate of F belonging to F0. So this

example illustrates both A and D. Or in the general U or V statistic case, bootstrapping

not Tm(F̂n; F ) � n
R
 (x; y)dF̂n(x)dF̂n(y) but rather n

R
 (x; y)d(F̂n � F )(x)d(F̂n � F )(y)

is the right thing to do.

7. Simulations and Conclusions

The simulation algorithms were written and carried out by Adele Cutler and Jiming

Jiang. Two situations were simulated, one already studied in Bickel and Yahav (1988)

where the bootstrap is consistent (essentially example 1) the other (essentially example 3)

where the bootstrap is inconsistent.

Sample sizes: n = 50, 100, 400

Bootstrap sample sizes: B = 500

Simulation size: N = 2000

Distributions: Example 1: F = �21; Example 3: F = �22

Statistics:

Example 1a) modi�ed: T (a)
m =

p
m(
q

�Xm �
q
�(F ))
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Example 1b): T (b)
m =

p
m( �Xm��(F ))

sm
where s2m = 1

m�1
Pm

i=1(Xi � �Xm)2.

Example 3: T (c)
m = m(min(X1; : : : ;Xm)� F�1(0))

Parameters of resampling distributions: G�1
m (:1), G�1

m (:9) where Gm is the distribution of

Tm under the appropriate resampling scheme. We use B, J , N to distinguish the schemes

m=n,
�
n
m

�
and sample splitting respectively.

In example 1 the G�1
m parameters were used to form upper and lower \90%" con�dence

bounds for � �
q
�(F ). Thus, from T (a)

m ,

(6:1) ��mB =
q

�Xn � 1p
n
G�1
mB(:1)

for the \90%" upper con�dence bound based on the m=n bootstrap and, from T (b)
m ,

(6:2) ��mB = (( �Xn � snp
n
G�1
mB(:1))+)

1=2

whereGmB now corresponds to the t statistic. �mB, is de�ned similarly. The ��mJ bounds are

de�ned withGmJ replacingGmB. The ��mN bounds are considered only for the unambiguous

case m divides n and � an integer multiple of m
n
. Thus if m = n

10
, G�1

mN (:1) is simply the

smallest of the 10 possible values fTm(Xjm+1; : : : ;X(j+1)m; F̂n), 0 � j � 9g.
We also specify 2 subsample sizes n0 < n1 for the extrapolation bounds, �n0 ;n1

��n0;n1.

These are de�ned for T (a)
m , for example, by,

(6:3)

��n0;n1 =
q

�Xn� 1p
n
f(G

�1
n0B

(:1) +G�1
n1B

(:1))

2
+(n�1=2�1

2
(n�1=20 +n�1=21 ))(G�1

n0B
(:1)�G�1

n1B
(:1)=(n�1=20 �n�1=21 ):

We consider roughly, n0 = 2
p
n, n1 = 4

p
n and speci�cally, the triples (n; n0; n1) :

(50; 15; 30); (100; 20; 40) and (400; 40; 80).

In example 3, we similarly study the lower con�dence bound on � = F�1(0) given by,

(6:4) ��m = max(X1; : : : ;Xn)� 1

n
G�1
mB(:9):

and the extrapolation lower con�dence bound

(6:5) �n0;n1 = min(X1; : : : ;Xn) � 1

n

(G�1
n0B

(:9) +G�1
n1B

(:9))

2

+(n�1 � (n�10 + n�11 )

2
)(G�1

n0B
(:9)�G�1

n1B
(:9))(n�10 � n�11 ):
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Note that we are using 1
m
rather than 1p

m
for extrapolation.

Measures of performance:

CP � Coverage probability, the actual probability under the situation simulated that

the region prescribed by the con�dence bound covers the true value of the parameter being

estimated.

RMSE =
q
E(Bound�Actual quantile bound)2:

Here the actual quantile bound refers to what we would use if we knew the distribution of

Tn(X1; : : : ;Xn; F ). For example for T (a)
m we would replace G�1

mB(:1) in (6.1) for F = �21 by

the .1 quantile of the distribution of
p
n(
q

Sm
m
� 1) where Sm has a �2m distribution, call it

G��1
m (:1). Thus, here,

MSE =
1

n
E(G�1

mB(:1)�G��1
m (:1))2:

We give in table 1 results for the Bn1 , Bn, and Bn0;n1 bounds, based on T (b)
m . The T (a)

m

bootstrap, as in Bickel-Yahav (1988), has CP and RMSE for Bn, Bn0;n1 and Bn1 agreeing

to the accuracy of the Monte Carlo and we omit these tables.

We give the corresponding results for lower con�dence bounds based on T (c)
m in table 2.

Table 3 presents results for sample splitting for T (a)
m . Table 4 presents T (a)

m results for the�
n
m

�
bootstrap.

Table 1: The t bootstrap: example 1b) at 90% nominal level

Coverage probabilities (CP) RMSE
n B B1 BR B B1 BR
50

UB .88 .90 .88 .19 .21 .19
LB .90 .90 .90 .15 .15 .15

100
UB .90 .93 .89 .13 .14 .12
LB .91 .90 .91 .11 .10 .11

400
UB .91 .94 .90 .06 .07 .06
LB .91 .90 .91 .05 .05 .05

Notes a) B1 corresponds to (6.2) or its LCB analogue form = n1(n) = 30; 40; 80. Similarly

B corresponds to m = n.
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b) BR corresponds to (6.3) or its LCB analogue with (n0; n1) = (15; 30); (20; 40); (40; 80).

Table 2: The min statistic bootstrap: example 3 at the nominal 90% level

n CP RMSE
50

B .75 .01
B1 .78 .07
BR .70 .07
B1S .82 .07
BRS .80 .07

n CP RMSE
100

B .75 .04
B1 .82 .03
BR .76 .04
B1S .87 .03
BRS .86 .03

400
B .75 .09
B1 .86 .01
BR .83 .01

Notes: a) B corresponds to (6.4) with m = n, B1 with m = n1 = 30; 40; 80, B1S with

m = n1 = 16.

b) BR corresponds to (6.5) with (n0; n1) = (15; 30); (20; 40); (40; 80), BRS with (n0; n1) =

(4; 16).

Table 3: Sample splitting in example 1a)

CP RMSE
n N Bm(n) N Bm(n)

50
UB .82 .86 .32 .18
LB .86 .91 .28 .16

100
UB .86 .89 .30 .14
LB .84 .90 .26 .12

400
UB .85 .89 .28 .08
LB .86 .91 .27 .09

Note: N here refers to m = :1n and � = :1
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Table 4: The
�
n
m

�
bootstrap and the m=n bootstrap in example 1a)

CP E(Length)
n m J B J B

50 16 .82 .88 .07 .09
100 16 .86 .88 .04 .05
400 40 .88 .90 .01 .01

Note: These �gures are for simulation sizes of N = 500 and for 90% con�dence intervals.

Thus, the end points of the intervals are given by (6.1) and its UCB counterpart for B

and J but with .1 replaced by .05. Similarly, [E(Bound � Actual quantile bound)2]1=2 is

replaced by the expected length of the con�dence interval.

Conclusions: The conclusions we draw are limited by the range of our simulations. We

opted for realistic sample sizes, of 50, 100 and a less realistic 400. For n = 50, 100 the

subsample sizes n1 = 30 (for n = 50) and 40 (for n = 100) are of the order n=2 rather

than o(n). For all sample sizes n0 = 2
p
n is not really \of larger order than

p
n". The

simulations in fact show the asymptotics as very good when the bootstrap works even for

relatively small sample sizes. The story when the bootstrap doesn't work is less clear.

When the bootstrap works (Example 1)

� BR and B are very close both in terms of CP, and RMSE even for n = 50 from table

1.

� B1's CP though sometimes better than B's consistently di�ers more from B's and its

RMSE follows suit In particular, for UB in table 1, the RMSE of B1 is generally larger.

LB exhibits less di�erences but this re
ects that UB is governed by the behaviour of

�21 at 0. In simulations we do not present we get similar sharper di�erences for LB

when F is a heavy tailed distribution such as Pareto with EX5 =1.

� The e�ects, however, are much smaller than we expected. This re
ects that these are

corrections to the coe�cient of the n�1=2 term in the expansion. Perhaps the most

surprising aspect of these tables is how well B1 performs.
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� From table 3 we see that because the m we are forced to by the level considered is

small, CP for the sample splitting bounds di�ers from the nominal level. If n!1,

m
n
! :1 the coverage probability doesn't tend to .1 since the estimated quantile

doesn't tend to the actual quantile and both CP and RMSE behave badly compared

to Bm. This naive method can be �xed up { see Blom (1976) for instance. However,

its simplicity is lost and the
�
n
m

�
or m=n bootstrap seem preferable.

� The
�
n
m

�
bounds are inferior as table 4 shows. This re
ects the presence of the �nite

population correction m
n
, even though these bounds were considered for the more

favorable sample size m = 16 for n = 50, 100 rather than m = 30, 40. Corrections

such as those of Bertail (1994) or simply applying the �nite population correction to

s would probably bring performance up to that of Bn1 . But the added complication

doesn't seem worthwhile.

When the bootstrap doesn't work (Example 3)

� From table 2, as expected, the CP of the n=n bootstrap for the lower con�dence

bound was poor for all n. For n0 = 2
p
n, n1 = 4

p
n, CP for B1 was constantly better

than B for all n. BR is worse than B1 but improves with n and was nearly as good

as B1 for n = 400. For small n0, n1 both B1 and BR do much better. However, it is

clear that the smaller m of B1S is better than all other choices.

We did not give results for the upper con�dence bound because the granularity of the

bootstrap distribution of miniXi for these values of m and n made CP = 1 in all cases.

Evidently, n0; n1 play a critical role here. What apparently is happening is that for

n0; n1 not su�ciently small compared with n extrapolation picks up the wrong slope and

moves the not so good B1 bound even further towards the poor B bound.

A message of these simulations to us is that extrapolation of the Bm plot may carry

risks not fully revealed by the asymptotics. On the other hand, if n0 and n1 are chosen in

a reasonable fashion extrapolation on the
p
n scale works well when the bootstrap does.

Two notes, based on simulations we do not present, should be added to the optimism of
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Bickel, Yahav (1988) however. There may be risk if n0 is really small compared to
p
n. We

obtained poor results for BR for the t statistics for n0 = 4 and 2. Thus n0 = 4, n1 = 16 gave

the wrong slope to the extrapolation which tended to overshoot badly. Also, taking n1 and

n0 close to each other, as the theory of the 1988 paper suggests is appropriate for statistics

possessing high order expansions when the expansion coe�cients are deterministic, gives

poor results. It can also be seen theoretically that the sampling variability of the bootstrap

for m of the order
p
n makes this prescription unreasonable.

The principal message we draw is that it is necessary to develop data driven methods

of selection of m which lead to reasonable results over situations where both the bootstrap

works and where it doesn't. Such methods are being pursued.

Appendix

Proof of Theorem 2: For i = (i1; : : : ; ir) 2 �r;m let U(i) = 1

(nr)
Pfhi(Xj1 ; : : : ;Xjr ; F ) :

1 � j1 < : : : < jr � ng. Then, since hi as de�ned is symmetric in its arguments it is a U

statistic and khk1 is an upper bound to its kernel. Hence

(a) VarFU(i) � khk21 rn
On the other hand,

(b) EU(i) = EFhi(X1; : : : ;Xr; F )

and

(c) Bm;n(F ) =
Pm

r=1

Pfwm;n(i)U(i) : i 2 �r;mg

by (3.7).

Thus, by (c),

(d) Var
1
2
FBm;n(F ) � Pm

r=1

P
wm;n(i)Var

1
2
FU(i) : i 2 �r;mg

� maxVar
1
2
FU(i) � khk1(

m

n
)
1
2

by (a). This completes the proof of (3.10).
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The proof of (3.11) is more involved. By (3.8)

(e) j�m;n(F )� �(F )j �
mX
r=1

XfjEFhi(X1; : : : ;Xr)� �m(F )jwm;n(i) : i 2 �r:mg:

Let,

(f) Pm;n[Rm = r] =
Xfwm;n(i) : i 2 �r;mg

Expression (f) is easily recognized as the probability of getting n� r empty cells when

throwing n balls independently into m boxes without restrictions | see Feller (1968) p.19.

Then it is well known or easily seen that

(g) Em;n(Rm) = n(1 � (1 � 1
n
)m)

(h) Varm;n(Rm) = nf(1� 1
n
)m � (1 � 2

n
)mg+ n2f(1� 2

n
)m � (1� 1

n
)2mg.

It is easy to check that, if m = o(n)

(i) Em;n(Rm) = m(1 +O(m
n
))

(j) Varm;n(Rm) = O(m)

so that,

(k) Rm

m
= 1 +OP (m�1=2).

>From (e),

(l) j�m;n(F )� �(F )j �
mX
r=1

�m(
r

m
)Pm;n[Rm = r]:

By (k), (l) and the dominated convergence theorem (3.12) follows from (3.11) and (k).

Finally, as in theorem 1, we bound, as in (3.4),

(m) jBm;n(F )�Bm(F )j�
mX
r=1

XfEF jhi(X1; : : : ;Xr)�hi(X1; : : : ;Xr; F̂n)j : i 2 �r;mgwm;n(i)

where

(n) hi(X1; : : : ;Xr; F̂n) =
1

r!

X
1�j1 6=:::6=jr�r

h(Tm(X
(i1)
j1
; : : : ;X

(ir)
jr ; F̂n))
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Let Rm be distributed according to (f) and given Rm = r, (I1; : : : ; Ir) be uniformly dis-

tributed on the set of partitions of m into r ordered integers, I1 � I2 � : : : � Ir. Then,

from (m) we can write

(o) jBm;n(F )�Bm(F )j � E�(I1; : : : ; IRm)

where k�k1 � khk1. Further, by the continuity of h and (3.13), since I1 � : : : � IRm,

(p) �(I1; : : : ; IRm)1(IRm � �mm)
P! 0

whenever �m = O(m�1=2). Now, IRm > �mm,

(q) m =
RmX
j=1

Ij

and Ij � 1 imply that,

(r) m(1� �m) �
Rm�1X
j=1

Ij � (Rm � 1)

Thus,

(s) Pm;n(IRm > �mm) � Pm;n(
Rm

m
� 1 � ��m +O(m�1))! 0

if �mm1=2 !1. Combining (s), (k) and (p) we conclude that

(t) E�(I1; : : : ; IRm)! 0

and hence (o) implies (3.14). 2

The corollary follows from (e) and (f). 2

Note that this implies that the m=n bootstrap works if about
p
m ties do not a�ect the

value of Tm much.

Checking that Jm, Bm, Nm m = o(n) works

The arguments we give for Bm also work for Jm only more easily since theorem 1 can

be veri�ed. It is easier to directly verify that, in all our examples, the m=n bootstrap
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distribution of Tn(F̂n; F ) converges weakly (in probability) to its limit L(F ) and conclude

that theorem 2 holds for all h continuous and bounded than to check the conditions of

theorem 2. Such veri�cations can be found in the papers we cite. We sketch in what

follows how the conditions of theorem 1 and 2 can be applied.

Example 1:

a) We sketch heuristically how one would argue for functionals considered in section 2

rather than quantiles. For Jm we need only check that (2.6) holds since
p
m( �X � �(F )) =

op(1). For Bm note that the distribution of m�1=2(i1X1 + : : :+ irXr) di�ers from that of

m�1=2(X1+: : :+Xm) byO(
Pr

j=1

(i2j�1)
m

). If we maximize
Pr

j=1(i
2
j�1) subject to

Pr
j=1 ij = m,

ij � 1 we obtain 2(m�r)
m

+ (m�r)2
m

. Thus for suitable h, �m(x) = 2(1 � x) + 1p
m
(1 � x)2 and

the hypotheses of theorem 2 hold.

b) Notice that,

P [
p
n
( �X � �(F ))

s
� t] = P [

p
n( �X � �(F ))� st � 0]

and apply the previous arguments to Tn(F̂n; F ) � pn( �X � �(F ))� st.

Example 2: In example 2 the variance corresponds to h(x) = x2 if Tm(F̂m; F ) = m1=2(med(X1; : : : ;Xm)�
F�1(12)). An argument parallel to that in Efron (1979) works. Here is a direct argument

for h bounded.

(a) P [med(X(i1)
1 ; : : : ;X(ir)

r ) 6= med(X(i1)
1 ; : : :X(ir�1)

r ;Xr+1)] � 1

r + 1
:

Thus,

(b) P [med(X
(i1)
1 ; : : : ;X(ir)

r ) 6= med(X1; : : : ;Xm)]

�
mX

j=r+1

1

j
� log(

m

r
):

Hence for h bounded,

�m(x) � khk1 log(
1

x
):

and we can apply theorem 2.
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Example 3: Follows by checking (3.2) in theorem 1 and that theorem 2 applies for Jm by

arguing as above for Bm. Alternatively, argue as in Athreya and Fukushi (1994). 2

Arguments similar to those given so far can be applied to the other examples.

Acknowledgement We are grateful to Jiming Jiang and Adele Cutler for essential pro-

gramming, to John Rice for editorial comments, and to Kjell Doksum for the Blom refer-

ence.

35



References

Athreya, K.B. (1987). Bootstrap of the mean in the in�nite variance case. Ann. Statist.

15, 724-731.

Athreya, K.B. and Fukuchi, J. (1994). Bootstrapping extremes of I.I.D. random variables.

Proceedings of Conference on Extreme Value Theory (NIST)

Babu, G.J. and Singh, K. (1985). Edgeworth expansions for sampling without replacement

from �nite populations. Journ. Mult. Analysis 17, 261-278.

Bentkus, V., G�otze, F. and van Zwet, W.R. (1994). An Edgeworth expansion for symmetric

statistics. Tech Report Univ. of Bielefeld.

Beran, R. (1982). Estimated sampling distributions: The bootstrap and competitors. Ann.

Stat. 10, 212-225.

Beran, R. and Srivastava, M.S. (1985). Bootstrap tests and con�dence regions for functions

of a covariance matrix. Ann. Statist. 13, 95-115.

Bertail, P. (1994). Second order properties of an extrapolated bootstrap without replace-

ment. Submitted to Bernoulli.

Bhattacharya, R. and Ghosh, J.K. (1978). On the validity of the formal Edgeworth expan-

sion. Ann. Statist. 6, 434-451.

Bickel, P.J. and Ren, J.J. (1995). The m out of n bootstrap and goodness of �t tests with

doubly censored data. Robust Statistics, Data Analysis and Computer Intensive Methods

Ed. H. Rieder Lecture Notes in Statistics, Springer Verlag.

Bickel, P.J., Klaassen, C.K., Ritov, Y. and Wellner, J. (1993). E�cient and Adaptive

Estimation in Semiparametric Models. Johns Hopkins University Press, Baltimore.

Bickel, P.J. and Yahav, Y. (1988). Richardson extrapolation and the bootstrap. J. Amer.

Statist. Assoc. 83, 387-393.

Blom, G. (1976). Some properties of incomplete U statistics. Biometrika 63, 573-580.

36



Bretagnolle, J. (1983). Lois limites du bootstrap de certaines fonctionelles. Ann. Inst. H.

Poincar�e, Ser. B 19, 281-296.

David, H.A. (1983). Order Statistics. 2nd edition, J. Wiley, New York.

Deheuvels, P., Mason, D. and Shorack, G. (1993). Some results on the in
uence of extremes

on the bootstrap. Ann. Inst. H. Poincar�e 29, 83-103.

DeCiccio, T.J. and Romano, J.P. (1989). The automatic percentile method: Accurate

con�dence limits in parametric models, Can. J. Statist. 17, 155-169.

D�umbgen, L. (1993). On nondi�erentiable functions and the bootstrap. Probability Theory

and Related Fields 95, 125-140.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1-26.

Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman &

Hall, London, New York.

Feller W. (1968). Probability Theory v1. J. Wiley, New York.

Gin�e, E. and Zinn, J. (1989). Necessary conditions for the bootstrap of the mean. Ann.

Statist. 17, 684-691.

G�otze, F. (1993). Bulletin I.M.S.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer Verlag, New York.

Hall, P. and Wilson, S. (1991). Two guidelines for bootstrap hypothesis testing. Biometrics

47, 757-762.

Hall, P. and Jing B.Y. (1993). Performance of boostrap for heavy tailed distributions. Tech

Report A.N.U. Canberra.

Hinkley, D.V. (1988). Bootstrap methods (with discussion). J. Royal. Statist. Soc. B 50,

321-337.

Mammen, E. (1992). When does bootstrap work? Springer Verlag, New York.

37



Politis, D.N. and Romano, J.P. (1994). A general theory for large sample con�dence regions

based on subsamples under minimal assumptions. Ann. Statist. 22, 2031-2050.

Praestgaard, J. and Wellner, J. (1993). Exchangeably weighted bootstrap of the general

empirical process. Ann. Probab. 21, 2053-2086.

Putter, H. and van Zwet, W.R. (1993). Consistency of plug in estimators with applications

to the bootstrap. Submitted to Ann. Statist.

Robinson, J. (1978). An asymptotic expansion for samples from a �nite population. Ann.

Statist. 6, 1005-1011.

Shen, X. and Wong, W. (1994). Convergence rates of sieve estimates. Ann. Statist. 22,

580-615.

Singh, K. (1981). On the asymptotic accuracy of Efron's bootstrap. Ann. Statist. 9,

1187-1195.

Wu, C.F.J. (1990). On the asymptotic properties of the jackknife histogram. Ann. Statist.

18, 1438-1452.

38


