
1

 HALF&HALF BAGGING AND HARD BOUNDARY POINTS

Leo Breiman
 Statistics Department
 University of California
 Berkeley, CA 94720
 leo@stat.berkeley.edu

 Technical Report 534
 Statistics Department

 September 1998

Half&half bagging is a method for generating an
ensemble of classifiers and combining them that
does not resemble any method proposed to date.
It is simple and intuitive in concept and its
accuracy is very competitive with Adaboost.
Certain instances that are used repeatedly turn
out to be located in the boundaries between
classes and we refer to these as hard boundary
points. The effectiveness of half&half bagging
leads to the conjecture that the accuracy of any
combination method is based on its ability to
locate the hard boundary points.

2

1. Introduction

Half&half bagging is a method for producing combinations of classifiers
having low generalization error. The basic idea is straightforward and
intuitive--suppose k classifiers have been constructed to date. Each classifier
was constructed using some weighted subset of the original training set. To
construct the next training set, randomly select an example e. Run e down
that subgroup of the k classifiers that did not use e in their training sets.
Total the unweighted votes of this subgroup and use the plurality vote to
predict the classification of e. If e is misclassified, put it in group MC. If not,
into group CC. Stop when the sizes of both MC and CC are equal to M, where
2M≤N, and N is the size of the original training set. Usually, CC is filled first
but the sampling continues until MC reaches the same size.

The basic idea, then, of half&half bagging to is use purely random sampling to
form a new training set that is half full of examples misclassified up to the
present, and half full of correctly classified examples. The new twist is that
the classified-misclassified judgment for e is based only on the classifiers built
on previous training sets not containing e. The size of the training sets
constructed this way is 2M, and M is set by the user. Generally, the larger M
the smaller the generalization error. In the experiments reported on here, we
universally take M=N/4. Each classifier constructed has an equal vote.

The Adaboost algorithm (Freund and Schapire, [1995]) produces combinations
of classifiers with remarkably low generalization error (Bauer and
Kohavi[1998], Dietterich [1998], Drucker and Cortes[1996], Freund and Schapire
[1996], Quillan[1996], Breiman[1998]). The reasons for this are obscure because
the algorithm was initially designed to drive the training error to zero as
quickly as possible, and not necessarily to produce low generalization error.
But the generalization error keeps decreasing after the training error is zero.
Adaboost is a complex algorithm, so it is difficult to understand why it does so
well. An explanation has been advanced (Schapire et.al.[1997]) but it appears
incomplete (Breiman[1997])

In contrast, the concept of half&half is intuitively clear and simple--just keep
working on training sets consisting of half misclassified and half correctly
classified examples. Therefore, it is a bit surprising that half&half produces
test set error rates very competitive with Adaboost, and on balance, even does
a little bit better. This result lets us see more clearly what is essential to a good
combining algorithm--it forms training sets where misclassified examples are
weighted more heavily, but still keeps in a proportion of correctly classified
examples.

3

In Section 2 the primary experimental results are given. Section 3 defines
hard boundary points and gives some graph and tables to illustrate where
they live and how they are distinguished. In Section 4 we note and give
empirical data to show that half&half bagging can give accurate results when
used on small fractions of the training set. Section 5 contains some remarks
on the light that half&half sheds on why some methods of combining work
so well.

 2 . Experimental Results on Accuracy

Our experiments use 10 smaller sized data sets from the UCI repository, 4
larger sets separated into training and test sets, and 4 synthetic data sets.
Table 1 gives a brief summary.

 Table 1 Data Set Summary

Data Set Train Size Test Size Inputs Classes

glass 214 -- 9 6
breast cancer 699 -- 9 2
diabetes 768 -- 8 2
sonar 208 -- 60 2
vowel 990 -- 10 11
ionosphere 351 -- 34 2
vehicle 846 -- 18 4
soybean 685 -- 35 19
German credit 1000 ` -- 24 2
image 2310 -- 19 7

letters 15000 5000 16 26
sat-images 4435 2000 36 6
dna 2000 1186 60 3
zip-code 7291 2007 256 10

waveform 300 3000 21 3
twonorm 300 3000 20 2
threenorm 300 3000 20 2
ringnorm 300 3000 20 2

On each of the 10 smaller sized data sets, the following procedure was used: a
random 10% of the data was set aside. On the remaining data half&half was
run combining 100 trees. The set aside 10% was then put down the combined
predictor to get a test set error. This was repeated 100 times and the test set

4

errors averaged. The same procedure was followed for the Adaboost runs all
of which are based on combining 50 trees.

In the runs on the larger data sets, the half&half results for the first three sets
were based on combining 100 trees--the zip-code procedure combined 200. For
Adaboost, 50 trees were combined for the first three and 100 for zip-code. The
synthetic data was described in Breiman[1996] and also used in Schapire
et.al.[1997]. There were 50 runs. In each run, a new training set of size 300
and test set of size 3000 were generated. In half&half 100 trees were combined
in each run--50 in Adaboost.

The reason that the half&half runs combined twice as many trees as did the
Adaboost runs was that half&half was generally slower to converge than
Adaboost (see Section 3). But since half&half constructs trees on training sets
half the size of the ones Adaboost uses, the cpu times are similar.

The results of these runs are reported in Table 2.

 ` Table 2 Test Set Errors (%)

 Data Set Adaboost Half&Half

glass 22.0 21.1
breast cancer 3.2 3.5
diabetes 26.6 24.0
sonar 15.6 14.4
vowel 4.1 3.5
ionosphere 6.4 6.6
vehicle 23.2 24.1
soybean 5.8 6.1
German credit 30.6 23.4
image 7.7 2.2

letters 3.4 3.6
sat-images 8.8 8.6
dna 4.2 3.8
zip-code 6.2 5.9

waveform 17.8 17.8
twonorm 4.9 4.7
threenorm 18.8 17.4
ringnorm 6.9 6.1

The differences are small except on the German credit and image data sets
where half&half is significantly more accurate than Adaboost. We do not
understand why Adaboost does not do well on these two data sets.

5

3. Hard Boundary Points

After each classifier in the series is constructed, it is possible to form an
imitation of the test set combined classifier. For each instance, look only at
the votes of the classifiers constructed to date using training sets not
containing the instance. Classify each instance by plurality vote and call this
the out-of-bag classifier. Then an error is made on instance if the out-of-bag
classification does not agree with the true class assignment.

Unlike the situation in straight bagging (see Tibshiani [1996], Wolpert and
Macready[1996]) the out-of-bag classifier gives a biased estimate of the
generalization error. As each new tree is constructed, it relies on the current
out-of-bag classifications. This creates a dependence between the classifiers
constructed and the out-of-bag classifications. The out-of-bag error estimates
for the synthetic data sets tends to be close to the test set error estimates. But
for the four larger data sets listed in Table 1 it tends to be above the test set
error estimates by up to 40% to 60%

Some of the instances characterized as errors by the out-of-bag classifier are
used over and over again in constructing the new classifiers. We call these
instances hard boundary points.. They generally are on or near the boundary
between classes and are consistently misclassified by the out-of-bag classifier
for two reasons. One is that they are off-side. That is, the most likely class
given the x location is not the data assigned class. Unless the instance is an
outlier, this happens close to the boundary. The other reason is that they are
close to the boundary and given the shape of the boundary the classifiers
consistently put them on the wrong side. Figures 1, 2, and 3 plot the hard
boundary points for the two-dimensional versions of the twonorm,
threenorm and ringnorm data.

The hard boundary points are marked by the fact that when they are used in a
training set, they are in the misclassified half. To illustrate, Figure 4 has
graphs constructed using the first six data sets listed in Table 1. What is
graphed for each instance in the data is the proportion of times that when it
was in a training set, it was in the misclassified half of the training set. In the
six data sets the hard boundary points are the upper band of instances that are
invariably misclassified. The bulk of the instances are in the lower band.
Depending on the data set, they are out-of-bag misclassified 30& to 50% of the
times they show up in a training set.

The way that the hard boundary points effects the classifiers varies from data
set to data set. To shed some light on this Table 3 was constructed using 300
iterations each for the six data sets graphed in Figure 4. The first column is

6

the number of hard boundary points. The second column is the number of
hard boundary points as a percent of the total number of instances in the data.
The third column is the average percent of the training sets that each hard
boundary points turned up in. The fourth column is the average percent of
the misclassified half of the training set that consists of hard boundary points.

 Table 3 Properties of Hard Boundary Points (HBP)

 data set # HBP % HBP freq. HBP %HBP/half

glass 33 15.4 63.2 46.0
breast 20 2.8 98.8 12.4
diabetes 120 15.6 63.0 46.1
sonar 22 10.5 68.9 36.1
vowel 39 3.9 91.4 19.0
ionosphere 19 5.4 92.7 20.8

If data sets have large overlapping boundaries with a high intrinsic error rate,
then there will be a large proportion of hard boundary points. With a low
intrinsic error rate, there will be fewer hard boundary points. With fewer
hard boundary points, the 3rd column shows that they tend to show up i n
almost every misclassified half of the training sets. The 4th column shows
the obvious--with a smaller fraction of hard boundary points, they have a
smaller representation in the training sets.

To see if the hard boundary points really make a difference, we set up a filter
that keeps them out of the training sets. For any instance, after its 5th
appearance in a training set, if the proportion of out-of-bag misclassifications
becomes larger than .95, the instance cannot be used in any future training
sets. Table 4 compares the test sets errors with this filter to the results
without it for the first six data sets.

 Table 4 Test Set Error (%) With and Without Hard Boundary Points.

 data set error wi thout HBP error with HBP

glass 26.8 21.1
breast 4.5 3.5
diabetes 24.8 24.0
sonar 24.5 14.4
ionosphere 7.9 6.6
vowel 16.3 3.5

Filtering out the hard boundary points can have a significant effect on the test
set error. Note that this is true even for the breast, ionosphere and vowel
data that have small numbers of hard boundary points. It makes little

7

difference for the diabetes data, which has a large number of hard boundary
points, but blows up the error for the glass and sonar data which also have
large numbers of hard boundary points. These results show that the hard
boundary points are an essential ingredient in accurate classification.

4. Using smaller training sets.

Half&half bagging also works well when the size of the training sets (2M) is
small compared to N. For instance, in databases with N in the order of 10,000,
2M=N/50 produces respectable accuracy. This experimental result leads to a
method for forming predictions in large databases (Breiman[1998]).

To illustrate this, half&half bagging was run on all the data sets listed in Table
1 using training sets 1/10 the size of the original data, i.e. 2M=N/10. In a bit of
overkill, 500 iterations were used. Otherwise, the structure of the
experiments were the same as reported above. The resulting error estimates
are given in Table 6 where the error estimates for 2M=N/2 are reproduced
from Table 2 for comparison.

 Table 6 Test Set Errors Using Smaller Training Sets (%)

 Data Set 2M=N/10 2M=N/2

glass 29.4 21.1
breast cancer 3.8 3.5
diabetes 23.6 24.0
sonar 17.7 14.4
vowel 5.4 3.5
ionosphere 6.8 6.6
vehicle 24.4 24.1
soybean 6.7 6.1
German credit 21.4 23.4
image 1.8 2.2

letters 3.7 3.6
sat-images 8.8 8.6
dna 3.8 3.8
zip-code 6.3 5.9

waveform 16.0 17.8
twonorm 4.2 4.7
threenorm 17.4 17.4
ringnorm 7.2 6.1

Except for the small glass data set, there are only slight increases in error rates
when using one-tenth of the data to grow the trees instead of one-half. For a

8

few data sets. the error is reduced. To get some understanding of what was
going on, I looked at the hard boundary points for the synthetic data sets.

The hard boundary points selected using N/10 are generally a superset of
those selected using N/2. The trees constructed using N/10 are smaller and
will find more boundary points that are difficult to classify correctly. For
instance, using the threenorm data, the number of hard boundary points
increases by about 50%. But a large majority of the N/2 hard boundary points
are included in the N/10 hard boundary points.

Since using N/2 usually gives slightly better accuracy then the smaller
training sets, an obvious question is why not use all of the data, i.e. why not
take 2M=N. Experimentally, 2M=N does not give as low as error rates as
2M=N/2. I believe the reason is that using 2M=N does not give enough
diversity in the choice of the instances classified correctly by the pseudo-error
measure.

5 What is important in constructing ensembles of classifiers?

Half&half bagging differs from Adaboost and other arcing algorithms
(Breiman[1998a]). At the beginning of each new iteration, the instances are
divided into two sets. Half of the new training set consists of random draws
from one set, the other half from random draws from the second set. The
first set has an appreciable number of hard boundary points--the other set
consists of instances that are currently classified correctly. The tree classifier
classifies every instance in the training set correctly, since it is grown to one
example per terminal node.

The hard boundary points therefore have a significant influence on the
structure of the tree. In terms of the boundary between classes, it is pinned
down by the heavy representation of the hard boundary points but rocks back
a forth with the need to correctly classify the randomly chosen coprrectly
classified points, and the points in the misclassified set that are not hard
boundary points.

In classification, the essential thing is to get the boundary between classes
right. We don’t know, apriori, which instances in the original training set
are near the boundary. . If we did, we could weight these instances upward to
force the classifier combination to get the boundary right. The hard boundary
points are on the boundary or off-side and half&half bagging identifies them,
weights them up, and thus forces the combination to construct an accurate
boundary .

The hard boundary points are analogous to support vectors {Vapnik [995]}.
The success of half&half bagging shows that the key to accurate combinations
is in the placement of the hard boundary points, and not necessarily in getting

9

high margins. In an interesting paper by Ratsch et.al [1998], Adaboost is
analyzed and those instances having the minimum margin values are called
support patterns. A two dimensional data set is used to show that the
support pattern points in Adaboost mostly coincide with the support vectors
points produced when a support vector machine is applied to the data. W e
believe that the support patterns produced by Adaboost will often coincide
with the half&half hard boundary points.

 References

Bauer, E. and Kohavi, R.[1998]An Empirical Comparison of Voting
Classification Algorithms: Bagging, Boosting and Variants, Machine
Learning 1-33.

Breiman, L. [1997} Prediction Games and Arcing Algorithms, Technical
Report 504, Statistics Department, UCB

Breiman. L. [1998a] Arcing Classifiers, Annals Of Statistics, 26, 801-849
Breiman, L.[1998b] Pasting votes together for classification in large data bases

on-line, to appear--Machine Learning
Dietterich, T. [1998] An experimental comparison of three methods for

constructing ensembles of decision trees: bagging, boosting, and
randomization. Machine Learning, 1-22

Drucker, H. and Cortes, C. [1996] Boosting decision trees, Neural Information
Processing 8, Morgan-Kaufmann, 479-485

Freund, Y. and Schapire, R. [1995] A decision-theoretic generalization of on-
line learning and an application to boosting. to appear--Journal of
Computer and System Sciences

Freund, Y. and Schapire, R. [1996] Experiments with a new boosting
algorithm, Machine Learning: Proceedings of the Thirteenth
International Conference, 148-156.

Quinlan, J.R.[1996] Bagging, Boosting, and C4.5, Proceedings of AAAI'96
National Conference on Artificial Intelligence, 725-730

Ratsch, G., Onoda, T., Muller, K.-R., [1998] Soft margins for Adaboost
Schapire, R.,Freund, Y., Bartlett, P., and Lee, W[1997] Boosting the Margin, to

appear--Annals of Statistics
Tibshirani, R.[1996] Bias, Variance, and Prediction Error for Classification

Rules, Technical Report, Statistics Department, University of Toronto
Vapnik, V. [1995] The Nature of Statistical Learning Theory, Springer
Wolpert, D.H. and Macready, W.G.[1996] An Efficient Method to Estimate

`Bagging's Generalization Error, to appear--Machine Learning

10

11

