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Abstract

The volume of the n-dimensional polytope

�n(x) := fy 2 Rn : yi � 0 and y1 + � � �+ yi � x1 + � � �+ xi for all 1 � i � ng

for arbitrary x := (x1; : : : ; xn) with xi > 0 for all i de�nes a polynomial in variables
xi which admits a number of interpretations, in terms of empirical distributions,
plane partitions, and parking functions. We interpret the terms of this polynomial
as the volumes of chambers in two di�erent polytopal subdivisions of �n(x). The
�rst of these subdivisions generalizes to a class of polytopes called sections of
order cones. In the second subdivision, the chambers are indexed in a natural
way by rooted binary trees with n + 1 vertices, and the con�guration of these
chambers provides a representation of another polytope with many applications,
the associahedron.
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1 Introduction

The focal point of this paper is the n-dimensional polytope

�n(x) := fy 2 Rn : yi � 0 and y1 + � � �+ yi � x1 + � � �+ xi for all 1 � i � ng

for arbitrary x := (x1; : : : ; xn) with xi > 0 for all i. The n-dimensional volume

Vn(x) := Vol(�n(x))

is a homogeneous polynomial of degree n in the variables x1; : : : ; xn, which we call the
volume polynomial. This polynomial arises naturally in several di�erent settings: in
the calculation of probabilities derived from empirical distribution functions or the or-
der statistics of n independent random variables (see x2), and in the study of parking
functions and plane partitions (see x5). See also Marckert and Chassaing [15] regarding
similar connections between the theories of parking functions, empirical processes, and
rooted trees.

Trivially, V1(x) = x1. The formula

V2(x) = x1x2 +
1
2
x21

has two natural interpretations by a subdivision of �2(x) into 2 pieces of areas x1x2
and 1

2x
2
1, as shown in Figure 1 for horizontal coordinate x1 = 1 and vertical coordinate

x2 = 2.
The 5 terms of

V3(x) = x1x2x3 +
1
2
x21x2 +

1
2
x1x

2
2 +

1
2
x21x3 +

1
6
x31 (1)

can be interpreted in two ways as the volumes determined by two di�erent subdivisions
of �3(x) into 5 chambers, as in the perspective diagrams of Figure 2 where xi = i for
i = 1; 2; 3, the �rst coordinate points out of the page, the second to the right and the
third up, and the viewpoint is (5;�2; 4).

A central result of this paper is the general formula for the volume polynomial which
we present in the following theorem. Section 2 o�ers a simple probabilistic proof of this
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Figure 1: �2(x) and its two subdivisions

Figure 2: �3(x) and its two subdivisions
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theorem. We show in Section 4 how this argument can also be interpreted geometically
by a subdivision of �n(x) into a collection of n-dimensional chambers, with the volume
of each chamber corresponding to a term of the volume polynomial. This generalizes the
subdivisions of �2 and �3 shown in the right hand panels of Figures 1 and 2. Technically,
by a subdivision of �n(x) we mean a polytopal subdivision in the sense of Ziegler [39, p.
129], and we call the n-dimensional polytopes involved the chambers of the subdivision.
The subdivision of �n(x) described in Section 4 is a specialization of a result presented
in Section 3 in the general context of \sections of order cones". Section 6 shows how
the subdivisions shown in the left hand panels of Figures 1 and 2 can be generalized to
arbitrary n. The chambers of this subdivision of �n(x) are indexed in a natural way by
rooted binary plane trees with n+1 leaf vertices, and the con�guration of these chambers
provides a representation of another interesting polytope with many applications, known
as the associahedron.

Theorem 1 For each n = 1; 2; : : :,

Vn(x) =
X
k2Kn

nY
i=1

xkii
ki!

=
1

n!

X
k2Kn

�
n

k1; : : : ; kn

�
xk11 � � �xknn ; (2)

where

Kn := fk 2 Nn :

jX
i=1

ki � j for all 1 � i � n � 1 and
nX
i=1

ki = ng (3)

with N := f0; 1; 2; : : :g.

In particular, the number of nonzero coe�cients in Vn is the number of elements of
Kn, which is well known to be the nth Catalan number Cn (see e.g. [34, Exer. 6.19(w)]
for a simple variant), the �rst few of which are 1; 2; 5; 14; 42; 132; : : ::

#Kn = Cn :=
1

n+ 1

�
2n

n

�
: (4)

Formula (2) should be compared with the following alternate formula, which as in-
dicated in Section 2 can be read from a formula of Steck [36, 37] for the cumulative
distribution function of the random vector of order statistics of n independent random
variables with uniform distribution on an interval:

Vn(x) = det

241(j � i+ 1 � 0)

(j � i+ 1)!

 
iX

h=1

xh

!j�i+1
35
1�i;j�n

(5)
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where det [aij]1�i;j�n denotes the determinant of the n � n matrix with entries aij, and
1(� � �) equals 1 if � � � and 0 else. See [23] for an elementary probabilistic proof of (5). This
formula allows the expansion of Vn(x) into monomial terms to be generated for arbitary
n by just few lines of Mathematica code.

Another formula of Steck [36, 37], with an elementary proof in [23], gives the number
#(b; c) of j 2 Zn with j1 < j2 < � � � < jn and bi < ji < ci for all 1 � i � n for arbitrary
b; c 2Zn with b1 � b2 � � � � < bn and c1 � c2 � � � � < cn:

#(b; c) = det

�
1(j � i+ 1 � 0; ci � bj > 1)

�
ci � bj + j � i� 1

j � i+ 1

��
1�i;j�n

: (6)

We explain after the proof of Theorem 12 how these formulae (5) and (6) can be deduced
from a result of MacMahon on the enumeration of plane partitions.

In Section 2 we deduce the following special evaluations of the volume polynomial
from some well known results in the theory of empirical distributions: for a; b � 0

n!Vn(a; b; : : : ; b) = a(a+ nb)n�1 (7)

while for n � 3 and a; b; c � 0

n!Vn(a;

n�2 placesz }| {
b; : : : ; b ; c) = a(a+ nb)n�1 + na(c� b)(a+ (n � 1)b)n�2 (8)

and for n � 3, 1 � m � n � 2 and a; b; c � 0

n!Vn(a;

n�m�1 placesz }| {
b; : : : ; b; c;

m�1 placesz }| {
0; : : : ; 0 ) = a

mX
j=0

�
n

j

�
(c� (m+ 1 � j)b)j(a+ (n� j)b)n�j�1: (9)

As we indicate in Section 5, these formulae read from the theory of empirical distributions
have interesting combinatorial interpretations in terms of parking functions and plane
partitions.

2 Uniform Order Statistics and Empirical Distribu-

tion Functions

Let (Un;i; 1 � i � n) be the order statistics of n independent uniform (0; 1) variables
U1; U2; : : : ; Un. That is to say, Un;1 � Un;2 � � � � � Un;n are the ranked values of the
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Ui; 1 � i � n. Because the random vectors (Un;j; 1 � j � n) and (1�Un;n+1�j ; 1 � j � n)
have the same uniform distribution with constant density n! on the simplex

fu 2 Rn : 0 � u1 � � � � � un � 1g (10)

for arbitrary vectors r and s in this simplex there are the formulae

P (Un;j � sj for all 1 � j � n) = n!Vn(x1; : : : ; xn) where xj := sj � sj�1 (11)

where s0 := 0 and

P (Un;j � rj for all 1 � j � n) = n!Vn(x1; : : : ; xn) where xj := rn+2�j � rn+1�j (12)

where rn+1 := 1. Thus the probability

Pn(r; s) := P (rj � Un;j � sj for all 1 � j � n) (13)

can be evaluated in terms of Vn if either r = 0 or s = 1. See [30, x9.3] for a review
of results involving these probabilities, including various recursion formulae which are
useful for their computation.
Proof of Theorem 1. By homogeneity of Vn, it su�ces to prove the formula when
sn � 1. Fix x and consider the probability (11). For 1 � i � n + 1 let Ni denote
the number of Un;i that fall in the interval (si�1; si], with the conventions s0 = 0 and
sn+1 = 1:

Ni :=
nX
i=1

1(si�1 < Un;i � si) =
nX
i=1

1(si�1 < Ui � si): (14)

The second expression for Ni shows that the random vector (Ni; 1 � i � n+ 1) has the
multinomial distribution with parameters n and (x1; : : : ; xn; xn+1) for xi := si � si�1,
meaning that for each vector of n + 1 nonnegative integers (ki; 1 � i � n + 1) withPn+1

i=1 ki = n, we have

P (Ni = ki; 1 � i � n + 1) = n!
n+1Y
i=1

xi
ki

ki!
: (15)

By de�nition of the Un;j and (14), the events (Un;j � sj) and (�j
i=1Ni � j) are identical.

Thus
P (Un;j � sj for all 1 � j � n) = P (�j

i=1Ni � j for all 1 � j � n)

=
X
k2Kn

P (Ni = ki; 1 � i � n;Nn+1 = 0) = n!
X
k2Kn

nY
i=1

xi
ki

ki!
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by application of (15) with kn+1 = 0. Compare the result of this calculation with (11)
to obtain (2). 2

It is easily seen that the decomposition of the event (11) considered in the above
argument corresponds to a polytopal subdivision of �n(x) which for n = 2 and n = 3
is that shown in the right hand panels of Figures 1 and 2. See Section 4 for further
discussion of this subdivision of �n(x).

The following corollary of Theorem 1 spells out two more probabilistic interpretations
of Vn.

Corollary 2 Let (Ni; 1 � i � n + 1) be a random vector with multinomial distribution
with parameters n and (p1; : : : ; pn+1), as if Ni is the number of times i appears in a
sequence of n independent trials with probability pi of getting i on each trial for 1 � i �
n + 1, where

Pn+1
i=1 pi = 1. Then

P (�i
j=1Nj � i for all 1 � i � n) = n!Vn(p1; p2; : : : ; pn): (16)

and
P (�i

j=1Nj < i for all 1 � i � n) = n!Vn(pn+1; pn; : : : ; p2): (17)

Proof. The �rst formula is read from the previous proof of (2). The second is just the

�rst applied to ( bN1; : : : ; bNn+1) := (Nn+1; : : : ; N1) instead of (N1; : : : ; Nn+1), because

jX
i=1

bNi =

jX
i=1

Nn+2�i = n�

n+1�jX
i=1

Ni

so that
jX

i=1

bNi � j i�

n+1�jX
i=1

Ni < n+ 1� j;

and hence the event that
Pj

i=1
bNi � j for all 1 � j � n is identical to the event thatPm

i=1Ni < m for all 1 � m � n. 2

Let

Fn(t) :=
1

n

nX
i=1

1(Ui � t) =
1

n

nX
i=1

1(Un;i � t)
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be the usual empirical distribution function associated with the uniform random sample
U1; : : : ; Un. So Fn rises by a step of 1=n at each of the sample points. It is well known
[30] that for any for continuous increasing functions f and g, the probability

P (f(t) � Fn(t) � g(t) for all t)

equals Pn(r; s) as in (13) where r and s are easily expressed in terms of values of the
inverse functions of f and g at i=n for 0 � i � n. As an example, Daniels [3] discovered
the remarkable fact that for 0 � p � 1 the probability that the empirical distribution
function does not cross the line joining (0; 0) to (p; 1) equals 1 � p, no matter what
n = 1; 2; : : ::

P (Fn(t) � t=p for all 0 � t � 1) = 1� p (18)

which can be rewritten as

P (Un;i � ip=n for all 1 � i � n) = 1 � p: (19)

As observed in [24, Chapter X], Daniels' formula (18) can be understood without cal-
culation by an argument which gives the stronger result of T�akacs [38, Theorem 13.1]
that this formula holds with Fn replaced by F for any random right-continuous non-
decreasing step function F with cyclically exchangeable increments and F (0) = 0 and
F (1) = 1. Essentially, this is a continuous parameter form of the ballot theorem. Many
other proofs of Daniels' formula are known: see [30, x9.1] and papers cited there. The
form (19) of Daniels' formula is equivalent via (12) to

n!Vn(1� p; p=n; : : : ; p=n) = 1� p (20)

for 0 � p � 1. By homogeneity of Vn, this amounts to the identity (7) of polynomials in
two variables a and b.

Pyke [25, Lemma 1] found the following formula: for all real b and x with

0 � b � 1 and 0 � nb� x � 1; (21)

P

�
max
1�i�n

(bi� Un;i) � x

�
= (1 + x� nb)

bx=acX
j=0

�
n

j

�
(jb� x)j(1 + x� jb)n�j�1: (22)

As indicated in [30, p. 354, Exercise 2], this formula gives gives an expression for the
probability that the empirical cumulative distribution function based on a sample of n
independent uniform (0; 1) variables crosses an arbitrary straight line through the unit
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square. See [30, x9.1] for proof of an equivalent of (22), various related results, and
further references. The identity in distribution

(Un;i; 1 � i � n)
d
= (1� Un;n+1�i; 1 � i � n)

shows that the probability in (22) equals

P (Un;i � 1 + x� nb+ b(i� 1) for all 1 � i � n) (23)

which according to (11) is equal in turn to

n!Vn(x1; : : : ; xn) for xi =

8>><>>:
1 + x� nb if i = 1
b if 2 � i < n � bx=ac+ 1
(n� i+ 2)b� x if i = n� bx=ac+ 1
0 if i > n� bx=ac+ 1:

(24)

For a := 1 + x � nb and b subject to (21), that is 0 < a � 1 and 0 � b � 1, the above
discussion gives us equality of (22) and (24) with x = a+nb� 1. In particular, provided
0 � x < a there is only a term for j = 0 in (22), so the equality of (22) and (24) reduces
to (7). Similarly, for a � x < 2a there are only terms for j = 0 and j = 1 in (22). For
n � 3 this allows us to deduce (8) from (22) �rst for a; b; c > 0 with a+ (n� 2)b+ c = 1
and c < b, thence as an identity of polynomials in a; b; c. Similarly, for n � 3 and
1 � m � n� 2 when bx=ac = m we obtain the identity (9) of polynomials in a; b; c.

According to Steck [36, 37], for r; s in the simplex (10) there is the following deter-
minantal formula for Pn(r; s) as in (13):

Pn(r; s) = n! det

�
1(j � i+ 1 � 0)

(j � i+ 1)!
(si � rj)

j�i+1
+

�
1�i;j�n

: (25)

The special case of (5) when sn � 1 can be read from (11), (13) and the special case of
(25) with r = 0 and s the vector of partial sums of x. The general case of (5) follows
by homogeneity of Vn from the special case, with xi replaced by xi=� for arbitrary � �Pn

i=1 xi. See also Niederhausen [22], where probabilities of the form (25) are expressed
in terms of She�er polynomials.

3 Sections of order cones

We will obtain some results for a class of polytopes we call \sections of order cones"
and then show in the next section how these results apply directly to �n(x). Let P be
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Figure 3: A partially ordered set

a partial ordering of the set f�1; : : : ; �pg, such that if �i < �j then i < j. A linear
extension of P is an order-preserving bijection � : P ! [p] = f1; 2; : : : ; pg, so if z < z0

in P then �(z) < �(z0). We will identify � with the permutation (written as a word)
a1 � � � ap of [p] de�ned by �(�ai) = i. In particular, the identity permutation 12 � � � p
is a linear extension of P . Let L(P ) denote the set of linear extensions of P . Given
� = a1 � � � ap 2 L(P ) de�ne A� to be the set of all order-preserving maps f : P ! R

such that
f(�a1) � f(�a2) � � � � � f(�ap)
f(�aj) < f(�aj+1); if aj > aj+1:

A basic property of order-preserving maps f : P ! R is given by the following
theorem, which is equivalent to [32, Lemma 4.5.3(a)].

Theorem 3 The set of all order-preserving maps f : P ! R is a disjoint union of the
sets A� as � ranges over L(P ).

For instance, if P is given by Figure 3 then the order-preserving maps f : P ! R are
partitioned by the following seven conditions

f(�1) � f(�2) � f(�3) � f(�4) � f(�5) � f(�6)

f(�1) � f(�2) � f(�3) � f(�5) < f(�4) � f(�6)

f(�1) � f(�3) < f(�2) � f(�4) � f(�5) � f(�6)

f(�1) � f(�3) < f(�2) � f(�5) < f(�4) � f(�6)

f(�1) � f(�3) � f(�5) < f(�2) � f(�4) � f(�6)

f(�2) < f(�1) � f(�3) � f(�4) � f(�5) � f(�6)

f(�2) < f(�1) � f(�3) � f(�5) < f(�4) � f(�6)

(26)

De�ne the order cone C(P ) of the poset P to be the set of all order-preserving maps
f : P ! R�0. Thus C(P ) is a pointed polyhedral cone in the space RP . Assume now
that P has a unique maximal element 1̂, and let t1 < � � � < tn = 1̂ be a chain C in P .
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(With a little more work we could relax the assumption that C is a chain. The condition
that tn = 1̂ entails no real loss of generality since we can just adjoin a 1̂ to P and
include it in C.) Let x1; : : : ; xn be nonnegative real numbers. Set ui = x1+ � � �+ xi and
u = (u1; : : : ; un). Let Wu denote the subspace of RP de�ned by f(ti) = ui for 1 � i � n.
De�ne the order cone section CC(P;u) to be the intersection C(P )\Wu, restricted to the
coordinates P � C. (The restriction to the coordinates P � C merely deletes constant
coordinates and has no e�ect on the geometric and combinatorial structure of C(P )\Wu.)
Equivalently, CC(P;u) is the set of all order-preserving maps f : P �C ! R�0 such that
the extension of f to P de�ned by f(ti) = ui remains order-preserving. Note that
CC(P;u) is bounded since for all s 2 P �C and all f 2 CC(P;u) we have 0 � f(s) � un.
Thus CC(P;u) is a convex polytope contained inRP�C. Moreover, dimCC(P;u) = jP�Cj
provided each xi > 0 (or in certain other situations, such as when no element of P � C
is greater than t1).

There is an alternative way to view the polytope CC(P;u). Let P1; : : : ;Pn be convex
polytopes (or just convex bodies) in the same ambient spaceRm, and let x1; : : : ; xn 2 R�0.
De�ne the Minkowski sum (or more accurately, Minkowski linear combination)

x1P1 + � � �+ xnPn = fx1X1 + � � �+ xnXn : Xi 2 Pig:

ThenQ = x1P1+� � �+xnPn is a convex polytope that was �rst investigated by Minkowski
(at least for m � 3) and whose study belongs to the subject of integral geometry (e.g.,
[29]). In particular, the m-dimensional volume of Q has the form

Vol(Q) =
X

a1+���+an=m
ai2N

�
m

a1; : : : ; an

�
V (Pa1

1 ; : : : ;Pan
n )xa11 � � � xann ;

where V (Pa1
1 ; : : : ;Pan

n ) 2 R�0. These numbers are known as the mixed volumes of the
polytopes P1; : : : ;Pn and have been extensively investigated.

Now suppose that P1; : : : ;Pn are integer polytopes (i.e., their vertices have integer
coordinates) in Rm, and let x1; : : : ; xn 2 N. Given any integer polytope P � Rm, write

N(P) = #(P \Zm);

the number of integer points in P. Then we call N(x1P1 + � � � + xnPn), regarded as
a function of x1; : : : ; xn 2 N, the mixed lattice point enumerator of P1; : : : ;Pn. It was
shown by McMullen [16] (see also [17][18] for two related survey articles) that N(x1P1+
� � � + xnPn) is a polynomial in x1; : : : ; xn (with rational coe�cients) of total degree at
most m. Moreover, the terms of degree m are given by Vol(x1P1 + � � �+ xnPn). Hence
the coe�cients of the terms of degree m are nonnegative, but in general the coe�cients
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of N(x1P1 + � � � + xnPn) may be negative. In the special case n = 1, the mixed lattice
point enumerator N(xP) is called the Ehrhart polynomial of the integer polytope P and
is denoted i(P; x). An introduction to Ehrhart polynomials appears in [32, pp. 235{241].

De�ne the order polytope O(P ) of the �nite poset P to be the set of all order-
preserving maps f : P ! [0; 1] = fx 2 R : 0 � x � 1g. Thus O(P ) is a convex polytope
in RP of dimension jP j. The basic properties of order polytopes are developed in [31].

Theorem 4 Given P , C, and u as above, so ui = x1 + � � �+ xi, let

Pi = fs 2 P � C : s 6< ti�1g

(with P1 = P �C). Regard the order polytope O(Pi) as lying in RP�C by setting coordi-
nates indexed by elements of (P �C)� Pi equal to 0. Then

CC(P;u) = x1O(P1) + x2O(P2) + � � �+ xnO(Pn):

Proof. We can regard O(Pi) as the set of order preserving maps f : P � C ! [0; 1]
such that f(s) = 0 if s < ti�1. From this it is clear that every element of x1O(P1) +
x2O(P2) + � � � + xnO(Pn) is an order-preserving map g : P � C ! R�0 such that the
extension of g to P de�ned by g(ti) = x1 + � � �+ xi remains order-preserving. Hence

CC(P;u) � x1O(P1) + x2O(P2) + � � �+ xnO(Pn):

For the converse, we may assume (by deleting elements of P if necessary) that each xi > 0.
let f 2 CC(P;u). Let s 2 PC and de�ne g1(s) = f(s) and f1(s) = min(1; x�1

1 g1(s)). Set

g2(s) = g1(s)� x1f1(s) = max(g1(s)� x1; 0):

Now let f2(s) = min(1; x�1
2 g2(s)) and set

g3(s) = g2(s)� x2f2(s) = max(g2(s)� x2; 0):

Continuing in this way gives functions f1; f2; : : : ; fn, for which it can be checked that
fi 2 O(Pi) and

f = x1f1 + � � �+ xnfn;

so
CC(P;u) � x1O(P1) + x2O(P2) + � � �+ xnO(Pn):

2
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We now want to give a formula for the number of integer points in CC(P;u), which
by Theorem 4 is just the mixed lattice point enumerator of the polytopes O(Pi). Let C
be the chain t1 < � � � < tn = 1̂ as above. Given � = a1 � � � ap 2 L(P ), write hi(�) for the
height of ti in �, i.e., ti = ��1(ahi(�)). Thus 1 � h1(�) < � � � < hn(�) = p. Also write

di(�) = #fj : hi�1(�) � j < hi(�); aj > aj+1g;

where we set h0(�) = 0 and a0 = 0. Thus di(�) is the number of descents of � appearing
between hi�1(�) and hi(�). Recall (e.g., [32, x1.2]) that the number of ways to choose j
objects with repetition from a set of k objects is given by��

k

j

��
=

�
k + j � 1

j

�
=
k(k + 1) � � � (k + j � 1)

j!
: (27)

Regarding
��

k
j

��
as a polynomial in k 2Z, note that

��
k
j

��
= 0 for �j + 1 � k � 0.

Theorem 5 We have

N(CC(P;u)) =
X

�2L(P )

n�1Y
i=1

��
xi � di(�) + 1

hi(�)� hi�1(�)� 1

��
: (28)

Proof. Fix � = a1 � � � ap 2 L(P ). Write hi = hi(�) and di = di(�). Let f : P ! R be
an order-preserving map such that (a) f 2 A�, (b) f(ti) = ui = x1+ � � �+xi, and (c) the
restriction f jP�C of f to P �C satis�es f jP�C 2 CC(P;u). If we write ci = f(�ai), then
for �xed � it follows from Theorem 3 that the integer points f jP�C 2 CC(P;u), where f
satis�es (a) and (b), are given by

0 � c1 � c2 � � � � � ch1 = x1 � ch1+1 � � � � � ch2 = x1 + x2

� � � � � cp = x1 + � � �+ xn (29)

cj < cj+1 if aj > aj+1: (30)

Let �; �;m 2 N and 0 � j1 < j2 < � � � < jq � m. Elementary combinatorial reasoning
shows that the number of integer vectors (r1; : : : ; rm) satisfying

� = r0 � r1 � � � � � rm � rm+1 = � + �

rji < rji + 1 for 1 � i � q

13



is equal to
��
��q+1

m

��
. Hence the number of integer sequences satisfying (29) and (30) is

given by ��
x1 � d1 + 1

h1 � 1

����
x2 � d2 + 1

h2 � h1 � 1

��
� � �

��
xn � dn + 1

hn � hn�1 � 1

��
:

Summing over all � 2 L(P ) yields (28). 2

Example 6 Let P be given by Figure 3, and let t1 = �1, t2 = �3, and t3 = �6. The
conditions in equation (26) become in the notation of the above proof as follows:

0 � c1 = x1 � c2 � c3 = x1 + x2 � c4 � c5 � c6 = x1 + x2 + x3

0 � c1 = x1 � c2 � c3 = x1 + x2 � c4 < c5 � c6 = x1 + x2 + x3

0 � c1 = x1 � c2 = x1 + x2 < c3 � c4 � c5 � c6 = x1 + x2 + x3

0 � c1 = x1 � c2 = x1 + x2 < c3 � c4 < c5 � c6 = x1 + x2 + x3

0 � c1 = x1 � c2 = x1 + x2 � c3 < c4 � c5 � c6 = x1 + x2 + x3

0 � c1 < c2 = x1 � c3 = x1 + x2 � c4 � c5 � c6 = x1 + x2 + x3

0 � c1 < c2 = x1 � c3 = x1 + x2 � c4 < c5 � c6 = x1 + x2 + x3;

yielding

N(CC (P;u)) =

��
x2 + 1

1

����
x3 + 1

2

��
+

��
x2 + 1

1

����
x3
2

��
+

��
x3
3

��
+

��
x3 � 1

3

��
+

��
x3
3

��
+

��
x1
1

����
x3 + 1

2

��
+

��
x1
1

����
x3
2

��
:

We mentioned earlier that the terms of highest degree (here of degree jP � Cj) of
N(x1P1 + � � � + xnPn) are given by Vol(x1P1 + � � � + xnPn). Hence we obtain from
Theorem 5 the following result.

Corollary 7 The volume of CC(P;u) is given by

Vol(CC(P;u)) =
X

�2L(P )

nY
i=1

x
hi(�)�hi�1(�)
i

(hi(�)� hi�1(�))!
: (31)

Thus if m = jP � Cj then the mixed volume m! � V (O(P1)a1; : : : ;O(Pn)an) is equal to
the number of linear extensions � 2 L(P ) such that ti has height a1 + � � � + ai in �, for
1 � i � n.
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The case n = 2 of Corollary 7 (or equivalently the case n = 1 where t1 can be any
element of P , not just the top element) appears in [31, (16)].

The product of two polytopes P 2 Rp and Q 2 Rq is de�ned to be their cartesian
product P �Q 2 Rp+q. If �L(P) denotes the poset of nonempty faces of P, then �L(P �
Q) = �L(P)� �L(Q) (see Ziegler [39, pp. 9{10]). If P is a d-simplex, then �L(P) is just a
boolean algebra of rank d with the minimum element removed. Moreover, the product
of n one-dimensional simplices is combinatorially equivalent (even a�nely equivalent)
to a d-cube. If � = a1 � � � ap 2 LP , then de�ne �� to be the subset of CC(P;u) given
by equation (29). Thus when each xi > 0 we have that �� is a product of simplices of
dimensions h1 � 1, h2 � h1 � 1; : : : ; hp � h1 � 1, and

Vol(��) =
nY
i=1

x
hi(�)�hi�1(�)
i

(hi(�)� hi�1(�))!
:

Moreover, the ��'s form the chambers of a polyhedral decomposition 
C(P;u) of CC(P;u).
We regard 
C(P;u) as the set of all faces of the ��'s (including the ��'s themselves),
partially ordered by inclusion. Note that the formula (31) corresponds to an explicit
decomposition of CC(P;u) into \nice" pieces (products of simplices) whose volumes are
the terms in (31).

Our next result concerns the combinatorial structure of the decomposition of CC(P;u)
into the chambers ��. First we review some information from [31, x5] about the cone
C(P ) of all order-preserving maps f : P ! R�0. (The paper [31] actually deals with the
order complexO(P ) rather than the cone C(P ), but this does not a�ect our arguments.)
Recall (e.g., [32, p. 100]) that an order ideal I of P is a subset of P such that if t 2 I
and s < t, then s 2 I. The poset (actually a distributive lattice) of all order ideals of P ,
ordered by inclusion, is denoted J(P ). Given a chain K : ; = I0 < I1 < � � � < Ik = P in
J(P ), de�ne CK(P ) to consist of all f : P ! R�0 satisfying

0 � f(I1) � f(I2 � I1) � � � � � f(Ik � Ik�1); (32)

where f(S) denotes the common value of f at all the elements of the subset S of P .
Clearly CK(P ) is a k-dimensional cone in RP. It is not hard to see that the set 
(P ) =
fCK(P ) : K is a chain in J(P ) containing ; and Pg is a triangulation of C(P ). The
chambers (maximal faces) of 
(P ) consist of the cones

0 � f(�a1) � � � � � f(�ap);

where � = a1 � � � ap 2 L(P ). Moreover, CK(P ) is an interior face of 
(P ) (i.e., does not
lie on the boundary) if and only if each subset Ii� Ii�1 of equation (32) is an antichain,
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i.e., no two distinct elements of Ii� Ii�1 are comparable. Such chains of J(P ) are called
Loewy chains. Let 
�(P ) denote the set of interior faces of 
(P ) regarded as a partially
ordered set under inclusion. Thus 
�(P ) is isomorphic to the set of Loewy chains of
J(P ), ordered by inclusion. Similarly, we let 
�

C(P;u) denote the set of interior faces of
the polyhedral decomposition 
C(P;u).

Theorem 8 Let Wu denote the subspace of RP given by f(ti) = ui, 1 � i � n. De�ne
a map � : 
�(P ) ! 
�

C(P;u) by letting �(CK(P )) equal �K(P ) \ Wu restricted to the
coordinates P � C. Then � is an isomorphism of posets.

Proof. Let (32) de�ne an interior face CK(P ) of C(P ), so ; = I0 < I1 < � � � < Ik = P
is a Loewy chain. Thus each set Ij � Ij�1 contains at most one element of the chain
C : t1 < � � � < tn. Let ti 2 Iji � Iji�1. (In particular, jn = k since tn = 1̂.) Then
�(CK(P )) is de�ned by the equations

0 � f(I1) � f(I2 � I1) � � � � � f(Ij1 � Ij1�1) = u1
� f(Ij1+1 � Ij1) � � � � � f(Ij2 � Ij2�1) = u2 � � � � � f(Ik � Ik�1) = un:

It follows immediately that � is a bijection, and that two Loewy chains K and K 0 satisfy
K � K 0 if and only if �(CK(P )) � �(CK0(P )). Hence � is a poset isomorphism. 2

The point of Theorem 8 is that it gives a simple combinatorial description (namely,
the poset 
�(P ), which is isomorphic to the set of Loewy chains of J(P ) under inclusion)
of the geometrically de�ned poset 
�

C(P;u). Note that 
�(P ) depends only on P , not
on the chain C.

4 �n(x) as a section of an order cone

In this section we will apply the theory developed in the previous section to �n(x). Let
us say that two integer polytopes P � Rk and Q � Rm are integrally equivalent if there
is an a�ne transformation ' : Rk ! R

m whose restriction to P is a bijection ' : P ! Q,
and such that if a� denotes a�ne span, then ' restricted to Zk \ a�(P) is a bijection
' :Zk\a�(P)!Z

m\a�(Q). It follows that P and Q have the same combinatorial type
and the same \integral structure," and hence the same volume, Ehrhart polynomial, etc.

Now let i denote an i-element chain, and let Qn = 2 � n, the product of a two-
element chain with an n-element chain. We regard the elements of Qn as �1; : : : ; �2n

with �1 < � � � < �n, �n+1 < � � � < �2n, and �i < �n+i for 1 � i � n. Let ti = �n+i, and
let C be the chain t1 < � � � < tn. As in the previous section let x1; : : : ; xn � 0, and set
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ui = x1 + � � � + xi. The polytope CC(Qn;u) � RQn�C �= Rn thus by de�nition is given
by the equations

0 � f1 � � � � � fn

fi � ui; 1 � i � n:

Let yi = fi � fi�1 (with f0 = 0). Then the above equations become

yi � 0; 1 � i � n

y1 + � � �+ yi � x1 + � � �+ xn:

These are just the equations for �n(x). The transformation yi = fi � fi�1 induces
an integral equivalence between CC(Qn;u) and �n(u). Hence the results of the above
section, when specialized to P = Qn, are directly applicable to �n(x).

Theorem 4 expresses CC(P;u) as a Minkowski linear combination of order polytopes
O(Pi). In the present situation, where P = 2 � n, the poset Pi is just the chain
�i < �i+1 < � � � < �n. The order polytope O(Pi) is de�ned by the conditions

f1 = � � � = fi�1 = 0; 0 � fi � � � � � fn � 1:

This is just a simplex of dimension n� i+1 with vertices (0j ; 1n�j), i�1 � j � n, where
(0j ; 1n�j) denotes a vector of j 0's followed by n� j 1's. Switching to the y coordinates
(i.e., yi = fi � fi�1) yields the following result.

Theorem 9 Let �i be the (n� i+ 1)-dimensional simplex in Rn de�ned by

y1 = � � � = yi�1 = 0
yi � 0; : : : ; yn � 0
yi + � � � + yn � 1;

with vertices (0j�1; 1; 0n�j ) for i � j � n, and (0; 0; : : : ; 0). Then

�n(x) = x1�1 + x2�2 + � � �+ xn�n:

Consider the set L(Qn) of linear extensions of Qn. A linear extension � = a1 : : : a2n 2
L(Qn) is uniquely determined by the positions of n+1; : : : ; 2n (since 1; : : : ; nmust appear
in increasing order). If aji = n+i for 1 � i � n, then 1 � j1 < � � � < jn = 2n and ji � 2i.
The number of such sequences is just the Catalan number Cn = 1

n+1

�
2n
n

�
(see e.g. [34,

Exercise 6.19(t)], which is a minor variation). If we set ki = ji� ji�1 (with j0 = 0), then
the sequences k = (k1; : : : ; kn) are just those of equation (3). Moreover, in the linear
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Figure 4: The poset Q3 = 2� 3

extension a1 � � � a2n there are no descents to the left of n + 1, and there is exactly one
descent between n + i and n+ i+ 1 provided that ki+1 � ki � 2. (If ki+1 � ki = 1 then
there are no descents between n+ i and n+ i+ 1.) By Theorem 5 we conclude

N(�n(x)) =
X
k2Kn

��
x1 + 1

k1

�� nY
i=2

��
xi
ki

��
; (33)

where Kn is given by (3). Taking terms of highest degree yields Theorem 1. Thus
we have obtained an explicit decomposition of �n(x) into products of simplices whose
volumes are the terms in (2). (A completely di�erent such decomposition will be given in
Section 6.) Moreover, Theorem 8 gives the combinatorial structure of the interior faces
of this decomposition.

Note. Equation (33) was obtained independently by Ira Gessel (private communi-
cation) by a di�erent method.

Let us illustrate the above discussion with the case n = 3. The poset Q3 is shown
in Figure 4. The linear extensions of Q3 are given as follows, with the elements 4; 5; 6
corresponding to the chain C shown in boldface:

123456
124356
124536
142356
142536

Hence the points (y1; y2; y3) 2 �3(x) are decomposed into the sets

0 � y1 � y2 � y3 � x1
0 � y1 � y2 � x1 < y3 � x1 + x2

0 � y1 � y2 � x1 � x1 + x2 < y3 � x1 + x2 + x3
0 � y1 � x1 < y2 � y3 � x1 + x2

0 � y1 � x1 < y2 � x1 + x2 < y3 � x1 + x2 + x3;

(34)
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yielding

N(�3(x)) =

��
x1 + 1

3

��
+

��
x1 + 1

2

����
x2
1

��
+

��
x1 + 1

2

����
x3
1

��
+

��
x1 + 1

1

����
x2
2

��
+

��
x1 + 1

1

����
x2
1

����
x3
1

��
:

Theorem 8 allows us to describe the incidence relations among the faces of the decom-
position of �3(x) whose chambers are the closures of the �ve sets in equation (34). The
lattice J(Q3) of order ideals of Q3 has �ve maximal chains. This lattice is shown in
Figure 5, with elements labeled a; b; : : : ; j. The elements a; b; i; j appear in every Loewy
chain of J(Q3) and can be ignored. The simplicial complex of chains of J(P ) (with
a; b; i; j removed) is shown in Figure 6(a). The Loewy chains correspond to the interior
faces, of which �ve have dimension 2, �ve have dimension 1, and one has dimension
0. Figure 6 shows the \dual complex" of the interior faces. This gives the incidence
relations among the �ve chambers of the decomposition of �3(x) into �ve products of
simplices obtained from 
�

C(P;u) by the change of coordinates yi = fi � fi�1 discussed
above. For a picture, see the second subdivision of �3(x) in Figure 2.

We mentioned earlier that in general the coe�cients of the mixed lattice point enu-
merator N(x1P1 + � � � + xnPn) may be negative. The polytope �n(x) is an exception,
however, and in fact satis�es a slightly stronger property.

Corollary 10 The polynomial N(�n(x1 � 1; x2; : : : ; xn)) has nonnegative coe�cients.
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Figure 6: The order complex of J(Q3) with a; b; i; j omitted, and the interior face dual
complex

Proof. Immediate from equation (33), since the polynomial
��
t
i

��
has nonnegative coef-

�cients. 2

Note. One can also think of CC(Qn;u) as the \polytope of fractional shapes con-
tained in the shape (un; un�1; : : : ; u1)." In general, let � = (�1; : : : ; �n) be a partition,
i.e., �i 2 N and �1 � � � � � �n, which we also call a shape. We say that a shape
� = (�1; : : : ; �n) is contained in � if �i � �i for all i. (This partial ordering on shapes
de�nes Young's lattice [32, Exer. 3.63]. Additional properties of Young's lattice may be
found in various places in [34].) If we relax the conditions that the �i's are integers but
only require them to be real (with �1 � � � � � �n � 0), then we can think of � as a
\fractional shape." Thus CC(Qn;u) just consists of the fractional shapes contained in
the shape (un; un�1; : : : ; u1).

5 Connections with parking functions and plane par-

titions.

There are two additional interpretations of the volume and lattice point enumerator of
�n(x) that we wish to discuss. The �rst concerns the subject of parking functions,
originally de�ned by Konheim and Weiss [9]. A parking function of length n may be
de�ned as a sequence (a1; : : : ; an) of positive integers whose increasing rearrangement
b1 � � � � � bn satis�es bi � i. For the reason for the terminology \parking function,"
as well as additional results and references, see [34, Exercise 5.49]. A basic result of
Konheim and Weiss is that the number of parking functions of length n is (n + 1)n�1.

Write park(n) for the set of all parking functions of length n. For x = (x1; : : : ; xn) 2
N
n de�ne an x-parking function to be a sequence (a1; : : : ; an) of positive integers whose
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decreasing rearrangement b1 � � � � � bn satis�es bi � x1 + � � � + xi. Thus an ordinary
parking function corresponds to the case x = (1; 1; : : : ; 1). Let Pn(x) denote the number
of x-parking functions. Note that Pn(x) = 0 if x1 = 0.

Theorem 11

Pn(x) =
X

(a1;:::;an)2park(n)

xa1 � � � xan = n!Vn(x) (35)

Proof. Given (a1; : : : ; an) 2 park(n), replace each i by an integer in the set fx1 +
� � �+ xi�1 + 1; : : : ; x1 + � � �+ xig. The number of ways to do this is given by the middle
expression in (35), and every x-parking function is obtained exactly once in this way.
This yields the �rst equality. The second equality follows from the expansion (2) of
Vn(x), since a parking function is obtained by choosing k 2 Kn, forming a sequence with
ki i's, and permuting its elements in

�
n

k1;:::;kn

�
ways. 2

Take xi = 1 for all i in (35) and apply (7) for a = b = 1 to recover the result of [9]
that the number of parking functions of length n is (n+1)n�1. We note that formula (7)
can be given a simple combinatorial proof generalizing the proof of Pollak [5, p. 13] for
the case of ordinary parking functions; see [33, p. 10] for the case a = b. We note that
Theorem 11 also gives enumerative interpretations of formulae (8) and (9). Presumably
these formulae too could be derived combinatorially in the setting of parking functions,
but we will not attempt that here.

An interesting special case of Theorem 11 arises when we take xi = qi�1 for some
q > 0. In this case we have

n!Vn(1; q; q
2; : : : ; qn�1) =

X
(a1;:::;an)2park(n)

qa1+���+an�n:

It follows from a result of Kreweras [11] (see also [34, Exer. 5.49(c)]) that also

n!Vn(1; q; q
2; : : : ; qn�1) = q(

n
2)In(1=q);

where In(q) is the inversion enumerator of labeled trees.
We can generalize equation (7) by giving a simple product formula for the Ehrhart

polynomial i(�n(x); r) of �n(x) in the case x = (a; b; b; : : : ; b) (see Theorem 13). First
we need to discuss another way to interpret N(�n(x)).

Let � = (�1; : : : ; �`) be a partition, so �i 2 N and �1 � � � � � �` � 0. A plane partition
of shape � and largest part at most m is an array � = (�ij) of integers 1 � �ij � m,
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de�ned for 1 � i � ` and 1 � j � �i, which is weakly decreasing in rows and columns.
For instance, the plane partitions of shape (2; 1) and largest part at most 2 are given by

11 21 22 21 22
1 1 1 2 2 ;

where we only display the positive parts �ij > 0. Basic information on plane partitions
may be found in [34, xx7.20{7.22]. If x = (x1; : : : ; xn) 2 Nn then set

u = (u1; : : : ; un) = (x1; x1 + x2; � � � ; x1 + � � �+ xn)

and write ~u = (un; : : : ; u1), so that ~u is a partition.

Theorem 12 Let x 2 Nn. Then N(�n(x)) is equal to the number of plane partitions of
shape ~u and largest part at most 2.

Proof. If (y1; : : : ; yn) 2 �n(x) \Zn, then de�ne the plane partition � of shape u to
have y1+ � � �+ yi 2's in row n+ 1� i and the remaining entries equal to 1. This sets up
a bijection between the integer points in �n(x) and the plane partitions of shape ~u and
largest part at most 2. 2

Note. Because of the connection given by Theorem 12 between integer points in
�n(x) and plane partitions, a number of results concerning �n(x) appear already (some-
times implicitly) in the plane partition literature. In particular, consider the determi-
nantal formula (6) of Steck. Let j0i = ji � i, b0i = bi � i + 1, and c0i = ci � i � 1. We
are then counting sequences j01 � j02 � � � � � j0n satisfying b0i � j0i � c0i. If b0i > b0i+1

then we can replace b0i+1 by b0i without a�ecting the sequences j01 � � � � � j0n being
counted. Similarly if c0i > c0i+1 we can replace c0i with c

0
i+1. Moreover, clearly the number

of sequences being counted is not changed by adding a �xed integer k to each b0i and
c0i. Hence it costs nothing to assume that 0 � b01 � � � � � b0n and 0 � c01 � � � � � c0n
(with b0i � c0i). Let � = (c0n; : : : ; c

0
1) and � = (b0n; : : : ; b

0
1). Then � and � are partitions,

and � � � in the sense of containment of diagrams (see [34, x7.2]). Let Y denote the
poset (actually a distributive lattice) of all partitions of all nonnegative integers, ordered
by diagram containment. The lattice Y is just Young's lattice mentioned above. In
terms of Young's lattice, we see that that the number #(b; c) of equation (6) is just the
number of elements (j0n; : : : ; j

0
1) in the interval [�; �] of Y . Alternatively, #(b; c) is the

number of multichains � = �0 � �1 � �2 = � of length two in the interval [�; �] of
Y . Kreweras [10, x2.3.7] gives a determinantal formula for the number of multichains of
any �xed length k in the interval [�; �]. (See also [32, Exer. 3.63].) Such a multichain is
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easily seen to be equivalent to a plane partition of shape �=� with largest part at most
k. When specialized to k = 2, Kreweras' formula becomes precisely our equation (25).
Moreover, the special case � = ; of Kreweras' formula was already known to MacMahon
(put x = 1 in the implied formula for GF (p1p2 � � � pm;n) in [14, p. 243]). By Theorem 12
the number of elements of the interval [;; �] is just N(�n(x)), where � is the partition ~u
of Theorem 12. Hence in some sense MacMahon already knew a determinantal formula
for N(�n(x)) and thus also (by taking leading coe�cients of N(�n(rx)) regarded as a
polynomial in r) for the volume Vn(x).

Theorem 13 Let a; b 2 N and x = (a; b; b; : : : ; b) 2 Nn. Then the Ehrhart polynomial
i(�n(x)) is given by

i(�n(x); r) =
1

n!
(ra+ 1)(r(a + nb) + 2)(r(a+ nb) + 3) � � � (r(a+ nb) + n): (36)

In particular, the number N(�n(x)) of integer points in �n(x) satis�es

N(�n(x)) =
1

n!
(a+ 1)(a+ nb+ 2)(a+ nb+ 3) � � � (a+ nb+ n):

First proof. The theorem is simply a restatement of a standard result in the subject
of ballot problems and lattice path enumeration, going back at least to Lyness [13], and
with many proofs. A good discussion appears in [19, xx1.4{1.6]. See also [20, x1.3,
Lemma 3B].

Second proof. We give a proof di�erent from the proofs alluded to above, because
it has the virtue of generalizing to give Theorem 14 below. The polytope r�n(x) is
just �n(rx). Hence by Theorem 12 i(�n(x); r) is just the number of plane partitions
of shape ru and largest part at most 2. Identify the partition u with its diagram,
consisting of all pairs (i; j) with 1 � i � n and 1 � j � ~ui = a + (n � i)b. De�ne the
content c(s) of s = (i; j) 2 ~u by c(s) = j � i (see [34, p. 373]). An explicit formula for
the number of plane partitions of shape u and any bound on the largest part was �rst
obtained by Proctor and is discussed in [34, Exer. 7.101] (as well as a generalization due
to Krattenthaler). Proctor's formula for the case at hand gives

i(�n(x); r) =
Y

s=(i;j)2r~u
n+c(s)�r~ui

1 + n+ c(s)

n+ c(s)

Y
s=(i;j)2r~u
n+c(s)>r~ui

rb+ 1 + n + c(s)

n+ c(s)
:

When all the factors of the above products are written out, there is considerable cancel-
lation. The only denominator factors that survive are those indexed by (i; 1), 1 � i � n,
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yielding the denominator n!. The surviving numerator factors are ra + 1 (indexed by
(n; ra)) and r(a+ nb) + k, 2 � k � n (indexed by (1; r(a + (n� 1)b) � n+ k)), the last
n � 1 squares in the �rst row of ~u). 2

Note from (36) that the leading coe�cient of i(�n(x); r) (and hence the volume Vn(x)
of �n(x)) is given by a(a+ nb)n�1, agreeing with equation (7).

There is a straightforward generalization of Theorems 12 and 13 involving plane
partitions of shape u with largest part at most m+1 (instead of just m+1 = 2). Given
x 2 Nn as before, let �m

n (x) � R
nm be the polytope of all n�m matrices (yij) satisfying

yij � 0 and
vi1 � vi2 � � � � � vim � x1 + � � �+ xi;

for 1 � i � n, where
vij = yi1 + yi2 + � � �+ yij:

Thus �1
n(x) = �n(x). Then the proof of Theorem 12 carries over mutatis mutandis

to show that N(�m
n (x)) is the number of plane partitions of shape ~u and largest part

at most m + 1. The result of Proctor mentioned above gives an explicit formula for
this number when x = (a; b; b; : : : ; b). Replacing x by rx and computing the leading
coe�cient of the resulting polynomial in r gives a formula for the volume V m

n (x) of
�m
n (x). This computation is similar to that in the proof of Theorem 13, though the

details are more complicated. We merely state the result here without proof. Is there
a direct combinatorial proof similar to the proofs of Theorem 13 (the case m = 1 of
Theorem 14) appearing in [19] and [20]?

Theorem 14 Let x = (a; b; b; : : : ; b) 2 Nn. Then

(nm)!V m
n (x) = 1! 2! � � �m! f hm

ni(n+m)n�1(n+m� 1)n�2 � � � (n+ 1)n�m;

where f hm
ni denotes the number of standard Young tableaux of shape hmni = (m;m; : : : ;m)

(n m's in all), given explicitly by the \hook-length formula" [34, Cor. 7.21.6].

There is a further generalization of the polytope �n(x) which deserves mention. Let
x = (x1; : : : ; xn) 2 Rn

�0 and z = (z1; : : : ; zn) 2 Rn
�0, with vi = z1+� � �+zi � x1+� � �+xi =

ui. Let �n(z;x) be the polytope of all points (y1; : : : ; yn) 2 R
n satisfying

yi � 0; for 1 � i � n

vi � y1 + � � �+ yi � ui:
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Thus �n(x) = �n(0;x). Much of the theory of �n(x) extends to �n(z;x). Rather than
enter into the details here, we simply illustrate with the case n = 2 how the polyhedral
decomposition of �n(x) with chambers �� extends to �n(z;x). In general, the chambers
�� of a decomposition of �n(z;x) into a product of simplices will be obtained from
linear extensions � = a1a2 � � � a3n of 3 � n. Let the elements of 3 � n be �1; : : : ; �3n

with �1 < � � � < �n, �n+1 < � � � < �2n, �2n+1 < � � � < �3n, and �i < �n+i < �2n+i for
1 � i � n. Then � corresponds to the chamber

0 � f(�1) � � � � � f(�3n); (37)

where

f(�i) =

8<:
vi; if 1 � i � n

y1 + � � �+ yi�n; if n+ 1 � i � 2n
ui�2n; if 2n+ 1 � i � 3n:

There is one important di�erence between this decomposition and the analogous one for
�n(x), namely, in the present case some of the chambers �� will actually be empty and
should be ignored. (Of course �� isn't really a chamber if it's empty.) The question
of which are empty will depend on the relative order of the numbers u1; : : : ; un and
v1; : : : ; vn. In the \generic" case when each xi > 0 and zi > 0 there are Cn (a Catalan
number) relative orderings of the ui's and vi's (since u1 < � � � < un, v1 < � � � < vn,
and vi � ui). More generally, we can change some of the � signs in equation (37) to <
signs, in accordance with the descents of the corresponding linear extension �, so that
we obtain a decomposition of �n(z;x) into pairwise disjoint cells from which we can
compute the lattice point enumerator N(�n(z;x)).

Let us illustrate the above discussion in the case n = 2. The linear extensions of
3� 2, using the labeling just described, are given by

1 2 3 4 5 6
1 2 3 5 4 6
1 3 2 4 5 6
1 3 2 5 4 6
1 3 5 2 4 6

:

Thus the following sets (possibly empty) give a decomposition of �n(z;x) into pairwise
disjoint cells:

0 � v1 � v2 � y1 � y1 + y2 � u1 � u2
0 � v1 � v2 � y1 � u1 < y1 + y2 � u2
0 � v1 � y1 < v2 � y1 + y2 � u1 � u2
0 � v1 � y1 < v2 � u1 < y1 + y2 � u2
0 � v1 � y1 � u1 < v2 � y1 + y2 � u2:
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The �rst four cells are nonempty provided v2 � u1, while the last cell is nonempty
provided v2 > u1. Hence we read o� that

N(�n(z;x)) =

�
A; x1 � z1 + z2��

x1�z1+1
1

�� ��
x1+x2�z1�z2+1

1

��
; x1 < z1 + z2;

where

A =

��
x1 � z1 � z2 + 1

2

��
+

��
x1 � z1 � z2 + 1

1

����
x2
1

��
+

��
z2
1

����
x1 � z1 � z2 + 1

1

��
+

��
z2
1

����
x2
1

��
:

6 A subdivision of �n(x) connected with the associ-

ahedron

In this section we describe a polyhedral subdivison (�̂n(k;x); k 2 Kn) of �n(x) di�erent
from the subdivision discussed in Section 3. This subdivision is closely related to a
convex polytope known as the associahedron, de�ned as follows. Let En+2 be a convex
(n + 2)-gon. A polygonal decomposition of En+2 consists of a set of diagonals of En+2

that do not cross in their interiors. Hence the maximal polygonal decompositions are
the triangulations, and contain exactly n� 1 diagonals. Let dec(En+2) denote the poset
of all polygonal decompositions of En+2, ordered by inclusion, with a top element 1̂
adjoined. It was �rst shown by C. W. Lee [12] and M. Haiman [7] that dec(En+2) is the
face lattice of an (n � 1)-dimensional convex polytope An, known as the associahedron
or Stashe� polytope. (Earlier Stashe� [35] de�ned the dual of the associahedron as a
simplicial complex and constructed a geometric realization as a convex body but not as
a polytope.) A vast generalization is discussed in [6, Ch. 7]. For some further information
see [34, Exer. 6.33].

We next give a somewhat di�erent description of the associahedron (or more precisely,
of its face lattice) that is most convenient for our purposes. A fan in Rm is a (�nite)
collection F of pointed polyhedral cones (with vertices at the origin) satisfying the two
conditions:

� If C; C0 2 F then C \C0 is a face (possibly consisting of just the origin) of C and C0.

� If C 2 F and C0 is a face of C, then C 0 2 F .

A fan F is called complete if
S

C2F = Rm.
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We will de�ne a fan whose chambers are indexed by plane binary trees with n internal
vertices. The de�nition of a plane tree may be found for instance in [32, Appendix]. The
key point is that the subtrees of any vertex are linearly ordered T1; : : : ; Tk, indicated
in drawing the tree (with the root on the bottom) by placing the subtrees in the order
T1; : : : ; Tk from left to right. A binary plane tree is a plane tree for which each vertex
v has zero or two subtrees. In the latter case we call the vertex an internal vertex.
Otherwise v is a leaf or endpoint. We will always regard plane trees as being drawn with
the root at the bottom.

Let T be a plane binary tree with n internal vertices (so n+ 1 leaves). The number
of such trees is the Catalan number Cn [34, 6.19(d)]. Do a depth-�rst search through T
(as de�ned e.g. in [34, pp. 33{34]) and label the internal vertices 1; 2; : : : ; n in the order
they are �rst encountered from above. Equivalently, every internal vertex is greater than
those in its left subtree, and smaller than those in its right subtree. We call this labeling
of the internal vertices of T the binary search labeling. Figure 7 gives an example when
n = 4. Let y1; : : : ; yn�1 denote the coordinates in Rn�1. If the internal vertex i of T
(using the labeling just de�ned) is covered by j and i < j, then associate with the pair
(i; j) the inequality

yi+1 + yi+2 + � � �+ yj � 0; (38)

while if i > j then associate with (i; j) the inequality

yj+1 + yj+2 + � � � + yi � 0: (39)

We get a system of n � 1 homogeneous linear inequalities that de�ne a simplicial cone
CT in Rn�1. For example, the inequalities corresponding to the tree of Figure 7 are given
by

y2 � 0

y2 + y3 � 0

y4 � 0:

It is not hard to check that these Cn cones, as T ranges over all plane binary trees
with n internal vertices, form the chambers of a complete fan Fn in Rn�1. For instance,
Figure 8 shows the fan F3.

Theorem 15 The face poset P (Fn) of the fan Fn, with a top element 1̂ adjoined, is
isomorphic to the dual dec(En+2)� of the face lattice of the associahedron An+2.

Proof. The face lattice of a complete fan is completely determined by the incidences
between the chambers and extreme rays. (See [32, Exer. 3.12] for a stronger statement.)
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Figure 7: A plane tree with the binary search labeling of its internal vertices

The chambers of Fn have already been described in terms of plane binary trees. There is
a well-known bijection between plane binary trees on 2n + 1 vertices and triangulations
of a convex (n+2)-gon En+2. This bijection is explained for instance in [34, Cor. 6.2.3].
In particular, to de�ne the bijection we �rst need to �x an edge " of En+2, called the root
edge. We hope that Figure 9 will make this bijection clear; see the previous reference
for further details. Thus we have a bijection between the chambers C of Fn and the
triangulations of the convex (n+ 2)-gon En+2.

We now describe the extreme rays R of Fn. We can describe R uniquely by specifying
one nonzero point on R. We will index these points by the diagonals D of a convex
(n+ 2)-gon En+2. Label the vertices of En+2 as 0; 1; : : : ; n+ 1 clockwise beginning with
one vertex of " and ending with the other. Let ei denote the unit coordinate vector
corresponding to the coordinate yi in the space Rn�1 with coordinates y2; : : : ; yn. Given
the diagonal D between vertices i < j of En+2, associate a point pD 2 Rn�1 as follows:

pD =

8<:
ej; if i = 0

�ei+1; if j = n+ 1
ej � ei+1; otherwise:

We claim that the ray f�pD : � 2 R�0g is the extreme ray of Fn that is the intersection
of all the chambers of Fn corresponding to the triangulations of En+2 that contain D.
From this claim the proof of the theorem follows (using the fact that Fn is a simplicial
fan, i.e., every face is a simplicial cone).

Consider �rst the diagonal D with vertices 0 and j. Let � be a triangulation of En+2

containing D. The internal vertices of T corresponding to the regions (triangles) of the
triangulation �. Because of our procedure for labeling the internal vertices of a plane
binary tree T , it follows that the labels of the internal vertices \above" D (i.e., on the
opposite side of D as the root edge ") will be 1; 2; : : : ; j � 1, while the internal vertices
below D will be labeled j; j + 1; : : : ; n. (See Figure 9 for an example with n = 8. The
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Figure 9: A triangulated 10-gon and the corresponding plane binary tree T

diagonal D in question is labeled D1 and connects vertex 0 to vertex j = 6. The plane
binary tree T is drawn with dashed lines.) Consider the internal edges of T that give rise
(via equations (38) and (39)) to chambers whose equations involve yj. No such edge can
appear below D, since j is the least vertex label appearing below D. Similarly no such
edge can appear above D, since only vertices less than j appear above D. Hence such an
edge must cross D. The top (farthest from the root) vertex a of this edge is < j, while the
bottom vertex b is � j. Hence the chamber equation is given by ya+1+ya+2+� � �+yb � 0,
where a < j and b � j. Hence the point ej lies on this chamber, and so the ray through
ej is the intersection of the chambers corresponding to triangulations containing D.

A completely analogous argument holds for the diagonal D with vertices i and n+1.
Finally suppose that D has vertices i; j where 0 < i < j < n+1. The internal vertices

30



of T appearing above D will be labeled i+1; i+2; : : : ; j � 1, while the remaining vertex
labels appear below D. (See Figure 9, where the diagonal D in question is labeled D2,
and where i = 2 and j = 6.) Consider an internal edge of T whose vertex labels are a
and b where a � i and i+ 1 � b < j. These are precisely the edges whose corresponding
chamber equation (either ya+1 + ya+2 + � � � + yb � 0 or ya+1 + ya+2 + � � � + yb � 0)
involves yi+1 but not yj. Since b appears above D and a below, the chamber equation is
in fact ya+1 + ya+2 + � � �+ yb � 0. In particular, the point ej � ei+1 lies on the chamber.
Similarly, consider an internal edge of T whose labels are a and b where i+1 � a < j and
j � b. These are precisely the edges whose corresponding chamber equation (again either
ya+1 + ya+2+ � � �+ yb � 0 or ya+1 + ya+2+ � � �+ yb � 0) involves yj but not yi+1. Since b
appears below D and a above, the chamber equation is in fact ya+1+ ya+2+ � � �+ yb � 0.
In particular, the point ej � ei+1 lies on the chamber. Every other chamber equation
either involves neither yi+1 nor yj, or else involves both (with a coe�cient 1). Hence
ei+1 � ej lies on every chamber corresponding to a triangulation containing D, so the
intersection of these chambers is the ray containing ej � ei+1. This completes the proof
of the claim, and with it the theorem. 2

The connection between �n(x) and the fan Fn is provided by the concept of a plane
tree with edge lengths. If we associate with each edge e of the plane tree T a positive
real number `(e), then we call the pair (T; `) a plane tree with edge lengths. Such a tree
can be drawn by letting the length of each edge e be `(e).

Now �x a real number s > 0, which will be the sum of the edge lengths of a plane
tree. Let x = (x1; : : : ; xn) 2 Rn

+ with
P

xi < s. Let y = (y1; : : : ; yn) 2 Rn
+ with

y1 + � � � + yi � x1 + � � � + xi for 1 � i � n. We associate with the pair (x;y) a plane
tree with edge lengths '(x;y) = ( �T ; `) as follows. Start at the root and traverse the tree
in preorder (or depth-�rst order) [34, pp. 33{34]. First go up a distance x1, then down
a distance y1, then up a distance x2, then down a distance y2, etc. After going down
a distance yn, complete the tree by going up a distance xn+1 = s � x1 � � � � � xn and
then down a distance yn+1 = s � y1 � � � � � yn. Generically we obtain a planted plane
binary tree with edge lengths, i.e, the root has degree one (or one child), and all other
internal vertices have degree two. Figure 10 shows the planted plane binary tree with
edge lengths associated with s = 16 and x = (6; 2; 7), y = (1; 4; 3). If �T is a planted
plane tree, then we let T denote the tree obtained by \unplanting" (uprooting?) �T , i.e.,
remove from �T the root and its unique incident edge e (letting the other vertex of e
become the root of T ).

Fix the sequence x = (x1; : : : ; xn) with
P

xi < s. For a plane binary tree T (without
edge lengths) with n internal vertices (and hence n + 1 leaves), de�ne �T = �T (x) to
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Figure 10: A planted plane binary tree with edge lengths

be the set of all y = (y1; : : : ; yn) 2 Rn
+ such that '(x;y) = ( �T ; `) for some `. Let Tn

denote the set of plane binary trees with n internal vertices. Let T 2 Tn with the binary
search labeling of its internal vertices as de�ned earlier in this section. We now de�ne a
sequence k(T ) = (k1; : : : ; kn) 2 Nn as follows: (1) ki = 0 if the left child of vertex i is an
internal vertex. (2) If the left child of vertex i is an endpoint, then let ki be the largest
integer r for which there is a chain i = j1 < j2 < � � � < jr of internal vertices such that
jh is a left child of jh+1 for 1 � h � r� 1. For instance, if T is the tree of Figure 11 then
k(T ) = (2; 3; 0; 1; 0; 1; 0; 2; 0).

Lemma 16 The map T 7! k(T ) is a bijection from Tn to the set Kn de�ned by equation
(3).

Proof. Let k(T ) = (k1; : : : ; kn). The chains i = j1 < j2 < � � � < jr described above
partition the internal vertices of T , so

P
ki = n. Since kj2 = � � � = kjr = 0, it follows

that kh+1 + kh+2 + � � � + kn � n � h for 0 � h � n � 1. Hence k1 + � � � + kh � h, so
k(T ) 2 Kn.

It remains to show that given k = (k1; : : : ; kn) 2 Kn, there is a unique T 2 Tn such
that k(T ) = k. We can construct the subtree of internal vertices of T as follows. Let T1
be de�ned by starting at the root and making k1�1 steps to the left. (Each step is from
a vertex to an adjacent vertex.) Hence we have k1 vertices in all, and we are located at
the vertex furthest from the root. Suppose that Ti has been constructed for i < n, and

32



1

5

3

2 4

8

9

6

7

Figure 11: A plane binary tree T with k(T ) = (2; 3; 0; 1; 0; 1; 0; 2; 0)

that we are located at vertex vi. If ki+1 > 0, then move one step to the right and ki+1�1
steps to the left, yielding the tree Ti+1 and the vertex vi+1 at which we are located. If
ki+1 = 0, then move down the tree (toward the root) until we have traversed exactly one
edge in a southeast direction. This gives the tree Ti+1 = Ti and a new present location
vi+1. Let T = Tn. It is easily checked that the de�nition of Kn ensures that T is de�ned
(and, though not really needed here, that vn is the root vertex) and k(T ) = k. Since
there are Cn =

1
n+1

�
2n
n

�
plane binary trees with n internal vertices and since #Kn = Cn,

it follows that the map T 7! k(T ) is a bijection as claimed. (It is also easy to see directly
that T is unique, i.e., if k(T ) = k(T 0) then T = T 0.) 2

Now given t 2 R+, let �k(t) denote the k-dimensional simplex of points (t1; : : : ; tk)
satisfying 0 � t1 � t2 � � � � � tk � t. Thus

Vol(�k(t)) =
tk

k!
:

By convention �0(t) is just a point, with Vol(�0(t)) = 1. We can now state the main
result of this section.
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Theorem 17 (a) The sets �T (x), for T 2 Tn, form the maximal faces (chambers) of a
polyhedral decomposition �n of �n(x).

(b) Let k(T ) = (k1; : : : ; kn), where T 2 Tn. Then �T (x) is integrally equivalent
(as de�ned at the beginning of Section 4) to the product �k1(x1) � � � � � �kn(xn), so in
particular

Vol(�T (x)) =
xk11
k1!

� � �
xknn
kn!

:

(c) The interior face complex ��n of �n is combinatorially equivalent to the dual as-
sociahedron, i.e., the set of interior faces of �n, ordered by inclusion, in isomorphic to
the face lattice of the dual associahedron.

Proof of (a). The construction of the plane tree with edge lengths '(x;y) = ( �T; `) is
de�ned if and only if y 2 �n(x). Since generically '(x;y) is a planted plane binary tree,
it follows that the sets �T (x), T 2 Tn, form the chambers of a polyhedral decomposition
of �n(x). 2

Proof of (b). Let '(x;y) = ( �T; `) as above. Call a vertex v of �T a left leaf if it is
a leaf (endpoint) and is the left child of its parent. Similarly a right edge is an edge
that slants to the right as we move away from the root. Let P (v) be the path from
the left leaf v toward the root that terminates after the �rst right edge is traversed
(or terminates at the root if there is no such right edge). Let c(v) be the label of the
(internal) vertex covered by v. Then the length of the path P (v) is just xc(v). If c(v) = i,
then exactly ki of the paths P (u) end at the path P (v). Suppose that these paths are
P (u1); : : : ; P (uki) where u1 < � � � < uki. Then the paths P (uj) intersect the path P (v)
in the order P (u1); : : : ; P (uki) from the bottom up. Hence for each i with ki > 0, we
can independently place on a path of length xi the ki points that form the bottoms of
the paths P (uj). The placement of these points de�nes a point in a simplex integrally
equivalent to �ki(xi), so �T (x) is integrally equivalent to �k1(x1) � � � � � �kn(xn) as
claimed. 2

Example 18 Let �T be the planted plane binary tree of Figure 12. On the path of length
x1 from the root r to v1 we can place vertices 1 and 3 in bijection with the points of the
simplex 0 � t3 � t1 � x1 of volume x21=2. On the path of length x2 from 1 to v2 we
can place vertex 2 in bijection with the points of the simplex 0 � t2 � x2, of volume x2.
Finally on the path of length x4 from 3 to v3 we can place vertices 4; 5; 6 in bijection with
the points of the simplex 0 � t6 � t5 � t4 � x4, of volume x34=6. Hence �T is integrally
equivalent to the product �2(x1)� �1(x2)� �3(x4), of volume x21x2x

3
4=2! 1! 3!.
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Figure 12: A planted plane binary tree

It is easy to make the integral equivalence between �T and �k1(x1) � � � � � �kn(xn)
completely explicit. For instance, in the above example t3 is the distance between vertices
r and 3, so

t3 = x1 � y1 + x2 � y2 + x3 � y3:

Similarly,
t1 = x1 � y1:

Now t2 is the distance between vertices 1 and 2, so

t2 = x2 � y2:

In the same way we obtain

t6 = x4 � yy + x5 � y5 + x6 � y6

t5 = x4 � y4 + x5 � y5

t4 = x4 � y4:

Proof of (c). Let '(x;y) = ( �T; `). Then the height (or distance from the root) of
vertex i is just x1 + � � � + xi � y1 � � � � � yi = ui � vi. Hence if vertex i is covered by j
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then ui � vi < uj � vj. If i < j we get the equation

(yi+1 � xi+1) + � � �+ (yj � xj) � 0; (40)

while if i > j we get
(yj+1 � xj+1) + � � � + (yi � xi) � 0: (41)

Thus these equations, together with yi � 0 and y1 + � � � + yi � x1 + � � �+ xi, determine
��T .

Note that if we replace each yk by yk � xk in the inequalities (38) and (39) de�ning
the chambers of the fan Fn of Theorem 15, then we obtain precisely the inequalities (40)
and (41). From this we conclude the following. Given x = (x1; : : : ; xn) 2 Rn

�0, translate

the fan Fn so that the center of the translated fan eFn is at (x2; : : : ; xn). Add a new y1
axis and lift eFn into Rn, giving a \nonpointed fan" (i.e., a decomposition of Rn satisfying

the de�nition of a fan except that the cones are nonpointed) which we denote by eFn�R.

(Thus each cone C 2 eFn lifts to the nonpointed cone C � R.) Finally intersect each

chamber (maximal cone) C �R of eFn�R with the polytope �n(x). Then the polytopes
C \�n(x) are just the chambers �̂(k;x) of the polyhedral decomposition Pn of �n(x).
Moreover, the interior faces of this decomposition are just the intersections of arbitrary
cones in eFn�R with �n(x). Hence the interior face poset of Pn is isomorphic to the face
poset of the fan Fn, which by Theorem 15 is the face lattice of the dual associahedron.
2

Notes.

The decomposition of �n(x) given by Theorem 15 is fundamentally di�erent (i.e.,
has a di�erent combinatorial type) than that of Theorem 8. For instance, when n = 3
Figure 6 shows that the interior face dual complex described by Theorem 8 is not a
decomposition of a convex polytope, unlike the situation in Theorem 15. In that case
when n = 3 the interior face dual complex is just a solid pentagon. The two subdivisions
fo �3(x) are shown explicitly in Figure 2.

We are grateful to Victor Reiner for pointing out to us that Theorem 15 is related to
the construction of the associahedron appearing in the papers [12] and [26], and that a
Bn-analogue of this construction appears in [1, x3]. Note that the proof of Theorem 15
shows that the extreme rays of the fan Fn are the vectors ei and �ei for 1 � i � n� 1,
and ei � ej for 1 � i < j � n � 1. As pointed out to us by Reiner, it follows from [12]
that we can rescale these vectors (i.e., multiply them by suitable positive real numbers)
so that their convex hull is combinatorially equivalent (as de�ned in the next section) to
the dual associahedron A�

n+2.
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Some of the results of this section can be interpreted probabilistically in terms of
the kind of random plane tree with edge lengths derived from a Brownian excursion by
Neveu and Pitman [21]. It was in fact by consideration of such random trees that we were
�rst led to the formula (2) for the volume polynomial, with the geometric interpretation
provided by Theorem 17.

7 The face structure of �n(x)

In this section we determine the structure of the faces of �n(x), i.e., a description of
the lattice of faces of �n(x) (ordered by inclusion). This description will depend on the
\degeneracy" of �n(x), i.e., for which i we have xi = 0. Thus let ui = x1 + � � � + xi as
usual, and de�ne integers 1 � a1 < a2 < � � � < ak = n by

u1 = � � � = ua1 < ua1+1 = � � � = ua2 < � � � < uak�1+1 = � � � = uak :

We say that two convex polytopes are combinatorially equivalent or have the same com-
binatorial type if they have isomorphic face lattices.

Theorem 19 Let a1; : : : ; ak be as above, and set bi = ai � ai�1 (with a0 = 0). Assume
(without loss of generality) that x1 > 0. Then �n(x) is combinatorially equivalent to a
product �b1 � � � � � �bk , where �j denotes a j-simplex. In particular, if each xi > 0 then
�n(x) is combinatorially equivalent to an n-cube.

Proof. For 1 � i � k, let Si = fCi0; Ci1; : : : ; Ci;big denote the set of the following bi+1
conditions Cij on a point y 2 �n(x):

(Ci0) yai�1+1 = yai�1+2 = � � � = yai = 0

(Ci1) yai�1+1 = ui; yai�1+2 = yai�1+3 = � � � = yai = 0

(Ci2) yai�1+2 = ui; yai�1+1 = yai�1+3 = � � � = yai = 0
� � �

(Ci;bi) yai = ui; yai�1+1 = yai�1+2 = � � � = yai�1 = 0:

Note that each of the conditions Cij consists of bi chambers of �n(x); we regard Cij as
being the set of these chambers. Let Si denote any subset of Si, and let \Si =

T
C2Si

C.
A little thought shows that we can �nd a point y 2 �n(x) lying on all the chambers in
each \Si, but not lying on any other chamber of �n(x). Moreover, no point of �n(x)
can lie on any other collection of chambers of �n(x) but on no additional chambers.
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From the above discussion it follows that �n(x) is combinatorially equivalent to
a product of simplices of dimensions b1; : : : ; bk, as desired. In particular, �n(x) has
(b1 + 1)(b2 + 1) � � � (bk + 1) vertices v, obtained by choosing 0 � ji � bi for each i and
de�ning v to be the intersection of the chambers in all the Ciji's. 2

Although �n(x) is combinatorial equivalent to a product of simplices, it is not the
case that �n(x) is a�nely equivalent to such a product. For instance, Figure 1 shows
�2(x1; x2) when x1; x2 > 0. We see that �2(x1; x2) is a quadrilateral and hence combi-
natorially equivalent to a square. However, �2(x1; x2) is not a parallelogram and hence
not a�nely equivalent to a square. Similarly Figure 2 shows that �3(x1; x2; x3) is com-
binatorially equivalent but not a�nely equivalent to a 3-cube when each xi > 0.
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