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Abstract. We consider the elementary divisors and determinant of a uni-
formly distributed n� n random matrix with entries in the ring of integers of
an arbitrary local �eld. We show that the sequence of elementary divisors is
in a simple bijective correspondence with a Markov chain on the nonnegative
integers. The transition dynamics of this chain do not depend on the size of
the matrix. As n ! 1, all but �nitely many of the elementary divisors are
1, and the remainder arise from a Markov chain with these same transition
dynamics. We also obtain the distribution of the determinant of Mn and �nd
the limit of this distribution as n ! 1. Our formulae have connections with
classical identities for q-series, and the q-binomial theorem in particular.
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1. Introduction

A local �eld (see Section 2) is a locally compact, non-discrete, totally discon-
nected, topological �eld (a locally compact, non-discrete, topological �eld that is
not totally disconnected is necessarily either the real or the complex numbers.) The
best known example is the �eld of p-adic numbers { see Section 2. Every local �eld
is either a �nite algebraic extension of the p-adic number �eld for some prime p or
a �nite algebraic extension of the p-series �eld; that is, the �eld of formal Laurent
series with coe�cients drawn from the �nite �eld with p elements.)

There has been considerable interest in recent years in probability on local �elds.
We refer the reader to [Eva01] for an indication of the literature that is most relevant
to this paper. Here we investigate a particular class of random matrices over a local
�eld. This class is described as follows.

Any local �eld K has a maximal compact subring D called the ring of integers.
For example, the p-adic numbers arise as a particular completion of the rationals
and the ring of integers in this case is just the closure of the integers. The ring D
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has a unique maximal ideal, and this ideal can be written as �D for some � 2 D.
For the p-adic numbers we can take � = p and the maximal ideal is just the closure
of the integers that are divisible by p.

An n� n matrix A with entries in D that is full rank (that is, is invertible over
K) can be represented as

A = U diag(�k1 ; �k2 ; : : : ; �kn)V;

where U and V are D-valued matrices with D-valued inverses and 0 � k1 � k2 �
: : : � kn. The sequence (�k1 ; �k2 ; : : : ; �kn) is unique and is called sequence of ele-

mentary divisors of A (see Section 3).
Let Mn be an n�n random matrix with independent entries distributed accord-

ing to normalised Haar measure on D and elementary divisors (�K
n
1 ; �K

n
2 ; : : : ; �K

n
n ).

Set Ln
k = #f1 � i � n : Kn

i = kg, k � 0. We show in Section 3 that the process
n; n � Ln

0 ; n � Ln
0 � Ln

1 ; : : : is a Markov chain with an explicitly given transition
matrix that does not depend on n. Moreover, n � Ln

0 converges in distribution as
n ! 1, so that in the limit all but �nitely many of the elementary divisors are
1 and the distribution of the remainder is described in terms of a simple Markov
chain.

We also �nd explicitly the distribution of detMn in Section 4 and show that this
distribution converges as n !1 to one that has a simple density with respect to
Haar measure on D. The special case of this result for algebraic extensions of the
p-series �eld (that is, the case of non-zero characteristic) is given in [AG00].

Our results have some of the avour of the body of work on ranks and deter-
minants of random matrices over �nite �elds { see, for example, [Koz66, Bal68,
Muk84, Wat87, BM87, BW87, Lev91, BKW97, Coo00b, Coo00a]. In particu-
lar, our proofs involve solving recursions that are very similar to those appear-
ing in that area, and this leads to interesting connections with q-series and the
q-binomial theorem in particular. In this connection we should also mention the
work that has been done on the cycle structure and characteristic polynomial of
Haar distributed random invertible matrices over �nite �elds | see, for example,
[Kun81, Sto88, HS93, Ful99, Ful02]. We note that the common transition matrix
of the Markov chains n; n � Ln

0 ; n � Ln
0 � Ln

1 ; : : : is a particular case of a class of
transition matrices that appears in [Ful02] in a description of the conjugacy class
of a randomly chosen element of the group of m �m matrices over the �eld with
q elements | see Remark 3.8 for more details.. This more general class of chains
is used to give a transparent proof of the Rogers{Ramanujan identities. Finally,
we note that there are numerous other connections between q-series and proba-
bility, particularly those arising from Blomqvist's absorption process and related
structures | see, for example, [Raw98, Raw97].

2. Local fields

This section is a summary of background that can be found in numerous sources
such as [Tai75, Sch84], and we refer the reader to these works for a fuller account.
We begin with prototypical example of a local �eld: the �eld of p-adic numbers.

Example 2.1. Fix a positive prime p. We can write any non-zero rational number
r 2 Qnf0g uniquely as r = ps(a=b) where a and b are not divisible by p. Set
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jrj = p�s. If we set j0j = 0, then the map j � j has the properties:

jxj = 0, x = 0

jxyj = jxjjyj

jx+ yj � jxj _ jyj:

(2.1)

The map (x; y) 7! jx� yj de�nes a metric on Q and we denote the completion of Q
in this metric by Qp. The �eld operations on Q extend continuously to make Qp

a topological �eld called p-adic numbers. The map j � j also extends continuously
and the extension has properties (2.1). The closed unit ball around 0, Zp = fx 2
Qp : jxj � 1g, is the closure in Qp of the integers Z, and is thus a ring (this is also
apparent from (2.1)), called the p-adic integers. AsZp = fx 2 Qp : jxj < pg, the set
Zp is also open. Any other ball around 0 is of the form fx 2 Qp : jxj � p�kg = pkZp

for some integer k. Such a ball is the closure of the rational numbers divisible by
pk, and is thus aZp - module (this is again also apparent from (2.1)). In particular,
such a ball is an additive subgroup of Qp. Arbitrary balls are translates (= cosets)
of these closed and open subgroups. In particular, the topology of Qp has a base of
closed and open sets, and hence Qp is totally disconnected. Further, each of these
balls is compact, and hence Qp is also locally compact.

From now on, we let K be a �xed local �eld. There is a real-valued mapping
on K which we denote by x 7! jxj. This map has the properties (2.1). A map
with properties (2.1) is called a non-archimedean valuation. The third of these
properties is known as the ultrametric inequality or the strong triangle inequality.
The mapping (x; y) 7! jx� yj on K �K is a metric on K which gives the topology
of K. A consequence of of the strong triangle inequality is that if jxj 6= jyj, then
jx+ yj = jxj _ jyj. This latter result implies that for every \triangle" fx; y; zg � K
we have that at least two of the lengths jx� yj, jx� zj, jy � zj must be equal and
is therefore often called the isosceles triangle property.

The valuation takes the values fqk : k 2 Zg [ f0g, where q = pc for some
prime p and positive integer c (so that for K = Qp we have c = 1). Write D for
fx 2 K : jxj � 1g (so that D = Zp when K = Qp). Fix � 2 K so that j�j = q�1

(such a � is called a prime element). Then

�kD = fx : jxj � q�kg = fx : jxj < q�(k�1)g

for each k 2Z(so that for K = Qp we could take � = p). The set D is the unique
maximal compact subring of K (the so-called ring of integers of K). Each of the
sets �kD, k 2 Z, is a compact D- submodule of K and every non-trivial compact
D-submodule of K is of this form. The set �D is the unique maximal ideal in D
and is called the prime ideal. The quotient D=�D is the �nite �eld with q elements.

For ` < k the additive quotient group �`D=�kD has order qk�`. Consequently, D
is the union of q disjoint translates of �D. Each of these components is, in turn, the
union of q disjoint translates of �2D, and so on. We can thus think of the collection
of balls contained in D as being arranged in an in�nite rooted q-ary tree: the root
is D itself, the nodes at level k are the balls of radius q�k (= cosets of �kD), and
the q \children" of such a ball are the q cosets of �k+1D that it contains. We can
uniquely associate each point in D with the sequence of balls that contain it, and
so we can think of the points in D as the boundary of this tree.
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There is a unique Borel measure � on K for which

�(x+ A) = �(A); x 2 K;

�(xA) = jxj�(A); x 2 K;

�(D) = 1:

The measure � is a suitably normalised Haar measure on the additive group of K.
In the case of Qp, the restriction of � to Zp is the weak limit as n ! 1 of the
sequence of probability measures that at the n-th stage assigns mass p�n to each
of the points f0; 1; : : : ; pn � 1g.

Equip the K-vector space Kn with the norm k � k given by

k(x1; : : : ; xn)k =
n_
i=1

jxij:

Note that

kxk = 0, x = 0;

k�xk = j�jkxk; � 2 K;

kx+ yk � kxk _ kyk:

The balls around 0 in this space are all of the form

f(x1; : : : ; xn) : k(x1; : : : ; xn)k � q�kg

= f(x1; : : : ; xn) : jxij � q�k; 1 � i � ng

= (�kD)n = �kDn

for some integer k.
We take our normalisation of Haar measure on the additive group of Kn to be

such that we have the product of n-copies of �. With a slight abuse of notation,
we also denote this measure by � if the context is clear.

For reasons explained in [Eva01], the natural analogue of (centered) Gaussian
measures on Kn are the normalised Haar measures on compact D-submodules of
Kn (that is, additive subgroups of Kn that are also closed under multiplication by
scalars in D.) Such probability measures are callK-Gaussian. When the supporting
D-submodule doesn't lie in a lower dimensional subspace (equivalently, is open),
then the K-Gaussian measure is just the normalised restriction of �. In the case
n = 1, the K-Gaussian measure with support D is called the standard K-Gaussian
measure. We note that if Z is a random variable with the standard K-Gaussian
distribution, then the conditional distribution of Z given fjZj � q�kg, k � 0, is the
distribution of �kZ.

3. Elementary Divisors

Fix n 2 N. For 1 � i; j � n, let Eij denote the n� n D-valued matrix with 1 in
the (i; j) position and 0 elsewhere. For 1 � i; j � n, x 2 D, and y 2 D with jyj = 1,
de�ne the n� n D-valued elementary matrices

Aij(x) = I + xEij;

Bi(y) = I + (y � 1)Eii;

Cij = I �Eii �Ejj + Eij +Eji:
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� Left (resp. right) multiplication of a n�nmatrixH by Aij(x) has the e�ect
of replacing the i-th row (resp. column) of H by the sum of the i-th row
(resp. column) and x times the j-th row (resp. column).

� Left (resp. right) multiplication of an n � n matrix H by Bi(y) multiplies
the i-th row (resp. column) of H by y.

� Left (resp. right) multiplication of an n � n matrix h by Cij interchanges
the i-th and j-th rows (resp. columns) of H.

Write GL(n;D) for the group of n � n D-valued matrices with D-valued in-
verses. By Cramer's rule, GL(n;D) consists of n � n D-valued matrices U such
that j detU j = 1. It is not hard to see that the elementary matrices belong to
GL(n;D).

Theorem 3.1. Given an n � n invertible D-valued matrix H, there exist integers

0 � k1 � k2 � � � � � kn and U; V 2 GL(n;D) such that

H = U diag (�k1 ; �k2 ; : : : ; �kn)V:

The integers k1; : : : ; kn are unique, and U and V may be taken to be products of

elementary matrices.

Proof. See Theorem 3.8 of [Jac85]. The proof is essentially just Gaussian elimina-
tion adapted to this setting. �

Remark 3.2. i) The vector (�k1 ; : : : ; �kn) is called the vector of elementary divisors

of H.
ii) If H 2 GL(n;D), then clearly k1 = k2 = � � � = kn = 0, and so H is a product of
elementary matrices. That is, GL(n;D) is generated by the elementary matrices.
iii) It is easy to see that the elementary matrices are isometries of (Kn; k � k):
if F is elementary, then kxFk = kFxk = kxk for all x 2 Kn. Thus the ele-
ments of GL(n;D) are isometries. Conversely, if the matrix H is an isometry, then
diag (�k1 ; : : : ; �kn) = U�1HV �1 is also an isometry, and hence k1 = � � � = kn = 0.
Thus GL(n;D) coincides with the group of (linear) isometries of (Kn; k � k).

Notation 3.3. Set

�n = (1� q�1)(1� q�2) : : : (1� q�n)

= (1� q�1)n(1 + q�1) : : : (1 + q�1 + � � �+ q�(n�1));

so that
�n

�k�n�k

=

�
n
k

�
q�1

;

the usual q�1-binomial coe�cient (see, for example, Ch. 10 of [AAR99]). For

simplicity, we write

�
n
k

�
for

�
n
k

�
q�1

. Set

�1 = lim
n!1

�n = (1� q�1)(1 � q�2) : : :

Notation 3.4. Let Mn be an n � n random matrix with independent standard K-
Gaussian entries. Write (�K

n
1 ; �K

n
2 ; : : : ; �K

n
n ) for the elementary divisors ofMn and

set Ln
k = #f1 � l � n : Kn

l = kg, k 2 N.
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Theorem 3.5. The sequence of N-valued random variables n; n � Ln
0 ; n � Ln

0 �
Ln
1 ; : : : is a Markov chain on N with transition matrix

P (s; t) =

8><
>:
q�t

2 �s

�t

"
s

t

#
; 0 � t � s;

0; otherwise.

Consequently,

PfLn
0 = l0; L

n
1 = l1; : : :g = q�((n�l0)

2+(n�l0�l1)
2+��� ) �2n

�l0�l1 : : :
; for

X
k

lk = n:

Proof. Our proof uses conditionings similar to those used in the proof of Theorem
3.1 of [BM87]. For integers 0 � r � n and l0; l1; � � � � 0 such that �1k=0lk = n, set

�n;r(l0; l1; : : : ) = P

8<
:Ln

0 = l0; L
n
1 = l1; : : :

����
n_
i=1

n�r_
j=1

jMn(i; j)j � q�1

9=
;

so that
�n;n(l0; l1; : : : ) = P(L

n
0 = l0; L

n
1 = l1; : : : ):

Note that conditional on the event
nWn

i=1

Wn�r

j=1 jMn(i; j)j � q�1
o

the entries

of Mn are still independent, with the entries in the �rst (n� r) columns being K-
Gaussian supported on �D while the entries in the remaining r columns are standard
K-Gaussian. Let Mn;r be a random matrix with this conditional distribution. Thus

�n;r(l0; l1; : : : ) = PfL
n;r
0 = l0; L

n;r
1 = l1; : : :g ;

where we write Ln;r
k for the number of elementary divisors of Mn;r of the form �k.

The event (
n_
i=1

jMn;r(i; n� r + 1)j � q�1

)

has probability q�n and conditional on this event the distribution ofMn;r is that of

Mn;r�1. Let ~Mn;r be a random matrix with distribution that of Mn;r conditioned
on the complementary event(

n_
i=1

jMn;r(i; n� r + 1)j = 1

)
:

The columns of ~Mn;r are independent, the entries in the �rst (n� r) columns are
i.i.d.K-Gaussian on �D and the entries in the last (r�1) columns are i.i.d. standard
K-Gaussian.

Multiplying ~Mn;r on the left and right by random elementary matrices we can
successively:

� interchange the 1-st and (n� r+1)-st column of ~Mn;r to produce a matrix
~M 0

n;r;

� interchange the 1-st and m-th row of ~M 0

n;r, where

j ~M 0

n;r(m; 1)j = j ~Mn;r(m;n� r + 1)j = 1;

to produce a matrix ~M 00

n;r with j ~M 00

n;r(1; 1)j = 1 (note that the entries of
~M 00

n;r outside the �rst row and column are independent, and independent
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of those in the �rst row and column, those in columns 2 through (n� r+1)
are K-Gaussian on �D, and those in the remaining (r � 1) columns are
standard K-Gaussian);

� subtract ~M 00

n;r(i; 1)= ~M 00

n;r(1; 1) times the 1-st row of ~M 00

n;r from the i-th row

of ~M 00

n;r for 2 � i � n to produce a matrix ~M�

n;r with

j ~M�

n;r(1; 1)j = 1;

and
~M�

n;r(2; 1) = � � � = ~M�

n;r(n; 1) = 0

(note that ~M 00

n;r(1; j) 2 �D for 2 � j � n� r+1 so that the entries outside

the �rst row and column of ~M�

n;r have the same distribution as those outside

the �rst row and column of ~M 00

n;r and these entries are independent of the

�rst row and column of ~M�

n;r);

� subtract ~M�

n;r(1; j)= ~M�

n;r(1; 1) times the 1-st column of M�

n;r from the j-th

column of ~M�

n;r to produce a matrix ~M��

n;r with

jM��

n;r(1; 1)j = 1;

~M��

n;r(2; 1) = � � � = ~M��

n;r(n; 1) = 0;

and
~M��

n;r(1; 2) = � � � = ~M��

n;r(1; n) = 0

(note that ~M��

n;r(i; j) = ~M�

n;r(i; j) for 2 � i; j � n);

� multiply the 1-st row of ~M��

n;r by ~M��

n;r(1; 1)
�1 to produce a matrix with the

same distribution as �
1 0
0 Mn�1;r�1

�
:

The elementary divisors of ~Mn;r thus have the same distribution as

(1; �K
n�1;r�1

0 ; �K
n�1;r�1

1 ; : : : ; �K
n�1;r�1

j�1 );

where
(�K

n�1;r�1

0 ; : : : ; �K
n�1;r�1

n�1 )

are the elementary divisors of Mn�1;r�1.
Putting these observations together gives the recursion

�n;r(l0; l1; : : :)

=

8<
:

q�n�n;r�1(l0; l1; : : : ) + (1� q�n)�n�1;r�1(l0 � 1; l1; : : :);
1 � r � n; l+0 � 1;

q�n�n;r�1(0; l1; : : : ); 1 � r � n; l0 = 0

(3.1)

provided we adopt the convention �0;0(0; 0; : : :) = 1. We also have the boundary
conditions

�m;0(l
0

0; l
0

1; : : : ) = 0; m � 1; l00 � 1;

�m;0(0; l
0

1; : : : ) = �m;m(l
0

1; l
0

2; : : : ); m � 1;

because Mm;0 has the same distribution as �Mm;m .
Thus

PfLn
0 = l0; L

n
1 = l1; : : :g = n;l0PfL

n�l0
0 = l1; L

n�l0
1 = l2; : : :g
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for a certain constant n;l0 if we adopt the convention L0k = 0 for all k. Rewriting
the recursion (3.1) as

��1n �n;r(l0; l1; : : : ) =

8<
:

q�n��1n �n;r�1(l0; l1; : : : ) + ��1n�1�n�1;r�1(l0 � 1; l1; : : : );
1 � r � n; l0 � 1;

q�n��1n �n;r�1(0; l1; : : :); 1 � r � n; l0 = 0

it follows that the constant n;l0 can be represented graphically as

n;l0 =
�n

�n�l0

X
�

q��(�)

where the sum is over all planar lattice paths � of length n from (0; 0) to (n� l0 ; l0)
that consist of steps of the form (x; y) ! (x + 1; h) or (x; y) ! (x; y + 1) and
�(�) denotes the area in the plane above � and below the line f(x; y) : 0 � x �
n� l0; y = ng.

As explained in Ch. 10 of [AAR99], the evaluation of this sum is a consequence of
the non-commutative q-binomial theorem of [Sch53] (see also [P�ol69]). Writing �(�)
for the area below the path � (and above the line f(x; y) : 0 � x � n� l0; y = 0g),

n;l0 =
�n

�n�l0

q�n(n�l0)
X
�

q�(�)

=
�n

�n�l0

q�n(n�l0)
(1� q) : : : (1� qn)

(1� q) : : : (1� qn�l0)(1� q) : : : (1� ql0 )

=
�n

�n�l0

q�n(n�l0)ql0(n�l0)
�

n
n� l0

�

= q�(n�l0)
2 �n

�n�l0

�
n

n� l0

�
:

The theorem now follows immediately. �

Remark 3.6. It follows from Theorem 3.5 that the joint distribution of the elemen-
tary divisors (�K

n
1 ; �K

n
2 ; : : : ; �K

n
n ) of Mn conditional on Ln

0 = l0 does not depend
on n. The following corollary is immediate.

Corollary 3.7. As n!1, the sequence of N-valued random variables n�Ln
0 ; n�

Ln
0 � Ln

1 ; n � L0 � L1 � L2; : : : converges in distribution to a Markov chain on N

with initial distribution

p(s) = q�s
2�1
�2s

; s � 0;

and transition matrix P (�; �) as in Theorem 3.5.

Remark 3.8. i) A consequence of Corollary 3.7 is that n � Ln
0 , the number of

elementary divisors of Mn that are not 1, converges in distribution. Also, maxfk :
Ln
k 6= 0g converges in distribution, so that Kn

n converges in distribution. Moreover,

j detMnj = q�(K
n
1
+���+Kn

n ) = q��kkL
n
k

also converges in distribution to an almost surely strictly positive limit. We obtain
the distribution of detMn and the limit explicitly in the next section.
ii) It follows from Corollary 3.7 that

1X
s=0

q�s
2

�2s
=

1

�1
:
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This identity is due to Euler (see the comments after Corollary 10.9.4 in [AAR99]).
iii) Consider the group GL(m; q) of m�m invertible matrices over the �nite �eld Fq
with q elements. The conjugacy class of an element of GL(m; q) is determined by
its rational canonical form. The form is in turn speci�ed by a map � 7! �� from the
set of monic non-constant irreducible polynomials over Fq into the set of partititions
of non-negative integers. The only restrictions on the �� are that j�zj = 0 (that is,
the partition corresponding to the polynomial z 7! z is the unique partition of the
integer 0) and that

P
� deg(�)j��j = m. The map � 7! �� for a uniformly chosen

group element is studied in great detail in [Ful02]. In particular, as m ! 1 the
random partition �z�1;1 � �z�1;2 � : : : associated with the polynomial z 7! z � 1
for a uniformly chosen group element converges in distribution to the Markov chain
of Corollary 3.7. More generally, the random partition associated with a monic
irreducible polynomial of degree d converges to a similarly de�ned chain with q
replaced by qd, and these random partitions are asympotically independent.

4. Distribution of the determinant

The obvious approach to obtaining the distribution of the determinant of Mn is
to note for n � 2 and h � 0 that we have the recursion

Pfj detMnj = q�hg = P

(
j detMnj = q�h

�����
n_
i=1

jMn(i; 1)j � q�1

)
q�n

+P

(
j detMnj = q�h

�����
n_
i=1

jMn(i; 1)j = 1

)
(1 � q�n)

= PfjdetMnj = q�(h�1)gq�n

+Pfj detMn�1j = q�hg(1� q�n);

because conditioned on the event
�Wn

i=1 jMn(i; 1)j � q�1
	
the conditional distribu-

tion of Mn is that of the random matrix obtained by multiplying the �rst column
of Mn by �, and conditioned on the event f

Wn

i=1 jMn(i; 1)j = 1g the conditional
distribution of j detMnj is that of����det

�
1 0
0 Mn�1

����� :
We also have the boundary values

Pfj detM1j = q�hg = q�h � q�(h+1); h � 0;

and, by Theorem 3.5,

PfjdetMnj = 1g = PfLn
0 = n; 0 = Ln

1 = Ln
2 = : : :g = �n; n � 1:

This sort of recursion is solved in Theorem 2.1 of [BM87], apparently by guessing
and then verifying the form of the solution. The solution in [BM87] can be manip-
ulated to establish the following result. We provide a somewhat more illuminating
proof that follows the �rst proof of Theorem 1 in [AG00].

Theorem 4.1. For h � 0,

Pfj detMnj = q�hg = �nq
�h

�
n+ h� 1

h

�
:
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Consequently, the distribution of detMn has density

x 7!
1� q�n

1� q�1
(1� jxjq�1) : : : (1� jxjq�(n�1)); x 2 D;

with respect to �.

Proof. Set

I = min

(
1 � i � n : jMn(i; 1)j =

n_
i0=1

jMn(i
0; 1)j

)
:

Note that

PfjMn(I; 1)j = q�hg = (q�hn � q�(h+1)n); h � 0:

Multiplying Mn be random elementary matrices we can successively:

� interchange the 1-st and I-th row of Mn to produce a random matrix M 0

n;
� subtract M 0

n(i; 1)=M
0

n(1; 1) times the �rst row of M 0

n from the i-th row of
M 0

n for 2 � i � n to produce a random matrix M 00

n ;
� divide the �rst row of M 00

n (1; 1)=�
H , where jM 00

n (1; 1)j = jM 0

n(1; 1)j =
jMn(I; 1)j = q�H .

This produces a random matrix with the same distribution as�
�H Zn�1

0 Mn�1

�
;

where H, Zn�1 and Mn�1 are independent and Zn�1 is a vector of n� 1 standard
K-Gaussian random variables. In particular, j detMnj has the same distribution as
q�H j detMn�1j.

Thus

PfjdetMnj = q�hg =
X

h1+���+hn=h

nY
i=1

(q�hi(n+1�i) � q�(hi+1)(n+1�i))

= �n

X
h1+���+hn=h

q�(nh1+(n�1)h2+���+hn)

= �n

1X
l=0

Q(n; h; l)q�l;

where Q(n; h; l) is the number of partitions of l into h parts, each of size at most
n. The claimed distribution for j detMnj then follows from the known generating
function of the partition counts (see, for example, Theorem 11.4.4 of [AAR99]).

Note that multiplying the �rst column of Mn by a constant c 2 D with jcj = 1
gives a matrix with the same distribution as Mn, so that detMn and c detMn have
the same distribution. Consequently, the distribution of detMn has a density at
x 2 D given by

PfjdetMnj = jxjg

�fy : jyj = jxjg
;

and this is readily seen to be given by the stated formula. �

Remark 4.2. It follows from Theorem 4.1 that
1X
h=0

q�h
�
n+ h� 1

h

�
=

1

�n

:
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This identity is a classical consequence of the (commutative) q-binomial theorem
| see Corollary 10.2.2(d) of [AAR99].

Corollary 4.3. As n ! 1, the distribution of detMn converges to a probability

measure on D with density against � given by

x 7!
1

(1� q�1)
(1� jxjq�1)(1� jxjq�2) : : : ; x 2 D:

Combining Theorem 3.5 and Theorem 4.1 gives the following identity.

Corollary 4.4. For n � 1 and h � 0,X
q�((n�l0)

2+(n�l0�l1)
2+��� ) �n

�l0�l1 : : :
= q�h

�
n+ h � 1

h

�
;

where the sum is over all l0; l1; : : : such that
P

k lk = n and
P

k klk = h.

Acknowledgment: The author thanks Jason Fulman and the referee for pointing
out that the Markov chain in Section 3 also appears in Fulman's work on the
conjugacy class of a random element of GL(m; q).
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