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Abstract. Let (Xi)1i=0 be a V -uniformly ergodic Markov chain on a general
state space, and let � be its stationary distribution. For g : X! R, de�ne

Wk(g) := k�1=2
k�1X
i=0

�
g(Xi)� �(g)

�
:

It is shown that if jgj � V 1=n for a positive integer n, then ExWk(g)
n con-

verges to the n-th moment of a normal random variable with expectation 0
and variance

2g := �(g2)� �(g)2 +
1X
j=1

�Z
g(x)Exg(Xj)� �(g)2

�
:

This extends the existing Markov-chain central limit theorems, according to
which expectations of bounded functionals of Wk(g) converge.

We also derive nonasymptotic bounds for the error in approximating the
moments of Wk(g) by the normal moments. These yield easy bounds of all
feasible polynomial orders, and exponential bounds as well under some cir-
cumstances, for the probabilities of large deviations by the empirical measure
along the Markov chain path Xi.

1. Introduction

1.1. The problem. Consider an ergodic, positive recurrent Markov chain (Xi)1i=1.
The average

Sk(g) :=
1

k

k�1X
i=0

g(Xi)

of a bounded function g : X ! R along a path converges to the expectation �(g)
with respect to the stationary distribution, as long as �(jgj) is �nite. If the chain is
strongly mixing, and �(g2) is �nite, these averages satisfy a central limit theorem,
in that

Wk(g) := k1=2
�
Sk(g) � �(g)

�
converges to a normal random variable with expectation 0 and variance

2g := �(g2) � �(g)2 +
1X
j=1

�Z
g(x)Exg(Xj)� �(g)2

�
:(1)

E. Bolthausen [Bol82] has shown that the error in this normal approximation is on
the order of k�1=2.

There are two directions in which one might hope to improve this result. First,
this is only a weak-convergence result, telling us about the maximum di�erence
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between the distribution functions of Wk(g) and the normal variable. It tells us
nothing about how the tails of Wk(g) fall o�, nor does it o�er any bounds on
the moments of Wk(g) of order greater than 2; indeed the very existence of these
moments remains uncertain. This is an essential problem, when we seek to bound
the large-deviation probabilities for Sk(g).

A related weakness is that this convergence rate assumes that the chain starts
in its stationary distribution. It is thus less useful for in�nite state-space chains in
which the convergence to stationarity is not uniform. The chain may be exponen-
tially mixing, in that covariances fall o� exponentially between a �-typical starting
point and the location at time i, but there may still be �-small sets where the
process dallies a very long time when once started there. The exceptional starting
point will then make itself felt particularly strongly in the empirical average Sk.
For example, suppose Xi were a random walk onZwith drift toward 0 (Px;x+1 = p
and Px;x�1 = 1 � p for x � 1, while Px;x�1 = p and Px;x+1 = 1 � p for x � �1,
and P0;�1 = P0;1 =

1
2 ; with p <

1
2), and g(x) = x: When Xi is very large, Xi+1

is large as well, and it takes on average 3X0 steps before it even reaches 0 for the
�rst time.

In order to control the dependence of convergence rates on the starting point,
we impose a mixing condition stronger than exponential mixing1, but weaker than
uniform ergodicity. As described by S. Meyn and R. Tweedie [MT93], a Markov
chain Xn on the state space X is V -uniformly ergodic, for V : X! [1;1),

sup
g

sup
x2X

1

V (x)

����Ex�g�Xi

�� � Z
g d�

���� i!1�����! 0;(2)

where the �rst supremum is over measurable functions g : X! R such that jgj � V .
In our simple example above, the chain is V -uniformly ergodic for V (x) = e�x,
where 0 < � < log(p�1 � 1). (This particular investigation arose from the appear-
ance of moment bounds for such a V -uniformly ergodic Wk(g) in an application to
iterated function systems in [Ste01].)

In this paper, we show that when the Markov chain is V -uniformly ergodic, and
jg � �(g)j � V 1=n, then the n-th moment of Wk(g) converges to the n-th moment
of the normal random variable, and for the error we derive bounds which are con-
stant multiples of k�1=2V (x). these starting-point-dependent bounds allow us, in
addition, to extend Bolthausen's result to include the starting-point dependence as
well: we show that when jg � �(g)j � V 1=�, for a positive � � 2, and the process
starts at x, the error in estimatingWk(g) by a normal random variable is no larger
than order k��=(2�+2)V (x) (up to logarithmic terms). We do not know whether
this rate is the best possible.

Just recently, S. Meyn and S. Balaji [BM00] and S. Meyn and I. Kontoyiannis[MK]
have proved results which may loosely be summarized as

Exe
�Sk(g) � c(�) �f�(x)e

��(�)k;

together with a recipe for computing �f� and �(�). This goes beyond a complete
solution to the classical large-deviations problem for Sk, but there are features
which make this version less than ideal for many purposes. First, as with the

1We follow Bolthausen and others in calling a Markov chain \exponentially mixing" if there
are positive c and  such that E�[g(X0)g(Xn)] � c expf�ng for every n, for all functions
g : X ! [�1; 1] such that �(g) = 0. S. Meyn has pointed out in a private communication
that other de�nitions of exponential mixing are common in the engineering literature.
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central limit theorem, this is an asymptotic result, providing no bounds on the
large-deviation probabilities for any individual �nite k. Second, the computations
are not always feasible. The function �f� is determined implicitly as the solution of a
multiplicative version of the Poisson equation; once we have �f�, it de�nes a second
implicit equation for �(�), involving expectations with respect to a stopping time
for the Markov chain. Even whether �(�) is zero need not be obvious. Finally,
even when everything has been computed, the theorem may leave us with empty
hands if �(�) really is 0. The large-deviation probabilities may still go to 0 with
k, but more slowly than any exponential function. In particular, we may want to
consider partial sums of functions g which do not have exponential moments at all,
so �(e�g) is in�nite for all �, but where �(gn) is still �nite for some n. In such a case
we cannot hope to have large-deviation probabilities with exponentially declining
tails, but we can still have tails falling like

P
���Sk(g)� �(g)

�� > �
��	 � ck�n=2��n:

1.2. Notation. Throughout, (Xi)1i=0 will be a  -irreducible aperiodic Markov
chain on the state space X, and V : X ! [1;1) a function such that Xi is V -
uniformly ergodic. The distribution of Xi conditioned on X0 = x will be denoted
P i
x, and the stationary distribution will be �.
By Theorem 16.0.1 of [MT93] there are constants R � 1 and � < 1 such that for

all i 2 f0; 1; : : :g, all x 2 X, and all g : X! Rwith jgj � V ,���P i
x(g)� �(g)

��� � R�iV (x):(3)

We de�ne R� := maxfR; �(V )g.
We will use the combinatorialist notation (2n� 1)!! = (2n� 1)(2n� 3) � � �3 � 1.
The variance 2g is the limit of the variances of the random variablesWk, starting

from the stationary distribution, which we write as

2g (k) = �(g2) � �(g)2 +
k�1X
i=1

2(k � i)

k

�Z
g(x)P i

x(g)�(dx)� �(g)2
�
:(4)

This may be written alternatively as

2g (k) = �
�
T
(g)
0

�
+

k�1X
i=1

2(k � i)

k
�
�
T
(g)
i

�
;(5)

where T
(g)
i : X! R is de�ned by

T
(g)
i (x) :=

�
g(x) � �(g)

�
Ex

�
g
�
Xi

�� �(g)
�
:(6)

Usually it will be apparent from context which function g is meant, and then the
superscript (g) will be dropped.

1.3. The results.

Theorem 1. Suppose g : X! R satis�es jg � �(g)j � cV 1=n for an integer n � 2.
Then for all starting states x 2 X, the moments Ex

�
Wk(g)n

�
converge to the corre-

sponding moments of a Gaussian random variable with expectation 0 and variance
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2g ; that is, for all positive n,

lim
k!1

Ex

�
Wk(g)

2n+1
�
= 0, and(7)

lim
k!1

Ex

�
Wk(g)

2n
�
= (2n� 1)!!(2g )

n:(8)

Furthermore, there are positive constants r; r0 < 1 and C;C0, depending only on �
and R�, such that the error terms are bounded by���ExWk(g)

2n � (2n� 1)!!
�
2g
�n��� � k�1C(cr)2n

n(2n)!

(n� 1)!

�
1 +

n!

k

�
V (x); and(9)

���ExWk(g)
2n+1

��� � k�1=2C0(cr0)2n+1
(2n+ 1)!

n!

�
1 +

n!

k

�
V (x);(10)

when jg � �(g)j is bounded by cV 1=(2n) or cV 1=(2n+1) respectively. Explicit expres-

sions for the errors are given in (42) and (43).

Corollary 1. If there is a positive c such that jg(x)� �(g)j � c for all x, then for

any � < 1=c(r _ r0), all k � 1, and all x 2 X,���Ex exp
�
�Wk(g)

	 � E exp
�
�gX

	���
� k�1=2V (x)

�
C0�e(�cr

0)2 + k�1=2Ce(�cr)
2

+ k�1
C0�

1� (�cr0)2
+ k�3=2

C

1� (�cr)2

�
;

(11)

where X is a standard normal variable.

Corollary 2. Suppose g : X ! R satis�es jg � �(g)j � cV 1=2n for some positive

integer n. Then there are constants M�
n, such that for all starting states x 2 X, all

k � 2, and all measurable functions  : R! R,���Ex  (Wk(g)) � E (X)
��� �M�

nk kV (x)
�

k

log k

��n=(2n+1)
;(12)

where k k is the total variation of  and X is a standard normal variable.

If jg � �(g)j is bounded by a constant c, then the bound can be strengthened to���Ex  (Wk(g)) � E (X)
��� � L�k kV (x)k�1=2 log3=2 k:(13)

The constants M�
� and L� are given in (51) and (52) respectively. These expres-

sions involve, in addition to c, �, and R�, an as yet undetermined parameter �,
de�ned in (44), which is the uncomputed constant that appears in the Berry-Esseen

theorem for strongly mixing Markov chains.

Corollary 3. If there is a number p 2 [0; 1) and positive c such that��g(x) � �(g)
�� � c

�
logV (x)

�p
for all x, then for any positive q < 2=(1 + 2p), any positive �, and any positive r,

sup
x
V (x)�1

���Ex exp��jWk(g)jq
	� E exp

�
�
��gX��q	

= O
�
log�rk

�
;

(14)

where X is a standard normal variable.
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1.4. Remarks on exponential functions. The statement of Corollary 3 may
seem unnecessarily timid. In one sense, this is true: the rate log�r k is certainly
not optimal, but could probably be improved if the interpolation between integer
moments were more cleverly �nessed. But a more signi�cant question suggests
itself: if jgj � cV 1=n implies that EWk(g)

n converges to EXn, where X is normal,
then should not E expf�Wk(g)g converge to E expf�Xg when jgj � c logV , at least
for � suÆciently small? A simple example makes clear why this cannot be the case
in general.

Consider the random walk drifting toward 0, mentioned earlier, with outward
probability p < 1

2 , inward 1� p. As already mentioned, this is V -uniformly ergodic

for an exponential function V (x) = e�x, so we may take g(x) = x. The stationary
distribution is a constant times (p=(1 � p))jkj for k 6= 0, and �(g) = 0 (when
g(x) = x). If we take any positive number �,

Ex e
�X1 = e�x

�
pe� + (1� p)e��

�
for x � 1;

Ex e
�X1 = e�x

�
pe�� + (1 � p)e�

�
for x � �1; and

E0e
�X1 =

1

2
e� +

1

2
e��:

De�ning r� := pe� + (1� p)e��, we have then

Ex e
�X1 � r�e

�x:

If we look at two consecutive steps,

Ex
�
exp
�
�(X1 +X2)

	�
= Ex

�
e�X1EX1

e�X2
� � r� Ex

�
e2�X1

� � r2�e
2�x:

Extending this to larger sums, we get for any k,

Ex e
�Wk(g) � rk�e

�
p
kx:

The crucial point here is that the exponent grows with k. No matter what � is,

eventually e�
p
k will exceed (1� p)=p, which means thatZ

Ex e
�Wk(g)�(dx)

is in�nite for k suÆciently large. Convergence of Exe
�Wk(g) is impossible.

2. Some technicalities about expectations of products

Lemma 1. For � 2 [0; 1] and � 2 R, suppose
��g(x) � �

�� � cV (x)� for all x 2 X.
Then for any nonnegative integer k,���P k

x (g) � �(g)
��� � 2cR���kV (x)� and(15) ��Tk(x)�� � 2c2R���kV (x)2� +

��� � �(g)
�� � 2cR���kV (x)2�:(16)

If � � 1
2 , then ����Tk��� � 2c2R���k�(V )2� and(17)

2g �
4c2R��(V )2�

�(1� �)
:(18)



6 DAVID STEINSALTZ

If �1; �2; : : : ; �n are nonnegative numbers with a := �1+�2+ � � �+�n � 1, and
g1; g2; : : : ; gn are functions from X to R+ with gk � V �k; then for all x 2 X and all

indices 0 � i1 < i2 < � � � < in,�����Ex
"

nY
`=1

g`(Xi` )

#����� � �2R�V (x)�a:(19)

Proof. By the Hahn decomposition theorem (Proposition 11.21 of [Roy68]) there
is a measurable subset A of X, such that the signed measure P k

x � � is positive on
A and negative on the complement of A; the absolute-value measure is de�ned by
jP k

x � �j(g) = (P k
x � �)(gh), where h = 2 � 1A � 1. By Jensen's inequality, when

kP k
x � �k := (P k

x � �)(h) 6= 0,��P k
x (g) � �(g)

�� = ���P k
x � �

��
g � �

���
=

��P k
x � �

��P k
x � �


��jg � �j1=���� � P k

x � �


�
 
c1=�

��P k
x � �

��P k
x � �

 (V )
!�

� P k
x � �


� 21��c

��P k
x (hV )� �(hV )

���:
Thus the bound (3) gives us (15). Multiplying by jg(x)��j+ j���(g)j then yields
(16). To bound �(Tk), we write����Tk��� = ������g � �(g)

��
P k
x (g) � �(g)

�����
�
������g � �

��
P k
x (g) � �(g)

�����+ ����� � �(g)
�
�
�
P k
x (g) � �(g)

�����
�
�����cV (x)� � 2cR���kV (x)�

����+ 0;

from which (17) follows directly. We then have

2g = �
�
T0
�
+ 2

1X
i=1

�
�
Ti
�

� 2c2R��(V )2�
2

1� ��

� 4c2R��(V )2�

�(1� �)
:

For each `, by (3),

Ex
h��g`(Xi` )

��1=�`i � �
�
jg`j1=�`

�
+
���Pi`x �jg`j1=�`�� �

�
jg`j1=�`

����
� �(V ) +R�i`V (x)

� 2R�V (x):

The result (19) then follows by an application of H�older's inequality.

A simple extension of Lemma 1 is

Lemma 2. Let g; h : X ! R and f : Xi+1 ! R be any measurable functions,

with �(g) = 0. Suppose there are positive constants cf ; cg; ch and �f ; �g; �h with
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�f + 2�g + �h � 1, such that for all x in X,��g(x)�� � cgV (x)
�g ;��h(x)�� � chV (x)
�h ; and��Ex

�
f(X0; X1; : : : ; Xi)

�� � cfV (x)
�f :

Then there is a function h� : X! Rwith jh�(x)j � V (x)�g+2�h for all x, such that

for any i, j and ` with 0 � i � j � `,��Exf(X0; X1; : : : ; Xi)g(Xj)g(X`)h(X`)
��

� 2c2gchR
3�g+2�h�

�
�(�g+�h)(j�i) + �(�g+�h)(`�j)

�
� Ex

�
f(X0; X1; : : : ; Xi)h

�(Xi)
�
:

(20)

Proof. De�ne

h0(x) := P `�j
x (gh)� �(gh); and

h00(x) := Ex
�
g(Xj�i)g(X`�i)h(X`�i)

�
:

By Lemma 1 with � = 0,��Pj�ix (g)
�� � 2cgR

�g+�hV (x)�g+�h�(�g+�h)(j�i); and��h0(x)�� � 2cgchR
�g+�hV (x)�g+�h�(�g+�h)(`�j):

Note that in the �rst line we have applied the lemma with � = �g + �h instead of
�g. Either one would satisfy the conditions, but our goal is to make the exponents
of V (x) as small as possible, and the exponents of � as large as possible, which
leads us to get the same exponents for both terms. Thus��h00(x)�� = ���Ex�g(Xj�i)

�
�(gh) + h0(Xj�i)

�����
� cgch�(V )

�g+�h
��Pj�ix (g)

�� + P j�i
x (jgh0j)

� 2R�g+�hc2gch�(V )
�g+�hV (x)�g+�h�(�g+�h)(j�i)

+ 2R
2�g+�h� R�g+�hc2gchV (x)

2�g+�h�(�g+�h)(`�j)

� 2R
3�g+2�h� c2gchV (x)

2�g+�h
�
�(�g+�h)(j�i) + �(�g+�h)(`�j)

�
:

Equation (20) holds then with

h� = h00=
�
2R

3�g+2�h� c2gch

�
�(�g+�h)(j�i) + �(�g+�h)(`�j)

��
:

This leads us �nally to

Lemma 3. Let g and h be given as in Lemma 2. Then for any integers 0 � i1 �
i2 � � � � � i2n,���Ex�g(Xi1) � � �g(Xi2n )h(Xi2n )

����
� 2nR

(2n2+n)�g+2n�h� c2ng chV (x)
2n�g+�h

�
nY

j=1

�
�[(2n�2j+1)�g+�h](i2j�i2j�1) + �[(2n�2j+1)�g+�h ](i2j�1�i2j�2)

�
:

(21)
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Proof. The proof is by induction on n. For n = 1 this is just the statement is just
Lemma 2, with f � 1 and i = 0. Suppose now that (21) holds up to n � 1. We
apply Lemma 2 with f(x0; : : : ; xi2n�2) = g(xi1) � � �g(xi2n�2 ):
Ex
�
g(Xi1 ) � � �g(Xi2n�2 )g(Xi2n�1 )g(Xi2n )h(Xi2n )

�
�
�
2R

3�g+2�h� c2gch

�
�(�g+�h)(i2n�i2n�1) + �(�g+�h)(i2n�1�i2n�2)

��
� Ex

�
g(Xi1 ) � � �g(Xi2n�2 )h

�(Xi2n�2 )
�
;

where jh�(x)j � V (x)�h+2�g . Applying the induction hypothesis,

Ex
�
g(Xi1 ) � � � g(Xi2n�2 )g(Xi2n�1 )g(Xi2n )h(Xi2n )

�
� 2R

3�g+2�h� c2gch

�
�(�g+�h)(i2n�i2n�1) + �(�g+�h)(i2n�1�i2n�2)

�
� 2n�1R(2n2�3n+1)�g+(2n�2)(�h+2�g)� c2n�2g V (x)2(n�1)�g+�h+2�g

�
n�1Y
`=1

�
�[(2n�2`�1)�g+�h+2�g](i2`�i2`�1) + �[(2n�2`�1)�g+�h+2�g](i2`�1�i2`�2)

�
;

which reduces precisely to (21).

The right side of (21) includes a sum of 2n terms, each of which is a power of

�. The powers can be written in the form
P2n

`=1 �`(i` � i`�1), where the �` are
nonnegative, and exactly n of them are zero. These will need to be summed over
all possible choices of (i1; : : : ; i2n) with 0 � i1 � � � � i2n � k � 1.

Lemma 4. Choose any nonnegative numbers �`, for 1 � ` � N . Let s be the

number of these �` which are nonzero. Then for any x 2 (0; 1),

k�1X
i1=0

k�1X
i2=i1

� � �
k�1X

iN=iN�1

NY
`=1

x�`(i`�i`�1) �
�
N � s + k � 1

N � s

� Y
`:�`>0

�
1� x�`

��1

�
�

kN�s

(N � s)!
+ kN�s�1

� Y
`:�`>0

�
1� x�`

��1(22)

Proof. The proof is by induction on s. For s = 0 the summand is 1, so the sum is
simply the number of possible choices of (i1; : : : ; iN ) with 0 � i1 � i2 � � � � � iN �
k � 1. By a standard combinatorial argument this is found to be

�
N+k�1

N

�
.

Suppose now the lemma to be true for s � 1. Since s � 1, there is some ` such
that �` > 0. We �nd the largest such, and begin by summing over the index i`.
This index is free to range from i`�1 up to k � 1, and the sum can only increase if
the upper limit is removed, allowing the summation to extend up to 1, and if the
lower limit is relaxed on i`+1 (when ` is not already 2n), permitting that index to
range down to i`�1. The summand is x�`(i`�i`�1), times terms which do not depend
on i`. Summing over i` yields (1�x�` )�1, and the sum that remains has one fewer
index and one fewer nonzero �. Thus the induction hypothesis may be applied to
this remnant, proving the �rst part of the inequality.

The binomial coeÆcient is a polynomial of degree N � s in k, with leading coef-
�cient 1=(N �s)! and all other coeÆcients positive. The total of all the coeÆcients,
found by setting k = 1, is 1, so the sum of all the remaining terms is no more than
kN�s�1.
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3. Combinatorics of pairings

A pairing of [2n] := f1; 2; : : :; 2ng is a set of unordered pairs fj; kg � [2n],
such that each j 2 [2n] appears in exactly one pair. Pairings are a device for
grouping di�erent ways of ordering a multiindex (i1; i2; : : : ; in). A pairing may also
be thought of as a self-inverse bijection from [2n] to itself, de�ning �(j) to be the
unique element k 2 [2n] such that fj; kg 2 �.

To any ordered multiset of integers I = (i1; i2; : : : ; i2n) we associate a pairing as
follows: Let s` be the rank that i` has when the sequence is put in order; that is,

s` := #
�
j 2 [2n] : ij < i`

	
+ #

�
j 2 [`] : ij = i`

	
:

(For de�niteness, when two terms have the same value, their order is maintained.)
Then I is associated to the pairing

�I :=
�fs2`�1; s2`g : 1 � ` � n

	
:

We will say that a multiset I = (i1; i2; : : : ; i2n) is matched if �I is the trivial pairing
�0 :=

�f1; 2g; f3; 4g; : : : ; f2n� 1; 2ng	. The sequence is ordered if i1 � i2 � � � � �
i2n. An ordered sequence is said to have an overlapping pair if there is some even
j such that ij = ij+1.

As an illustration, when n = 4 the multiset (4; 4; 8; 7; 9; 9;1;2) is matched.
The sequence I = (5; 3; 2; 7; 5; 1; 8;9), on the other hand, has matching �I =�f3; 4g; f2; 6g; f1; 5g; f7; 8g	:

This de�nition is adapted to the equation (30). There we have a sum over all mul-
tiindices I = (i1; : : : ; i2n), where the summand is �(Tji2�i1j)��(Tji4�i3j) � � ��(Tji2n�i2n�1j).
The pairing �I tells us which places would be paired if the indices were �rst put in
order. In the above example, we have the product �(T5�3)�(T7�2)�(T5�1)�(T9�8).
If we order the indices, we get the multiindex J = (1; 2; 3; 5; 5;7;8;9), and we need
to know that the �rst term in the product is �(Tj4�j3), and so on. This leads us to
the de�nition

j�j(j1; j2; : : : ; j2n) :=
X

fs;s0g2�

��is � is0
��;(23)

where (j1; j2; : : : ; j2n) is taken to be an ordered multiindex. We can also write this
as

j�j(j1; j2; : : : ; j2n) :=
2nX
`=1

`(�)j`; where `(�) :=

(
+1 if ` > �(`);

�1 if ` < �(`):
(24)

Let I = (i1; : : : ; i2n) be a multiindex with pairing �, and let (j1; : : : ; j2n) be the
ordered version of I. Then

ji2 � i1j+ ji4 � i3j+ � � �+ ji2n � i2n�1j = j�j(j1; j2; : : : ; j2n)(25)

Let � be a pairing on [2n]. We associate to � a graph, whose vertices are
f1; : : : ; 2ng, with edges connecting 2j � 1 and 2j, as well as connecting j and k if
fj; kg 2 �. A subset of [2n] well be called �-connected if the corresponding vertices
are connected in the graph, and it will be called a component of the pairing if they
form a connected component of this graph.

If A is a �-connected subset of [2n], we can de�ne the restriction of � to A. The
elements of A come in pairs, so they can be written as �1 � �2 � � � � � �2`, where
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each �2j�1 is odd and �2j = �2j�1+ 1. The restriction �
��
A
is then de�ned by�

j; k
	 2 ����

A
() �

�j; �k
	 2 �:

A nearly obvious fact is

Lemma 5. For any m with 1 � m � 2n, the sum
P2n

j=m j(�) � 0, and the sum

is equal to 0 if and only if the set fm;m + 1; : : : ; 2ng is �-connected.

Proof. We have

2nX
j=m

j(�) = �#�j : m � j < �(j)
	
+#

�
j : m � �(j) < j

	
+#

�
j : �(j) < m � j

	
:

The �rst two terms cancel each other out. The sum is thus nonnegative, and is
zero precisely when the last term is zero, that is, when every j in fm; : : : ; 2ng has
its �-partner in fm; : : : ; 2ng as well.

A consequence of this lemma is

Lemma 6. If � is any pairing on [2n] with exactly � components and x 2 (0; 1),
then

k�1X
i1=0

k�1X
i2=i1

� � �
k�1X

i2n=i2n�1

xj�j(i1;i2;:::;i2n) � (k(1� x))�

(1� x)2n
:(26)

Proof. Suppose �rst that � = 1. By (24),

k�1X
i1=0

k�1X
i2=i1

� � �
k�1X

i2n=i2n�1

xj�j(i1;i2;:::;i2n)

=
k�1X
i1=0

x1i1 �
k�1X
i2=i1

x2i2 � � �
k�1X

i2n=i2n�1

x2ni2n

=
k�1X
i1=0

x1i1 �
k�1X
i2=i1

x2i2 � � �
k�1X

i2n�1=i2n�2

x(2n�1+2n )i2n�1 � 1

1� x
:

Here we have bounded the sum up to k � 1 by an in�nite sum. Lemma 5 tells us
that the sum m + � � �+ 2n is always positive for m � 2. By induction it follows
then that for all m 2 [2n]

k�1X
i1=0

k�1X
i2=i1

� � �
k�1X

i2n=i2n�1

xj�j(i1;i2;:::;i2n)

� (1� x)m�2n
k�1X
i1=0

x1i1 �
k�1X
i2=i1

x2i2 � � �
k�1X

im=im�1

x(m+m+1+���+2n)im :

Applying this with m = 1 proves the lemma for � = 1. For other values of �
we break up j�j into a sum over components, increasing the sum by ignoring the
ordering of indices when they cross component boundaries.

We will also want to count pairings. Let S(n; �) be the set of pairings on [2n]
with exactly � components. For convenience, we stipulate that S(0; 0) contains one
element, the empty pairing, and otherwise that S(n; �) is the empty set when n or
� is 0.
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Lemma 7. For all nonnegative n and �, the number of pairings S(n; �) is 2n��c(n; �),
where c(n; �) is the signless Stirling number of the �rst kind. It follows that for any

positive x,

nX
�=1

#S(n; �)x� = x(x+ 2)(x+ 4) � � � (x + 2n� 2)

� xn + n(n� 1)xn�1 + (2n� 1)!!
�
xn�2 _ 1

�
:

(27)

Proof. We claim that #S(n; �) satis�es

#S(n; �) = #S(n� 1; �� 1) + 2(n� 1)#S(n� 1; �):(28)

We de�ne a bijection � between S(n; �) and
�
S(n�1; �)� [2n�2]

�[S(n�1; ��1)
as follows: Suppose � is a pairing on [2n] with � components. If f2n� 1; 2ng 2 �,
then �(�) is just � with the component f2n�1; 2ng removed; it is in S(n�1; ��1).
Otherwise, there are m;m0 2 [2n � 2] such that f2n � 1;mg and f2n;m0g are in
�. In this case, we de�ne a matching �0 on [2n � 2] to be the same pairs as in
�, except that f2n� 1;mg and f2n;m0g are removed, and fm;m0g is added. The
components of �0 are the same as those of �, except for the removal of 2n� 1 and
2n from one component. Thus �0 is in S(n � 1; �), and we let �(�) = (�0;m).

If � 2 S(n � 1; � � 1) then ��1(�) = � [ ffn � 1; ngg. For (�;m) 2 S(n �
1; �)� [2n� 2] we de�ne ��1(�;m) by �nding m0 such that fm;m0g 2 �, removing
fm;m0g, and adding in the pairs fm; 2n� 1g and fm0; 2ng.

The recursion (28) implies that c(n; �) := 2��n#S(n; �) satis�es

c(n; �) = c(n� 1; �� 1) + (n � 1)c(n� 1; �);

for n; � � 1, and c(n; 0) = c(0; �) = 0, except c(0; 0) = 1. This is the recurrence
which de�nes the Stirling numbers. (See, for instance, Lemma 1.3.3 of [Sta86].)
The equality in (27) follows then from Proposition 1.3.4 of [Sta86]. To derive the
bound, we note that the monomial xn has coeÆcient 1, and xn�1 has coeÆcient
2+4+ � � �+2(n� 1) = n(n� 1). What remains are terms no bigger than xn�2_ 1;
the total of all the coeÆcients is found by evaluating the function at x = 1, yielding
(2n� 1)!!.

4. Proof of the Theorem

We consider �rst the even moments, and write 2n in place of n. We may assume
without loss of generality that �(g) = 0 and c = 1.

Let I = f0; 1; : : : ; k�1g2n, and let I� be the subset of I consisting of multiindices
whose pairing is �. Remember that the matched multiindices I�0 are those in which
the smallest and second smallest are adjacent, third and fourth, and so on.

For any ordered multiindex I = (i1; i2; : : : ; i2n) we de�ne r(I) to be the number
of possible orderings of I, and r�(I) the number of matched orderings of I. If I has
nonoverlapping pairs, and exactly a pairs of identical indices, then

r(I) =
(2n)!

2a
and r�(I) = 2n�an!;

so r(I)=r�(I) = (2n� 1)!!. Also, for any multiindex r�(I) � 2nn!.
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We aim to compare the two expressions

Ex
�
Wk(g)

2n
�
= k�n

k�1X
i1=0

k�1X
i2=0

� � �
k�1X
i2n=0

Ex
�
g
�
Xi1

� � � �g�Xi2n

��
and(29)

2g (k)
n = k�n

k�1X
i1=0

k�1X
i2=0

� � �
k�1X
i2n=0

�(Tji2�i1j) � � ��(Tji2n�1�i2nj) :(30)

Note that the terms in W 2n
k are invariant under permutations of the indices. The

terms in 2g (k)
n are invariant under permutations which preserve the pairing. Thus

we can rewrite these expressions as

Ex
�
Wk(g)

2n
�
= k�n

k�1X
i1=0

k�1X
i2=i1

� � �
k�1X

i2n=i2n�1

r(i1; : : : ; i2n) Ex g
�
Xi1

� � � �g�Xi2n

�
and

2g (k)
n = k�n

k�1X
i1=0

k�1X
i2=i1

� � �
k�1X

i2n=i2n�1

r�(i1; : : : ; i2n)�(Ti2�i1) � � ��(Ti2n�1�i2n)

+
X

(i1;:::;i2n)2InI�0
�(Tji2�i1j) � � ��(Tji2n�1�i2nj) :

This allows us to bound the di�erence

kn
��Ex�Wk(g)

2n
� � (2n � 1)!!2g(k)

n
��

� (2n� 1)!!
X

(i1;:::;i2n)2InI�0
�(Tji2�i1j) � � ��(Tji2n�1�i2nj)(31)

+
X��r(i1; : : : ; i2n)� (2n� 1)!!r�(i1; : : : ; i2n)

���(Ti2�i1) � � ��(Ti2n�1�i2n )(32)

+
X

r(i1; : : : ; i2n)
��Ex g�Xi1

� � � �g�Xi2n

�� �(Ti2�i1) � � ��(Ti2n�1�i2n)
��:(33)

The sums in (32) and (33) are taken over all (i1; : : : ; i2n) with 0 � i1 � � � � � i2n.

4.1. Bounding (31). We need to show that the contribution to 2g (k)
n by un-

matched multiindices is negligible. By Lemma 1, with � = 1
2 , and ~� =

p
�,

���(Tji2�i1j) � � ��(Tji2n�1�i2nj)�� � �2pR�(V )�n nY
`=1

~�ji2`�i2`�1 j:

Let I = (i1; : : : ; i2n) have pairing �, with � components, and let J = (j1; : : : ; j2n)
be the ordered version of I. Equation (25) tells us that the exponent of ~� above is
j�j(J). By Stirling's formula [Fel68],

p
2�nn+

1
2 e�ne1=(12n+1) � n! �

p
2�nn+

1
2 e�ne1=(12n);

there are

r�(J) � 2nn! � 2�n+2
p
n
(2n)!

n!
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di�erent multiindices I 2 I� which all yield the same J when ordered. Thus��� X
(i1;:::;i2n)2I�

�(Ti2�i1) � � ��(Ti2n�1�i2n)
���

� 2nn!
k�1X
j1=0

k�1X
j2=j1

� � �
k�1X

j2n=j2n�1

�
2
p
R�(V )

�n
~�j�j(j1;:::;j2n):

An application of Lemma 6 yields the bound��� X
(i1;:::;i2n)2I�

�(Ti2�i1) � � ��(Ti2n�1�i2n )
��� � n!

�
4
p
R�(V )

�n
k�(1� ~�)��2n:

Using Lemma 7 to sum over all � other than the trivial pairing, and the relation

1� �� � �(1� �);(34)

which holds for any �; � 2 (0; 1), we get��� X
(i1;:::;i2n)2InI�0

�(Ti2�i1) � � ��(Ti2n�1�i2n )
���

� (2n)!

n!
(1� �)�n�122n+3R3n=2

�
p
n(35)

�
�
n(n� 1)kn�1 + (1� �)�1(2n� 1)!!!

�
k _ 2(1� �)�1

�n�2�
:

4.2. Bounding (32). We know that r(I) � (2n � 1)!!r�(I) = 0, except when I
has overlapping pairs. Saying that (i1; : : : ; i2n) has overlapping pairs says that
i2m = i2m+1 for some m 2 f1; 2; : : :; n� 1g. The summand in (32) is bounded by

(2n)!
�
2
p
R�(V )

�n nY
`=1

~�(i2`�i2`�1):

The sum may thus be bounded by

(2n)!
�
2
p
R�(V )

�n n�1X
m=1

X
(m)

nY
`=1

~�i2`�i2`�1 ;

where �(m) is the sum over ordered indices (i1; : : : ; i2n) where i2m = i2m+1. We
can apply Lemma 4 to this sum, with x = ~�, N = 2n� 1, and n of the �'s being 1,
the rest 0. This means that the term (32) is bounded by

(n � 1)
�
4
p
R�(V )(1� �)�1

�n� (2n)!

(n � 1)!
kn�1 + (2n)!kn�2

�
(36)

4.3. Bounding (33). Let (i1; : : : ; i2n) be any ordered multiindex. We de�ne a
sequence of interpolations Y0; Y1; : : : ; Yn between Y0 := �(Ti2�i1) � � ��(Ti2n�i2n�1 )
and Yn := Ex

�
g(Xi1) � � �g(Xi2n )

�
by

Y` := Ex
�
g(Xi1)g(Xi2 ) � � �g(Xi2` )

�
�(Ti2`+2�i2`+1 ) � � ��(Ti2n�i2n�1 )(37)

for 1 � ` � n� 1. For any ` 2 f1; 2; : : : ; ng we have��Y` � Y`�1
�� = ���Ex�g(Xi1 )g(Xi2 ) � � �g(Xi2`�2 )

�
P
i2`�1�i2`�2
X(i2`�2)

�
Ti2`�i2`�1

�� �(Ti2`�i2`�1 )
�����

�
����(Ti2`+2�i2`+1 ) � � ��(Ti2n�i2n�1 )���
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From Lemma 1 we derive two di�erent estimates for Tm, one with � = 1
2 , the

other with � = (2n� 2` + 1)=2n:��Tm(x)�� � 2
p
RV (x)�m=2;��Tm(x)�� � V (x)1=2n

��Pmx (g)�� (remember that �(g) = 0)

� 2R(2n�2`+1)=2nV (x)(n�`+1)=n�m(2n�2`+1)=2n:(38)

The former will be used for the individual terms �(Tm), the latter for the product.
If we de�ne

h(x) := Pi2`�1�i2`�2x

�
Ti2`�i2`�1

�� �
�
Ti2`�i2`�1

�
;

we have, by Lemma 1, using � = (n� `+ 1)=n and the bound (38)��h(x)�� � 4R2(n�`+1)=n�(i2`�i2`�2)(2n�2`+1)=2nV (x)(n�`+1)=n:

Thus we may apply Lemma 3, with

ch = 4R2(n�`+1)=n�(2n�2`+1)(i2`�i2`�2)=2n; �h =
n� `+ 1

n
;

cg = 1; and �g =
1

2n
:

Letting ~� = �1=2n, this gives us

��Y` � Y`�1
�� � (2

p
R)n�`

0
@ nY
j=`+1

�(i2j�i2j�1)=2

1
A�(V )n�`

� 2`+1R2`�`2=n+1=n
� V (x)~�(i2`�i2`�2)(2n�2`+1)

�
`�1Y
j=1

�
~�(2n�2j+1)(i2j�i2j�1) + ~�(2n�2j+1)(i2j�1�i2j�2)

�
:(39)

The term we are seeking to bound is the sum of all jYn � Y0j over all possible
ordered multiindices (i1; : : : ; i2n). We need to approximate

X
0�i1�����i2n�k�1

~�(i2`�i2`�2)(2n�2`+1)
nY

j=`+1

�(i2j�i2j�1)=2

�
`�1Y
j=1

�
~�(2n�2j+1)(i2j�i2j�1) + ~�(2n�2j+1)(i2j�1�i2j�2)

�
:

Performing the outer summation (over multiindices) �rst, we obtain a sum of 2`�1

terms, each of which may be bounded by an application of Lemma 4: We take
x = �, N = 2n, s = n+ 1, and

�j =
1

2
for n � ` values of j;

�2` = �2`�1 =
2n� 2`+ 1

2n
;

` � 1 other nonzero values:
2n� 2` + 3

2n
;
2n� 2`+ 5

2n
; : : : ;

2n� 1

2n



MARKOV CHAIN MOMENTS 15

Thus each of the terms is bounded by

�
k + n� 2

n� 1

�
(1�p�)`�n

�
1� �(2n�2`+1)=2n

��1 Ỳ
j=1

�
1� �(2n�2j+1)=2n

��1

� 2n�`
�
k + n� 2

n� 1

�
(1� �)�n�1

�
n

n � ` + 1

� Ỳ
j=1

2n

2n� 2j + 1

=

�
k + n � 2

n� 1

�
(1 � �)�n�1

2n+`n`+1n!(2n� 2`)!

(2n)!(n� ` + 1)!

Applying Stirling's formula and the estimate 1 � x � e�x for x � 1, we get the
bound

2n+`e`
�
k + n� 2

n� 1

�
(1 � �)�n�1

Putting this together with the coeÆcients in (39), and summing over 1 � ` � n (by
simply taking n times the largest term),

k�1X
i1=0

k�1X
i2=i1

� � �
k�1X

i2n=i2n�1

r(i1; : : : ; i2n)
��g�Xi1

� � � �g�Xi2n

�� �(Ti2�i1) � � ��(Ti2n�1�i2n)
��

� n(2n)!R25n=16
� (2e)n+2 (1� �)�n�1V (x)

� 1

(n� 1)!
kn�1 + kn�2

�
:(40)

Assembling (35), (36), and (40), together with (31){(33), we get��Ex�Wk(g)
2n
�� (2n� 1)!!2g (k)

n
��

� k�1n2(2n)!R25n=16
� (1� �)�n�1

�
�
(2e)n+2

V (x)

(n� 1)!
+ 4n

1

(n � 1)!
+

22n+3

(n � 1)!

+ k�1
�
(2e)n+2V (x) + 4n

+ 22n+3(1� �)�1
�
1 _ 2k�1(1� �)�1

�n�2��
(41)

It only remains to estimate the error arising from the substitution of 2g (k) for

2g . Observe that

��2g � 2g (k)
�� = ���2

k
�(T1) +

4

k
�(T2) + � � �+ 2k

k
�(Tk) + 2�(Tk+1) + 2�(Tk+2) + � � �

���
� 1

k
� 16

p
R�(V )

�
1� �

��2
:

Thus

(2n� 1)!!
���2g�n � 2g (k)

n
�� � (2n� 1)!!

��2g � 2g (k)
�� � n�1X

j=0

�
2g
�j
2g (k)

n�j�1

� (2n)!

k (n� 1)!
� 2 � 4nRn=2�(V )n

�
1� �

��n�1
:
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Adding this to (41) gives us ��ExW 2n
k � (2n� 1)!!2g (k)

n
��

� k�1
n2(2n)!

(n� 1)!
R
25n=16
� (1� �)�n�1

�
�
(2e)n+2 V (x) + 3 � 4n + 22n+3(42)

+ k�1
�
(2e)n+2V (x) + 4n

+ 22n+3(1 � �)�1
�
1 _ 2k�1(1 � �)�1

�n�2��
:

When similar terms are combined, this reduces directly to (9)
Now we consider odd powers. Choose any ordered multiindex 0 � i1 � � � � �

i2n+1 � k � 1, and de�ne h(x) := P
i2n+1�i2n
x (g). By Lemma 1,��h(x)�� � 2R1=(2n+1)�(i2n+1�i2n)=(2n+1)V (x)1=(2n+1);

so we may apply Lemma 3 with �g = �h = 1=(2n+ 1) to get���Ex�g(Xi1 ) � � �g(Xi2n )g(Xi2n+1 )
����

�
���Ex

�
g(Xi1 ) � � �g(Xi2n )h(Xi2n )

����
� 2nRn+1

� V (x)�(i2n+1�i2n)=(2n+1)

�
nY
j=1

�
�(i2j�i2j�1)(2n�2j+2)=(2n+1)+ �(i2j�1�i2j�2)(2n�2j+2)=(2n+1)

�
:

Applying Lemma 4 and simplifying the constant factors, we bound this sum over
all ordered multiindices by

2nRn+1
� V (x)

�
1� �1=(2n+1)

��1 nY
j=1

�
1� �(2n�2j+2)=(2n+1)

��1�kn
n!

+ kn�1
�

�
�
2R�(1� �)�1

�n+1p
n

�
kn

n!
+ kn�1

�
Multiplying this by the (2n+ 1)! which is the maximum number of ways that any

collection of indices can be ordered, and dividing by kn+
1
2 , we get���ExWk(g)

2n+1
��� � k�1=2

(2n+ 1)!

n!

�
2R�(1� �)�1

�n+1p
n
�
1 + k�1n!

�
;(43)

which simpli�es directly to (10).

5. Proofs of the Corollaries

5.1. Proof of Corollary 1. For any n we have jg��(g)j � c � cV 1=n, so Theorem
1 assures us that���Exe�Wk(g) � e�

22g=2
���

�
1X
n=0

�
�2n

n!
k�1C(cr)2n

�
1 +

n!

k

�
+
�2n+1

n!
k�1=2C0(cr0)2n+1

�
1 +

n!

k

��
:

This reduces directly to (11).



MARKOV CHAIN MOMENTS 17

5.2. Proof of Corollary 2. We begin by considering the case of  (x) = 1fx � tg
for some real number t. De�ne

Wj;k :=
1p
k
(g(Xj ) + g(Xj+1) + � � �+ g(Xj+k�1)) ;

and let hkt (x) := PxfWk � tg. By Theorem 1 of [Bol82], there is a constant �,
depending on the chain, such that

� := sup
k�1

sup
t2R

k1=2
���(hkt ) ��

�
t=g

���(44)

is �nite. Since hkt � 1, we also have for every positive j,��Pjx�hkt �� �
�
hkt
��� � R�jV (x):(45)

Putting these two bounds together, we see that��Pj
x

�
hkt
�� �

�
t=g

��� � R�jV (x) + �k�1=2:(46)

For any positive �,

Px
�
t� �g �Wj;k � t+ �g

	
= Pjx

�
hkt+g�

� � P j
x

�
hkt�g�

�
� �(t=g + �)� �(t=g � �) +

��Pjx�hkt+g�� ��(t=g + �)
��

+
��Pjx�hkt�g�� ��(t=g � �)

��
� 2

�
�+ R�jV (x) + �k�1=2

�
:(47)

This means that��Pjx(hkt )� hkt (x)
�� = ��Px�Wj;k � t

	� Px
�
Wk � t

	��
� P

�
Wj;k � t < Wk

	
+P

�
Wk � t < Wj;k

	
� P

���Wk �Wj;k

�� � �g
	
+P

�
Wj;k 2 [t� �g; t+ �g ]

	
� P

�� j
k

�1=2 ��W0;j �Wk;j

�� � �g
	
+ 2

�
�+R�jV (x) + �k�1=2

�

� P
�
W0;j � �g

2

�
k

j

�1=2	
+P

�
Wk;j � �g

2

�
k

j

�1=2	
+ 2

�
�+R�jV (x) + �k�1=2

�
:

Suppose that jg��(g)j � cV 1=2n. By Theorem 1, de�ningMn := supx supk V (x)
�1Ex jWkj2n,

Mn � c2n
�
(2n� 1)!!

�
2g
�n

+ 2Cr2n(2n)!
�

� (2n� 1)!!c2n

" 
8�(V )

p
R

1� �

!n

+ 2Cr2n

#
(48)

It follows that

��Pj
x(h

k
t )� hkt (x)

�� �Mn

�
(1 +R�k)V (x) + �(V )

�� j
k

�n�
2

�

�2n
+ 2�+ 2

�
R�jV (x) + �k�1=2

�
:

(49)
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Putting this together with (46), for any positive � and nonnegative integer j,

sup
t

����t=g� � P
�
Wk � t

	�� � ��Pjx�hkt � ��(t)
���+ ��Pjx(hkt ) � hkt (x)

��
�Mn

�
(1 + R�k)V (x) + �(V )

�� j
k

�n�
2

�

�2n
+ 2�+ 3

�
R�jV (x) + �k�1=2

�
:(50)

We choose

� =

�
logk

k

�n=(2n+1)
;

j =

�
logk

�2 log �
�
:

This bound then becomes

sup
t

����t=g�� P
�
Wk � t

	��
�
�
Mn(1 + 2R�)V (x)

�
2

� log �

�n
+ 2

��
k

logk

��n=(2n+1)
+

�
3RV (x)

�
+ �

�
k�1=2;

which simpli�es to (12), with

M�
n =Mn(1 + 2R�)

�
2

� log �

�n
+ 2 +

3R

�
+ �:(51)

If jg � �(g)j is bounded by a constant, then by Corollary 1,

L� := sup
x

sup
k
V (x)�1Ex e�jWkj

is �nite for any � < 1=c(r_ r0). (The value of L� depends on c.) We keep the value
of j from above, but now choose

� = ��1
p
2(� log �)�1=2k�1=2 log3=2 k:

This yields

sup
t

����t=g�� P
�
Wk � t

	��
� L�(1 + 2R�)V (x) exp

����
2

�
k=j
�1=2	

+ 2�+ 3
�
R�jV (x) + �k�1=2

�
� L�(1 + 2R�)V (x)k�1=2 + 2

p
2��1(� log �)�1=2k�1=2 log3=2 k + 3

�
RV (x)

�
+ �

�
k�1=2;

which simpli�es to (13), with

L� = inf
0<�<1=c(r_r0)

�
L� + 2

p
2��1(� log �)�1=2 +

3R

�
+ �

	
:(52)

Now consider any measurable function  with bounded linear variation If  is a
step function, written in the form

 (t) = a0 +
NX
i=1

ai1ft�tig;
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then for X a standard normal random variable,

��Ex  �Wk(g)
� � E (gX)

�� �
 

NX
i=1

jaij
!
sup
t

��P�Wk(g) � t
	� �

�
t=g

���:
Since any  may be uniformly approximated arbitrarily closely by step functions
with

P jaij � k k, the result follows.

5.3. Proof of Corollary 3. Let �(t) and �(t) be the standard normal density
and distribution function. For any positive � and any positive b,��Ex�jWk(g)j�

�� E
�jgXj����

�
���Ex�jWk(g)j� ^ (gb)

�
�� �g E

�jXj� ^ b�����
+ Ex

��jWk(g)j� � (gb)
�
�+�

+ �g Ex

��jXj� � b�
�+�(53)

By the standard approximation [Fel68, Lemma VII.1.2] 1 � �(z) � z�1�(z), the
�nal normal expectation is bounded by

�g

Z 1

b

�z��2�(z)dz � Aa��(�=2)+2(b _ 1)��(b);(54)

where A and a are constants independent of � and k.
Now, for any positive integer n,

��g(x) � �(g)
�� � c logp V (x)1=2n � c2n

�
(2n)p

e

�p
V (x)1=2n:

The function jzj� ^ b� has total variation bounded by 2b�, so we can apply (12) to
bound the �rst term in (53) by

M�
1 � 2(gb)� �

�
2p

e

�p�
k

log k

��1=3
V (x);

where M�
1 is given by (51). Simplifying crudely, we �nd constants a and A such

that this term is bounded by The second term on the right in (53) is bounded byZ 1

gb

�z��1P
�
Wk(g) � z

	
dz �

Z 1

gb

�z��1Mn

�
2np

e

�2np
z�2ndz

�
�
2np

e

�2np
Mn�(gb)��2n

2n� �
:

We take

n =
l�
2
+
rq

2

m
:

Putting all these estimates together, and using the bound (48), we �nd constants
A0; a0, depending only on the Markov chain and r, such that for all � � 1,

V (x)�1
���Ex���Wk(g)

����� E
���gX�������

� A0(a0)�
h
��=2b�e�b

2=2 + b�
�

k

logk

��1=3
+ �(�+rq)(2p+1)=2b�rq

i
(55)
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Observe that for any number � and s 2 (0; 1), letting �0 = �e1�s, and applying
the Stirling approximation,

1X
j=0

�jj(1�s)j

j!
�

1X
j=0

(�0)j

(j!)s

�
1X
j=0

(�0)jbsjc!�1

� �s�1�(�0)s�1e�0 :
For any positive �,

V (x)�1
���Ex�exp����Wk(g)

��q	� � E
�
exp
�
�jgXjq

	����
�

1X
j=0

�j

j!

���Ex���Wk(g)
��qj�� E

���gX��qj����
� A0

1X
j=0

(a0)qj
�j

j!

h
jqj=2bqje�b

2=y +
�
k= logk

��1=3
bqj + jq(j+r)(2p+1)=2b�rq

i

� A00
h
b2q=(2�q)ey

0bq�b2=2 +
�
k= logk

��1=3
e�b

q

+Bb�qr
i
;

where A00; a00; y0; B are constants which depend on p; q; r; and �, as well as the
Markov chain, since q(2p+ 1)=2 < 1. If b = (���1 log k)1=q, where � < 1

3 , then this

bound becomes O(log�r k) for large k.
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