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1 Introduction

In his fundamental paper [63], Riemann showed that the Riemann zeta function, initially
de�ned by the series

�(s) :=
1X
n=1

n�s (<s > 1) (1)

admits a meromorphic continuation to the entire complex plane, with only a simple pole
at 1, and that the function

�(s) := 1
2
s(s� 1)��s=2�(1

2
s)�(s) (<s > 1) (2)

is the restriction to (<s > 1) of a unique entire analytic function �, which satis�es the
functional equation

�(s) = �(1 � s) (3)

for all complex s. These basic properties of � and � follow from a representation of 2�
as the Mellin transform of a function involving derivatives of Jacobi's theta function.
This function turns out to be the density of a probability distribution on the real line,
which has deep and intriguing connections with the theory of Brownian motion. This
distribution �rst appears in the probabilistic literature in the 1950's in the work of Feller
[24], Gnedenko [26], and T�akacs [71], who derived it as the asymptotic distribution as
n!1 of the range of a simple one-dimensional random walk conditioned to return to
its origin after 2n steps, and found formula (5) below for s = 1; 2; � � �. Combined with
the approximation of random walks by Brownian motion, justi�ed by Donsker's theorem
[9, 20, 62], the random walk asymptotics imply that if

Y :=
q

2
�

�
max
0�u�1

bu � min
0�u�1

bu

�
(4)

where (bu; 0 � u � 1) is the standard Brownian bridge derived by conditioning a one-
dimensional Brownian motion (Bu; 0 � u � 1) on B0 = B1 = 0, then

E(Y s) = 2�(s) (s 2 C ): (5)

where E is the expectation operator. Many other constructions of random variables with
the same distribution as Y have since been discovered, involving functionals of the path
of a Brownian motion or Brownian bridge in Rd for d = 1; 2; 3 or 4.

Our main purpose in this paper is to review this circle of ideas, with emphasis on the
probabilistic interpretations such as (4)-(5) of various functions which play an important
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role in analytic number theory. For the most part this is a survey of known results, but
the result of Section 5 may be new.

Section 2 reviews the classical analysis underlying (5), and o�ers di�erent analytic
characterizations of the probability distribution of Y . Section 3 presents various formulae
related to the distributions of the random variables �h and �#

h de�ned by

�h :=
2

�2

1X
n=1

�h;n
n2

and �#
h :=

2

�2

1X
n=1

�h;n

(n� 1
2
)2
; (6)

for independent random variables �h;n with the gamma(h) density

P (�h;n 2 dx)=dx = �(h)�1xh�1e�x (t > 0): (7)

Our motivation to study these laws stems from their close connection to the classical
functions of analytic number theory, and their repeated appearances in the study of
Brownian motion, which we recall in Section 4. For example, to make the connection
with the beginning of this introduction, one has

�2
d
=

2

�
Y 2 (8)

where
d
= means equality in distribution. As we discuss in Section 4, Brownian paths

possess a number distributional symmetries, which explain some of the remarkable coin-
cidences in distribution implied by the repeated appearances of the laws of �h and �#

h

for various h. Section 5 shows how one of the probabilistic results of Section 3 leads
us to an approximation of the zeta function, valid in the entire complex plane, which is
similar to an approximation obtained by Sondow [69]. We conclude in Section 6 with
some consideration of the Hurwitz zeta function and Dirichlet L-functions, and some
references to other work relating the Riemann zeta function to probability theory.

2 Probabilistic interpretations of some classical an-

alytic formulae

2.1 Some classical analysis

Let us start with Jacobi's theta function identity

1p
�t

1X
n=�1

e�(n+x)
2=t =

1X
n=�1

cos(2n�x) e�n
2�2t (x 2 R; t > 0) (9)
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which is a well known instance of the Poisson summation formula [5]. This identity
equates two di�erent expressions for pt=2(0; x), where pt(0; x) is the fundamental solution
of the heat equation on a circle identi�ed with [0; 1], with initial condition �0, the delta
function at zero. In probabilistic terms, pt(0; x) is the probability density at x 2 [0; 1]
of the position of a Brownian motion on the circle started at 0 at time 0 and run for
time t. The left hand expression is obtained by wrapping the Gaussian solution on the
line, while the right hand expression is obtained by Fourier analysis. In particular, (9)
for x = 0 can be written

p
t �(t) = �(t�1) (t > 0) (10)

where � is the Jacobi theta function

�(t) :=

1X
n=�1

exp(�n2�t) (t > 0): (11)

For the function � de�ned by (2), Riemann obtained the integral representation

4�(s)

s(s� 1)
=

Z 1

0

t
s
2�1(�(t)� 1)dt (<(s) > 1) (12)

by switching the order of summation and integration and using

�(s) =

Z 1

0

xs�1e�x dx (<s > 0): (13)

He then deduced his functional equation �(s) = �(1�s) from (12) and Jacobi's functional
equation (10). Following the notation of Edwards [22, x10.3], let

G(y) := �(y2) =
1X

n=�1
exp(��n2y2) (14)

so Jacobi's functional equation (10) acquires the simpler form

yG(y) = G(y�1) (y > 0): (15)

The function

H(y) :=
d

dy

�
y2

d

dy
G(y)

�
= 2yG0(y) + y2G00(y) (16)

that is

H(y) = 4y2
1X
n=1

(2�2n4y2 � 3�n2)e��n
2y2 (17)

5



satis�es the same functional equation as G:

yH(y) = H(y�1) (y > 0): (18)

As indicated by Riemann, this allows (12) to be transformed by integration by parts for
<s > 1 to yield

2�(s) =

Z 1

0

ys�1H(y)dy: (19)

It follows immediately by analytic continuation that (19) serves to de�ne an entire
function �(s) which satis�es Riemann's functional equation �(s) = �(1�s) for all complex
s. Conversely, the functional equation (18) for H is recovered from Riemann's functional
equation for � by uniqueness of Mellin transforms. The representation of � as a Mellin
transform was used by Hardy to prove that an in�nity of zeros of � lie on the critical
line. It is also essential in the work of P�olya [61] and Newman [49] on the Riemann
hypothesis. But the probabilistic interpretations of (18) which we discuss in this paper
do not appear in these works.

2.2 Probabilistic interpretation of 2�(s)

As observed by Chung [14] and Newman [49], H(y) > 0 for all y > 0 (obviously for
y � 1, hence too for y < 1 by (18)). By (2), (3) and �(s) � (s� 1)�1 as s! 1,

2�(0) = 2�(1) = 1;

so formula (19) for s = 0 and s = 1 impliesZ 1

0

y�1H(y)dy =

Z 1

0

H(y)dy = 1:

That is to say, the function y�1H(y) is the density function of a probability distribution
on (0;1) with mean 1. Note that the functional equation (18) for H can be expressed
as follows in terms of a random variable Y with this distribution: for every non-negative
measurable function g

E[g(1=Y )] = E[Y g(Y )]: (20)

The distribution of 1=Y is therefore identical to the size-biased distribution derived from
Y . See Smith-Diaconis [68] for further interpretations of this relation. The next lemma,
which follows from the preceding discussion and formulas tabulated in Section 3, gathers
di�erent characterizations of a random variable Y with this density. Here Y is assumed
to be de�ned on some probability space (
;F ; P ), with expectation operator E.
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Proposition 1 ([14, 8]) For a non-negative random variable Y , each of the following
conditions (i) - (iv) is equivalent to Y having density y�1H(y) for y > 0:
(i)

E(Y s) = 2�(s) (s 2 C ); (21)

(ii) for y > 0
P (Y � y) = G(y) + yG0(y) = �y�2G0(y�1); (22)

that is

P (Y � y) =
1X

n=�1
(1 � 2�n2y2)e��n

2y2 = 4�y�3
1X
n=1

n2e��n
2=y2; (23)

(iii) with �2 de�ned by (6)

Y
d
=
q

�
2
�2; (24)

(iv)

E
h
e��Y

2
i
=

 p
��

sinh
p
��

!2

: (25)

3 Two in�nitely divisible families

This section presents an array of results regarding the probability laws on (0;1) of the
random variables �h and �#

h de�ned by (6) with special emphasis on results for h = 1
and h = 2, which are summarized by Table 1. Each column of the table presents features
of the law of one of the four sums � = �1;�2;�

#
1 of �#

2 . Those in the �2 column can
be read from Proposition 1, while the formulae in other columns provide to analogous
results for �1, �

#
1 and �#

2 instead of �2. While the Mellin transforms of �1, �2 and
�#
2 all involve the function � associated with the Riemann zeta function, the Mellin

transform of �#
1 involves instead the Dirichlet L-function associated with the quadratic

character modulo 4, that is

L�4(s) :=

1X
n=0

(�1)n
(2n+ 1)s

(<s > 0): (26)

We now discuss the entries of Table 1 row by row.
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Table 1

� �1 :=
2

�2

1X
n=1

"n
n2

�2 :=
2

�2

1X
n=1

"n + "̂n
n2

E[e���]

p
2�

sinh
p
2�

 p
2�

sinh
p
2�

!2

L�evy density �1(x) :=
1

x

1X
n=1

e��
2n2x=2 2�1(x)

f(x) :=
d

dx
P (� � x)

d

dx

1X
n=�1

(�1)ne�n2�2x=2 d

dx

1X
n=�1

(1� n2�2x)e�n
2�2x=2

reciprocal relations f1(x) =

�
2

�x3

�1=2

f#2

�
4

�2x

�
f2(x) =

�
2

�x

�5=2

f2

�
4

�2x

�

E

�
g

�
4

�2�

�� r
�

2
E
h
(�#

2 )
�1=2g(�#

2 )
i r

�

2
E
�
(�2)

1=2g(�2)
�

E[�s]

�
21�2s � 1

1� 2s

��
2

�

�s

2�(2s)

�
2

�

�s

2�(2s)

E[�n]
n!

(2n)!
(23n � 2n+1)(�1)n+1B2n

n!

(2n)!
(2n � 1)23n(�1)n+1B2n
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Table 1 continued

�#
1 :=

2

�2

1X
n=1

"n

(n � 1
2)

2
�#
2 :=

2

�2

1X
n=1

"n + "̂n

(n � 1
2)

2

1

cosh
p
2�

�
1

cosh
p
2�

�2

�#1 (x) :=
1

x

1X
n=1

e��
2(n�1=2)2x=2 2�#1 (x)

�

1X
n=0

(�1)n(n+ 1
2
)e�(n+

1
2 )

2�2x=2 1

2

1X
n=�1

�
(n+ 1

2
)2�2x� 1

�
e�(n+

1
2 )

2�2x=2

f#1 (x) =

�
2

�x

�3=2

f#1

�
4

�2x

�
f#2 (x) =

2

�

�
2

�x

�3=2

f1

�
4

�2x

�

r
2

�
E
h
(�#

1 )
�1=2g(�#

1 )
i �

2

�

�3=2

E
�
(�1)

�1=2g(�1)
�

�(s + 1)2s+1
�
2

�

�2s+1

L�4(2s+ 1)
(22(s+1) � 1)

s+ 1

�
2

�

�s+1

�(2(s + 1))

n!

(2n)!
2n(�1)nE2n

(22n+2 � 1)23n+1 n!

(n+ 1)(2n)!
(�1)nB2n+2
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3.1 Laplace transforms and L�evy densities

Recall from (6) that �h := 2
�2

P1
n=1

�h;n
n2

where the distribution of the independent
gamma(h) variables �h;n is characterized by the Laplace transform

E[exp(���h;n)] = (1 + �)�h: (27)

Euler's formulae

sinh z = z

1Y
n=1

�
1 +

z2

n2�2

�
and cosh z =

1Y
n=1

�
1 +

z2

(n� 1
2
)2�2

�
(28)

allow the following evaluation [76, 15]: for <(�) > 0

E
�
e���h

�
= E

" 1Y
n=1

exp

�
�2��h;n

n2�2

�#
=

1Y
n=1

�
1 +

2�

n2�2

��h
=

 p
2�

sinh
p
2�

!h

(29)

and similarly

E[exp(���#
h )] =

�
1

cosh
p
2�

�h

: (30)

L�evy densities �(x). A probability distribution F on the line is called in�nitely divis-
ible if for each n there exist independent random variables Tn;1; : : : ; Tn;n with the same
distribution such that

Pn
i=1 Tn;i has distribution F . According to the L�evy-Khintchine

representation, which has a well known interpretation in terms of Poisson processes [79,
xII.64], a distribution F concentrated on [0;1) is in�nitely divisible if and only if its
Laplace transform '(�) :=

R1
0
e��tF (dt) admits the representation

'(�) = exp

�
�c��

Z 1

0

(1 � e��x)�(dx)

�
(� � 0) (31)

for some c � 0 and some positive measure � on (0;1), called the L�evy measure of F ,
with c and � uniquely determined by F .

If �(dx) = �(x)dx then �(x) is called the L�evy density of F . It is elementary that
for �h with gamma(h) distribution and a > 0 the distribution of �h=a is in�nitely
divisible with L�evy density hx�1e�ax. It follows easily that for an > 0 with

P
n an <1

and independent gamma(h) variables �h;n the distribution of
P

n �h;n=an is in�nitely
divisible with L�evy density hx�1

P
n e

�anx. Thus for each h > 0 the laws of �h and

�#
h are in�nitely divisible, with the L�evy densities indicated in the Table for h = 1 and

h = 2.
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We note that Riemann's formula (12) for s = 2p can be interpreted as an expression
for the pth moment �1(p) of the L�evy density �1 of �1: for <p > 1

2

�1(p) :=

Z 1

0

tp�1(t)dt =

�
2

�

�p
1

2

Z 1

0

yp�1(�(y)� 1)dy =
2p

�2p
�(p)�(2p): (32)

3.2 Probability densities and reciprocal relations

By application of the negative binomial expansion

1

(1 � x)h
=

1

�(h)

1X
n=0

�(n + h)

�(n + 1)
xn (h > 0; jxj < 1) (33)

there is the expansion

�
t

sinh t

�h

=
2hthe�th

(1� e�2t)h
=

2hth

�(h)

1X
n=0

�(n + h)

�(n + 1)
e�(2n+h)t (34)

which corrects two typographical errors in [8, (3.v)], and

�
1

cosh t

�h

=
2he�th

(1 + e�2t)h
=

2h

�(h)

1X
n=0

(�1)n�(n + h)

�(n + 1)
e�(2n+h)t: (35)

The Laplace transform (30) can be inverted by applying the expansion (35) and inverting
term by term using L�evy's formula [45]Z 1

0

ap
2�t3

e�a
2=(2t)e��tdt = e�a

p
2�: (36)

Thus there is the following expression for the density f#h (t) := P (�#
h 2 dt)=dt: for

arbitrary real h > 0:

f#h (t) =
2h

�(h)

1X
n=0

(�1)n�(n + h)

�(n + 1)

(2n+ h)p
2�t3

exp

�
�(2n+ h)2

2t

�
: (37)

A more complicated formula for fh(t) was obtained from (34) by the same method in
[8, (3.x)]. The formulae for the densities of �h and �#

h displayed in Table 1 for h = 1
and h = 2 can be obtained using the reciprocal relations of Row 5. The self-reciprocal
relation involving �2 is a variant of (18), while that involving �#

1 , which was observed
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by Ciesielski-Taylor [16], is an instance of another application of the Poisson summation
formula which is recalled as (94) in Section 6.1. Lastly, the reciprocal relation involving
the densities f1 of �1 and f#2 of �#

2 amounts to the identity

P (�1 � x) =
1X

n=�1
(�1)ne�n2�2x=2 =

r
2

�x

1X
n=�1

e�2(n+
1
2
)2=x (38)

where the second equality is read from (9) with x = 1=2 and t replaced by x=2.
Formulae for E

�
g
�

4
�2�

��
. These formulae, valid for an arbitrary non-negative Borel

function function g, are integrated forms of the reciprocal relations, similar to (20).

3.3 Moments and Mellin transforms

It is easily shown that the distributions of �h and �#
h have moments of all orders (see

e.g. Lemma 4). The formulae for the Mellin transforms E(�s) can all be obtained by
term-by-term integration of the densities for suitable s, followed by analytic continuation.
According to the self-reciprocal relation for �#

1 , for all s 2 C

E
h�

�
2�

#
1

�si
= E

��
�
2�

#
1

�� 1
2
�s�

: (39)

Using the formula for E((�#
1 )

s) in terms of L�4 de�ned by (26), given in Table 1, we see
that if we de�ne

��4(t) := E

��
�
2
�#
1

� t�1
2

�
= �

�
t+ 1

2

��
4

�

� t+1
2

L�4(t) (40)

then (39) amounts to the functional equation

��4(t) = ��4(1 � t) (t 2 C ): (41)

This is an instance of the general functional equation for a Dirichlet L�function, which
is recalled as (95) in Section 6.
Positive integer moments E(�n). These formulas are particularizations of the pre-
ceding Row, using the classical evaluation of �(2n) in terms of the Bernoulli numbers
B2n. The result for �

#
1 involves the Euler numbers E2n de�ned by the expansion

1

cosh(z)
=

2

ez + e�z
=

1X
n=0

E2n
z2n

(2n)!
(42)
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A multiplicative relation. Table 1 reveals the following remarkably simple relation:

E(�s
1) =

�
21�2s � 1

1� 2s

�
E(�s

2) (43)

where the �rst factor on the right side is evaluated by continuity for s = 1=2. By
elementary integration, this factor can be interpreted as follows:�

21�2s � 1

1� 2s

�
= E(W�2s) (44)

for a random variable W with uniform distribution on [1; 2]. Thus (43) amounts to the
the following identity in distribution:

�1
d
= W�2�2 (45)

where W is assumed independent of �2. An equivalent of (45) was interpreted in terms
of Brownian motion in [56, (4)].

Note that (45) could be rewritten as �1
d
= W�2(�1+�̂1) for �1, �̂1 and W indepen-

dent random variables, with �̂1 having the same distribution as �1, and W uniform on
[1; 2]. By consideration of positive integer moments, this property uniquely characterizes
the distribution of �1 among all distributions with mean 1=3 and �nite moments of all
orders.

3.4 Characterizations of the distributions of �2 and �#
2

As just indicated, the identity (45) allows a simple probabilistic characterization of the
distribution of �1. The following Proposition o�ers similar characterizations of the dis-
tributions of �2 and �#

2 .

Proposition 2 Let X be a non-negative random variable, and let X� denote a random
variable such that

P (X� 2 dx) = xP (X 2 dx)=E(X):

(i) X is distributed as �2 if and only if E(X) = 2=3 and

X� d
= X +HX� (46)

where X;H and X� are independent, with

P (H 2 dh) = (h�1=2 � 1)dh (0 < h < 1)

13



(ii) X is distributed as �#
2 if and only if E(X) = 2 and

X� d
= X + U2X̂ (47)

where X, U and X̂ are independent, with X̂ distributed as X and U uniform on [0; 1].

For the proof of this Proposition, note that (46) (or (47)) imply that the Laplace trans-
form of X satis�es an integro-di�erential equation, whose only solution is given by the
appropriate function. The \only if" part of (i) appears in [82, p. 26]. Details of the
remaining parts will be provided elsewhere. As remarked by van Harn and Steutel [74],
it is an easy consequence of the L�evy-Khintchine formula that for non-negative random

variables X and Y the equation X� d
= X + Y is satis�ed for some Y independent of X

if and only if the law of X is in�nitely divisible. As discussed in [74, 3], the distribu-
tion of X�, known as the size-biased or length-biased distribution of X, has a natural
interpretation in renewal theory.

4 Brownian interpretations

It is a remarkable fact that the four distributions considered in Section 3 appear in many
di�erent problems concerning Brownian motion and related stochastic processes. These
appearances are partially explained by the relation of these distributions to Jacobi's
theta function, which provides a solution to the heat equation [5, 23], and is therefore
related to Brownian motion [42, x5.4]. We start by introducing some basic notation
for Brownian motion and Bessel processes, then present the main results in the form of
another table.

4.1 Introduction and Notation

Let � := (�t; t � 0) be a standard one-dimensional Brownian motion, that is a stochastic
process with continuous sample paths and independent increments such that �0 = 0,
and for all s; t > 0 the random variable �s+t� �s has a Gaussian distribution with mean
E(�s+t � �s) = 0 and mean square E[(�s+t � �s)2] = t, meaning that for all real x

P (�s+t � �s � x) =
1p
2�t

Z x

�1
e�y

2=(2t) dy:

Among continuous time stochastic processes, such as semimartingales, processes with
independent increments, and Markov processes, Brownian motion is the paradigm of a
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stochastic process with continuous paths. In particular, among processes with stationary
independent increments, the Brownian motions (�Bt + �t; t � 0) for � > 0; � 2 R are
the only ones with almost surely continuous paths [64, I.28.12]. Brownian motion arises
naturally as the limit in distribution as n ! 1 of a rescaled random walk process
(Sn; n = 0; 1; : : :) where Sn = X1 + � � � +Xn for independent random variables Xi with
some common distribution with mean E(Xi) = 0 and variance E(X2

i ) = 1. To be more
precise, let the value of Sr be extended to all real r � 0 by linear interpolation between
integers. With this de�nition of (Sr; r � 0) as a random continuous function, it is known
that no matter what the distribution of the Xi with mean 0 and variance 1, as n!1�

Sntp
n
; t � 0

�
d! (�t; t � 0) (48)

in the sense of weak convergence of probability distributions on the path space C[0;1).
In particular, convergence of �nite dimensional distributions in (48) follows easily from
the central limit theorem, which is the statement of convergence of one dimensional
distributions in (48), that is for each �xed t > 0

Sntp
n

d! �t (49)

where
d! denotes weak convergence of probability distributions on the line. Recall that,

for random variables Wn; n = 1; 2; : : : and W such that W has a continuous distribution

function x 7! P (W � x), Wn
d! W means P (Wn � x) ! P (W � x) for all real x. See

[9, 62] for background.
Let (bt; 0 � t � 1) be a standard Brownian bridge, that is the centered Gaussian

process with the conditional distribution of (�t; 0 � t � 1) given �1 = 0. Some well
known alternative descriptions of the distribution of b are [62, Ch. III, Ex (3.10)]

(bt; 0 � t � 1)
d
= (�t � t�1; 0 � t � 1)

d
= ((1� t)�t=(1�t); 0 � t � 1) (50)

where
d
= denotes equality of distributions on the path space C[0; 1], and the rightmost

process is de�ned to be 0 for t = 1. According to a fundamental result in the theory of
non-parametric statistics [19, 66], the Brownian bridge arises in another way from the
asymptotic behaviour of the empirical distribution

Fn(x) :=
1

n

nX
k=1

1(Xk � x)
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where the Xk are now supposed independent with common distribution P (Xi � x) =
F (x) for an arbitrary continuous distribution function F . As shown by Kolmogorov [43],
the distribution of supx jFn(x)� F (x)j is the same no matter what the choice of F , and
for all real y

lim
n!1

P (
p
n sup

x
jFn(x)� F (x)j � y) =

1X
n=�1

(�1)ne�2n2y2 (51)

For F the uniform distribution on [0; 1], so F (t) = t for 0 � t � 1, it is known that

(
p
n(Fn(t)� t); 0 � t � 1)

d! (bt; 0 � t � 1): (52)

As a well known consequence of (52), Kolmogorov's limiting distribution in (51) is iden-
tical to the distribution of max0�t�1 jbtj. On the other hand, as observed by Watson [76],
Kolmogorov's limit distribution function in (51) is identical to that of �

2

p
�1. Thus we

�nd the �rst appearance of the law of �1 as the law of a functional of Brownian bridge.
To put this in terms of random walks, if (Sn) is a simple random walk, meaning

P (Xi = +1) = P (Xi = �1) = 1=2, then�
S2ntp
2n

; 0 � t � 1

����S2n = 0

�
d! (bt; 0 � t � 1) (53)

where on the left side the random walk is conditioned to return to zero at time 2n, and
on the right side the Brownian motion is conditioned to return to zero at time 1. Thus�

1p
2n

max
0�k�2n

jSkj
����S2n = 0

�
d! max

0�t�1
jbtj d

=
�

2

p
�1 (54)

where the equality in distribution summarizes the conclusion of the previous paragraph.
In the same vein, Gnedenko [26] derived another asymptotic distribution from random
walks, which can be interpreted in terms of Brownian bridge as�

1p
2n

�
max

0�k�2n
Sk � min

0�k�2n
Sk

�����S2n = 0

�
d! max

0�t�1
bt � min

0�t�1
bt

d
=

�

2

p
�2: (55)

The equalities in distribution in both (54) and (55) can be deduced from the formula

P ( min
0�u�1

bu � �a; max
0�u�1

bu � b) =
1X

k=�1
e�2k

2(a+b)2 �
1X

k=�1
e�2[b+k(a+b)]

2
(56)
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of Smirnov [67] and Doob [19]. Kennedy [35] found that these distributions appear again
if the random walk is conditioned instead on the event (R = 2n) or (R > 2n), where

R := inffn � 1 : Sn = 0g
is the time of the �rst return to zero by the random walk. Thus�

1p
2n

max
0�k�2n

jSkj
����R = 2n

�
d! max

0�t�1
et

d
=

�

2

p
�2 (57)

where (et; 0 � t � 1) denotes a standard Brownian excursion, that is the process with
continuous sample paths de�ned following [33, 35, 21] by the limit in distribution on
C[0; 1] � jS2ntjp

2n
; 0 � t � 1

����R = 2n

�
d! (et; 0 � t � 1): (58)

A satisfying explanation of the identity in distribution between the limit variables fea-
tured in (55) and (57) is provided by the following identity of distributions on C[0; 1]
due to Vervaat [75]:

(eu; 0 � u � 1)
d
= (b�+u(mod1)� b�; 0 � u � 1) (59)

where � is the almost surely unique time that the Brownian bridge b attains its minimum
value. As shown by T�akacs[71] and Smith-Diaconis [68], either of the approximations
(55) or (57) can be used to establish the di�erentiated form (22) of Jacobi's functional
equation (15) by a discrete approximation argument involving quantities of probabilistic
interest. See also P�olya [60] for a closely related proof of Jacobi's functional equation
based on the local normal approximation to the binomial distribution.

In the same vein as (55) and (57) there is the result of [35, 21] that�
1p
2n

max
0�k�2n

jSkj
����R > 2n

�
d! max

0�t�1
mt

d
= �

p
�1 (60)

where (mt; 0 � t � 1) denotes a standard Brownian meander, de�ned by the limit in
distribution on C[0; 1]� jS2ntjp

2n
; 0 � t � 1

����R > 2n

�
d! (mt; 0 � t � 1): (61)

The surprising consequence of (54) and (60), that max0�t�1mt
d
= 2max0�t�1 jbtj, was

explained in [8] by a transformation of bridge b into a process distributed like the meander
m. For a review of various transformations relating Brownian bridge, excursion and the
meander see [6].
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4.2 Bessel processes

The work of Williams [77, 78, 79] shows how the study of excursions of one-dimensional
Brownian motion leads inevitably to descriptions of these excursions involving higher
dimensional Bessel processes. For d = 1; 2; : : : letRd := (Rd;t; t � 0) be the d-dimensional
Bessel process BES(d), that is the non-negative process de�ned by the radial part of a
d-dimensional Brownian motion:

R2
d;t :=

dX
i=1

B2
i;t

where (Bi;t; t � 0) for i = 1; 2; : : : is a sequence of independent one-dimensional Brownian
motions. Note that each of the processes X = B, and X = Rd for any d � 1, has the
Brownian scaling property:

(Xu; u � 0)
d
= (

p
cXu=c; u � 0) (62)

for every c > 0, where
d
= denotes equality in distribution of processes. For a process

X = (Xt; t � 0) let X and X denote the past maximum and past minimum processes
derived from X, that is

X t := sup
0�s�t

Xs; X t := inf
0�s�t

Xs:

Note that if X has the Brownian scaling property (62) then so too do X;X, and X�X .
For a suitable process X, let

(Lx
t (X); t � 0; x 2 R)

be the process of local times of X de�ned by the occupation density formulaZ t

0

f(Xs)ds =

Z 1

�1
f(x)Lx

t (X)dx (63)

for all non-negative Borel functions f , and almost sure joint continuity in t and x. See
[62, Ch. VI] for background, and proof of the existence of such a local time process for
X = B and X = Rd for any d � 1.

Let rd := (rd;u; 0 � u � 1) denote the d-dimensional Bessel bridge de�ned by con-
ditioning Rd;u; 0 � u � 1 on Rd;1 = 0. Put another way, r2d is the sum of squares of d
independent copies of the standard Brownian bridge.
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4.3 A table of identities in distribution

We now discuss the meaning of Table 2, which presents a number of known identities
in distribution. The results are collected from the work of numerous authors, including
Gikhman [25], Kiefer [39], Chung [14], Biane-Yor [8]. See also [80, 55, 58]. In the
following sections we review brie
y the main arguments underlying the results presented
in the table.

Each column of the table displays a list of random variables with the distribution
determined by the Laplace transform in Row 0. Each variable in the second column is
distributed as the sum of two independent copies of any variable in the �rst column, and
each variable in the fourth column is distributed as the sum of two independent copies of
any variable in the third column. The table is organized by rows of variables which are
analogous in some informal sense. The next few paragraphs introduce row by row the
notation used in the table, with pointers to explanations and attributions in following
subsections. Blank entries in the table mean we do not know any construction of a
variable with the appropriate distribution which respects the informal sense of analogy
within rows, with the following exceptions. Entries for Rows 4 and 6 of the �2 column
could be �lled like in Row 3 as the sums of two independent copies of variables in the
�1 column of the same row, but this would add nothing to the content of the table. The
list of variables involved is by no means exhaustive: for instance, according to (55) the
variable (4=�2)(b1�b1)

2 could be added to the second column. Many more constructions
are possible involving Brownian bridge and excursion, some of which we mention in
following sections. It is a consequence of its construction, that each column of the table
exhibits a family of random variables with the same distribution. Therefore it is a natural
problem, coming from the philosophy of \bijective proofs" in enumerative combinatorics
(see e.g. Stanley [70]), to try giving a direct argument for each distributional identity,
not using the explicit computation of the distribution. Many such arguments can be
given, relying on distributional symmetries of Brownian paths, or some deeper results
such as the Ray-Knight theorems. However, some identities remain for which we do not
have any such argument at hand. As explained in Section 4.6, some of these identities
are equivalent to the functional equation for the Jacobi theta (or the Riemann zeta)
function.
Rows 0 and 1. Row 0 displays the Laplace transforms in � of the distributions of the
variables in Row 1, that is �1, �2, �

#
1 and �#

2 , as considered in previous sections.

Row 2. Section 4.4 explains why the distributions of the random variables
R 1
0 r

2
d;udu

and
R 1
0 R

2
d;udu for d = 2 and d = 4, are as indicated in this row.
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Row 3. Most of the results of this row are discussed in Section 4.5. Here

Ta(X) := infft : Xt = ag

is the hitting time of a by a process X, and R̂d is an independent copy of the Bessel
process Rd. Note that R1 := jBj is just Brownian motion with re
ection at 0, and
T1(B �B) is the �rst time that the range of the Brownian B up to time t is an interval
of length 1. The result that 4T1(B � B) has Laplace transform 1= cosh2

p
2� is due

to Imhof [30]. See also Vallois [72, 73], Pitman [51] and Pitman-Yor [56] for various
re�nements of this formula.
Rows 4 and 5 These rows, which involve the distribution of the maximum of various
processes over [0; 1], are discussed in Section 4.6.
Row 6 Here m1 is the maximum of the standard Brownian meander (mu; 0 � u � 1).
This entry is read from (60).
Row 7. The �rst two entries are obtained from their relation to the �rst two entries in
Row 5, that is the equalities in distributionZ 1

0

du

mu

d
= 2r1;1 and

Z 1

0

du

r3;u

d
= 2r3;1:

These identities follow from descriptions of the local time processes (Lx
1(rd); x � 0) for

d = 1 and d = 3, which involve m for d = 1 and r3 for d = 3, as presented in Biane-Yor
[8, Th. 5.3]. See also [52, Cor. 16] for another derivation of these results. The last two
entries may be obtained through their relation to the last two entries of Row 2. More
generally, there is the identity

1

2

Z 1

0

ds

Rd;s

d
=

�Z 1

0

R2
2d�2;s ds

��1=2
(d > 1)

which can be found in Biane-Yor [8] and Revuz-Yor [62, Ch. XI, Corollary 1.12 and p.
448].
Row 8. Here �1 := infft : L0

t (B) = 1g where R1 = jBj and (Lx
t (B); t � 0; x 2 R) is the

local time process of B de�ned by (63). The distribution of �1=R
2

1;�1 was identi�ed with

that of 4T1(R3) by Knight [42], while the distribution of �1=(B�1 � B�1
)2 was identi�ed

with that of T1(R3) +T1(R̂3) by Pitman-Yor [56]. The result in the third column can be
read from Hu-Shi-Yor [29, p. 188].
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Table 2

0)

p
2�

sinh
p
2�

 p
2�

sinh
p
2�

!2
1

cosh
p
2�

�
1

cosh
p
2�

�2

1) �1 :=
2

�2

1X
n=1

"n
n2

�2 :=
2

�2

1X
n=1

"n + "̂n
n2

�#
1 :=

2

�2

1X
n=1

"n

(n � 1
2)

2
�#
2 :=

2

�2

1X
n=1

"n + "̂n

(n� 1
2)

2

2)

Z 1

0

r22;udu

Z 1

0

r24;udu

Z 1

0

R2
2;udu

Z 1

0

R2
4;udu

3) T1(R3) T1(R3) + T1(R̂3) T1(R1) 4T1(B �B)

4)
�
R3;1

��2 �
R1;1

��2
4
�
B1 �B1

��2

5) ( 2
�
r1;1)2 ( 2

�
r3;1)2

6) ( 1
�
m1)2

7)

�
1

�

Z 1

0

du

mu

�2 �
1

�

Z 1

0

du

r3;u

�2 �
1

2

Z 1

0

du

R2;u

��2 �
1

2

Z 1

0

du

R3;u

��2

8)
�1

4(R1;�1)
2

�1

(B�1 �B�1
)2

4

� 21

Z �1

0

B2
t dt
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4.4 Squared Bessel processes (Row 2)

For d = 1; 2; : : : the squared Bessel process R2
d is by de�nition the sum of d independent

copies of R2
1 = B2, the square of a one-dimensional Brownian motion B, and a similar

remark applies to the squared Bessel bridge r2d. Following L�evy [46, 47], let us expand
the Brownian motion (Bt; 0 � t � 1) or the Brownian bridge (bt; 0 � t � 1) in a Fourier
series. For example, the standard Brownian bridge b can be represented as

bu =
1X
n=1

p
2

�

Zn

n
sin(�nu) (0 � u � 1)

where the Zn for n = 1; 2; : : : are independent standard normal random variables, so
E(Zn) = 0 and E(Z2

n) = 1 for all n. Parseval's theorem then gives

Z 1

0

b2udu =
1X
n=0

Z2
n

�2n2

so the random variable
R 1
0
b2udu appears as a quadratic form in the normal variables Zn.

It is elementary and well known that Z2
n

d
= 2
1=2 for 
1=2 with gamma(12) distribution as

in (7) and (27) for h = 1
2. Thus

E[exp(��Z2
n)] = (1 + 2�)�1=2

and

E

�
exp

�
��
Z 1

0

b2udu

��
=

1Y
n=1

�
1 +

2�

�2n2

��1=2
=

 p
2�

sinh
p
2�

!1=2

by another application of Euler's formula (28). Taking two and four independent copies
respectively gives the �rst two entries of Row 2. The other entries of this row are obtained
by similar considerations for unconditioned Bessel processes.

Watson [76] found that

Z 1

0

�
bt �

Z 1

0

budu

�2

dt
d
= 1

4�1: (64)

Shi-Yor [65] give a proof of (64) with the help of a space-time transformation of the
Brownian bridge. See also [81, p. 18-19], [82, p. 126-127] and papers cited there for
more general results in this vein. In particular, we mention a variant of (64) for B
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instead of b, which can be obtained as a consequence of a stochastic Fubini theorem [81,
p. 21-22]: Z 1

0

�
Bt �

Z 1

0

Budu

�2

dt
d
=

Z 1

0

b2udu
d
= �1=2: (65)

As remarked by Watson, it is a very surprising consequence of (64) and (54) thatZ 1

0

�
bt �

Z 1

0

budu

�2

dt
d
= ��2 max

0�t�1
b2t : (66)

As pointed out by Chung [14], the identities in distribution (55) and (57), where �2 is
the sum of two independent copies of �1, imply that the distribution of (max0�t�1 bt �
min0�t�1 bt)2 is that of the sum of two independent copies of max0�t�1 b2t . In a similar
vein, the �rst column of Table 2 shows that the distribution of 4��2max0�t�1 b2t is in turn

that of the sum of two independent copies of
R 1
0 b

2
tdt

d
= �1=2. There is still no explanation

of these coincidences in terms of any kind of transformation or decomposition of Brownian
paths, or any combinatorial argument involving lattice paths, though such methods have
proved e�ective in explaining and generalizing numerous other coincidences involving the
distributions of �h and �#

h for various h > 0. Vervaat's explanation (59) of the identity
in law between the range of the bridge and the maximum of the excursion provides one
example of this. Similarly, (59) and (64) imply thatZ 1

0

�
et �

Z 1

0

eudu

�2

dt
d
= 1

4
�1: (67)

4.5 First passage times (Row 3)

It is known [16, 31, 36] that by solving an appropriate Sturm-Liouville equation, for
� > 0

E exp(��T1(Rd)) =
(
p
2�)�

2��(� + 1)I�(
p
2�)

=
1Y
n=1

�
1 +

2�

j2�;n

��1
where � := (d � 2)=2 with I� the usual modi�ed Bessel function, related to J� by
(ix)�=I�(ix) = x�=J�(x), and j�;1 < j�;2 < � � � is the increasing sequence of positive zeros
of J�. That is to say,

T1(Rd)
d
=

1X
n=1

2"n
j2�;n

(68)

where the "n are independent standard exponential variables. See also Kent [37, 38], and
literature cited there, for more about this spectral decomposition of T1(X), which can
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be formulated for a much more general one-dimensional di�usion X instead of X = Rd.
The results of Row 3, that

T1(R1)
d
= �#

1 and T1(R3)
d
= �1

are the particular cases d = 1 and d = 3 of (68), corresponding to � = �1=2, when I� and
J� can be expressed in terms of hyperbolic and trigonometric functions. In particular,
j�1=2;n = (n � 1

2
)� and j1=2;n = n� are the nth positive zeros of the cosine and sine

functions respectively. Comparison of Rows 2 and 3 reveals the identities

T1(R1)
d
=

Z 1

0

R2
2;udu and T1(R3)

d
=

Z 1

0

r22;udu:

As pointed out by Williams [77, 78, 79], these remarkable coincidences in distribution
are the simplest case g(u) = 1 of the identities in law

Z T1(R1)

0

g(1�R1;t)dt
d
=

Z 1

0

R2
2;ug(u)du (69)

and Z T1(R3)

0

g(R3;t)dt
d
=

Z 1

0

r22;ug(u)du (70)

where the two Laplace transforms involved are again determined by the solutions of a
Sturm-Liouville equation [53], [62, Ch. XI]. Let Lx

t (Rd); t � 0; x 2 R) and Lx
t (rd); 0 �

t � 1; x 2 R) be the local time processes of Rd and rd de�ned by the occupation density
formula (63) with B replaced by Rd or rd. Granted existence of local time processes for
Rd and rd, the identities (69) and (70) are an expression of the Ray-Knight theorems
[62, Ch. XI, x2] that

(L1�u
T1(R1)

(R1); 0 � u � 1)
d
= (R2

2;u; 0 � u � 1) (71)

and
(Lu

T1(R3)(R3); 0 � u � 1)
d
= (r22;u; 0 � u � 1): (72)

The next section gives an interpretation of the variable T1(R3) + T1(R̂3) appearing in
column 2 in terms of Brownian excursions.
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4.6 Maxima and the agreement formula (Rows 4 and 5)

The entries in Row 4 are equivalent to corresponding entries in Row 3 by application to
X = Rd and X = B �B of the elementary identity

(X1)
�2 d

= T1(X) (73)

which is valid for any process X with continuous paths which satis�es the Brownian
scaling identity (62), because

P ((X1)
�2 > t) = P (X1 < t�

1
2 ) = P (X t < 1) = P (T1(X) > t):

The �rst entry of Row 5, with r1;1 := max0�u�1 jbuj, is read from (54). The second entry
of Row 5, involving the maximum r3;1 of a three-dimensional Bessel bridge (r3;u; 0 �
u � 1), is read from the work of Gikhman [25] and Kiefer [39], who found a formula
for P (rd;1 � x) for arbitrary d = 1; 2; : : :. See also [58]. This result involving r3;1 may
be regarded as a consequence of the previous identi�cation (57) of the law of e1, the

maximum of a standard Brownian excursion, and the identity in law e1
d
= r3;1 implied

by the remarkable result of L�evy-Williams [47, 77], that

(et; 0 � t � 1)
d
= (r3;t; 0 � t � 1): (74)

Another consequence of the scaling properties of Bessel processes is provided by the
following absolute continuity relation between the law of (rd;1)�2 and the law of

�2;d := T1(Rd) + T1(R̂d)

for general d > 0. This result, obtained in [8, 54, 7, 55], we call the agreement formula:
for every non-negative Borel function g

E
�
g((rd;1)

�2�] = CdE
�
��
2;d g(�2;d)

�
(75)

where Cd := 2(d�2)=2�(d=2). In [55] the agreement formula was presented as the special-
ization to Bessel processes of a general result for one-dimensional di�usions. As explained
in [8, 80, 55], the agreement formula follows from the fact that a certain �-�nite mea-
sure on the space of continuous non-negative paths with �nite lifetimes can be explicitly
disintegrated in two di�erent ways, according to the lifetime, or according to the value
of the maximum.

Note from (68) that �2;3
d
= �2 and �2;1

d
= �#

2 . For d = 3 formula (75) gives for all
non-negative Borel functions g

E [g(r3;1)] =
q

2
�
E
hp

�2 g(1=
p
�2)
i
: (76)
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In view of (76), the symmetry property (20) of the common distribution of Y and
p

�
2
�2,

which expresses the functional equations for � and �, can be recast as the following
identity of Chung [14], which appears in the second column of Table 2:

�
2
�
r3;1
�2 d

= �2: (77)

As another application of (75), we note that for d = 1 this formula shows that the
reciprocal relation between the laws of �1 and �#

2 discussed in Section 3 is equivalent to
the equality in distribution of (54), that is

�
2
�
r1;1
�2 d

= �1: (78)

We do not know of any path transformation leading to a non-computational proof of
(77) or (78).

4.7 Further entries.

The distributions of T1(Rd) and T1(Rd) + T1(R̂d) for d = 1; 3 shared by the columns of
Table 2, also arise naturally from a number of other constructions involving Brownian
motion and Bessel processes. Alili [1] found the remarkable result that

�2

�2

"�Z 1

0

coth(�r3;u)du

�2

� 1

#
d
= �2 for all � 6= 0: (79)

As a check, the almost sure limit of the left side of (79) as � ! 0 is the variable

��2(
R 1
0
r�13;udu)

2 in the second column of Row 7. As shown by Alili-Donati-Yor [2], con-
sideration of (79) as �!1 shows that

4

�2

Z 1

0

dt

exp(R3;t)� 1
d
= �1 (80)

Other results are the identity of Ciesielski-Taylor [16] according to whichZ 1

0

1(Rd+2;t � 1)dt
d
= T1(Rd) (81)

which for d = 1 and d = 3 provides further entries for the table. See also [41], [51],
[81, p.97-98, Ch. 7], [82, p. 132-133], [57] for still more functionals of Brownian motion
whose Laplace transforms can be expressed in terms of hyperbolic functions.
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5 Renormalization of the series
P

n
�s.

5.1 Statement of the result

The expansion of �1 as an in�nite series (6) suggests that we use partial sums in order
to approximate its Mellin transform. As we shall see, this yields an interesting approxi-
mation of the Riemann zeta function. Consider again the relationship (2) between � and
�, which allows the de�nition of �(s) for s 6= 1 despite the lack of convergence of (1) for
<s � 1. There are a number of known ways to remedy this lack of convergence, some of
which are discussed in Section 5.5. One possibility is to look for an array of coe�cients
(an;N ; 1 � n � N) such that the functions

�N (s) :=

NX
n=1

an;N
ns

(82)

converge as N !1, for all values of s. For �xed N there are N degrees of freedom in the
choice of the coe�cients, so we can enforce the conditions �N (s) = �(s) at N choices of s,
and it is natural to choose the points 0, where �(0) = �1

2, and �2;�4;�6; : : : ;�2(N�1)
where � vanishes. It is easily checked that this makes

an;N =
(�N)(1�N)(2 �N) : : : (n� 1�N)

(N + 1)(N + 2) : : : (N + n)
= (�1)n

�
2N

N � n

�
�
2N
N

� : (83)

Note that for each �xed n
an;N ! (�1)n as N !1

and recall that

(21�s � 1)�(s) =
1X
n=1

(�1)n
ns

for <s > 1

extends to an entire function of s. One has

Theorem 3 For "i; 1 � i � N independent standard exponential variables, and <s >
�2N

E

2
4
 

2

�2

NX
n=1

"n
n2

!s=2
3
5 = �s2

s=2

�s
�( s2)

NX
n=1

an;N
ns

(84)
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where the an;N are de�ned by (83), and

NX
n=1

an;N
ns

! (21�s � 1)�(s) as N !1 (85)

uniformly on every compact subset of C .

The proof of Theorem 3 occupies the next two sections.

5.2 On sums of independent exponential random variables

Let ("n;n � 1) be a sequence of independent identically distributed random variables,
with the standard exponential distribution P ("n � x) = e�x,x � 0. Let (an;n � 1)
be a sequence of positive real numbers, such that

P1
n=1 an < 1, then the series X =P1

n=1 an"n converges almost surely, and in every Lp space, for 1 � p <1.

Lemma 4 Let X =
P1

n=1 an"n as above, and let XN =
PN

n=1 an"n be the partial sums,
then for every real x one has E[Xx] < 1, and E[Xx

N ] < 1 for x > �N . Furthermore
one has

E[Xs
N ]! E[Xs] as N !1

uniformly with respect to s on each compact subset of C .

Proof. We have already seen that E[Xx] <1 if x � 0. Let us prove that E[Xx
N ] <1

for 0 > x > �N . Let bN = min(an;n � N), then XN � bNYN = bN
PN

n=1 "n. But YN
has a gamma distribution, with density 1

�(N)t
N�1e�t at t > 0, so that E[Y x

N ] < 1 for

0 > x > �N and thus E[Xx
N ] < 1. The assertion for X follows from X � XN . It

remains to check the uniform convergence. If <s 2 [�A;+A], then

jXs
N �Xsj =

����
Z X

XN

sys�1dy

����
� jsj (X �XN )(X

�A�1
N _XA�1)

and the required uniform convergence as N ! 1 is now evident by application of the
Cauchy-Schwarz inequality. 2

We now compute the Mellin transform of the distribution of
PN

n=1 an"n, assuming
that the an are all distinct and strictly positive.
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Lemma 5 With the above notations, and �n;N :=
Q

j 6=n;1�j�N

�
1� aj

an

�
, for <s > �N

E

" 
NX
n=1

an"n

!s #
= �(s+ 1)

NX
n=1

asn
�n;N

(86)

where the right side of (86) is de�ned by continuity for s = �1;�2; : : : ;�N + 1.

Proof. The partial fraction expansion of the Laplace transform

E

"
exp

 
��

NX
n=1

an"n

! #
=

NY
n=1

1

(1 + �an)
=

NX
n=1

1

�n;N

1

(1 + �an)
(87)

implies that for every non-negative measurable function g such that E[g(an"1)] is �nite
for every n

E

"
g

 
NX
n=1

an"n

! #
=

NX
n=1

1

�n;N
E[g(an"1)]: (88)

For g(x) = xs this gives (86), �rst for real s > �1, then also for <s > �N since the
previous lemma shows that the left side is analytic in this domain, and the right side is
evidently meromorphic in this domain. 2

Note the implication of the above argument that the sum on the right side of (86)
must vanish at s = �1;�2; : : : ;�N + 1.

5.3 Proof of Theorem 3

This is obtained by applying the preceding results in the particular case an = n�2. By
application of Lemmas 4 and 5, and the formula for E(�s

1) in Table 1, found in [58, (86)],
the conclusions of Theorem 3 hold for

�2an;N =
1

�n;N
=

Q
j 6=n(j

2)Q
j 6=n(j

2 � n2)
(89)

where both products are over j with 1 � j � N and j 6= n. The product in the numerator
is (N !=n)2 while writing j2� n2 = (j � n)(j + n) allows the product in the denominator
to be simpli�ed to (�1)n�1(N + n)!(N � n)!=(2n2). Thus the expression for an;N can be
simpli�ed to (89). 2
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5.4 The case of the L�4 function

The following result can be obtained similarly, with the help of the formula for E((�#
1 )

s)
in terms of L�4 de�ned by (26), given in Table 1 of Section 3.

Theorem 6 Let

L(N)
�4

(s) :=

N�1X
n=0

(�1)n

�
2N � 1

N � n� 1

�
�
2N � 1
N � 1

� (2n + 1)�s:

Then

 
2N � 1

N � n � 1

!
 
2N � 1
N

! ! 1 as N ! 1; for each N , one has L(N)
�4 (1 � 2k) = 0 for k =

1; 2; : : : N � 1, and L
(N)
�4 (s)! L�4(s) uniformly on every compact of C .

We note that it is also possible to use formulae (5) and (8) to provide another approxi-
mation of �. We leave the computation to the interested reader.

5.5 Comparison with other summation methods

Perhaps the simplest way to renormalize the series (1) is given by the classical formula

�(s) = lim
N!1

 
NX
n=1

n�s � N1�s � 1

1� s

!
� 1

1� s
(<(s) > 0) (90)

Related methods are provided by the approximate functional equation and Riemann-
Siegel formula, which are powerful tools in deriving results on the behaviour of the zeta
function in the critical strip. See e.g. Ch. 7 of Edwards [22] for a detailed discussion.

It is also known [44, 28] that the series
P1

1
(�1)n
ns

is Abel summable for all values of
s 2 C , meaning that as z! 1 in the unit disk,

1X
1

(�z)n
ns

! (21�s � 1)�(s):

The Lerch zeta function

�(x; a; s) =

1X
n=0

e2i�nx

(n+ a)s
(x 2 R; 0 < a � 1; <(s) > 1)
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is known to have analytic continuation to s 2 C , with a pole at s = 1 for a = 1, x 2 Z.
This allows us to sketch another proof of Theorem 3. The formula

�N(s) = 22N
�
2N
N

��1 Z 1

0

(sin(�x))2N�(x; 1; s) dx

is easily checked using (82)-(83) for <(s) > 1, and extended by analytic continuation
to all values of s 2 C . Convergence of �N (s) towards (21�s � 1)�(s) then follows from
continuity properties of the Lerch zeta function in the variable x, and the fact that

22N
�
2N
N

��1
(sin(�x))2N dx! �1=2 weakly as N !1.

Finally, we note that J. Sondow [69] has shown that Euler's summation method yields
the following series, uniformly convergent on every compact of C :

(1 � 21�s)�(s) =
1X
j=0

1 �
�
j
1

�
2�s + : : :+ (�1)j

�
j
j

�
(j + 1)�s

2j+1
: (91)

Furthermore the sum of the �rst N terms of this series gives the exact values of � at
0;�1;�2; : : : ;�N + 1, so we can rewrite the partial sum in (91) as

�N (s) =
NX
1

bn;N
ns

where the bn;N are completely determined by �N (�j) = �(�j) for j = 0; 1; : : : ; N � 1.
Compare with the discussion between (82) and (83) to see the close parallel between (85)
and (91).

6 Final remarks

6.1 Hurwitz's zeta function and Dirichlet's L-functions

Row 3 of Table 2 involves hitting times of Bessel processes of dimension 1 and 3, started
from 0. If the Bessel process does not start from zero, we still have an interesting formula
for the Mellin transform of the hitting time, expressed now in terms of the Hurwitz zeta
function. Speci�cally, one has

E[e��T
a
1 (R3)] =

sinh(a
p
2�)

a sinh(
p
2�)

E[e��T
a
1 (R1)] =

cosh(a
p
2�)

cosh(
p
2�)

(92)
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where T a
1 denotes the hitting time of 1, starting from a 2]0; 1[, of the corresponding

Bessel process. Expanding the denominator we get

sinh(a
p
2�)

a sinh(
p
2�)

=
1

a

1X
n=0

e�(2n+1�a)
p
2� � e�(2n+1+a)

p
2�

Inverting the Laplace transform yields the density of the distribution of T a
1 (R3)

1

a
p
2�t3

1X
n=0

(2n+ 1 � a)e�(2n+1�a)
2=(2t) � (2n + 1 + a)e�(2n+1+a)

2=(2t)

Taking the Mellin transform we get

E[(T a
1 (R3))

s=2] =
�( s�12 )

a2s=2

�
�(s;

1 � a

2
)� �(s;

1 + a

2
)

�
(<(s) > 1)

where �(s; x) =
P1

n=0(n + x)�s is the Hurwitz zeta function. This identity extends by
analytic continuation to all s 2 C . A similar expression exists for T a

1 (R1).
One can use the product expansion for sinh in order to give an approximation of

�(s; u) � �(s; 1 � u);u 2]0; 1[. For it is easy to see that
QN

n=1

�
1 + 2a2�

n2

� �
1 + 2�

n2

��1
is

the Laplace transform of a probability distribution on [0;1[, and that this probability
distribution converges towards that of T a

1 (R3), in such a way that there is a result similar
to Theorem 3.

The Hurwitz zeta function can be used to construct Dirichlet L-functions by lin-
ear combinations. However, direct probabilistic interpretations of general Dirichlet L-
functions, in the spirit of what we did in Section 4 do not seem to exist. More precisely,
let � be a primitive character modulo N , and let

��(t) =
+1X

n=�1
n��(n)e��n

2t (93)

where � = 0 or 1 according to whether � is even or odd, so �(�1) = (�1)�. These
functions satisfy the functional equation

��(t) =
(�i)�� (�)
N1+�t�+1=2

���

�
1

N2t

�
(94)

where � (�) is a Gauss sum. Taking a Mellin transform, this yields the analytic continu-
ation and functional equation for the associated Dirichlet L-function

L�(s) :=

1X
n=1

�(n)

ns
;
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namely
�(s; �) = (�i)�� (�)N�s�(1� s; ��) (95)

where

�(s; �) = �
�(s+�)

2 �

�
s+ �

2

�
L�(s):

See [17] or [11, x1.1] for the classical derivations of these results. For general real �, there
does not seem to be any simple probabilistic interpretation of ��(t). In particular, this
function is not necessarily positive for all t > 0. This can be seen as follows. We choose
an odd character � (the case of even characters is similar), and compute the Laplace
transform of �� using (94)

Z 1

0

e��t��(t) dt =
+1X

n=�1

Z 1

0

n�(n)

N3=2t3=2
e��te��n

2=(N2t) dt = N�1=2
1X
n=1

�(n)e�
2n
N

p
��

Using the periodicity of �, this equals

N�1=2PN�1
n=1 �(n)e

� 2n
N

p
��

1� e�2
p
��

=
N�1=2P(N�1)=2

n=1 �(n) sinh(N�2n
N

p
��)

sinh(
p
��)

(96)

For small values of N , and � a real odd character modulo N , one can see by inspection
that this indeed is the Laplace transform of a positive function, hence by uniqueness
of Laplace transform, �� is positive on the real line. However P�olya [59] exhibited an
in�nite number of primes p such that for the quadratic character modulo p the polynomial
Qp(x) :=

Pp�1
n=1 x

n�(n) takes negative values somewhere on [0; 1]. In particular, for
p = 43 we �nd Q43(3=4) � �0:0075. For such quadratic Dirichlet characters, the Laplace
transform above also takes negative values, which implies that �� does not stay positive
on [0;1[. We note that if �� > 0 on ]0;1[ then obviously its Mellin transform has no
zero on the real line, and hence the corresponding L-function has no Siegel zeros.

6.2 Other probabilistic aspects of Riemann's zeta function

It is outside the scope of this paper, and beyond the competence of its authors, to discuss
at length the theory of the Riemann zeta function. But we mention in this �nal Section
some other works relating the zeta function to probability theory.

The work of P�olya has played a signi�cant role in the proof of the Lee-Yang theorem
in statistical mechanics: see the discussion in [61, pages 424-426]. Other connections
between Riemann zeta function and statistical mechanics appear in Bost and Connes
[10] and in Knauf [40].
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The Euler product for the Riemann zeta function is interpreted probabilistically in
Golomb [27] and Nanopoulos [48], via the independence of various prime factors when
choosing a positive integer according to the distribution with probability at n equal to
�(s)�1n�s for some s > 1. See also Chung [13, p. 247] and [68].

It is an old idea of Denjoy [18] that the partial sums of the M�obius function should
behave like a random walk (the law of iterated logarithm would imply Riemann hypoth-
esis).

Fascinating connections between zeros of the Riemann zeta function (and other L-
functions) and eigenvalue distribution of random matrices are currently under intense
scrutiny. See Odlyzko [50] and Katz and Sarnak [34].

Finally let us mention a few other recent references where the Riemann zeta function
makes some appearances: Asmussen, Glynn and Pitman [4], Joshi and Chakraborty [32],
Chang and Peres [12].
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