
PINCHING AND TWISTING MARKOV PROCESSES

STEVEN N. EVANS AND RICHARD B. SOWERS

Abstract. We develop a technique for \partially collapsing" one Markov pro-
cesses to produce another. The state space of the new Markov process is ob-
tained by a pinching operation that identi�es points of the original state space
via an equivalence relation. To ensure that the new process is Markovian we
need to introduce a randomised twist according to an appropriate probability
kernel. Informally, this twist randomises over the uncollapsed region of the
state space when the process leaves the collapsed region. The Markovianity
of the new process is ensured by suitable intertwining relations between the
semigroup of the original process and the pinching and twising operations. We
construct the new Markov process, identify its resolvent and transition func-
tion and, under some natural assumptions, exhibit a core for its generator. We
also investigate its excursion decomposition. We apply our theory to a number
of examples, including Walsh's spider and a process similar to one introduced
by Sowers in studying stochastic averaging.

Short Title: Pinching and twisting

1. Introduction

Walsh's spider ([Wal78], see also [BEK+98, BPY89, Tsi97]) can be thought of
informally as a Markov process whose state space is n copies ofR+ for some positive
integer n. The process evolves as re
ecting Brownian motion on a given copy until
it hits the zero point of that copy, at which time it moves to the zero point of
some (possibly the same) copy of R+, with the ith copy being chosen with some
probability pi independently of the previous evolution. Of course, the way to begin
making rigorous sense of this prescription is to identify the n zero points of the
copies of R+ as a single point and get a state space that can be thought of as n
semi{in�nite rays issuing from the origin in R2 (cf. Example 1 below). In addition
to its intrinsic interest, the spider plays an important role in the work of Tsirelson
[Tsi97] on the structure of Brownian �ltrations (see also [BEK+98]).

Also, spider{like processes are the fundamental building blocks for construct-
ing di�usions on graphs. Processes taking values on graphs appear in the work
of Freidlin and Wentzell [FW94] extending various classical stochastic averaging
results for PDE's. A higher dimensional di�usion with a structure somewhat akin
to that of the spider plays a similar role in the related work of Sowers [Sow02] on
Hamiltonian systems perturbed by noise.
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Rather than introduce the particular process from [Sow02] now, we can describe
a slightly simpli�ed version of it as follows. We begin with re
ecting Brownian
motion on the unit ball in Rd. When the process hits the boundary of the unit ball
(that is, the unit sphere), it is instantaneously restarted at another uniformly chosen
point on the unit sphere. Again, the �rst step in making sense of this description as
a nice Markov process involves identifying the points on the unit sphere as a single
point. This identi�cation turns the unit ball in Rd into a new state space that
is homeomorphic to the unit sphere in Rd+1 (cf. Example 2 below). We discuss
the resulting process on the d{sphere in Example 2 below and consider the actual
process from [Sow02] in Example 3.

Some of the key reasons the process on the d{sphere described above is Markovian
are that the radial part of the original re
ecting Brownian motion in the ball is
Markovian, that the process is given a random twist at a hitting time for the radial
part process, and that the randomisation is over a level set of the radial part map
(that is, a sphere). Similar features are behind the Markov property for the spider.
It is our aim in this paper to study a general construction that covers both of these
examples.

The results in this paper are also used in [BE02] to develop a general technique is
given for constructing new Markov processes from existing ones. The new process
and its state space are both projective limits of sequences built by an iterative
scheme. The space at each stage in the scheme is obtained by taking disjoint copies
of the space at the previous stage and quotienting to identify certain distinguished
points. Away from the distinguished points, the process at each stage evolves like
the one constructed at the previous stage on some copy of the previous state space,
but when the process hits a distinguished point it enters at random another of the
copies \pinned" at that point. Special cases of this construction produce di�usions
on fractal-like objects with interesting analytic properties that have been studied
recently.

Our e�ort is organised as follows. First, we shall de�ne a general topological
setup involving a \pinching" map � that collapses an initial space E into the state
space ~E of the process we desire to construct (for example, the spider space or the

d-sphere). In order to construct a Markov process ~X on ~E we �rst introduce a
Markov process X on E and assume that the \pinching" operation intertwines in a
suitable way with the evolution dynamics of X (Hypothesis 2.6). More speci�cally,
the space E is decomposed into two pieces, a closed set A and its complement
E nA. The pinching map � is injective on E nA (intuitively, no pinching occurs on

E nA), whereas it is generally not injective on A. The process ~X evolves according
to the dynamics of � �X when X is in the interior of either A and E nA, and our
intertwining assumption on � ensures that these dynamics are Markovian.

To complete the description of ~X , we need to describe how ~X passes between
�(A) and �(E n A) (which we can identify with E n A). This is accomplished by
a \twist" operator K that describes the random mechanism by which �(E nA) is
entered from �(A). In order that the resulting dynamics for ~X are Markovian, this
operator must also intertwine appropriately with the dynamics of X (Hypothesis
2.8).

Our basic result, Theorem 2.13, avers the existence of an appropriate Markov
process ~X on the desired space ~E. After discussing the random twist mechanism
and related intertwining assumptions, we study the generator of ~X and, under
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some simplifying assumptions, its excursion decomposition. Throughout our devel-
opment, we focus on a number of examples.

We should also mention that our construction is perhaps not as general as one
might like. The various intertwining relations mentioned above impose a certain
`homogeneity' on our processes. For example, we cannot use it to produce a pro-
cess like Walsh's spider that evolves as an arbitrary Markov process on each leg
(see, however, the continuation of Example 1 in section 3 concerning processes like
Walsh's spider that evolve as a di�erent one-dimensional di�usion on each leg).

2. General set-up

2.1. Topological Structures. Consider the following setup.

Assumption 2.1 (Spaces). Let E and Ê be two Hausdor�, locally compact, second

countable topological spaces. Thus E and Ê are, in particular, Polish (that is,

metrisable as complete, separable metric spaces). Let  : E ! Ê be a continuous
surjection. Let A � E be closed, and de�ne

~E
def
= (E nA) [  (A);

this being a disjoint union. We further assume that  �1( (A)) = A and that

 �1(K) is compact for any compact subset K of Ê.

Informally, we get ~E by \pinching" A into  (A); that is, if z 2  (A), we pinch
all elements of  �1(z) into z (note that we are most de�nitely not assuming that
 is one-to-one). Suppose now that we have a \nice" Markov process X with state
space E (we will be precise about this in subsection 2.2). Our goal is to construct

in certain situations a Markov process ~X on ~E by pinching X to  � X when X

is in A, but retaining the original dynamics of X when it is in E nA (the rigorous
result is given in subsection 2.4). The interesting part of such a construction is

what happens when ~X \leaves" E nA and enters  (A) or vice-versa; this will be a
central issue in our study (see the discussion preceding Hypothesis 2.8).

Let us start by introducing a topology on ~E that is compatible with the pinching
procedure.

Assumption 2.2 (Topological Pinching). De�ne the map � : E ! ~E by

(2.1) �(x)
def
=

(
x; if x 2 E nA,
 (x); if x 2 A,

and give ~E the topology induced by �. That is, N � ~E is open in the topology of ~E
if and only if ��1(N ) is open in the topology of E. (Equivalenty, we can think of ~E
as the quotient topological space of the topological space E under the equivalence
relation that declares two points x0 and x00 equivalent if and only if �(x0) = �(x00).)

We assume that ~E with this topology is Hausdor�, locally compact, and second
countable (and hence Polish).

A more explicit understanding of the topology on ~E might be of help.

Lemma 2.3. Fix a sequence (xn) in ~E that converges (in the topology of ~E) to
x 2 ~E. Then the following hold.

� If x 2 EnA, then xn 2 EnA for n su�ciently large and limn:xn2EnA xn = x

in the topology of E.
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Figure 1. Walsh's Spider. Left-hand endpoints are mapped into vertex

� If x 2  (A) and xn 2 E nA for all n, then limn (xn) = x in the topology

of Ê.
� If x 2  (A) and xn 2  (A) for all n, then limn xn = x in the topology of

Ê.

The proof of this lemma is given in Section 7. Essentially, this result says that the
topology of ~E is equivalent to that of E on E n A and equivalent to that of Ê on
 (A), but that points on the boundary of E nA (in the topology of E) are identi�ed

with points on the boundary of  (A) (in the topology of Ê) via the map  .
Let us now introduce some illustrative examples that we will develop in the

course of the paper.

Example 1 (Spider). De�ne R
def
= [0;1) as usual, and set In def

= f1; 2 : : :ng for a

positive integer n. Put E
def
= R+ � In, Ê def

= R+,  (x; i)
def
= x for all (x; i) 2 E,

and A
def
= [i2Inf(0; i)g. Then all points (0; i) are collapsed into a single point, and

~E is homeomorphic to the state space of Walsh's spider, that is, to a collection
of n rays emanating from the origin of R2 (equipped with the subspace topology
inherited from R

2). Consequently, ~E is indeed Hausdor�, locally compact, and
second countable { as required by our standing assumptions. See Figure 1.

Example 2 (Ball to Sphere). For future reference, let Bd(0; 1)
def
= fx 2 Rd : kxkRd <

1g be the open unit ball in Rd and let Sd�1
def
= @Bd(0; 1) = fx 2 Rd : kxkRd = 1g

be the unit sphere in Rd. De�ne E
def
= �Bd(0; 1) = fx 2 Rd : kxkRd � 1g and

Ê
def
= [0; 1]. Set  (x)

def
= kxkRd for all x 2 E, and A

def
= Sd�1. Thus all points on

the boundary of d-dimensional unit ball are collapsed into a point and ~E can be
identi�ed with d-dimensional unit sphere Sd by mapping points in �Bd(0; 1) that are
at Euclidean distance r from the origin to points on Sd that are spherical distance
�(1� r) from the north pole (so that the boundary of the ball is mapped into the

north pole). In fact, this map gives a homeomorhism between ~E and Sd (equipped

with the subspace topology inherited fromRd), and hence ~E is certainly Hausdor�,
locally compact, and second countable.
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Figure 2. Ball to Sphere. Boundary of unit ball is mapped to
north pole of sphere

Figure 3. Lollipop. Unit ball is mapped into sphere and exterior
of unit ball is mapped into line

Example 3 (Lollipop). This example is along the same lines as the previous example.

Set E
def
= R

d and Ê
def
= R+. De�ne  (x)

def
= kxkRd for all x 2 Rd, and put A =

R
d n Bd(0; 1). Each sphere (centred at the origin) of radius r � 1 is collapsed to

the point r; thus the boundary of the unit ball is mapped into a point and the
complement of the (closed) unit ball is mapped into the line segment (1;1), which
is attached to the point representing the boundary of the unit ball. This amounts
to mapping the unit ball in Rd into the unit sphere Sd, where the north pole of the
unit sphere represents the boundary of the unit ball, and attaching a semi-in�nite
whisker to the north pole. We see that ~E is homeomorphic to this subset of Rd+1

(equipped with the subspace topology), and hence ~E is Hausdor�, locally compact,
and second countable.

Example 4 (Skew Product). This is something of a generalisation of Example 1.

De�ne E
def
= E0�E00 to be the Cartesian product of two second countable, Hausdor�

spaces E0 and E00, where E0 is locally compact and E00 is compact. Let A = A0�E00,
where A0 is a closed subset of E0, and de�ne  (x0; x00)

def
= x0 for all (x0; x00) 2 E. If

we let d0 be a metric on E0 and d00 be a metric on E00, we can de�ne a metric ~d
that gives the topology of ~E by ~d(x0; y0) = d0(x0; y0) if x0 and y0 are in  (A) = A0,
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by d(x0; (y0; y00)) = d0(x0; y0) if x0 2 A0 and (y0; y00) 2 E nA, and by

d((x0; x00); (y0; y00)) = [d0(x0; y0) + d00(x00; y00)] ^ inf
z02A0

[d0(x0; z0) + d0(z0; y0)]

if (x0; x00) and (y0; y00) are both in E n A. It is clear that ~E is Hausdor�, locally
compact, and second countable.

Before introducing some probability, we need to �x a little more notation. First,
observe that there is a natural map � : ~E ! Ê de�ned by

�(x)
def
=

(
 (x); if x 2 E nA;
x; if x 2  (A).

We prove in Lemma 7.1 that � is continuous. We have that  = � � �, or, equiva-
lently, we have the commutative diagram

E
� //

 ��?
?
?
?
?
?
?
?

~E

�

��
Ê:

We will also use some standard notation from functional analysis. To �x this
notation, let S denote a Hausdor�, locally compact, second countable topological
space. We then let B(S) be the Banach space of bounded real-valued functions
on S and we let B+(S) be the collection of nonnegative elements of B(S). Let
C0(S) be the Banach space of real-valued continuous functions on S that vanish
at in�nity (if S is compact, then of course C0(S) = C(S), the Banach space of
continuous functions on S).

For any subset R of S, de�ne B(S;R)
def
=
�
f 2 B(S) : f

��
R
� 0

	
and C0(S;R)

def
=

C0(S) \B(S;R).
Finally, we set up some operators that map between various spaces of functions.

If S0 is a second locally compact space and � is a measurable map from S to S0,

we de�ne �� : B(S0) ! B(S) as ��f
def
= f � �. If � is continuous and ��1(K) is a

compact subset of S for all compact subsets K of S0, then �� : C0(S0)! C0(S). In
terms of our commutative diagrams, we thus have

(2.2) B(E) B( ~E)
��oo

B(Ê):

 �

ccG
G
G
G
G
G
G
G
G

��

OO

In fact, the results in Section 7 ensure that �� : C0(Ê) ! C0( ~E), �� : C0( ~E) !
C0(E), and  

� : C0(Ê)! C0(E).

De�ne ��� : B(E;A)! B( ~E; (A)) by

(���f)(x)
def
=

(
f(x); if x 2 E nA,
0; if x 2  (A).

Let I ~E be the identity map on B( ~E).

Lemma 2.4. We have that:

a) (I ~E � ��K��)B( ~E) � B( ~E; (A)),
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b)  �B(Ê; (A)) � B(E;A) and �� = ��� � on B(Ê; (A)),
c) ����� is the identity map on B(E;A).

Proof. Claim a) follows directly from claim c) of Lemma 2.7. To see claim b), �x

f 2 B(Ê; (A)). If x 2 A, then  �f(x) = f( (x)) = 0. Secondly,

��� �f(x) =

(
f( (x)); if x 2 E nA;
0; if x 2  (A);

=

(
f(�(x)); if x 2 E nA;
0; if x 2  (A).

On the other hand, if x 2  (A), then ��f(x) = f(x) = 0. This gives us claim b).
To see claim c), �x f 2 B(E;A); then

�����f(x) =

(
���f(x) if x 2 E nA
���f( (x)) if x 2 A

=

(
f(x) if x 2 E nA
0 if x 2 A

= f(x):

�

2.2. Intertwinings. Let us next �x our basic stochastic process.

Assumption 2.5. Let X = (
;F ;Ft; Xt; �t;P
x) be a conservative Borel right

process with state space E and transition semigroup (Pt).

As we mentioned above, we want to \pinch" X when it is on A. We want this
pinched process to be Markovian on  (A), so we will impose:

Hypothesis 2.6 (Dynkin intertwining relation). Suppose that there is a second

Borel right process X̂ = (
̂; F̂ ; F̂t; X̂t; �̂t; P̂
x) with transition semigroup (P̂t) such

that

(2.3) Pt 
� =  �P̂t:

This implies that the �nite{dimensional distributions of  � X under Px are the
same as those of X̂ under P̂ (x) for any x 2 E (see [Sha88, xII.13]).

Hypothesis 2.6 means that the evolution of X̂ is Markovian as long as it stays
in  (A); we will also use in Section 5 the fact that X̂ is Markovian even when X
enters E nA. Essentially, this will allow us to understand the excursions of X into

E n A and  (A) through the excursions of X̂ into  (E n A) and  (A). We also
note that Hypothesis 2.6 enforces a certain invariance of the dynamics of X for
starting points that have the same image under  . Note, however, the continuation
of Example 1 in section 3 to see that this invariance is not as restrictive as it might
�rst seem.

Let us develop our examples.
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Example 1 (Spider, continued). Let (P 0t) be the semigroup of Brownian motion
re
ected at the origin; that is,

(P 0tf)(x)
def
=

Z
y>0

f(y)

8<
:
exp

h
� (x�y)2

2t

i
p
2�t

+
exp

h
� (x+y)2

2t

i
p
2�t

9=
; dy

Set (P 00t f)(i) = f(i) for all f : In ! R and all i 2 In. De�ne Pt def= P 0t 
 P 00t for all

t � 0. Then P̂t = P 0t .

Example 2 (Ball to Sphere, continued). Let X be Brownian motion on E re
ected

(with normal derivative) at Sd. Then X̂ is a d-dimensional Bessel process re
ected
at 1.

Example 3 (Lollipop, continued). Let X be a d-dimensional Brownian motion.

Then X̂ is a d-dimensional Bessel process.

Example 4 (Skew Product, continued). Let X 0 = (
0;F 0;F 0
t ; X

0
t; �

0
t;P

x
0 ) be a Borel

right process with state space E0. Let B be a perfect continuous additive functional
of X 0. Next, let X00 = (
00;F 00;F 00

t ; X
00
t ; �

00
t ;P

x
00) be a Borel right process with state

space E00 and transition semigroup (P 00t ). De�ne the semigroup

(Pt)f(x
0; x00)

def
= Px

0

0 
Px0000 [f(X0(t); X 00(Bt))] ; f 2 B(E0 � E00):

Equivalently, if f 2 B(E) is of the form f(x0; x00) = f 0(x0)f 00(x00) where f 0 2 B(E0)
and f 00 2 B(E00), then

(Ptf)(x
0; x00) = Px

0

0

�
f 0(X0

t)P
00
Bt
[f 00](x00)

�
:

It can be shown that (Pt) is the transition semigroup of a Borel right process called
the skew product of X 0 and X00 with clock B (cf. [Sha88, x16] for the special case
of the Cartesian product for which Bt = t).

With Hypothesis 2.6 in hand, we can collapse X to X̂ when X is in A. Our goal
is to \splice" together X and X̂ to give an ~E-valued process ~X that behaves like X
when it is on E nA and like X̂ when it is on  (A). A moment's thought shows that
we need a further ingredient, however. Assume that we start at x on the boundary
(in the sense of the topology on ~E) of E n A and  (A). If ~X decides to make an

excursion into  (A), it should do so using the dynamics of X̂ . But what happens
if it decides to make an excursion into E n A? Where should it \start", or more
precisely, what is its entrance law? Presumably, it should \start" the excursion
at some point of  �1fxg, but since  �1fxg will in general consist of more than
one point, we should de�ne a mechanism for selecting the particular element of
 �1fxg from which the excursion into E n A starts. Let k : Ê �B(E) ! R be

a probability kernel; that is, for each x 2 ~E, k(x; �) is a probability measure on
(E;B(E)), and the map x 7! k(x;B) is Borel measurable for each B 2B(E). We

de�ne a linear operator K : B(E) ! B(Ê) by Kf(x)
def
=

R
y2E

f(y)k(x; dy); the
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appropriate diagram is thus

B(E)

K ##G
G
G
G
G
G
G
G
G

B(Ê):

We assume that

(2.4) k(x;  �1fxg) = 1

for all x 2 Ê; that is, if x 2 ~E, the probability measure k(x; �) gives a means to ran-
domly select a point in  �1fxg. Several relevant consequences of this assumption
are listed in the following lemma.

Lemma 2.7. We have the following.

a) The operator K � on B(Ê) is the identity.

b) The operator K�� from B( ~E) into B(Ê) satis�es K��f( (x)) = f( (x))

for all f 2 B( ~E) and x 2 A.
c) The operator ��K�� on B( ~E) satis�es f(x) = ��K��f(x) for all f 2 B( ~E)

and x 2  (A).
Proof. Claim a) is a simple consequence of (2.4). To see claim b), we compute that
for f and x as stated,

(K��f)( (x)) =

Z
z2E

f(�(z)) k( (x); dz)

=

Z
z2 �1 fxg

f( (z)) k( (x); dz) (use (2.4) and (2.1))

= f( (x))k( (x);  �1 fxg)) = f( (x)):

Claim c) follows directly from claim b). �

We now assume

Hypothesis 2.8 (Carmona{Petit{Yor intertwining relation). Assume that the

semigroups (Pt) and (P̂t) satisfy

(2.5) KPt = P̂tK:

See [CPY98, Bia95] for other uses of this type of relation. A special case of such
an intertwining is discussed in [Yor89].

Remark 2.9 (Rogers{Pitman intertwining relation). By Lemma 2.7(a) we have that

K � = I;

and so Hypotheses 2.6 and 2.8 together imply that

P̂t = KPt 
�

and
KPt = P̂tK:

These last three relations taken together are the intertwining introduced in [RP81].
From Theorem 2 of [RP81] we have

P
k(x;�) [f(Xt) j �Xs; 0 � s � t] =  �Kf(Xt); x 2 Ê; f 2 B(E):
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That is, if X has initial distribution k(x; �) for any x 2 Ê, then the conditional
distribution of Xt given �f �Xs; 0 � s � tg is k( �Xt; �). See also Corollary 3.5
of [Kur98]. This latter paper has an extensive discussion of intertwinings for semi-
groups and their consequences, plus general results on establishing intertwinings
for semigroups using the associated generator or martingale problem.

We discuss conditions that imply Hypothesis 2.8 in section 3.

2.3. Resolvents. Our proofs will be based upon various calculations using resol-
vents, so let us develop some appropriate notation.

Notation 2.10. De�ne the stopping times

T (!)
def
= infft � 0 : Xt(!) 2 Ag; ! 2 
;

T̂ (!̂)
def
= infft � 0 : X̂t(!̂) 2  (A)g; !̂ 2 
̂:

Since  �1( (A)) = A, the Px-law of T is the same as the P̂ (x) law of T̂ for any

x 2 E. Let (Qt) and (Q̂t) be, respectively, the semigroups for X stopped at T and

X̂ stopped at T̂ ; that is,

(Qtf)(x)
def
= Px [f(Xt^T )] ; f 2 B(E); x 2 E;

(Q̂tf)(x)
def
= P̂x

h
f(X̂t^T̂ )

i
; f 2 B(Ê); x 2 Ê:

For � > 0, de�ne the operators

(2.6)

U�f(x)
def
=

Z 1

0

e��tPtf(x) dt = P
x

�Z 1

0

e��tf(Xt) dt

�

P�T f(x)
def
= Px

�
e��Tf(XT )

�
V �f(x)

def
=

Z 1

0

e��tQtf(x) dt = P
x

�Z 1

0

e��tf(Xt^T ) dt

�
= U�f(x) � P�T U

�f(x) + ��1P�T f(x)

for all f 2 B(E) and x 2 E; U� is the �{resolvent of the semigroup (Pt) and V �

is the �{resolvent of (Qt). Similarly de�ne

(2.7)

Û�f(x)
def
=

Z 1

0

e��tP̂tf(x) dt = P̂
x

�Z 1

0

e��tf(X̂t) dt

�

P̂�
T̂
f(x)

def
= P̂x

h
e��T̂ f(X̂T̂ )

i
V̂ �f(x)

def
=

Z 1

0

e��tQ̂tf(x) dt = P̂
x

�Z 1

0

e��tf(X̂t^T̂ ) dt

�
= Û�f(x) � P̂�

T̂
Û�f(x) + ��1P̂�

T̂
f(x)

for all f 2 B(Ê) and x 2 Ê.
Let us collect together several facts.

Lemma 2.11. We have that:

a) ��B( ~E; (A)) � B(E;A),
b) QtB(E;A) � B(E;A),
c) V �B(E;A) � B(E;A),
d) (U� � P�T U

�)B(E) � B(E;A),
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e) (Û� � P̂�
T̂
Û�)B(Ê) � B(Ê; (A)),

f) P�TB(E;A) = 0.

Proof. To prove a), �x f 2 B( ~E; (A)) and x 2 A. Then ��f(x) = f(�(x)) =
f( (x)) = 0. To prove b), �x f 2 B(E;A) and x 2 A. Then Qtf(x) = Px[f(X0)] =
f(x) = 0. Claim b) directly implies claim c). To see claim e), �x f 2 B(E) and

x 2 A. Then P�T U
�(x) = Px[(U�f)(X0)] = U�f(x). Similarly, if f 2 B( ~E) and

x 2  (A), then P̂�
T̂
Û�f(x) = Û�f(x). Finally, if f 2 B(E;A) and x 2 E, then by

right continuity f(XT ) = 0 under any Px; this gives us claim f). �

2.4. The Basic Theorem. We are now ready to de�ne what will turn out to be
a semigroup on ~E.

De�nition 2.12. For t � 0, f 2 B( ~E), and x 2 ~E, de�ne

~Ptf(x)
def
= Px

�
(��f)(Xt)�fT>tg

�
+ P̂ (x)

h�
KPt�T̂�

�f
�
(X̂T̂ )�fT̂�tg

i
if x 2 E nA, and

( ~Ptf)(x)
def
= (KPt�

�f)(x)

if x 2  (A).
Our basic theorem is that ( ~Pt) is a transition semigroup satisfying certain desir-

able properties. We stress that Hypotheses 2.6 and 2.8 as well as the topological
assumptions of subsection 2.1 are in force.

Theorem 2.13. Suppose that U�C0(E) � C0(E) and P�TC0(E) � C0(E) for each

� > 0, and that KC0(E) � C0(Ê). Then the following hold.

a) The collection ( ~Pt)t�0 is the transition semigroup of a quasi{left{continuous

Borel right process ~X = (~
; ~F ; ~Ft; ~Xt; ~�t; ~P
x) with �{resolvent ~U� given by

(2.8) ~U� = ���V
��� (I ~E � ��K��) + ��Û�K��;

this expression being well-de�ned. An alternative representation of ( ~Pt) is

(2.9) ~Pt = ���Qt�
� (I ~E � ��K��) + ��P̂tK�

�;

this expression being well-de�ned.
b) For each x 2 ~E, the law of � �X under ~Px coincides with that of X̂ under

P̂
�(x); in particular, ~Pt�� = ��P̂t.

c) De�ne a stopping time by

~T (~!)
def
= inf

n
t � 0 : ~Xt(~!) 2  (A)

o
; ~! 2 ~
;

and de�ne a semigroup

~Qtf(x)
def
= ~Px

h
f
�
~Xt^ ~T

�i
; t � 0; f 2 B( ~E); x 2 ~E:

For each x 2 E, the ~P�(x)-law of f ~Xt; 0 � t < ~Tg is equal to the Px-law of

f�(Xt); 0 � t < Tg; in particular, �� ~Qt = Qt�
�.

d) The semigroup ( ~Pt) is Feller (that is, ~PtC0( ~E) � C0( ~E) for each t � 0 and

limt#0 supx2 ~E j ~Ptf(x) � f(x)j = 0 for all f 2 C0( ~E)).
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Proof. We begin with some consequences of our hypotheses that will be generally
useful in what follows. It is immediate that

(2.10) U� � =  �Û�

and

(2.11) KU� = Û�K

for all � > 0. Approximate T from above by the sequence of discrete stopping
times

T 0n
def
= 2�nd2nT e

for the �ltration (�f � Xs : 0 � s � tg)t�0 and use Hypothesis 2.6, Hypothesis

2.8, Remark 2.9, the assumption that KC0(E) � C0(Ê), and a monotone class
argument to see that

(2.12) P�T  
� =  �P̂�

T̂

and

(2.13) KP�T = P̂�
T̂
K

for all � > 0. Consequently,

(2.14) V � � =  �V̂ �

and

(2.15) KV � = V̂ �K

for all � > 0. Moreover, from the assumptions that U�C0(E) � C0(E) and

P�TC0(E) � C0(E) it is clear that Û�C0(Ê) � C0(Ê), V �C0(E) � C0(E), and

V̂ �C0(Ê) � C0(Ê) for all � > 0

To start the proof of a), let us �rst see that each operator ~Pt maps B( ~E) into

itself and that t 7! ~Ptf(x) is right-continuous for each f 2 C0( ~E). It is clear from
the right assumption on X that �U�f ! f pointwise as �!1 for all f 2 C0(E).
Combining this with the assumption that U� maps C0(E) into itself gives that
X is quasi{left{continuous (see [Sha88, Theorem 9.26]). Thus if G1 � G2 � : : :

are open subsets of E with
T
nGn = A and T 00n

def
= infft � 0 : Xt 2 Gng, then

P
xfT 6= limn T 00ng = 0 for all x 2 E. It then follows by standard arguments that

x 7! ~Ptf(x) is Borel measurable for each f 2 B( ~E) and t � 0. Moreover, by the

right assumption on X, the map t 7! ~Ptf(x) is right-continuous for each x 2 ~E

when f 2 C0( ~E).
Let us next prove the formulae for ~U� and ~Pt. First of all, note that by claim

a) of Lemma 2.4 and claim a) of Lemma 2.11, we have that

(2.16) �� (I ~E � ��K��)B( ~E) � B(E;A):

By claims b) and c) of Lemma 2.11, we know that

(2.17)
V ��� (I ~E � ��K��)B( ~E;A) � B(E;A)

Qt�
� (I ~E � ��K��)B( ~E;A) � B(E;A);

hence the formulae for ~U� and ~Pt are well-de�ned (that is, ��� acts on its domain).

Fix next f 2 B( ~E). Note that if x 2 E nA, then
~Ptf(x) = P

x
�
(��f)(Xt)�fT>tg

�
+ P̂ (x)

h�
KPt�T̂�

�f
�
(X̂T̂ )�fT̂�tg

i
:
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Thus if x 2 E nA,

( ~U�f)(x) = (U���f)(x) � (P�T U
���f) (x) +

�
P̂�
T̂
KU���f

�
( (x)):

On the other hand, if x 2  (A), then

( ~U�f)(x) = (KU���f) (x) =
�
P̂�
T̂
KU���f

�
(x):

Hence

~U� = ��� (U
� � P�T U

�)�� + ��P̂�
T̂
KU���:

Note that

��P̂�
T̂
KU��� = ��P̂�

T̂
Û�K�� (use (2.5))

= ��Û�K�� � ��
�
Û� � P̂�

T̂
Û�

�
K��

= ��Û�K�� � ��� 
�
�
Û� � P̂�

T̂
Û�

�
K��

(use claim e) of Lemma 2.11 and claim b) of Lemma 2.4)

= ��Û�K�� � ��� (U
� � P�T U

�) �K��

(use (2.10) and note also claim d) of Lemma 2.11)

= ��Û�K�� � ��� (U
� � P�T U

�)����K��: (use (2.2))

We therefore have that

~U� = ��� (U
� � P�T U

�)�� (I ~E � ��K��) + ��Û�K��:

Finally, we use (2.6), claim f) of Lemma 2.11, and (2.16) to see that

(U� � P�T U
�)�� (I ~E � ��K��) =

�
U� � P�T U

� � ��1P�T
�
�� (I ~E � ��K��)

= V ��� (I ~E � ��K��) :

This implies (2.8). We get (2.9) by taking the inverse Laplace transform and using
the right continuity proved above.

In order to show that the collection of operators ( ~Pt) is a semigroup, it su�ces,
by uniqueness of Laplace transforms and the right-continuity of t 7! ~Ptf(x) for

f 2 C0( ~E), to show that the collection ( ~U�) satis�es the resolvent equation

(2.18) ~U� = ~U� + (� � �) ~U� ~U�:

Using (2.8), we have that

~U� ~U� = ���V
���(I ~E � ��K��)���V

���(I ~E � ��K��) + ��Û�K����Û�K��

+ ���V
���(I ~E � ��K��)��Û�K�� + ��Û�K�����V

���(I ~E � ��K��):

First, note that

��Û�K����Û�K�� = ��Û�K �Û�K�� (use (2.2))

= ��Û�Û�K��: (use a) of Lemma 2.7)
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Secondly, note that

���V
���(I ~E � ��K��)��Û�K�� = ���V

�(���� �  �K����)Û�K��

= ���V
�( � �  �K �)Û�K�� (use (2.2))

= ���V
�( � �  �)Û�K��

(use a) of Lemma 2.7)

= 0:

Thirdly,

��Û�K�����V
���(I ~E � ��K��)

= ��Û�KV �(�� �  �K��)

(use (2.17), claim c) of Lemma 2.4, and (2.2))

= ��Û�V �K(�� �  �K��) (use (2.5))

= ��Û�V �(K�� �K �K��)

= ��Û�V �(K�� �K��)

(use a) of Lemma 2.7)

= 0:

Finally, we have

���V
���(I ~E � ��K��)���V

���(I ~E � ��K��)

= ���V
������V

���(I ~E � ��K��)� ���V
�����K�����V

�(�� �  �K��)

= ���V
�V ���(I ~E � ��K��)� ���V

� �KV �(�� �  �K��)

(use (2.2), claim c) of Lemma 2.4, and (2.17))

= ���V
�V ���(I ~E � ��K��)� ���V

� �V̂ �K(�� �  �K��) (use (2.5))

= ���V
�V ���(I ~E � ��K��)� ���V

� �V̂ �(K�� �K �K��)

= ���V
�V ���(I ~E � ��K��)� ���V

� �V̂ �(K�� �K��)

(use a) of Lemma 2.7)

= ���V
�V ���(I ~E � ��K��):

Thus,
~U� ~U� = ���V

�V ���(I ~E � ��K��) + ��Û�Û�K��

which, by the resolvent equations for (V �) and (Û�), immediately gives the resol-

vent equation (2.18) for ( ~U�).

In order to show that the semigroup ( ~Pt) is the transition semigroup of a quasi{
left{continuous Borel right process, it su�ces to show that

(2.19) ~U�f 2 C0( ~E); f 2 C0( ~E);
and

(2.20) lim
�!1

� ~U�f = f pointwise, f 2 C0( ~E),
(see [Sha88, Theorem 9.26] or [RW00, Section III.3]). This will also establish part
c) (see [RW00, Lemma III.37.1]). Property (2.19) follows fairly readily from our
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assumptions and Lemmas 7.3, 7.4 and 7.5. To prove property (2.20), we use the

fact proved above that t 7! ~Ptf(x) is right-continuous for each x 2 ~E to see that

lim
�!1

� ~U�f = ~P0f pointwise:

We now note that

~P0 = ����
� (I ~E � ��K��f) + ��K��

= �I ~E � ��K�� + ��K�� (use claims a) and c) of Lemma 2.4)

= I ~E :

To see part b), we note that

~U��� = ���V
���(I ~E � ��K��)�� + ��Û�K����

= ���V
� (���� �  �K����) + ��Û�K����

= ���V
� ( � �  �K �) + ��Û�K � (use (2.2))

= ���V
� ( � �  �) + ��Û� (use claim a) of Lemma 2.7)

= ��Û�:

The right-continuity of (P̂t) and ( ~Pt) implies the Dynkin intertwining relation
~Pt�� = ��P̂t; this is su�cient (see [Sha88, Section II.13]).

Turning to part c), de�ne �rst ( ~P�~T f)(x)
def
= ~Px[e��

~Tf( ~X ~T )] for all x 2 ~E, � > 0,

and f 2 B( ~E). Let ~V � be the resolvent of ( ~Qt); that is,

~V �f(x)
def
= ~Px

�Z 1

0

e��tf( ~Xt^ ~T )dt

�
= ~U�f(x) � ~P�~T

~U�f(x) + ��1 ~P�~T f(x)

for f 2 B( ~E) and x 2 ~E. It su�ces to show that �� ~V �f = V ���f for any

f 2 B( ~E). First, note that

�� ~U� = V ��� � V �����K�� + ����Û�K��

use (2.17) and claim c) of Lemma 2.4)

= V ��� � V � �K�� +  �Û�K�� (use (2.2))

= V ��� � V � �K�� + U� �K��: (use (2.10))

Secondly, note that ~P�~TB(
~E; (A)) = 0, so

�� ~P�~T
~U� = �� ~P�~T �

�Û�K��

= ����P̂�
T̂
Û�K�� (use claim b)

=  �P̂�
T̂
Û�K�� (use (2.2))

= P�T U
� �K��: (use (2.3))
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Thirdly, we have from claim c) of Lemma 2.7,

�� ~P�~T f(x) =
~P�(x)

h
e��

~Tf( ~X ~T )
i

= ~P�(x)
h
e��

~T��K��f( ~X ~T )
i

= �� ~P�~T �
�K��f(x)

= ����P̂�
T̂
K��f(x) (use claim b)

=  �P̂�
T̂
K��f(x) (use (2.2))

= P�T  
�K��f(x): (use (2.12))

Combining everything together, we �nd that

�� ~V � = V ��� � V � �K�� + U� �K�� � P�T U
� �K�� + ��1P�T  

�K��

= V ��� � �
V � � U� + P�T U

� � ��1P�T
�
 �K��

= V ���; (use (2.6))

as required. �

Remark 2.14. As noted in the proof of Theorem 2.13, the assumption that U�C0(E) �
C0(E) is equivalent the semigroup (Pt) being Feller given that (Pt) is the semi-
group of a Borel right process (see [RW00, Lemma III.37.1]). Moreover, under the

assumptions of Theorem 2.13 the semigroups (Qt), (P̂t), and (Q̂t) are also Feller.

3. Sufficient conditions for Hypothesis 2.8

Suppose that all the assumptions of Section 2 on E, Ê,  , (Pt), and (P̂t) hold
except for equation (2.4) and Hypothesis 2.8. In this section we discuss various
conditions under which these extra conditions hold.

More precisely, suppose that � is a Radon measure on E (in the sense of [DM78,

III.46]) and de�ne �̂
def
= � �  �1 (that is, �̂ is the push{forward of � by  ). By

our assumption that the inverse image of compact sets by  are also compact, the
measure �̂ is also Radon. Set

(f 0; g0)�
def
=

Z
E

f 0g0 d�; f 0; g0 2 B+(E);

(f 00; g00)�̂
def
=

Z
Ê

f 00g00 d�̂; f 00; g00 2 B+(Ê):

There is a disintegration �(B) =
R
Ê k(x;B) �̂(dx), where k is a probability kernel

such that (2.4) holds and (Kf; g)�̂ = (f;  �g)� for all f 2 B+(E) and g 2 B+(Ê).

(Informally, if we think of the map  as a Ê{valued random variable de�ned on
(E;B(E)) equipped with the possibly in�nite measure �, then k(x;B) is the \con-
ditional probability" �fB j = xg and (Kf)(x) is the \conditional expectation"

�[f j = x].) Note also that (f; g)�̂ = ( �f;  �g)� for all f and g in B+(Ê). We
will investigate when this choice of K also satis�es Hypothesis 2.8.

Example 4 (Skew Product, continued). Suppose that �0 is a Radon measure and
�00 is a probability measure that is invariant for (P 00t ); that is, �

00P 00t = �00. Set
� = �0 
 �00, so that �̂ = �0 and Kf(x0) =

R
f(x0; x00)�00(dx00).
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Now if f 2 B(E) is of the form f(x0; x00) = f 0(x0)f 00(x00), then

KPtf(x
0) =

Z
E00

P
x0
0 
Px0000 [f 0(X0(t))f 00(X00(Bt))] �

00(dx00)

=

Z
E00

P
x0
0

�
f 0(X0(t))P 00Bt

f 00(x00)
�
�00(dx00)

= Px
0

0

�
f 0(X0(t))

Z
E00

P 00Bt
f 00(x00)�00(dx00)

�

= Px
0

0

�
f 0(X0(t))

Z
E00

f 00(x00)�00(dx00)

�
= P̂tKf(x

0);

and a monotone class argument gives Hypothesis 2.8.

Example 3.1. (Symmetry) Suppose that the semigroup (Pt) is symmetric with re-
spect to the measure � (that is, (Ptf; g)� = (f; Ptg)� for all f and g in B+(E)),
and that � has E as its support. Suppose also that PtC0(E) � C0(E) for all
t � 0 (equivalently, U�C0(E) � C0(E) for all � > 0 { see Remark 2.14) and that

KC0(E) � C0(Ê).

For f 2 B+(E) and g 2 B+(Ê) we have

(KPtf; g)�̂ = (Ptf;  
�g)� = (f; Pt 

�g)�

= (f;  �P̂tg)� = (Kf; P̂tg)�̂ = (P̂tKf; g)�̂:

Thus KPtf(x) = P̂tKf(x) for �̂{a.e. x 2 Ê. It is easy to see that the measure �̂

has support all of Ê and so, by continuity, KPtf(x) = P̂tKf(x) for all x 2 Ê when
f 2 C0(E). A monotone class argument shows that Hypothesis 2.8 holds in this
case.

Example 1 (Spider, continued). Fix a measure �00 on In and let �0 be Lebesgue
measure on R+. Let � = �0 
 �00. Then

Kf(x) =

Z
In

f(x; i)�00(di)

for all f 2 B(E) and x 2 R+. Recall that the process X for the spider is the Carte-
sian product of re
ected Brownian motion on R+ and the trivial process on In that
stays forever at its starting point. It is clear that �00 is invariant for the semigroup
of the latter process. Also, the semigroup (Pt) of X is certainly symmetric with
respect to �. It is, of course, also easy to see directly that Hypothesis 2.8 holds in
this case.

Let us observe what happens in this spider example if we re-de�ne  (x; i)
def
= si(x)

for all (x; i) 2 E, where si is the scale function of a regular di�usion on R+ (that
is, si is a continuous, strictly increasing function) with the added properties that

si(0) = 0 and limx!1 si(x) = 1 for all i. We could then take X̂ to be re
ecting

Brownian motion on R+ and X to be the process that evolves as s�1i � X̂ on
R+� fig. It is not hard to see that the Hypotheses 2.6 and 2.8 hold in this case.
By the classical scale and speed construction of one-dimensional regular di�usions
from Brownian motion (see, for example, Chapter V of [RW87]), we could, by the
introduction of suitable time-changes on each leg of the spider space, produce a
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process on the spider space that evolves as an arbitrary regular one-dimensional
di�usion on each leg.

Example 3.2. (Group equivariance) Assume that E is equipped with a compact,
metrisable group G of homeomorphisms. Given � 2 G, de�ne �� : B(E) ! B(E)

by ��f(x)
def
= f(�x) for all x 2 E and f 2 B(E). Suppose that � is invariant with

respect to G (that is, � � ��1 = � for all � 2 G), and that the support of � is all of
E. Suppose further that (Pt) is equivariant with respect to G; that is, ��Pt = Pt��
for all � 2 G. Thirdly, suppose that  is G-invariant; that is,  (x) =  (�x) for all
x 2 E and � 2 G. Equivalently, �� 

� =  � for all � 2 G. Lastly, suppose that
PtC0(E) � C0(E) for all t � 0 (equivalently, U�C0(E) � C0(E) for all � > 0) and

that KC0(E) � C0(Ê).
Let � denote normalised Haar measure on G and de�ne an operator L : B(E) !

B(E) by Lf(x)
def
=
R
��f(x) �(d� ) =

R
f(�x) �(d� ). We claim that for every f 2

B(E), Lf(x) =  �Kf(x) for �-a.e. x 2 E. First, note that for any g 2 B+(Ê),

( �Kf; �g)� = (Kf; g)�̂ = (f;  �g)�:

On the other hand,

(Lf;  �g)� =

Z
(��f;  

�g)��(d� ) =

Z
(��f;�� 

�g)��(d� ) = (��f;�� 
�g)�:

Thus (Lf;  �g)� = ( �Kf; �g)� for any g 2 B+(Ê). Note that  �Kf is  -
measurable. >From the invariance of  with respect to G, we also have that Lf
is  -measurable (cf. Remark (b) after [DM78, Theorem III.26]). Thus indeed
Lf(x) =  �Kf(x) for �-a.e. x 2 E.

For f 2 B+(E) and g 2 B+(Ê) we now �nd (noting that the equivariance
assumption implies PtL = LPt) that

(KPtf; g)�̂ = ( �KPtf;  
�g)� = (LPtf;  

�g)� = (PtLf;  
�g)�

= (Pt 
�Kf; �g)� = ( �P̂tKf; 

�g)� = (P̂tKf; g)�̂:

Thus KPtf(x) = P̂tKf(x) for �̂{a.e. x 2 Ê, and Hypothesis 2.8 follows as in the
previous example.

Example 2 (Ball to Sphere, continued). Let G = O(d), the group of orthogonal
transformations of Rd. Let � be Lebesgue measure on E. It is easy to see that � is
invariant with respect to G and that (Pt) is equivariant with respect to G (since the
Euclidean Laplacian is equivariant with respect to G, as is the normal derivative at
@E). It is also easy to see that  is G-invariant. For f 2 B(E), we then have that

(3.1) Kf(r) =

R
kxk
Rd
=r
f(x)H d�1(dx)

H d�1fx 2 Rd : kxkRd = rg
= d�1��d=2�

�
d

2
+ 1

�Z
Sd�1

f(r�)H d�1(d�)

for 0 < r � 1, where H d�1 is (d � 1)-dimensional Hausdor�-measure, � is the
standard Gamma function, and

Kf(0) = f(0):
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We could also establish Hypothesis 2.8 for this example (with the same operator
K) by noting that (Pt) is symmetric with respect to a G-invariant measure on E.

Example 3 (Lollipop, continued). We again let G = O(d), the group of orthogonal
transformations ofRd and let � be Lebesgue measure on E. We get the same results
as for the Ball-to-Sphere example, except that now (3.1) holds for all r > 0.

4. Generators and Cores

We next study the generator of ( ~Pt). We will assume the conditions of Theorem

2.13. Recall from Remark 2.14 that the semigroups (Pt), (Qt), and (P̂t) are Feller.
We will also make some further simplifying assumptions that are reasonably general
and certainly apply to all of our examples.

Proposition 4.1. Let the Feller semigroups (Pt), (Qt), and (P̂t) have respective

generatorsG, H, and Ĝ, whose domains are, respectively, D(G), D(H) and D(Ĝ).
Let ~G denote the generator of the Feller semigroup ( ~Pt), with associated domain

D( ~G). Consider a vector space of functions D � C0( ~E) such that the following
hold.

a) K��(D) � D(Ĝ) (hence  �K��(D) � D(G)).
b) ��K��(D) � D.
c) There is an extension Ge of G

��
 �K��(D)

with domain D(Ge) such that:

c1) ��(D) � D(Ge);

c2) KGe = ĜK on ��(D);
c3) ff 2 D(Ge) : Gef(x) = 0 for all x 2 Ag � D(H) and Ge agrees with

H on left-hand set;
c4) Ge��f(x) = Ge��f(y) if f 2 D and  (x) =  (y) 2  (A).

Then D � D( ~G) and

(4.1) �� ~Gf = Ge��f; f 2 D:
Alternatively, we have

(4.2) ~Gf(x) =

(
Ge��f(x); if x 2 E nA,
ĜK��f(x); if x 2  (A).

If in addition

d) D is dense in C0( ~E),
e) The range of ~G

��
D
� � is dense in C0( ~E) for each � > 0,

then D is a core for ~G.

Proof. Fix f 2 D. First, we note that

lim
t&0

1

t
(Pt 

�K��f �  �K��f) = lim
t&0

1

t

�
 �P̂tK�

�f �  �K��f
�

(use (2.3))

=  �ĜK��f: (use assumption a)

Thus  �K��f 2 D(G) and

(4.3) G �K��f =  �ĜK��f:
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Next, we note that for x 2 A,

(4.4)
Ge��f(x) =  �KGe��f(x) (by assumption c4)

=  �ĜK��f (by assumption c2)

Further, note that the combination of (2.2) and assumptions b) and c1) ensures
that ����K��(D) � D(Ge). Thus we �nd that

G��(I ~E � ��K��)f(x) = 0; x 2 A:
Using now assumption c3), we see that �f

def
= ��(I ~E � ��K��)f is in the domain of

H and furthemore H �f 2 B(E;A). Hence
(4.5)

�� ~Gf = �����H �f + ����ĜK��f

= H �f +  �ĜK��f (use claim c) of Lemma 2.4 and (2.2))

= Ge��f �Ge �K��f +  �ĜK��f (use assumption c) and (2.2))

= Ge��f (use (4.3))

which is (4.1). To get (4.2), we simply use the de�nition of � to get the claimed
formula for x 2 E nA. To get the formula when x 2  (A), we use (4.4).

The result that D is a core is a direct consequence of [EK86, Proposition 1.3.1].
�

To better understand the generator, let us consider the case where X and X̂ are
Feller jump processes so that

(4.6)

(Gf)(x) = �(x)

Z
y2E

ff(y) � f(x)g �(x; dy); x 2 E;

(Ĝf)(x)
def
= �̂(x)

Z
y2Ê

ff(y) � f(x)g �̂(x; dy); x 2 Ê;

where � and �̂ are nonnegative and � and �̂ are probability kernels. By the Yosida
approximation [EK86], any Feller generator can be approximated by ones of the
form (4.6). Note that

(Hf)(x) = �(x)�EnA(x)

Z
y2E

ff(y) � f(x)g �(x; dy); x 2 E:

Making all of the necessary assumptions, let us now write down the generator of
~X. Observe that Hypothesis 2.6 is equivalent to

� = �̂ �  
�(x; �) �  �1 = �̂( (x); �); x 2 E:

Observe also that Hypothesis 2.8 is equivalent toZ
y2E

�(y; �) k(x; dy) =
Z
y2Ê

k(y; �) �̂(x; dy); x 2 Ê;

when Hypothesis 2.6 and equation (2.4) hold. If x 2  (A), then de�ne

~�(x; S)
def
= �̂(x; S \  (A)) +

Z
y2Ên (A)

ky(S \ (E nA)) �̂(x; dy)
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for S 2B( ~E), whereas if x 2 E nA, then de�ne

~�(x; S)
def
= �(x; S \ (E nA)) + �̂( (x); S \ (A))
= �(x; S \ (E nA)) + �(x;  �1(S) \A)

for S 2B( ~E). Also set

~�(x)
def
=

(
�(x); if x 2 E nA,
�̂(x); if x 2  (A).

Then

(4.7) ~Gf(x) = ~�(x)

Z
y2 ~E

ff(y) � f(x)g ~�(x; dy):

It is important to note that if the hypotheses of Proposition 4.1 hold, then
the dependence of ~G on K via the extension Ge is somewhat hidden (cf. (4.1)).

The e�ect of K is more directly visible in the domain of ~G; that is, through
assumption b). We shall call assumption b) the glueing condition. A treatment of
our standard examples will clarify matters and justify this terminology. In order
to apply Proposition 4.1 to our examples, let us �rst de�ne

C
 ;A
0 (E)

def
= ff 2 C0(E) : f(x) = f(y) if x and y are in A and  (x) =  (y)g :

The proof of the following result is given in Section 7.

Lemma 4.2. The map �� is a bijection from C0( ~E) to C
 ;A
0 (E).

We will write �� : C
 ;A
0 (E) ! C0( ~E) for the inverse of ��. Note that C0(E;A) �

C
 ;A
0 (E) and the restriction of �� toC0(E;A) is ���. Most of the ensuing calculations

are similar to some in [Sow02].

Example 1 (Spider, continued). Here

C
 ;A
0 (E) = ff 2 C0(R+� In) : f(0; i) = f(0; j) for all i and j in Ing :

Let

D0 def=
n
f 2 C ;A0 (R+� In) : f

��
R+�fig

2 C2(R+) for all i 2 In;
@2f

@x2
(0; i) =

@2f

@x2
(0; j) for all i and j in In,

and

Z
In

@f

@x
(0; i)�00(di) = 0

�
:

We want to show that ��D0 is a core for ~G; that is, we want to verify the hypotheses
of Proposition 4.1. Note that

(4.8)

n
f 2 B(R+� In) : f

��
R+�fig

2 C2(R+)

and
@2f

@x2
(0; i) = 0 for all i 2 In

�
� D(H)�

f 2 C2(R+) :
@f

@x
(0) = 0

�
� D(Ĝ)
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Fix f 2 D0. Then

 �Kf(x; i) = Kf(x) =

Z
In

f(x; i)�00(di); for all x 2 R+ and i 2 In.

Thus assumption a) holds. Secondly, ��Kf 2 D0, so assumption b) holds. We now
de�ne

Ge �f (x; i)
def
=

1

2

@2 �f

@x2
(x; i); x 2 R+; i 2 In;

for all �f in the set

D(Ge)
def
=
n
f 2 C0(R+� In) : f

��
R+�fig

2 C2(R+)

and
@2f

@x2
(0; i) =

@2f

@x2
(0; j) for all i and j in In

�
:

We easily see thatGe is indeed an extension ofG
��
 �KD0

. Assumption c1) is clearly

true. Assumption c2) is true since

KGef(x) = ĜKf(x) =
1

2

Z
In

@2f

@x2
(x; i)�00(di)

for all x 2 R+. Assumption c3) holds by the �rst inclusion of (4.8). Assumption

c4) follows immediately from the de�nition of D(Ge). Thus indeed ��(D
0) � D( ~G)

and ~G�� = Gef .

We also clearly have that D0 is dense in C ;A0 (E). Finally, �x ' 2 C ;A0 (E) and
� > 0. For each i 2 In, solve

1

2

@2g

@x2
(x; i)� �g(x; i) = '(x; i); x > 0;

g(0; i) = 0;

1

2

@2h

@x2
(x; i)� �h(x; i) = 0; x > 0;

h(0; i) = 1:

By standard PDE results, g and h exist and have restrictions to R+� fig that are
in C2(R+) for each i 2 In. De�ne now

f(x; i)
def
= g(x; i) + Ch(x; i); (x; i) 2 R+� In;

where C is a constant to be determined; we want to show that f 2 D0 and that

(4.9) �� ~G��f � �f = ':

First, note that f 2 C
 ;A
0 (E) and f restricted to R+ � fig is in C2(R+) for each

i 2 In. Secondly,

(4.10)
1

2

@2f

@x2
(x; i)� �f(x; i) = '(x; i); x > 0; i 2 In:

This implies that @
2f
@x2 (0; i) does not depend on i (since both f and ' are inC ;A0 (E)).

To complete the proof that f 2 D0, we need to check that

0 =

Z
In

@f

@x
(0; i)�00(di) =

Z
In

@g

@x
(0; i)�00(di) + C

Z
In

@h

@x
(0; i)�00(di):
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Thus, we want to set

C
def
= �

R
In

@g
@x(0; i)�

00(di)R
In

@h
@x (0; i)�

00(di)
;

and to do this we need to verify that

(4.11)

Z
In

@h

@x
(0; i)�00(di) 6= 0:

Assume not; that is, assume thatZ
In

@h

@x
(0; i)�00(di) = 0:

Then h 2 D0 and ~G��h � �h = 0. Since ( ~Pt) is Feller, ~G satis�es the positive
maximum principle (see [EK86, Theorem 2.1 of Ch. 4]), so it is dissipative (see

[EK86, Theorem 2.2 of Ch. 4]). Since, as we already know, ��(D0) � D( ~G), we
can conclude that h = 0, leading to a contradiction. Thus (4.11) must hold, and so
f 2 D0. Equation (4.10) implies (4.9), so indeed assumption e) holds, completing

the proof that ��D0 is a core for ~G.

Example 2 (Ball to Sphere, continued). Here

C
 ;A
0 (E) =

�
f 2 C0(E) : f is constant on Sd�1

	
:

Let

D0 def=
n
f 2 C ;A0 (E) : f 2 C2(E), �f is constant on Sd�1,

and

Z
Sd�1

hrf(�); �i
Rd
H

d�1(d�) = 0

�
:

We again want to show that ��D0 is a core for ~G. Here we have that

(4.12)

�
f 2 C2(E) : �f(�) = 0 for all � 2 Sd�1	 � D(H)�

f 2 C2([0; 1]) : f 0(1) = 0
	 � D(Ĝ):

Fix f 2 D0. Then

(4.13)  �Kf(x) = Kf(kxk) = d�1��d=2�

�
d

2
+ 1

�Z
Sd�1

f(kxkRd�)H d�1(d�)

for all x 2 E. Some straightforward calculations (that require some care at the
origin) show that assumptions a) and b) indeed hold. We now de�ne

(4.14) Ge �f (x)
def
=

1

2
� �f(x); x 2 E;

for all �f in

D(Ge)
def
=
�
f 2 C2(E) : �f is constant on Sd�1

	
:

It is easy here too to see that Ge is indeed an extension of G
��
 �K(D0)

. Assumption

c1) is clearly true. Assumption c2) is true since

(4.15) KGef(r) = ĜKf(r) =
1

2

Z
Sd�1

�f(r�)H d�1(d�)
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for all 0 < r < 1 (use polar coordinates). Assumption c3) holds by the �rst inclusion

of (4.12). Assumption c4) is true by de�nition of D(Ge), so ��(D
0) � D( ~G) and

~G��f = Gef .
We also clearly have that D0 is dense in C ;A0 (E). Finally, �x ' 2 C ;A0 (E) and

� > 0 and solve

1

2
�g(x)� �g(x) = '(x); x 2 Bd(0; 1);

g
��
Sd�1

= 0;

1

2
�h(x)� �h(x) = 0; x 2 Bd(0; 1);

h
��
Sd�1

= 1:

By standard PDE results, g and h exist and are in C2(E). De�ne now

f(x)
def
= g(x) +Ch(x); x 2 E;

where C is a constant to be determined; we want to show that f 2 D0 and we again
want to verify (4.9). Again, f 2 C ;A0 (E) and f 2 C2(E). We also have that

(4.16)
1

2
�f(x) � �f(x) = '(x); x 2 Bd(0; 1);

implying that �f is constant on Sd�1. To complete the proof that f 2 D0, we need
to check that

0 =

Z
Sd�1

hrf(�); �i
Rd
H

d�1(d�)

=

Z
Sd�1

hrg(�); �i
Rd
H

d�1(d�) +C

Z
Sd�1

hrh(�); �i
Rd
H

d�1(d�):

Thus, we want to set

C
def
= �

R
Sd�1

hrg(�); �i
Rd
H d�1(d�)R

Sd�1
hrh(�); �i

Rd
H d�1(d�)

;

and to do this we need to verify thatZ
Sd�1

hrh(�); �i
Rd
H

d�1(d�) 6= 0:

Assume not; that is, assume thatZ
Sd�1

hrh(�); �i
Rd
H

d�1(d�) = 0:

Then h 2 D0 and ~G��h��h = 0. As in Example 1, this implies that h = 0, leading
to a contradiction and allowing us to complete the proof that ��D

0 is a core for ~G.

Example 3 (Lollipop, continued). Here

C
 ;A
0 (E) = ff 2 C0(E) : f(x) = f(y) if kxkRd = kykRd � 1g :
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Let

D0 def=
n
f 2 C ;A0 (E) : f

��
�Bd(0;1)

2 C2( �Bd(0; 1)); f
��
RdnBd(0;1)

2 C2(Rd nBd(0; 1));

lim
x!Sd�1

x62Sd�1

�f(x) exists, and lim
r!1
r 6=1

Z
Sd�1

hrf(r�); �i
Rd
H

d�1(d�) exists

9>=
>; ;

then

��(D
0) =

n
f 2 C0( ~E) : f

��
�Bd(0;1)

2 C2( �Bd(0; 1)); f
��
[1;1)

2 C2([1;1));

lim
x!Sd�1

x2Bd(0;1)

�f(x) = lim
r&1

1

2
�f (r) +

1

2r
_f (r),

and lim
r%1

Z
Sd�1

hrf(r�); �i
Rd
H

d�1(d�) = d�d=2�

�
d

2
+ 1

�
lim
r&1

_f (r)

�
:

Note that

(4.17)

�
f 2 C2(E) : �f(x) = 0 if kxkRd � 1

	 � D(H)

C2(R+) � D(Ĝ):

Fix f 2 D0. We again have (4.13), and assumptions a) and b) hold as in Example
2. We again use (4.14), where this time

D(Ge) =
�
f 2 C2(R2) : �f(x) = �f(y) if kxkRd = kykRd � 1

	
:

Thus Ge is an extension of G
��
 �K(D0)

. Assumption c1) is clearly true. Assumption

c2) is again true due to (4.15), which holds for all r > 0. Assumption c3) holds
by the �rst inclusion of (4.17), and assumption c4) holds by de�nition of D(Ge).

Thus ��(D0) � D( ~G) and, for the third time, ~G��f = Gef .

We also clearly have that D0 is dense in C ;A0 (E). Fix ' 2 C ;A0 (E) and � > 0
and solve

1

2
�gi(x)� �gi(x) = '(x); x 2 Bd(0; 1);

gi
��
Sd�1

= 0;

1

2
�hi(x) � �hi(x); = 0; x 2 Bd(0; 1);

hi
��
Sd�1

= 1:

Now let '0 2 C0([1;1)) be such that '(x) = '0(kxkRd) when kxkRd � 1. Then we
also solve the PDE's

1

2
�go(r) +

1

2r
_g0(r)� �go(r) = '0(r); r > 1;

go(1) = 0;

lim
r!1

go(r) = 0;

1

2
�ho(r) +

1

2r
_ho(r) � �ho(r) = 0; r > 1;

ho(1) = 0;

lim
r!1

ho(r) = 0:
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By standard PDE results, gi and hi exist and are in C2( �Bd(0; 1)) and go and ho
exist and are in C2([1;1)). De�ne now

f(x)
def
=

(
gi(x) +Chi(x); if x 2 Bd(0; 1),
go(kxkRd) + Cho(kxkRd); if kxkRd � 1,

where C is a constant to be determined. Clearly f 2 C ;A0 (E) and f 2 C2(Bd(0; 1))[
C2(Rd n �Bd(0; 1)). By standard calculations, we again have (4.16) on R2n Sd�1, so
indeed limx2Sd�1

x62Sd�1
�f(x) exists. Set now

Gi
def
= lim

r%1

Z
Sd�1

hrgi(r�); �iRd H d�1(d�);

Hi
def
= lim

r%1

Z
Sd�1

hrhi(r�); �iRd H d�1(d�);

Go
def
= d�d=2�

�
d

2
+ 1

�
lim
r&1

_go(r);

Ho
def
= d�d=2�

�
d

2
+ 1

�
lim
r&1

_ho(r);

by some standard PDE calculations (see [Sow02]), these limits exist. We now need
to check that Gi + CHi = Go + CHo. Thus we want to set

C
def
= �Gi � Go

Hi �Ho

and to do this we need to verify that Hi 6= Ho. Assume not; that is, that Hi = Ho.
Then, as usual, we have found a nonzero element of D0 such that ~G��h� �h = 0.
This is impossible, so Hi 6= Ho, allowing us to �nish the proof as we did in the
previous examples.

5. Excursion theory

Suppose that the conditions of Theorem 2.13 hold. Suppose also that @ ~E (A) =

fx�g � ~E, where @ ~E (A) = @ ~E(E n A) is the boundary of both  (A) and E n A
in the topology of ~E; that is, @ ~E (A) is a single point x�. We want to understand

the structure of the excursions of ~X from x�. Note that since A is closed in the
topology of E,  (A) is closed in the topology of Ê, so, by Lemma 2.3, x� 2  (A).

Suppose that x� is a regular point for X̂ ; then it is also a regular point for ~X . Let
^̀ be the local time of X̂ at x�, normalised so that P̂x

�

[
R1
0 e�s d^̀s] = 1. Similarly,

let ~̀ be the local time of ~X at x�, normalised so that ~Px
�

[
R1
0
e�s d~̀s] = 1. It is

easy to see that the P̂x
�

-law of ^̀ is the same as the ~Px
�

-law of ~̀.
By standard results of excursion theory (see [Ber96, Ch. IV] or [RW87, Ch. VI])

the paths of ~X under ~Px
�

can be decomposed using the local time ~̀ into a Poisson
point process on R+ � E , where E is the space of excursion paths from x�. That

is, E is the space of c�adl�ag paths e : R+ ! ~E such that e(t) = e(h(e)) = x� for

all t � h(e) > 0, where h(e)
def
= infft > 0 : e(t) = x� or e(t�) = x�g. This Poisson

process has intensity � 
 ~n, where � is Lebesgue measure on R+ and ~n is the �{
�nite Itô excursion measure on E . We can characterise ~n as follows. Let ( ~Qt) be
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the transition semigroup of ~X stopped on �rst hitting x�; that is,

~Qt(x;B)
def
= ~Pxf ~Xt^ ~T 2 Bg; B 2B( ~E); x 2 ~E:

Then ~n is given by

~nfe 2 E : et1 2 dx1; : : : ; etk 2 dxk; h(e) > t1g
= ~nt1(dx1) ~Qt2�t1(x1; dx2) � � � ~Qtk�tk�1(xk�1; dxk):

for 0 < t1 < � � � < tk < 1, where (~nt)t>0 is a certain family of measures known

as the entrance law of the excursion measure. By Theorem 2.13, ~Qt(x;B) =

Qt(�
�1(x); ��1(B)) for x 2 E n A and B 2 B( ~E) such that B � E n A; simi-

larly, ~Qt(x;B) = Q̂t(�(x); �(B)) for x 2  (A) and B 2B(Ê) such that B �  (A).
To identify (~nt), let (n̂t)t>0 be the corresponding entrance law for the Itô excursion

measure of X̂ . >From [RW87, Equation VI.50.3], we have thatZ 1

0

e��t~nt[f ] dt =
~U�f(x�)

~Px�
hR1

0 e��t d~̀t
i

=
Û�K��f(x�)

P̂x
�

hR1
0 e��t d^̀t

i
=

Z 1

0

e��tn̂t(K�
�f) dt:

Thus

~nt(S) =

Z
y2Ê

k(y; ��1(S)) n̂t(dy)

for all S 2 B( ~E). In particular, if S � E nA, then

~nt(S) =

Z
y2Ê

k(y; S) n̂t(dy);

and if S �  (A), then (by using (2.4))

~nt(S) = n̂t(S):

Note the similarity between these calculations and those leading to (4.7). Hence,
~X makes an excursion into  (A)nfx�g with \probability" equal to that with which

X̂ makes an excursion into  (A)nfx�g, and ~X makes an excursion into E nA with

\probability" equal to that with which X̂ makes an excursion into Ê n (A). If the
excursion of ~X is into  (A), the entrance law and dynamics of the excursion are

the same as the entrance law and dynamics of an excursion of X̂ into  (A). If the

excursion of ~X is into E n A, the excursion enters  (E n A) with the entrance law

of X̂ , and then randomises over E nA according to the kernel k.

Example 1 (Spider, continued). Let n̂t be the entrance measure of re
ected Brow-

nian motion at 0 (that is, the entrance law of X̂). Then

~nt = n̂t 
 �00:

In other words, excursions choose the ith leg of the spider with probability �00(fig).
Example 2 (Ball to Sphere, continued). Here the measure ~nt is concentrated on the
open ball Bd(0; 1). Viewing the ball in polar coordinates, the measure ~nt is given
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by the product of n̂t and normalised (d� 1)-dimensional Hausdor� measure on the
unit sphere Sd�1, where n̂t is the entrance law of a d-dimensional Bessel process
on [0; 1] re
ected at 1.

Example 3 (Lollipop, continued). Here the measure ~nt is concentrated on the
union of the open ball Bd(0; 1) and the interval (1;1). The component on (1;1)
is just the restriction to (1;1) of the entrance law for excursions from 1 of a d-
dimensional Bessel process, and the component on Bd(0; 1) is, viewing the ball
in polar coordinates, the product of the restriction to (0; 1) of the entrance law
for excursions from 1 of a d-dimensional Bessel process and normalised (d � 1)-
dimensional Hausdor� measure on the unit sphere Sd�1.

Example 4 (Skew Product, continued). Suppose that the additive functional B is

given by Bt =
R t
0
b(X0

s) ds for some non-negative Borel function b that is bounded
in a neighbourhood of x�. Assume that the conditions of Theorem 2.13 hold.
If e is in the excursion space E for ~X , then e(t) = (e0(t); e00(t)) 2 E0 � E00 for
0 < t < h(e). It follows from the above that the excursion law ~n can be described
as follows. The E0{valued component of the excursion is chosen according to n̂.
Conditional on this component being e0, the E00{valued component has the law of

the process (X 00(
R t
0 b(e

0(s)) ds) : 0 < t < h(e0)) under P�
00

00 . That is, the E00{valued
component evolves as an instance of X00 that is started at a random starting place
chosen according to �00 and time{changed according to the clock B driven by the
E0{valued component.

6. Another Example

Our aim in this section is to make some remarks about a process that arises
in [Sow02]. This process was the original motivation for our work. Our goal is to
generalise in a sense the process of Example 3 by using the construction of Example
4.

We �rst construct a (0;1) � S1 process that can be thought of as an R2 n
f0g-valued process viewed in polar coordinates. We will use the Skew Product
construction of Example 4 to carry out the details.

We begin with the radial part. Let X0 be a process with state space E0
def
= (0;1)

that, intuitively speaking, evolves as a 2{dimensional Bessel process on (0; 1) and
as the stochastic di�erential equation

(6.1) dZt = �(Zt)dWt + b(Zt)dt

on (1;1), where W is a Wiener process. Formally, de�ne two generators

L1f(x)
def
=

1

2
�f (x) +

1

2x
_f (x)

for 0 < x < 1 if f 2 C1(0; 1), and de�ne

L2f(x)
def
=

1

2
�2(x) �f (x) + b(x) _f(x)

for x > 1 if f 2 C1(1;1), where �2 > 0 and b are both C1 and bounded. De�ne
a scale function

s(x)
def
=

(
logx; if 0 < x � 1;R x
1 exp

h
�2 R z

1
b(z0)
�2(z0)dz

0
i
dz; if 1 < x <1;
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and a speed measure

m(B) = 2

Z
z2B

1

s0(z)

�
�(0;1)(z) +

1

�2(z)
�(1;1)(z)

�
dz

for all B 2B((0;1)). (see [RW87, xx46{48] for a discussion of the scale and speed
description of 1{dimensional di�usions in general, and Bessel processes in particu-
lar). We assume that s is �nite on [1;1). Then we can construct a Feller process
X0 with this scale and speed measure. Let us identify a core for the generator of
X0. De�ne

(6.2) D(G0)
def
=
n
f 2 C0((0;1)) : f

��
(0;1]

2 C2((0; 1]); f
��
[1;1)

2 C2([1;1));

lim
r!1
r 6=1

f 0(r) exists and lim
r%1

L1f(r) = lim
r&1

L2f(r)

9=
;

For f 2 D(G0), de�ne

G0f(r)
def
=

8>><
>>:
L1f(r); if 0 < r < 1,

L2f(r); if r > 1;

limr!1
r 6=1

G0f(r); if r = 1.

Then G0 with domain D(G0) is a core for X0.
Now let us de�ne the angular part. Let X 00 be Brownian motion on the unit

circle E00
def
= S1 and de�ne X to be the skew product of X0 and X00 with clock

Bt :=
R t
0 (X

0
s)
�2�fX 0

s � 1g ds. The skew product lives on the cylinder E
def
= E0 �

E00 = (0;1)� S1. If we think of the E0 �E00{valued process X as being a process
on R2 n f0g represented in polar coordinates, then we see from the skew product
representation of 2{dimensional Brownian motion (see, for example, Section IV.35
of [RW87]) that this process evolves as 2{dimensional Brownian motion on the
(punctured) unit disk but each time the process leaves the unit disk it executes an
excursion on the ray issuing from the origin and passing through the point at which
it left the disk. This excursion is according to the dynamics of (6.1). Picturesquely,
this latter process views R2 n f0g in the same way that an ant sees a daisy: the
(punctured) unit disk is like the face of the daisy and the rays outside the unit disk
are like petals along which the ant is constrained to move, being only able get from
one petal to another by passing through the face. See Figure 4. We note in passing
that the process X has a similar 
avour to the �bre Brownian motion of Bass and
Burdzy [BB00].

To continue with the constructive steps of Example 4, we now de�ne  (x0; x00)
def
=

x0 for all (x0; x00) 2 E and we de�ne A
def
= [1;1)� S1. Thus ~E =

�
(0; 1)� S1

� [
[1;1). This collapses all rays in our daisy into a single ray, giving us essentially

the lollipop of Figure 3. More speci�cally, it is easy to see that the map � : ~E ! R
3

de�ned by

�(r; x; y)
def
=
�
x
p
1� (2r � 1)2; y

p
1� (2r � 1)2; 2r� 1

�
for (r; x; y) 2 E nA = (0; 1)� S1 and

�(r)
def
= (r; 0; 0)
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=

Figure 4. The daisy and cylinder.

for r 2 [1;1) =  (A) de�nes a homeomorphismbetween ~E and (S2nf(0; 0;�1)g)[
([1;1)� f0g � f0g, that is, between ~E and the space obtained by removing the
south pole of the spherical portion of the lollipop.

Noting that normalised 1-dimensional Hausdor� measure on S1 is invariant for
X00, it follows from our remarks about Example 4 in Section 3 that the kernel
k((x0; x00); �) given by the product of the delta measure at x0 2 (0; 1) with nor-
malised 1-dimensional Hausdor� measure on S1 satis�es the relevant hypotheses.
Identifying ~E with the (punctured) lollipop, the corresponding operator K is just
the one given by (3.1). Our ant wanders on the spherical surface of the lollipop, and
each time it encounters the base of the stick it can either execute a 1{dimensional
excursion on the stick or execute an excursion on the sphere with a uniformly chosen
\initial direction".

We �nish by de�ning a core for the generator of ~X . The development is similar
to Example 3 if we were to write those calculations in polar coordinates. Here

C
 ;A
0 (E) =

�
f 2 C0(E) : f(r; �) = f(r; �0) for all � and �0 in S1 if r � 1

	
:

Let

D0 def=
n
f 2 C ;A0 (E) : f

��
(0;1]�S1

2 C2((0; 1]� S1);

f
��
[1;1)�S1

2 C2([1;1)� S1);

lim
r%1

L1f(r; �) +
1

2r2
��f(r; �) = lim

r&1
L2f(r; �

0)for all �; �0 2 S1,

and lim
r%1

1

2�

Z
S1

@f

@r
(r; �)H 1(d�) = lim

r&1

@f

@r
(r; �0) for all �0 2 S1

�
;
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then

��(D
0) =

n
f 2 C0( ~E) :
f
��
(0;1)�S1

is the restriction of a function in C2((0; 1]� S1),

f
��
[1;1)

2 C2([1;1));

lim
r%1

L1f(r; �) +
1

2r2
��f(r; �) = lim

r&1
L2f(r) for all � 2 S1

and lim
r%1

1

2�

Z
S1

@f

@r
(r; �)H 1(d�) = lim

r&1
f 0(r)

�
:

Note that

(6.3)
n
f 2 C2(E) : f

��
(0;1]�S1

2 C2((0; 1]� S1); f
��
[1;1)�S1

2 C2([1;1)� S1);

lim
r%1

L1f(r; �) +
1

2r
��f(r; �) = 0 for all � 2 S1,

and L2f(r; �) = 0 if r � 1g � D(H):

Fix f 2 D0. It is clear that

(6.4)  �Kf(r; �) = Kf(r) =
1

2�

Z
S1
f(r; �)H 1(d�)

for all r 2 (0;1) and � 2 S1. It is clear that assumption a) of Proposition 4.1
holds. By the nature of the Skew Product process and recalling (6.2), we have that

D(G0) � D(Ĝ), so it is also clear that assumption b) of Proposition 4.1 holds. We
now de�ne

(6.5) Gef(r; �)
def
=

8>><
>>:
L1f(r; �) +

1
2r2��f(r; �); if (r; �) 2 (0; 1)� S1;

L2f(r; �); if (r; �) 2 (1;1)� S1;

limr!1
r 6=1

Gef(r; �); if (r; �) 2 f1g � S1;

for all �f in

D(Ge)
def
=
n
f 2 C0(E) : f

��
(0;1]�S1

2 C2((0; 1]� S1);

f
��
[1;1)�S1

2 C2([1;1)� S1);

lim
r%1

L1f(r; �) +
1

2r2
��f(r; �) = lim

r&1
L2f(r; �) for all � 2 S1,

and L2f(r; �) is constant on S1 for each r � 1
	
:

Assumptions c1), c3), and c4) of Proposition 4.1 hold, and an easy calculation
(involving an integration by parts on S1) shows that assumption c2) also holds.

Thus indeed ��(D0) � D( ~G) and, as usual, ~G��f =Gef .
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We also clearly have that D0 is dense in C ;A0 (E). Finally, �x ' 2 C0( ~E) and
� > 0. Solve

L1gi(r; �) +
1

2r2
��f(r; �) � �gi(r; �) = '(r; �); (r; �) 2 (0; 1)� S1;

gi(1; �) = 0;

L1hi(r; �) +
1

2r2
��hi(r; �)� �hi(r; �); = 0; (r; �) 2 (0; 1)� S1;

hi(1; �) = 1:

and
L2go(r)� �go(r) = '(r); r > 1;

go(1) = 0;

lim
r!1

go(r) = 0;

L2ho(r) � �ho(r) = 0; r > 1;

ho(1) = 0;

lim
r!1

ho(r) = 0:

By standard PDE results, gi and hi exist and are in C2((0; 1]� S1) and go and ho
exist and are in C2([1;1)). De�ne now

f(x)
def
=

(
gi(r; �) + Chi(r; �); if (r; �) 2 (0; 1)� S1,

go(r) + Cho(r); if r � 1.

We then proceed as before, showing that

lim
r%1

1

2�

Z
S1

@hi

@r
(r; �)H 1(d�) 6= lim

r&1

_ho(r):

7. Topological Lemmas

Here we prove several topological results that we have used. To clarify our
arguments, we will let TE , T ~E , and TÊ be, respectively, the topologies on E, ~E,

and Ê.

Proof of Lemma 2.3. Assume �rst that x 2 E n A. Fix N 2 TE such that x 2 N .

Then N 0 def= N \ (E n A) 2 TE , and ��1(N 0) = N 0 2 TE , so N 0 2 T ~E . Thus
xn 2 N 0 for n large, so xn 2 E nA for n large and xn 2 N for n large. Therefore
limn:xn2EnA xn = x in TE , this limit existing.

Assume next that x 2  (A). Fix N 2 TÊ such that x 2 N . Set N 0 def
=

((E n A) \  �1(N )) [ ( (A) \N ) � ~E. Then ��1(N 0) =  �1(N ) 2 TE (since  
is continuous). Thus N 0 2 T ~E , and hence xn 2 N 0 for n large. If (xn) is in E n A,
then xn 2  �1(N ) for n large; that is,  (xn) 2 N for n large. Thus limn  (xn) = x

in TÊ . If (xn) is in  (A), then xn 2 N for n large, so limn xn = x in TÊ . �

Lemma 7.1. The map � is continuous.

Proof. The proof uses Lemma 2.3. Fix a sequence (xn) in ~E that converges in T ~E

to x 2 ~E. We will extract a subsequence (xnk) such that limk �(xnk) = �(x) in TÊ .
Assume �rst that x 2 E n A. Then by Lemma 2.3, limn:xn2EnA xn = x in TE .

Thus there is a subsequence (xnk) contained in E nA with limk xnk = x (in TE), so
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since  is continuous, limk �(xnk) = limk  (xnk ) =  (x) = �(x), this limit existing
in TÊ .

Assume next that x 2  (A). Then there are two subcases. In the �rst subcase,
there is a subsequence (xnk) contained in  (A). By Lemma 2.3, we then have that
limk xnk = x in TÊ ; thus limk �(xnk) = limk xnk = x = �(x) in TÊ . In the second
subcase, there is a subsequence (xnk) contained in E nA. By Lemma 2.3, we then
have that limk  (xnk) = x in TÊ ; thus limk �(xnk) = limk  (xnk) = x = �(x) in
TÊ . �

Lemma 7.2. If f 2 C0(Ê), then  �f 2 C0(E).
Proof. Because  is continuous,  � f = f �  is also continuous. Fix L > 0.

To complete the proof we need to show that H
def
= fx 2 E : j �f(x)j � Lg is

compact (in TE). De�ning Ĥ
def
= fx 2 Ê : jf(x)j � Lg (this set is compact because

f 2 C0(Ê) ), we have that H = fx 2 E :  (x) 2 Ĥg =  �1(Ĥ). Our assumption
that pre-images of compact sets through  are compact ensures that H is indeed
compact. �

Lemma 7.3. If f 2 C0( ~E), then ��f 2 C0(E).
Proof. Since � is continuous by de�nition of T ~E , we know that ��f = f � � is
certainly continuous. To see that in fact ��f 2 C0(E), �x L > 0 and de�ne

H
def
= fx 2 E : j��f(x)j � Lg; we need to show that H is compact (in TE ).

Since ��f is continuous, we at least know that H is closed (in TE). De�ne now
~H

def
= fx 2 ~E : jf(x)j � Lg. Since f 2 C0( ~E), we know that ~H is compact in T ~E .

Our immediate goal is to show that H �  �1(�( ~H)).
First, �x x 2 H such that x 2 E n A. Then �(x) = x, and thus jf(x)j =

jf(�(x))j = j��f(x)j � L. Consequently, x 2 ~H. Also, �(x) =  (x), so  (x) =

�(x) � �( ~H), ensuring that x 2  �1(�( ~H)).
Next, �x next x 2 H such that x 2 A. Then �(x) =  (x), and thus jf( (x))j =

jf(�(x))j = j��f(x)j � L, so z
def
=  (x) is in ~H. Since z 2  (A), we have that

�(z) = z. Thus  (x) = z = �(z) � �( ~H), ensuring that  (x) 2 �( ~H).
Because � is continuous (Lemma 7.1) and ~H is compact in T ~E (because f 2

C0( ~E)), �( ~H) is compact in TÊ . Our assumption that pre-images of compact sets

through  are compact then ensures that  �1(�( ~H)) is compact. Hence H is a
closed subset of a compact set and is therefore compact. �

Lemma 7.4. If f 2 C0(Ê), then ��f 2 C0( ~E).
Proof. By Lemma7.1, we know that ��f = f�� is continuous. Fix L > 0 and de�ne
~H

def
= fx 2 ~E : j��f(x)j � Lg; we need to show that ~H is compact. Since ��f is

continuous, we at least know that ~H is closed. Next, de�ne Ĥ
def
= fx 2 Ê : jf(x)j �

Lg. This set is compact because f 2 C0(Ê). We will show that ~H � �( �1(Ĥ)).

Indeed, �x x 2 ~H. If x 2 E n A, then x = �(x) and jf( (x))j = j��f(x)j � L, so

x 2  �1(Ĥ). Thus x = �(x) � �( �1(Ĥ)). On the other hand, if x 2  (A), then
x =  (z) = �(z) for some z 2 A, and jf(x)j = j��f(x)j � L. Thus  (z) = x 2 Ĥ,

so z 2  �1(Ĥ) and x = �(z) � �( �1(Ĥ)). Thus indeed ~H � �( �1(Ĥ)). By

the assumption that pre-images of compact sets through  are compact,  �1(Ĥ)

is compact since Ĥ is compact. Hence �( �1(Ĥ)) is the image of a compact
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set through the continuous mapping �, and therefore it, and consequently ~H, is
compact. �

Lemma 7.5. If f 2 C0(E;A), then ���f 2 C0( ~E).
Proof. First, let us prove that ���f is continuous. Fix a sequence (xn) in ~E that

converges in T ~E to x 2 ~E. We will show that there is a subsequence (xnk) such
that limk(���f)(xnk) = (���f)(x). There are two cases to check; when x 2 E n A
and when x 2  (A).

Assume �rst that x 2 E n A. Then by Lemma 2.3 there is a subsequence
(xnk) contained in E n A such that limk xnk = x in TE . Since f is continuous,
limk ���f(xnk) = limk f(xnk ) = f(x) = ���f(x).

Assume next that x 2  (A); then ���f(x) = 0. By Lemma 2.3, there is a
subsequence (xnk) contained in either  (A) or E nA. In the �rst case, where (xnk)
is a subsequence contained in  (A), we immediately have that limk(���f)(xnk) =
limk 0 = 0 = (���f)(x). Consider next the second case, where (xnk) is a subsequence
contained in E n A. Then, by Lemma 2.3, limk  (xnk) = x. Now let us take a
further subsequence (xnkj ) such that (xnkj ) converges in the topology of the one-

point compacti�cation of E. If the limit point is in E, then x�
def
= limj xnkj exists

(this limit being in TE), and by continuity of  ,  (x�) = limj  (xnkj ) = x 2  (A).
Thus x� 2  �1( (A)) = A. Since f 2 C0(E;A), limj ���f(xnkj ) = limj f(xnkj ) =

f(x�) = 0. If the limit point of (xnkj ) is at in�nity, then we use the fact that

f 2 C0(E;A) � C0(E) to see that limj ���f(xnkj ) = limj f(xnkj ) = 0.

Next, we need to prove that in fact ���f 2 C0( ~E). Fix L > 0 and consider

the set ~H
def
= fx 2 ~E : j���f(x)j � Lg; we need to show that ~H is compact (in

T ~E). Since ���f is continuous, we at least know that ~H is closed. De�ne now

H
def
= fx 2 E : jf(x)j � Lg; then H is compact (in TE) since f 2 C0(E;A). Fix

x 2 ~H. Then x 2 E nA, so x = �(x) and jf(x)j = j���f(x)j � L. Thus x 2 H, so

x = �(x) � �(H). Hence ~H � �(H), and �(H) is compact since it is the image of
the compact set H through the continuous mapping � (recall that � is continuous

by de�nition of T ~E). Thus
~H is compact. �

Finally, we have:

Proof of Lemma 4.2. First, it is clear that ��C0( ~E) � C
 ;A
0 (E).

To proceed, �x f 2 C ;A0 (E). Since �E = ~E (that is, � is surjective), we de�ne

f 0 : ~E ! R by

f 0(�(x))
def
= f(x); x 2 E:

It is easy to see that, by de�nition of C ;A0 (E), f 0 is well-de�ned. We want to show

that f 0 2 C0( ~E). To do so, �x a sequence (xn) in ~E that converges in T ~E to x 2 ~E.
We will extract a subsequence (xnk) such that limk f

0(xnk) = f(x). This will show
that f 0 is at least continuous.

Assume �rst that x 2 E n A. Then, by Lemma 2.3, limn:xn2EnA xn = x in
T ~E . Since f 2 C0(E), we have that limn:xn2EnA f

0(xnk) = limn:xn2EnA f(xnk) =
f(x) = f 0(x).

Assume next that x 2  (A). Then there are two subcases. In the �rst subcase,
there is a subsequence (xnk) contained in  (A). By Lemma 2.3, we then have that
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limk xnk = x in TÊ . Since the xnk's and x are all in  (A), we can �nd (x0nk)
in A and x0 2 A such that  (x0nk) = xnk and  (x0) = x. Since the pre-images
of compact sets through  are compact, we can then �nd a further subsequence

(x0nkj ) such that x00
def
= limj x0nkj exists in TE . Since A is closed, x00 2 A. Because

 is continuous,  (x00) = limj  (x0nkj ) = limj xnkj = x, this limit being in TÊ .

Thus limj f 0(xnkj ) = limj f(x0nkj
) = f(x00) = f 0(�(x00)) = f 0( (x00)) = f 0(x). In

the second subcase, there is a subsequence (xnk) contained in E n A. By Lemma
2.3, limk  (xnk) = x in TÊ . Because pre-images of compact sets through  are

compact, we can then �nd a further subsequence (xnkj ) such that x00
def
= limj xnkj

exists in TE . Because  is continuous, we thus have that  (x00) = limj  (xnkj ) = x.

Hence limj f
0(xnkj ) = limj f(xnkj ) = f(x00) = f 0(�(x00)) = f 0( (x00)) = f 0(x).

We next need to verify that f 0 2 C0( ~E). Fix L > 0 and de�ne ~H
def
= fx 2 ~E :

jf 0(x)j � Lg and H
def
= fx 2 E : jf(x)j � Lg. Since f 2 C0(E) by assumption,

H is compact (in TE). We note that �H = ~H and so, since � is continuous, ~H is
compact.

We now know that f 0 2 C0( ~E) � B( ~E). Clearly ��f 0 = f , so we now know that

C
 ;A
0 ( ~E) � ��C0( ~E). Thus in fact C ;A0 ( ~E) = ��C0( ~E). Hence �� is a surjection

of C0( ~E) onto C
 ;A
0 (E).

To �nish, we need to check that �� is also injective. Assume that ��f1 = ��f2
for some f1 and f2 in C0( ~E). Since � is a surjection, we know that in fact f1 = f2.
This completes the proof. �
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