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Abstract

A classi�er is said to have good generalization ability if it performs on

test data almost as well as it does on the training data. The main result of

this paper provides a su�cient condition for a learning algorithm to have

good �nite sample generalization ability. This criterion applies in some

cases where the set of all possible classi�ers has in�nite VC dimension.

We apply the result to prove the good generalization ability of support

vector machines.

Introduction

I consider the classical problem of learning a classi�er from examples which can
be formalized as follows: Let Zi = (Xi; Yi); i = 1; 2; : : : be iid random variables
taking values in Z = X � f�1;+1g. The problem is predicting Yl+1 given
X1; : : : ; Xl+1 and Y1; : : : ; Yl.

The solution to the problem is a map M : Zl ! F , where F is a space of
classi�er functions, i.e., each f 2 F is a function f : X ! f�1;+1g. Thus the
prediction is Y �

l+1 = f�(Xl+1) where f
� = M (Z1; : : : ; Zl).

The quality of the solution may be measured using the expected error rate
(also called expected risk):

EXER = P(Y �
l+1 6= Yl+1):

The solution M is usually geared toward �nding a function which has low em-
pirical error rate (also called empirical risk):

EMER =
1

2l

lX
i=1

jf�(Xi)� Yij :

Therefore, it is often desirable to be able to obtain bounds for the di�erence be-
tween the empirical and the expected error rates. The behavior of the di�erence
will depend on the underlying, unknown probability measure. The term gen-
eralization ability is used to describe the worst-case behavior of the di�erence
between the empirical and expected error rate for a speci�c algorithm. The
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smaller the probability for a large di�erence, the better is the generalization
ability of the algorithm.

One map M commonly used is

M (Z1; : : : ; Zl) = argmin
f2F

lX
i=1

jYi � f(Xi)j :

This is known as the Empirical Risk Minimization (ERM) method. It has been
shown that the generalization ability of the algorithm can be determined by
using the VC dimension of the set of functions F ([1] sec. 4.9).

Other learning algorithms use maps of the form

M (Z1; : : : ; Zl) = arg min
f2 ~M(Z1;:::;Zl)

lX
i=1

jYi � f(Xi)j ;

where ~M is an auxiliary map ~M : X l ! 2F . I call this type of algorithms
Restricted Empirical Risk Minimization (RERM) rules.

The main result

The following theorem guarantees the generalization ability of certain learning
algorithms even when F has an in�nite VC dimension:

Theorem 1 Denote

M (z1; : : : ; z2l) =
�
M (zi(1); : : : ; zi(l)) : the i(j)'s are l distinct indices

in the range 1; : : : ; 2lg :

If
sup

z1;:::;z2l2Z

��M (z1; : : : ; z2l)
�� = c(l);

then
P(jEXER� EMERj > �) < 2c(l) exp�(l�2 � 2�):

Proof: Since for any Binomial variable, B, P(B > EB + 1) < 0:5, it is
enough to bound

p�0 = P(

����� 12l
2lX

i=l+1

jf�(Xi) � Yij � EMER

����� > �0);

where �0 = �� 1
l . This is done by conditioning on the values of zi; i = 1; : : : ; 2l

and then taking the expectation over the di�erent possible orders.
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To simplify the formulas, I use below �f (z) as shorthand for jf(x) � yj =2,
where z = (x; y). Thus �f (z) is either 0 or 1.

p�0 = E
1

(2l)!

X
�

1(

�����
lX

i=1

�f�(Z�(i))�
2lX

i=l+1

�f� (Z�(i))

����� > l�0):

Here, as below,
P

� means summing over all permutations of the numbers
1; : : : ; 2l.

p�0 � E
1

(2l)!

X
�

1( sup
f2M (Z1;:::;Z2l)

�����
lX

i=1

�f (Z�(i))�
2lX

i=l+1

�f (Z�(i))

����� > l�0)

� E
1

(2l)!

X
�

X
f2M(Z1;:::;Z2l)

1(

�����
lX

i=1

�f (Z�(i))�
2lX

i=l+1

�f (Z�(i))

����� > l�0)

� E
X

f2M (Z1;:::;Z2l)

1

(2l)!

X
�

1(

�����
lX

i=1

�f (Z�(i))�
2lX

i=l+1

�f (Z�(i))

����� > l�0)

� c(l) exp�l�02

� c(l) exp�(l�2 � 2�):

The bound for the fraction of permutations giving a di�erence greater than �0

was calculated by Vapnik ([1] sec. 4.13). 2

The proof above follows the argument of Theorem 4.1 of [1], which deals
with the generalization ability of ERM algorithms. The main di�erence is the
reference to the random set M (Z1; : : : ; Z2l) rather than to a �xed set of func-
tions. Two variants of the result stated in Theorem 4.1 of [1] are Theorem 4.2 of
[1] and the main result of [2]. The �rst gives better bounds when the empirical
error rate is small, and the other gives a better rate of convergence when c(l)
is polynomial. Both can be adapted and proven for the setup here in a manner
similar to that of Theorem 1.

The next result follows immediately from Theorem 1:

Corollary 1 For maps M of the RERM type, the bound of Theorem 1 holds
provided that

sup
z1;:::;z2l2Z

��� ~M (z1; : : : ; z2l)
��� = c(l);

with
~M (z1; : : : ; z2l) =

[
i(1);:::;i(l)

~M (zi(1); : : : ; zi(l)):

where the i(j)'s are l distinct indices in the range 1; : : : ; 2l.

Example (r-determined rules): Corollary 1 can be used to obtain a non-
trivial generalization property for any rule of the RERM type where ~M is of the
form

~M (z1; : : : ; zl) =
�
fzj(1);:::;zj(r) : j(i) 2 f1; : : : ; lg; i = 1; : : : ; r

	
;
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since for any map M of this type,
��� ~M (z1; : : : ; z2l)

��� � (2l)r. Below, I refer to

such rules as r-determined rules.

The support-vector setup

The support-vector machine (SVM) ([1]) creates a linear discriminant classi�er
in a ball within a high dimensional, or an in�nite dimensional, Euclidean space:

X = fx 2 Rn : jxj � 1g ;

F = ffa;b(x) = sign(a � x� b) : a 2 Rn; b 2 R; jaj = 1g :

To put the de�nition of an SVM into the framework presented here, I intro-
duce the following de�nitions:

De�nition 1 The set S(x1; : : : ; xl; t1; : : : ; tl); xi 2 X ; ti 2 f�1;+1g is the set
of classi�ers fa;b 2 F such that fa;b(xi) = 1 i� ti = 1 for all i = 1; : : : ; l.

In other words, the set S(x1; : : : ; xl; t1; : : : ; tl) is the set of classi�ers which
predict Y = ti when presented with X = xi, for all i = 1; : : : ; l.

De�nition 2 The margin of a classi�er fa;b 2 F with respect to a set of points
x1; : : : ; xl 2 X is de�ned as

min
i=1;:::;l

ja � xi + bj :

The maximum margin classi�er (MMC) is the member, fa;b, of the set S
with the property that its margin is the largest in the set.

The value of the margin of the MMC is denoted bymarg(x1; : : : ; xl; t1; : : : ; tl).

Using the de�nitions above, the SVM can now be de�ned as a RERM type
rule with:

~M (z1; : : : ; zl) = ffa;b = s(x1; : : : ; xl; t1; : : : ; tl) : ti 2 f�1;+1g; i = 1; : : : ; l;

marg(x1; : : : ; xl; t1; : : : ; tl) � hg ;

where s(x1; : : : ; xl; t1; : : : ; tl) is some member of S(x1; : : : ; xl; t1; : : : ; tl) and h is
some �xed constant.

The set ~M (z1; : : : ; zl) may or may not contain a representative from the
set S(x1; : : : ; xl; y1; : : : ; yl). If it does contain such a representative, f , then
f will have zero empirical error rate, and therefore M (z1; : : : ; zl) = f will
hold. If such a representative is not in ~M (z1; : : : ; zl) then M (z1; : : : ; zl) =
s(x1; : : : ; xl; t1; : : : ; tl) for some t1; : : : ; tl and the empirical error rate of the al-
gorithm will be equal to the cardinality of the set fi : ti 6= yig.

Based on heuristic appeal and experimental results, s is usually chosen to
be equal to the MMC. Here, however, I propose a di�erent way to select a
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representative, for which the generalization ability can be determined. Note
that the empirical risk achieved is the same for any choice of a representative.

The algorithm below, known as the perceptron algorithm ([3]), may be used
to obtain a member of S(x1; : : : ; xl; t1; : : : ; tl). Let the representative, s, be the
one produced by the algorithm. This algorithm had been previously considered
in this context by Freund and Schapire ([4]).

� Initialization: Set a 0; b 0; k 1

� Update: If tk(a � xk + b) > 0 then go to step Loop

� Correction: Set a a+ tkxk; b b+ tk

� Loop: If a Correction step was not carried out in the last l loops, stop.
Otherwise, set k k + 1(mod l) and go to step Update

The Perceptron Convergence Theorem ([3]) states that if the points xi all lie
inside the unit sphere, and marg(x1; : : : ; xl; t1; : : : ; tl) � h then the algorithm
will execute at most b1=h2c corrections, after which the resulting a; b parame-
ters will provide a member fa;b of S(x1; : : : ; xl; t1; : : : ; tl). By construction the
resulting classi�er is r-determined with r � b1=h2c.

Applying the bound for r-determined rules leads to the following conclusion:
For any �xed h, if a support-vector method is employed and a classi�er with
a margin of h and empirical error rate R is found, then there exists an r(h)-
determined classi�er for which the following statement holds:

P(EXER > R+ �) < 2(2l)b1=h
2c exp�(l�2 � 2�): (1)

The perceptron algorithm can be used to obtain such a classi�er.
An important point about the perceptron algorithm is that it can be executed

without reference to the training vectors themselves but rather making use only
of the inner products between training vectors. The importance of this property
stems from the fact that often in applications of the support vector machine
calculating inner products between training vectors is feasible, but any explicit
representation of the vectors is prohibitively expensive.

Equation (1) can be converted into a 1 � � upper con�dence bound. With
probability of at least 1� �, the following inequality holds:

EXER < R+

s
1

l

�
log 2l

h2
+ log

1

�
+ log 2e2

�
: (2)

The upper con�dence bound (2) holds under the assumption that h is �xed
in advance. It is common practice, however, to have h random. This is, for
example, the case when the empirical error rate is pre-speci�ed (e.g. zero).

A result suitable for the case of a random hwill have the form of simultaneous
upper con�dence bounds for r = 1

h2
= 1; : : : ; l. This is obtained by simply
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replacing � by �=l in (2), obtaining a 1 � � an upper con�dence bound of the
following form:

EXER < R+

s
1

l

�
log 2l

h2
+ log

l

�
+ log2e2

�
: (3)

Since insisting on a pre-speci�ed empirical error rate may lead to a large
upper con�dence bound, di�erent procedures may be followed. One such pro-
cedure would be an adaptation of the perceptron algorithm:

� Initialization: Set a(0) 0; b(0) 0; k 1; j  0; R(0) l

� Update: If tk(a(j) � xk + b(j)) > 0 go to step Loop

� Correction: Set a(j + 1) a(j) + tkxk; b(j + 1) b(j) + tk;
j  j + 1; R(j) jfi : tk(a � xk + b) � 0gj

� Loop: If R(j) = 0 or j = l, go to step Optimization. Otherwise, set
k  k + 1(mod l) and go to step Update

� Optimization: Set

j� = arg min
0�i�j

R(i) +

s
1

l

�
i log 2l + log

l

�
+ log2e2

�
:

Set f� = fa(j�);b(j�). Stop

At the termination of the algorithm, f� is a classi�er with empirical error rate
R(j�), and which with probability of at least 1 � � has expected error rate no
greater than

R(j�) +

s
1

l

�
j� log 2l + log

l

�
+ log 2e2

�
:

Experimental results The use of variants of the perceptron algorithm
in the support vector context had been previously suggested and implemented
by Freund and Schapire ([4]). They carried out experiments using the per-
ceptron algorithm for classifying images of handwritten digits and report error
rates which are somewhat larger than those obtained with maximum margin
classi�ers.

Acknowledgments I thank Peter Bickel for pointing out the problem
which resulted in this paper, for his valuable comments and for having reviewed
the paper.

6



References

[1] Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley & Sons, Inc.,
New York.

[2] Devroye, L. (1982). Bounds for the uniform deviation of empirical measures.
J. Multivariate Anal., 12 72-79.

[3] Minsky, M. L. and Papert S. A. (1988). Perceptrons. The MIT Press, Cam-
bridge.

[4] Freund, Y. and Schapire, R. E. (1998). Large margin classi�cation using
the perceptron algorithm. COLT '98: Proceedings of the eleventh annual

conference on computational learning theory, 209-217.

Yoram Gat
University of California, Berkeley
367 Evans Hall
Berkeley, CA, 94720
E-mail: yoram@stat.berkeley.edu

7


