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Abstract

This paper presents some general formulas for random partitions of a finite set
derived by Kingman’s model of random sampling from an interval partition generated
by subintervals whose lengths are the points of a Poisson point process. These lengths
can be also interpreted as the jumps of a subordinator, that is an increasing process
with stationary independent increments. Examples include the two-parameter family
of Poisson-Dirichlet models derived from the Poisson process of jumps of a stable sub-
ordinator. Applications are made to the random partition generated by the lengths
of excursions of a Brownian motion or Brownian bridge conditioned on its local time
at zero.
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1 Introduction

This paper presents some general formulas for random partitions of a finite set de-
rived by Kingman’s model of random sampling from an interval partition generated
by subintervals whose lengths are the points of a Poisson point process. Instances
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and variants of this model have found applications in the diverse fields of popula-
tion genetics [17, 19], combinatorics [4, 48], Bayesian statistics [23], ecology [37, 15],
statistical physics [11, 12, 13, 53, 55], and computer science [25].

Section 2 recalls some general results for partitions obtained by sampling from a
random discrete distribution. These results are then applied in Section 3 to the
Poisson-Kingman model. Section 4 discusses three basic operations on Poisson-
Kingman models: scaling, exponential tilting, and deletion of classes. Section 5
then develops formulas for specific examples of Poisson-Kingman models. Section 6
recalls the two-parameter family of Poisson-Dirichlet models derived in [50] from the
Poisson process of jumps of a stable(α) subordinator for 0 < α < 1. Section 7 reviews
some results of [41, 46, 49, 50] relating the two-parameter family to the lengths of
excursions of a Markov process whose zero set is the range of a stable subordinator
of index α. Section 8 provides further detail in the case α = 1

2 which corresponds to
partitioning a time interval by the lengths of excursions of a Brownian motion. As
shown in [2, 3], it is this stable(1

2) model which governs the asymptotic distribution
of partitions derived in various ways from random forests, random mappings, and
the additive coalescent. See also [5, 9] for further developments in terms of Brownian
paths, and [10, 25] for applications to hashing and parking algorithms. This paper
is a revision of the earlier preprint [42]. See [48] for a broader context and further
developments.

2 Preliminaries

This section recalls some basic ideas from Kingman’s theory of exchangeable random
partitions [30, 31], as further developed in [43]. See [45, 48] for more extensive reviews
of these ideas and their applications. Except where otherwise specified, all random
variables are assumed to be defined on some background probability space (Ω,F ,P),
and E denotes expectation with respect to P. Let N := {1, 2, . . .}, let F denote a
random probability distribution on the line, and let Π be a random partition of N

generated by sampling from F . That is to say, two positive integers i and j are in
the same block of Π iff Xi = Xj, where conditionally given F the Xi are indepen-
dent and identically distributed according to F . Formally, Π is identified with the
sequence (Πn), where Πn is the restriction of Π to the finite set Nn := {1, . . . , n}.
The distribution of Πn is such that for each particular partition {A1, · · · , Ak} of Nn

with #(Ai) = ni for 1 ≤ i ≤ k, where ni ≥ 1 and
∑k

i=1 ni = n,

P(Πn = {A1, · · · , Ak}) = p(n1, · · · , nk) (1)

for some symmetric function p of sequences of positive integers, called the exchange-
able partition probability function (EPPF) of Π. Conversely, Kingman [30, 31] showed
that if Π is an exchangeable random partition of N, meaning that the distribution
of its restrictions Πn is of the form (1) for every n, for some symmetric function p,
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then Π has the same distribution as if generated by sampling from some random
probability distribution F . Let Pi denote the size of the ith largest atom of F . If F
is a random discrete distribution, then

∑
i Pi = 1 almost surely, and Π is said to have

proper frequencies (Pi). In that case, let P̃j denote the size of the jth atom discovered
in the process of random sampling. Put another way, P̃j is the asymptotic frequency
of the jth class of Π when the classes are put in order of their least elements. It is
assumed now for simplicity that Pi > 0 for all i almost surely, and hence P̃j > 0 for
all j almost surely. The sequence (P̃j) is a size-biased permutation of (Pi). That
is to say, P̃j = Pπj where for all finite sequences (ij, 1 ≤ j ≤ k) of distinct positive
integers, the conditional probability of the event (πj = ij for all 1 ≤ j ≤ k) given
(P1, P2, . . .) is

Pi1
Pi2

1 − Pi1
· · · Pik

1 − Pi1 − . . .− Pik−1

. (2)

The distribution of Πn is determined by the distribution of the sequence of ranked
frequencies (Pi) through the distribution of the size-biased permutation (P̃j). To be
precise, the EPPF p in (1) is given by the formula [43]

p(n1, · · · , nk) = E


 k∏
i=1

P̃ni−1
i

k−1∏
i=1


1 −

i∑
j=1

P̃j




 . (3)

Alternatively [45]

p(n1, · · · , nk) =
∑

(j1,...,jk)

E

k∏
i=1

Pni
ji

(4)

where (j1, . . . , jk) ranges over all permutations of k positive integers, and the same
formula holds with Pji replaced by P̃ji . For each n = 1, 2, · · · the EPPF p, when
restricted to (n1, · · · , nk) with

∑
i ni = n, determines the distribution of Πn. Since

Πn is the restriction of Πn+1 to Nn, the EPPF is subject to the following sequence of
addition rules [43]: for k = 1, 2, . . .

p(n1, · · · , nk) =
k∑
j=1

p(. . . , nj + 1, . . .) + p(n1, . . . , nk, 1) (5)

where (. . . , nj +1, . . .) is derived from (n1, . . . , nk) by substituting nj +1 for nj . The
first few rules are

1 = p(1) = p(2) + p(1, 1) (6)

p(2) = p(3) + p(2, 1); p(1, 1) = 2p(2, 1) + p(1, 1, 1) (7)

where p(2, 1) = p(1, 2) by symmetry of p. Let µ(q) denote the qth moment of P̃1:

µ(q) := E[ P̃ q1 ] =
∫ 1

0
pq ν̃(dp). (8)



4 J. Pitman

where ν̃ denotes the distribution of P̃1 on (0, 1]. Following Engen [15], call ν̃ the struc-
tural distribution associated with an random discrete distribution whose size-biased
permutation is (P̃j), or with an exchangeable random partition Π whose sequence of
class frequencies is (P̃j). The special case of (3) for k = 1 and n1 = n is

p(n) = E[ P̃n−1
1 ] = µ(n− 1) (n = 1, 2, · · ·). (9)

From (6), (7), and (9) the following values of the EPPF are also determined by the
first two moments of the structural distribution:

p(1, 1) = 1 − µ(1); p(2, 1) = µ(1) − µ(2); p(1, 1, 1) = 1 − 3µ(1) + 2µ(2). (10)

So the distribution of the random partition of {1, 2, 3} induced by Π with class fre-
quencies (P̃i) is determined by the first two moments of the structural distribution of
P̃1. It is not true in general that the EPPF is determined for all (n1, · · · , nk) by the
structural distribution, because it is possible to construct different distributions for
a sequence of ranked frequencies which have the same structural distribution.

Continuing to suppose that (Pi) is the sequence of ranked atoms of a random
discrete probability distribution, and that (P̃j) is a size-biased permutation of (Pi),
for an arbitrary non-negative measurable function f , there is the well known formula

E

[∑
i

f(Pi)

]
= E


∑

j

f(P̃j)


 = E

[
f(P̃1)
P̃1

]
=
∫ 1

0

f(p)
p

ν̃(dp). (11)

This formula shows that the structural distribution ν̃ encodes much information about
the entire sequence of random frequencies. Taking f in (11) to be the indicator of
a subset B of (0, 1], the quantity in (11) is ν(B) =

∫
B p

−1ν̃(dp). This measure ν is
the mean intensity measure of the point process with a point at each Pi ∈ (0, 1]. For
x > 1

2 there can be at most one Pi > x, so the structural distribution ν̃ determines
the distribution of P1 = maxj P̃j on (1

2 , 1] via the formula

P(P1 > x) = ν(x, 1] =
∫

(x,1]
p−1ν̃(dp) (x > 1

2). (12)

Typically, formulas for P(P1 > x) get progressively more complicated on the intervals
(1
3 ,

1
2 ], (1

4 ,
1
3 ], · · ·. See for instance [40, 50].

A random variable of interest in many applications is the sum of mth powers of
frequencies

Sm :=
∞∑
i=1

Pmi =
∞∑
j=1

P̃mj (m = 1, 2, . . .)

where it is still assumed that S1 = 1 almost surely. Let π := {A1, · · · , Ak} be some
particular partition of Nn with #(Ai) = ni for 1 ≤ i ≤ k, and consider the event
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(Πn ≥ π), meaning that each block of Πn is some union of blocks of π. Then it is
easily shown that

P(Πn ≥ π) = E

[
k∏
i=1

Sni

]
=

k∑
j=1

∑
{B1,...,Bj}

p(nB1 , . . . , nBj ) (13)

where the second sum is over partitions {B1, . . . , Bj} of Nk, and nB :=
∑

i∈B ni. In
particular, for ni ≡ m this gives an expression for the kth moment of Sm for each
k = 1, 2, . . .:

E

[
Skm

]
=

k∑
j=1

1
j!

∑
(k1,...,kj)

k!
k1! · · · kj ! p(mk1, . . . ,mkj) (14)

where the second sum is over all sequences of j positive integers (k1, . . . , kj) with
k1 + · · · + kj = k. Thus the EPPF associated with a random discrete distribution
directly determines the positive integer moments of the power sums Sm, hence the
distribution of Sm, for each m.

3 The Poisson-Kingman Model

Following McCloskey [37], Kingman [29], Engen [15], Perman-Pitman-Yor [40, 41, 50],
consider the ranked random discrete distribution (Pi) := (Ji/T ) derived from an
inhomogeneous Poisson point process of random lengths J1 ≥ J2 ≥ · · · ≥ 0 by
normalizing these lengths by their sum T :=

∑∞
i=1 Ji. So it is assumed that the

number NI of Ji that fall in an interval I is a Poisson variable with mean Λ(I), for
some Lévy measure Λ on (0,∞), and the counts NI1 , · · · , NIk are independent for
every finite collection of disjoint intervals I1, · · · , Ik. It is also assumed that

∫ 1

0
xΛ(dx) <∞ and Λ[1,∞) <∞

to ensure that P(T < ∞) = 1. The sequence (Pi) may be regarded as a random
element of the space P↓ of decreasing sequences of positive real numbers with sum
1. Throughout this section, the following further assumption is made to ensure that
various conditional probabilities can be defined without quibbling about null sets:
Regularity assumption. The Lévy measure Λ has a density ρ(x) such that the
distribution of T is absolutely continuous with density

f(t) := P(T ∈ dt)/dt

which is strictly positive and continuous on (0,∞).
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Note that the regularity assumption implies the total mass of the Lévy measure
is infinite: ∫ ∞

0
ρ(x)dx = ∞. (15)

The results described below also have weaker forms for a Lévy density ρ(x) just
subject to (15), with appropriate caveats about almost everywhere defined conditional
probabilities.

It is well known that f is uniquely determined by ρ via the Laplace transform

E(e−λT ) =
∫ ∞

0
e−λxf(x)dx = exp[−ψ(λ)] (λ ≥ 0) (16)

where, according to the Lévy-Khintchine formula,

ψ(λ) =
∫ ∞

0
(1 − e−λx)ρ(x)dx. (17)

Alternatively, f is the unique solution of the following integral equation, which can
be derived from (16) and (17) by differentiation with respect to λ:

f(t) =
∫ t

0
ρ(v)f(t− v)

v

t
dv. (18)

Let (P̃j) be a size-biased permutation of the normalized lengths (Pi) := (Ji/T ) and
let (J̃j) = (T P̃j) be the corresponding size-biased permutation of the ranked lengths
(Ji). Then (18) admits the following probabilistic interpretation [37, 41]:

P(J̃1 ∈ dv, T ∈ dt) = ρ(v)dvf(t− v)dt
v

t
. (19)

This can be understood as follows. The left side of (19) is the probability that among
the Poisson lengths there is some length in dv near v, and the sum of the rest of the
lengths falls in an interval of length dt near t − v, and finally that the interval of
length about v is the one picked by length-biased sampling. Formally, (19) is justified
by the description of a Poisson process in terms of its Palm measures [41].

The following two Lemmas are read from [41, Theorem 2.1]. The first Lemma is
immediate from (19), and the second is obtained by a similar Palm calculation.

Lemma 1 [41] For each t > 0 the formula

f̃(p | t) := pt ρ(pt)
f(p̄t)
f(t)

(0 < p < 1; p̄ := 1 − p), (20)

where ρ is the density of the Lévy measure of T and f is the probability density of T ,
defines a function of p which is a probability density on (0, 1). This is the density of
the structural distribution of P̃1 := J̃1/T given T = t:

P(P̃1 ∈ dp | t) = f̃(p | t)dp (0 < p < 1). (21)
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Lemma 2 [41] For j = 0, 1, 2, · · · let

Tj := T −
j∑

k=1

J̃k =
∞∑

k=j+1

J̃k (22)

which is the total length remaining after removal of the first j Poisson lengths J̃1, . . . , J̃j
chosen by length-biased sampling. Then the family of densities (20) on (0, 1), param-
eterized by t > 0, provides the conditional density of the random variable

Gj+1 :=
J̃j+1

Tj
=

P̃j+1

P̃j+1 + P̃j+2 + · · ·

given T0, · · · , Tj via the formula

P (Gj+1 ∈ dp |T0, · · · , Tj) = f̃(p|Tj) dp (0 < p < 1). (23)

Lemma 2 provides an explicit construction of a regular conditional distribution
for (P̃j) given T = t for arbitrary t > 0. This conditional distribution of (P̃j) given
T = t determines corresponding conditional distributions for the P↓-valued ranked
sequence (Pi) and for an associated random partition Π of N.

Definition 3 The distribution of (Pi) := (Ji/T ) on P↓ determined by the ranked
points Ji of a Poisson process with Lévy density ρ will be called the Poisson-Kingman
distribution with Lévy density ρ, and denoted pk(ρ). Denote by pk(ρ | t) the regular
conditional distribution of (Pi) given (T = t) constructed above. For a probability
distribution γ on (0,∞), let

pk(ρ, γ) :=
∫ ∞

0
pk(ρ | t)γ(dt) (24)

be the distribution on P↓ obtained by mixing the pk(ρ | t) with respect to γ(dt). Call
pk(ρ, γ) the Poisson-Kingman distribution with Lévy density ρ and mixing distribu-
tion γ.

Note that pk(ρ | t) = pk(ρ, δt), where δt is a unit mass at t, and that pk(ρ) = pk(ρ, γ)
for γ(dt) = f(t)dt. A formula for the joint density of (P1, · · · , Pn) for (Pi) with
pk(ρ | t) distribution was obtained by Perman [40] in terms of the joint density p1(t, x)
of T and J1. This function can be described in terms of ρ and f as the solution of an
integral equation [40], or as a series of repeated integrals [50]. But this formula will
not be used here.

For a probability distribution Q on P↓, such as Q = pk(ρ, γ), a random partition
Π of N will be called a Q-partition if Π is an exchangeable random partition of N

whose ranked class frequencies are distributed according to Q. Immediately from
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Definition 3, the structural distribution of a pk(ρ, γ)-partition Π of N, that is the
distribution on (0, 1) of the frequency P̃1 of the class of Π containing 1, has density

P(P̃1 ∈ dp)/dp =
∫ ∞

0
f̃(p | t)γ(dt) (0 < p < 1) (25)

where f̃(p | t) given by (20) is the density of the structural distribution of P̃1 given
T = t in the basic Poisson construction. Similarly, the EPPF of Π is

p(n1, · · · , nk) =
∫ ∞

0
p(n1, · · · , nk | t)γ(dt) (26)

where p(n1, · · · , nk | t), the EPPF of a pk(ρ | t)-partition, is determined as follows:

Theorem 4 The EPPF of a pk(ρ | t)-partition is given by the formula

p(n1, · · · , nk | t) = tk−1

∫ 1

0
pn+k−2I(n1, · · · , nk; tp)f̃(p | t)dp (27)

where n =
∑k

1 ni, I(n; v) = 1 if k = 1 and n1 = n, and for k = 2, 3, . . .

I(n1, · · · , nk; v) :=
1

ρ(v)

∫
Sk

[
k∏
i=1

ρ(vui)uni
i

]
du1 · · · duk−1 (28)

where Sk is the simplex {(u1, . . . , uk) : ui ≥ 0 and u1 + · · · + uk = 1}.
Proof. In view of the formula (20) for f̃(p | t), the formula (27) is obtained from
formula (31) in the following Lemma by dividing by f(t)dt, letting p =

∑
i xi/t, and

integrating out with respect to p and to ui = xi/(pt) for 1 ≤ i ≤ k − 1. 2

A change of variables gives the following variant of formula (27), whose connection
to the next lemma is a bit more obvious:

p(n1, · · · , nk | t) =
∫ t

0
dv
f(t− v)
tnf(t)

vn+k−1I(n1, . . . , nk; v)ρ(v). (29)

Lemma 5 Let Πn be the restriction to Nn of a pk(ρ) partition Π whose class fre-
quencies (in order of least elements) are P̃j = J̃j/T , where T =

∑
j J̃j has density

f , and the lengths J̃j are the points of a Poisson process of lengths with intensity ρ,
in length-biased random order. Then for each partition {A1, · · · , Ak} of Nn such that
#(Ai) = ni for 1 ≤ i ≤ k,

P(Πn = {A1, · · · , Ak}, J̃i ∈ dxi for 1 ≤ i ≤ k, T ∈ dt) (30)

= t−n f(t−∑k
i=1 xi) dt

k∏
i=1

ρ(xi)xni
i dxi. (31)
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Proof. This can be derived by evaluation of the expectation (3) for the joint distri-
bution of P̃1, . . . , P̃k given T = t determined by Lemma 2. Alternatively, there is the
following more intuitive argument, which can be made rigorous using the characteri-
zation of Poisson process by its a Palm measures, as in [49, 41]. Let Π be constructed
as in [46] using random intervals Ii laid down on [0, T ] in some arbitrary random
order, where the lengths Ji := |Ii| are the ranked points of the Poisson process with
intensity ρ(x), and T =

∑
i Ji. Let U1, U2, · · · be i.i.d. uniform on (0, 1) independent

of this construction. Let Π be the partition of N generated by the random equivalence
relation n ∼ m iff either n = m or TUn and TUm fall in the same interval Ii for some
i. Then by construction, Π is a pk(ρ) partition. For the event in (30) to occur,

(i) there must be some Poisson point in dxi for each 1 ≤ i ≤ k, and
(ii) given (i), the sum of the rest of the Poisson points must fall in an interval of

length dt near t−∑k
i=1 xi, and

(iii) given (i) and (ii), for each 1 ≤ i ≤ k and each m ∈ Ai the sample point TUm
must fall in the interval of length xi.

The infinitesimal probability in (30) therefore equals(
k∏
i=1

ρ(xi) dxi

)
f(t−∑k

i=1 xi) dt
k∏
i=1

(xi
t

)ni

(32)

which rearranges as (31). 2

The formula (27) expresses p(n1, · · · , nk | t) as the expectation of a function of P̃1

given T = t, where the function depends on t and n1, · · · , nk. Because some values
of an EPPF can always be expressed as moments of P̃1, as in (8) and (10), it seems
natural to try to express an EPPF similarly whenever possible. This idea serves as
a guide to simplifying calculations in a number of particular cases treated later. The
integrations in (27) and (28) are essentially convolutions, which can be expressed or
evaluated in various ways. Consider for instance the length Tk := T −∑k

i=1 J̃i which
remains after removal of the first k lengths discovered by the sampling process. Then
the formula of Lemma 5 can be recast as

P(Πn = {A1, · · · , Ak}, J̃i ∈ dxi for 1 ≤ i ≤ k, Tk ∈ dv) (33)

= (v +
∑k

i=1 xi)
−n f(v)dv

k∏
i=1

ρ(xi)xni
i dxi (34)

which yields the following integrated forms of (27):

Corollary 6 The EPPF of a pk(ρ)-partition is given by the formula

p(n1, · · · , nk) =
∫ ∞

0
· · ·
∫ ∞

0

f(v)dv
∏k
i=1 ρ(xi)x

ni
i dxi

(v +
∑k

i=1 xi)n
(35)
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where n :=
∑k

i=1 ni, or again by

p(n1, · · · , nk) =
(−1)n−k

Γ(n)

∫ ∞

0
λn−1 dλe−ψ(λ)

k∏
i=1

ψni(λ) (36)

where ψ(λ) :=
∫∞
0 (1 − e−λx)ρ(x)dx is the Laplace exponent as in (17), and

ψm(λ) :=
dm

dλm
ψ(λ) = (−1)m−1

∫ ∞

0
xme−λxρ(x)dx (m = 1, 2, . . .). (37)

Proof. Formula (34) yields (35) by integration, and (36) follows after applying the
formula b−n = Γ(n)−1

∫∞
0 λn−1e−λbdλ to b = v +

∑k
i=1 xi. 2

These integrated forms (35) and (36) also hold more generally, with f(v)dv re-
placed by P(T ∈ dv), and ρ(x)dx replaced by the corresponding Lévy measure on
(0,∞), assuming only that the Lévy measure has infinite total mass.

Provided E(eεT ) < ∞ for some ε > 0, the Laplace exponent ψ can be expanded
in a neighbourood of 0 as

ψ(λ) = −
∞∑
m=1

κm
m!

(−λ)m

where the cumulants κm of T are the moments of the Lévy measure

κm = (−1)m−1ψm(0) =
∫ ∞

0
xmρ(x)dx.

Then for each partition {A1, · · · , Ak} of Nn such that #(Ai) = ni for 1 ≤ i ≤ k,
Lemma 5 yields the formula

P(Πn = {A1, · · · , Ak}, T ∈ dt) = t−nP(T + Σk
i=1Ji,ni ∈ dt)

k∏
i=1

κni (38)

where Ji,ni denotes a random length distributed according to the Lévy density tilted
by xni :

P(Ji,ni ∈ dx) = κ−1
ni
ρ(x)xni dx

and T and the Ji,ni for 1 ≤ i ≤ k are assumed to be independent. If fn1,...,nk
(t)

denotes the probability density of T + Σk
i=1Ji,ni , then formula (27) for the EPPF of

a pk(ρ | t)-partition can be rewritten

p(n1, · · · , nk | t) =
fn1,...,nk

(t)
tnf(t)

k∏
i=1

κni (39)



Poisson-Kingman partitions 11

and formula (35) for the EPPF of a pk(ρ)-partition becomes

p(n1, · · · , nk) = E

[
(T + Σk

i=1Ji,ni)
−n
] k∏
i=1

κni . (40)

See also James [23] for closely related formulas, with applications to Bayesian non-
parametric inference.

4 Operations

Later discussion of specific examples of Poisson-Kingman partitions will be guided
by a number of basic operations on Lévy densities ρ and their associated families of
partitions.

4.1 Scaling

By an obvious scaling argument, the pk(ρ) and pk(ρ′) distributions are identical
whenever ρ′(x) = bρ(bx) is a rescaling of ρ for some b > 0. The converse is less
obvious, but true [49, Lemma 7.5].

4.2 Exponential tilting

It is elementary that if ρ is a Lévy density, corresponding to a density f for T , and b
is a real number such that ψ(b) defined by (17) is finite, then

ρ(b)(x) = ρ(x)e−bx (41)

is also a Lévy density, and the corresponding density of T is

f (b)(t) = f(t) eψ(b)−bt (42)

It is also well known [34, Proposition 2.1.3] that if P
(b) denotes the probability distri-

bution governing the Poisson set up with Lévy density ρ(b) then (42) extends to the
absolute continuity relation

dP(b)

dP(0)
= eψ(b)−bT . (43)

This relation is equivalent to a combination of (42) and the following identity, which
can also be verified using the construction of Lemma 2:

pk(ρ(b) | t) = pk(ρ | t) for all t > 0. (44)

Consequently
pk(ρ(b), γ) = pk(ρ, γ) (45)
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for every γ. In particular, the distribution on P↓ derived from the unconditioned
Poisson model with Lévy density ρ(b) is

pk(ρ(b)) = pk(ρ, γ(b)) (46)

where γ(b) is the P
(b) distribution of T , that is γ(b)(dt) = f (b)(t)dt for f (b) as in

(42). It can also be shown that if ρ′ and ρ are two regular Lévy densities such that
pk(ρ′) = pk(ρ, γ) for some γ, then ρ′ = ρ(b) and γ = γ(b) for some b.

4.3 Deletion of Classes.

The following proposition, which generalizes a result of [41], provides motivation for
study of pk(ρ, γ)-partitions for other distributions γ besides γ(dt) = f(t)dt corre-
sponding to the unconditioned Poisson set up, and γ = δt corresponding to condi-
tioning on T = t. Given a random partition Π of N with infinitely many classes, for
each k = 0, 1, · · · let Πk be the partition of N derived from Π by deletion of the first
k classes, an operation made precise as follows. First let Π′

k be the restriction of Π
to Hk := N −G1 − · · · − Gk where G1, · · ·Gk are the first k classes of Π in order of
least elements, then derive Πk on N from Π′

k on Hk by renumbering the points of Hk

in increasing order.

Proposition 7 Let Π be a pk(ρ, γ)-partition of N, and let Πk be derived from Π be
deletion of its first k classes. Then Πk is a pk(ρ, γk)-partition of N, where γk = γQk

for Q the Markov transition operator on (0,∞)

Q(t, dv) = ρ(t− v)(t− v)t−1f(v)1(0 < v < t)dv.

In particular, if Π is a pk(ρ) partition of N, then Πk is pk(ρ, γk)-partition of N,
where γk is the distribution of Tk, the total sum of Poisson lengths T minus the sum
of the first k lengths discovered by a process of length-biased sampling, as in (22).

Proof. According to a result of [41] which is implicit in Lemma 2, the sequence (Tk)
is Markov with stationary transition probabilities given by Q. The conclusion follows
from this observation, the construction of pk(ρ; γ), and the general construction of
an exchangeable partition of N conditionally given its class frequencies [43].

5 Examples

5.1 The one-parameter Poisson-Dirichlet distribution.

Following Kingman [29], for the particular choice

ρ(x) = θ x−1 e−bx (47)
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where θ > 0 and b > 0, corresponding to T with the gamma(θ, b) density

f(t) =
bθ

Γ(θ)
tθ−1e−bt, (48)

the pk(ρ) distribution is the Poisson-Dirichlet distribution with parameter θ, abbre-
viated pd(θ). Note the lack of dependence on the inverse scale parameter b. The well
known fact the structural distribution of pd(θ) is beta(1, θ) follows immediately from
(20). It follows easily from any one of the previous general formulas (27), (35), (36)
or (40), that the EPPF of a pd(θ)-partition Π = (Πn) is given by the formula

pθ(n1, · · · , nk) =
θkΓ(θ)

Γ(θ + n)

k∏
i=1

(ni − 1)! (n =
k∑
i=1

ni). (49)

This is a known equivalent [32, 43] of the Ewens sampling formula [18, 17] for the
joint distribution of the number of blocks of Πn of various sizes. It is also known
[41, 49] that the following conditions on ρ are equivalent:

(i) ρ is of the form (47), for some b > 0, θ > 0;
(ii) pk(ρ | t) =pk(ρ) for all t > 0;
(iii) pk(ρ) =pd(θ) for some θ > 0.
(iv) a pk(ρ)-partition has EPPF of the form (49) for some θ > 0.

See also [4, 33] for further properties and applications of pd(θ).

5.2 Generalized gamma

After the one-parameter Poisson-Dirichlet family, the next simplest Lévy density ρ
to consider is

ρα,c,b(x) = c x−α−1 e−bx (50)

for positive constants c and b, and α which is restricted to 0 ≤ α < 1 by the con-
straints on a Lévy density and (15). The corresponding distributions of T are known
as generalized gamma distributions [8]. Note that the usual family of gamma distri-
butions is recovered for α = 0, and that a stable distribution with index α is obtained
for b = 0 and 0 < α < 1. One can also take α = −κ for arbitrary κ > 0, except that
in this model the Lévy measure has a total mass ψ(∞) <∞ so

P(T = 0) = exp(−ψ(∞)) > 0,

contrary to the present assumption that the distribution of T has a density. Such
models can be analyzed by first conditioning on the Poisson total number of lengths,
which reduces the model to one with say m i.i.d. lengths with probability density
proportional to ρ. In the case (50) for α = −κ, that is to say that the lengths are
i.i.d. gamma(κ, b) variables. This model for random partitions has been extensively
studied. It is well known that features of the pd(θ) model can be derived by taking
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limits of this more elementary model with m i.i.d. gamma(κ, b) lengths as κ→ 0 and
m→ ∞ with κm→ θ. See [45] for a review of this circle of ideas and its applications
to species sampling models.

The pk(ρα,c,b) model for a random partition defined by ρα,c,b in (50) for 0 ≤
α < 1 was proposed by McCloskey [37], who first exploited the key idea of size-
biased sampling in the setting of species sampling problems. Due to the remarks
in Section 4 about scaling and exponential tilting, for 0 < α < 1 the family of
pk(ρα,c,b, γ) distributions, as γ varies over all distributions on (0,∞), depends only
on α and not on c or b. So in studying this family of distributions on P↓ and their
associated exchangeable partitions of N, the choice of c and b is entirely a matter of
convenience. This study is taken up in the next section, with the choice of b = 0 and
c = α/Γ(1 − α) which leads to the simplest form of most results. See also [8, 24, 23]
regarding generalized gamma random measures and further developments.

5.3 The stable (α) model

Suppose now that Pα governs the Poisson model for T with stable (α) distribution
with Laplace transform

Eα[exp(−λT )] =
∫ ∞

0
e−λxfα(x) dx = exp(−λα) (51)

for some 0 < α < 1, where fα(x) is the stable(α) density of T , that is [52]

fα(t) =
−1
π

∞∑
k=0

(−1)k

k!
sin(παk)

Γ(αk + 1)
tαk+1

. (52)

For α = 1
2 this reduces to the following formula of Doetsch [14, pp. 401-402] and

Lévy [36]:

P 1
2
(2T ∈ dx)/dx = 1

2f 1
2
(1
2x) =

1√
2π
x−

3
2 e−

1
2x . (53)

Special results for α = 1
2 , discussed in Section 8, involve cancellations due to simplifi-

cation of fα(pt)/fα(t) for 0 < p < 1, which does not appear to be possible for general
α. The Lévy density corresponding to the Laplace transform (51) is well known to
be

ρα(x) =
αx−α−1

Γ(1 − α)
(x > 0). (54)

Write Pα( · | t) for Pα( · |T = t). So the Pα distribution of (Pi) on P↓ is pk(ρα), and
the Pα( · | t) distribution of (Pi) is pk(ρα | t). Note from (51) that if Tc is the total
length in the model governed by cρα for a constant c > 0, then Tc has the same
distribution as c1/αT1 for T1 = T as in (51). Together with similar scaling properties
of the lengths Ji, this implies that for all 0 < α < 1 and t > 0 there is the formula

pk(cρα | t) = pk(ρα | c−1/α t). (55)
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Formulas for the pk(ρα | t) distribution are described in Section 5.4. These formulas
can be understood as disintegrations of simpler formulas obtained in [43], and recalled
in Section 6, for a particular subfamily of the class of pk(ρα, γ) distributions.

One reason for special interest in the Kingman family associated with the stable
Lévy densities ρα is the following result which will be proved elsewhere.

Theorem 8 The EPPF of an exchangeable random partition Π of N with an infinite
number of classes with proper frequencies has an EPPF of the Gibbs form

p(n1, · · · , nk) = cn,k

k∏
i=1

wni where n =
∑k

i=1 ni (56)

for some positive weights w1 = 1, w2, w3, . . . and some cn,k if and only if

wm =
m−1∏
j=1

(j − α) (m = 1, 2, . . .)

for some 0 ≤ α < 1. If α = 0 then the distribution of Π corresponds to
∫∞
0 pd(θ)γ(dθ)

for some probability distribution γ on (0,∞), whereas if 0 < α < 1 then the distribu-
tion of Π corresponds to pk(ρα, γ) :=

∫∞
0 pk(ρα | t)γ(dt) for some γ.

See also Kerov [28] and Zabell [57] for related characterizations of the two-parameter
family discussed in Section 6. This family is characterized by an EPPF of the form
(56) with cn,k a product of a function of n and a function of k.

5.4 Conditioning on T

Assume throughout this section that 0 < α < 1. Immediately from (20) and (54), in
the pk(ρα | t) model, the distribution of P̃1 has density

f̃α(p | t) =
α(pt)−α

Γ(1 − α)
fα((1 − p)t)

fα(t)
(0 < p < 1). (57)

Let h be a non-negative measurable function with Eαh(T ) =
∫∞
0 h(t)fα(t)dt = 1,

and let h · fα denote the distribution on (0,∞) with density h(t)fα(t). Then by
integration from (57), under the probability Pα,h governing the pk(ρα, h · fα) model,
the structural distribution of P̃1 has density

Pα,h(P̃1 ∈ dp)/dp =
α

Γ(1 − α)
p−α(1 − p)α−1ηα,h(1 − p) (0 < p < 1) (58)

where

ηα,h(u) :=
∫ ∞

0
v−αh(v/u)fα(v)dv = Eα[T−αh(T/u)]. (59)
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For instance, it is known [41] that

Cα,θ := Eα(T−θ) =
Γ( θα + 1)
Γ(θ + 1)

(θ > −α). (60)

So for θ > −α, (58) and (59) imply:

if h(t) = C−1
α,θt

−θ then P̃1 has beta(1 − α, α+ θ) distribution. (61)

This example is discussed further in the next section. As another example, if h(t) =
exp(bα−bt) for some b > 0, then according to (46) the model pk(ρα, h ·fα) is identical
to the unconditioned generalized gamma model pk(ρα,b) with

ρα,b(x) := ρα(x)e−bx =
α

Γ(1 − α)
e−bx

xα+1
(x > 0).

So the structural density of the pk(ρα,b) model is given by formula (58) with

ηα,h(u) = exp(bα)Eα[T−α exp(−bT/u)]. (62)

For α = 1
2 the expectation in (62) can be evaluated by using (53) to write for ξ > 0

E 1
2
[T− 1

2 exp(−ξT )] =
1√
π

∫ ∞

0

dx

x2
e−(ξx+1/x)/2 = 2

√
ξ

π
K1(

√
ξ) (63)

where K1 is the usual modified Bessel function. Thus for b > 0 the pk(ρ 1
2
,b) model

associated with the inverse Gaussian distribution [54] has structural distribution with
density f̃ 1

2
,b given by the formula

f̃ 1
2
,b(p) =

√
be

√
b

π
√
p(1 − p)

K1

(√
b

(1 − p)

)
(0 < p < 1). (64)

Proposition 9 For 0 < α < 1, q > 0 let µα(q | t) denote the qth moment of the
structural density (57) of the pk(ρα | t) distribution:

µα(q | t) :=
∫ 1

0
pqf̃α(p | t) dp = Eα(P̃ q1 | t). (65)

Then for each t > 0 the EPPF of a pk(ρα | t) partition of N is

pα(n1, · · · , nk | t) =
Γ(1 − α)
Γ(n− kα)

( α
tα

)k−1
µα(n− 1 − kα+ α | t)

k∏
i=1

[1 − α]ni−1 (66)

where

[1 − α]ni−1 :=
ni−1∏
j=1

(j − α) =
Γ(ni − α)
Γ(1 − α)

.
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Alternatively,

pα(n1, · · · , nk | t) =
αk

tn
gα(n− kα | t)

k∏
i=1

[1 − α]ni−1 (67)

where gα(q | t) := (Γ(q)fα(t))−1
∫ t
0 fα(t− v)vq−1dv.

Proof. This is read from Theorem 4, since the integral (28) reduces to a standard
Dirichlet integral. 2

As checks on (66), the symmetry in (n1, . . . , nk) is still evident, and pα(n | t) =
µα(n − 1 | t) as required by (8). However, the addition rules (5) for this EPPF are
not at all obvious. Rather, they amount to the following identity involving moments
of the structural distribution:

Corollary 10 The moments µα(q|t) of the structural distribution on (0, 1) associated
with the pk(ρα | t) distribution on P↓ satisfy the following identity: for all 1 ≤ k ≤ n
and t > 0

µα(n− 1− kα+ α | t) = µα(n− kα+ α | t) +
Γ(n− kα)α t−α

Γ(n+ 1 − kα− α)
µα(n− kα | t). (68)

To illustrate, according to the simplest addition rule (6),

1 = pα(2 | t) + pα(1, 1 | t),
which amounts to (68) for n = k = 1, that is

1 = µα(1 | t) +
Γ(1 − α)
Γ(2 − 2α)

α

tα
µα(1 − α | t). (69)

The addition rule underlying (68) can be checked for general α by an argument
described in Section 6. In the case α = 1

2 , the later formulae (99) and (93) show that
(68) reduces to a known recursion (106) for the Hermite function.

Repeated application of (68) shows that for each 1 ≤ k ≤ n the moment on the
left side of (66) can be expressed as a linear combination of integer moments µα(j | t)
for j = 0, · · · , n − 1, with coefficients depending on n, k, α, t which could easily be
computed recursively. But except in the special case α = 1

2 discussed in Section 8,
even the integer moments seem difficult to evaluate.

6 The two-parameter Poisson-Dirichlet family

For 0 < α < 1, θ > −α, let γα,θ denote the distribution on (0,∞) with density C−1
α,θt

−θ

at t relative to the stable(α) distribution of T defined by (51), that is

γα,θ(dt) = C−1
α,θ t

−θ fα(t) dt (70)
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where Cα,θ := Eα(T−θ) = Γ( θα + 1)/Γ(θ + 1) as in (60) and (61).

Definition 11 [41, 50] The Poisson-Dirichlet distribution with two parameters (α, θ),
denoted pd(α, θ), is the distribution on P↓ defined for 0 ≤ α < 1, θ > −α by

pd(α, θ) =
{

pd(θ) for α = 0, θ > 0
pk(ρα, γα,θ) for 0 < α < 1, θ > −α (71)

This family of distributions on P↓ has some remarkable properties and applications.
As shown in [41], it follows from Lemma 2 that if (Pi) has pd(α, θ)distribution then
the corresponding size-biased sequence (P̃j) can be represented as

P̃j = Wj

j−1∏
i=1

(1 −Wi) (72)

where the Wj are independent with beta(1 − α, θ + jα) distributions. (73)

So the pd(α, θ) distribution can just as well be defined, without reference to the
Poisson-Kingman construction, as the distribution of (Pi) defined by ranking (P̃j)
constructed by (72) from independent Wj as in (72). The sequence (P̃j) defined
by (72) and (73) for 0 ≤ α < 1 and θ > 0 was considered by Engen [15] as a
model for species abundances. See [50] for further study of the pd(α, θ) family. It
was shown in [44] that if (Pi) is a random element of P↓ with Pi > 0 a.s. for all
i and the corresponding size-biased sequence (P̃j) admits the representation (72)
with independent residual fractions Wj , then the Wj must have beta distributions
as described in (73), and hence the distribution of (Pi) must be pd(α, θ) for some
0 ≤ α < 1 and θ > −α. Reformulated in terms of random partitions, and combined
with Proposition 7, this yields the following:

Proposition 12 Let Π be the exchangable random partition of N derived by sampling
from a random element (Pi) of P↓ with Pi > 0 for all i. Let Πk be derived from Π
by deletion of the first k classes of Π, with classes in order of appearance, as defined
above Proposition 7. Then the following are equivalent
(i) for each k, Πk is independent of the frequencies (P̃1, · · · , P̃k) of the first k classes
of Π;
(ii) Π is a pd(α, θ)-partition for some 0 ≤ α < 1 and θ > −α, in which case Πk is a
pd(α, θ + kα)-partition.

As shown in [43], the independence property (72) of the residual fractions Wj of
a pd(α, θ)-partition allows the corresponding EPPF pα,θ(n1, . . . , nk) to be evaluated
using (3). The result is as follows. For all 0 ≤ α < 1 and θ > −α,

pα,θ(n1, . . . , nk) =
[θ + α]k−1;α

[θ + 1]n−1

k∏
i=1

[1 − α]ni−1 (74)
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where n =
∑k

i=1 ni and for real x and a and non-negative integer m

[x]m;a =
{

1 for m = 0
x(x+ a) · · · (x+ (m− 1)a) for m = 1, 2, . . .

and [x]m = [x]m;1. The previous formula (49) is the special case of (74) for α = 0.
Both this case of (74), and the case when 0 < α < 1 and θ = 0, follow easily from (36).
Formula (74) shows that a pd(α, θ) partition Π of N to be constructed sequentially
as follows [43, 45]. Starting from Π1 = {{1}}, given that Πn has been constructed as
a partition of Nn with say k blocks of sizes (n1, · · · , nk), define Πn+1 by assigning the
new element n+ 1 to the jth class whose current size is nj with probability

P(j ↑ |n1, · · · , nk) =
nj − α

n+ θ
(75)

for 1 ≤ j ≤ k, and assigning n+ 1 to a new class numbered k+ 1 with the remaining
probability

P(k + 1 ↑ |n1, · · · , nk) =
kα

n+ θ
(76)

For α = 0 and θ > 0 this is generalization of Polya’s urn scheme developed by
Blackwell-McQueen [7] and Hoppe [21]. See [43, 45, 20] for consideration of more
general prediction rules for exchangeable random partitions.

The following calculation shows how to derive either of the two EPPF’s (74) and
(66) from the other. The argument also shows that the function pα(n1, · · · , nk | t)
defined by (66) satisfies the addition rules of an EPPF as a consequence of the cor-
responding addition rules for pα,θ(n1, . . . , nk), which are much more obvious.

The kernel γα,θ(dt) introduced in (70), is now viewed for a fixed α as a family of
probability distributions on (0,∞) indexed by θ ∈ (−α,∞), that is a Markov kernel
γα from (−α,∞) to (0,∞). For a non-negative measurable function h = h(t) with
domain (0,∞), define a function γαh = (γαh)(θ) with domain (−α,∞) by the usual
action of this Markov kernel as an integral operator:

(γαh)(θ) =
∫ ∞

0
γα,θ(dt)h(t) (77)

Then say (γαh)(θ) is the γα-transform of h(t). Let Eα,θ denote expectation with
respect to the probability distribution

Pα,θ(·) :=
∫ ∞

0
Pα(· | t)γα,θ(dt).

By definition, for each non-negative random variable X governed by the family of
conditional laws (Pα(· | t), t > 0),

the γα-transform of Eα(X | t) is Eα,θ(X). (78)
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In particular, for each (n1, . . . , nk),

the γα-transform of pα(n1, · · · , nk | t) is pα,θ(n1, . . . , nk). (79)

An obvious change of variable allows uniqueness and inversion results for the γα-
transform to be deduced from standard results for Mellin or bilateral exponential
transforms. So the problem is just to show that the γα-transform of the right side of
(66) is the right side of (74). To see this, observe first that for each q > 0, because
µα(q|t) := Eα(P̃ q1 | t),

the γα-transform of µα(q|t) is Eα,θ(P̃
q
1 ) =

Γ(1 − α+ q)Γ(1 + θ)
Γ(1 + θ + q)Γ(1 − α)

(80)

where Eα,θ(P̃
q
1 ) is evaluated using (61). To deal with the factor of t−(k−1)α in (66),

note from (60) that for each β > 0, and any h(t),

the γα-transform of t−βh(t) is
Γ( θα + β

α + 1)Γ(θ + 1)
Γ( θα + 1)Γ(θ + β + 1)

(γαh)(θ + β). (81)

By (80) for q = n− 1− kα+α and (81) for β = αk−α and h(t) = µα(q | t) the right
side of (66) has for its γα-transform the following function of θ:

αk−1Γ(1 − α)
Γ(n− kα)

Γ( θα + k)Γ(θ + 1)
Γ( θα + 1)Γ(θ + kα− α+ 1)

Γ(n− kα)Γ(1 + θ + kα− α)
Γ(n+ θ)Γ(1 − α)

k∏
i=1

[1−α]ni−1

which reduces by cancellation to the right side of (74).

6.1 The α-diversity

Let Π be an exchangeable random partition of N with ranked frequencies (Pi). Let
Kn denote the number of classes of Πn, the partition of Nn induced by Π. Say that
Π has α-diversity S and write α-diversity(Π) = S iff there exists a random variable
S with 0 < S <∞ a.s. and

Kn ∼ Snα as n→ ∞ (82)

where for two sequences of random variables An and Bn, the notation An ∼ Bn will
now be used to indicate that An/Bn → 1 almost surely as n → ∞. According to a
result of Karlin [27], applied conditionally given (Pi), if these ranked frequencies are
such that

Pi ∼
(

S

Γ(1 − α)i

) 1
α

(83)

for some 0 < S <∞ then Π has α-diversity S.
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Proposition 13 Suppose Π is a pk(ρα, γ) partition of N for some 0 < α < 1 and
some probability distribution γ on (0,∞). Then
(i) α-diversity(Π) = S for a random variable S with S = T−α where T = S−1/α

has distribution γ. In particular, S = t−α is constant if Π is a pk(ρα | t) partition.
(ii) A regular conditional distribution for Π given S = s is defined by the EPPF
pα(n1, · · · , nk|s−1/α) obtained by setting t = s−1/α in (66).
(iii) In particular, both (i) and (ii) hold if Π is a pd(α, θ) partition for some θ > −α.
Then the α-diversity S of Π is S = T−α for T with the distribution γα,θ defined by
(70).

Proof. Suppose that (Pi) has pk(ρα, γ) distribution. The fact that (83) holds for
S = T−α in the unconditioned case where T has stable(α) distribution is due to
Kingman [29]. Kingman’s argument, using the law of large numbers for small jumps
of the Poisson process, applies just as well for T conditioned to be a constant t. So
(83) follows in general by mixing over t. 2

See [50] and papers cited there for further information about the Mittag-Leffler
distribution of S = T−α derived from a pd(α, 0) partition. The corresponding distri-
bution of S for pd(α, θ) has density at s proportional to sθ/α relative to this Mittag-
Leffler distribution.

As shown in [50, Proposition 10], if Π is a partition of N whose ranked frequencies
(Pi) have the pd(α, 0) distribution, then S = α-diversity(Π) can be recovered from
Π or (Pi) via either (81) or (83). Then T = S−1/α has stable(α) distribution as in
(51), and (TPi) is then sequence of points of a Poisson process with Lévy density
ρα. See also [47, 48] for more about the distribution of Kn derived from a pd(α, θ)
partition.

7 Application to lengths of excursions.

This section reviews some results of [41, 49, 46, 50]. Let P
0
α govern a strong Markov

process B starting at a recurrent point 0 of its statespace, such that the inverse
(τ`, ` ≥ 0) of the local time process (Lt, t ≥ 0) of B at zero is a stable subordinator
of index α for some 0 < α < 1. That is to say, E

0
α exp(−λτ1) = exp(−cλα) for some

constant c > 0. So the P
0
α distribution of τ1 is the Pα distribution of c1/αT for T as in

(51). For example, B could be a one-dimensional Brownian motion (α = 1
2) or Bessel

process of dimension 2 − 2α. In the Brownian case, take c =
√

2 to obtain the usual
normalization of local time as occupation density relative to Lebesgue measure, which
makes L1

d= |B1|. Let M = {t : 0 ≤ t ≤ 1, Bt = 0} denote the random closed subset
of [0, 1] defined by the zero set of B. Component intervals of the complement of M
relative to [0, 1] are called excursion intervals. For 0 ≤ t ≤ 1 let Gt = sup{M ∩ [0, t]},
the last zero of B before time t. Note that with probability one, G1 < 1, so one of
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the excursion intervals is the meander interval (G1, 1], whose length 1 − G1 is one
of the lengths appearing in the list (Pi) say of ranked lengths of excursion intervals.
According to the main result of [49],

the sequence (Pi) of ranked lengths has pd(α, 0) distribution (84)

Let U1, U2, · · · be a sequence of i.i.d. uniform [0, 1] random variables, independent
of B, called the sequence of sample points. Let Π = (Πn) be the random partition
of N generated by the random equivalence relation i ∼ j iff GUi = GUj . That
is to say i ∼ j iff Ui and Uj fall in the same excursion interval. So for example
Π5 = {{1, 2, 5}, {3}, {4}} iff U1, U2 and U5 fall in one excursion interval, U3 in another,
and U4 in a third. By translation of results of [49, 50] into present notation

Π is a pd(α, 0) partition and α-diversity(Π) = cL1 (85)

where L1 is the local time of B at zero up to time 1. By construction, the sequence
(P̃j) of class frequencies of Π is the sequence of lengths of excursion intervals in the
order they are discovered by the sample points, and (Pi) is recovered from (P̃j) by
ranking. To illustrate formula (74), U1 and U2 fall in different excursion intervals
with probability pα,0(1, 1) = α, and in the same one with probability pα,0(2) = 1−α.
Similarly, given that the local time is L1 = `, two sample points fall in the same
excursion interval with probability pα(2 | (c`)−1/α), and in different excursion intervals
with probability pα(1, 1 | (c`)−1/α), for pα(· · · | t) defined by (66). See Section 8 for
evaluation of these functions in the case α = 1

2 corresponding to a Brownian motion
B.

Let Rn = 1 − P̃1 − · · · − P̃n, which is the total length of excursions which remain
undiscovered after the sampling process has found n distinct excursion intervals. The
result of Proposition 12 in this setting, due to [41], is that for each n = 0, 1, 2, · · · a
pd(α, nα) distributed sequence is obtained by ranking the sequence

1
Rn

(P̃n+1, P̃n+2, · · ·) (86)

of relative excursion lengths which remain after discovery of the first n intervals. For
n = 1 the same pd(α, α) distribution is obtained more simply by deleting the meander
of length 1−G1, renormalizing and reranking. This is due to the result of [49] that the
length 1−G1 of the meander interval is a size-biased choice from (Pi). As the excursion
lengths in this case are just the excursion lengths of a standard bridge, equivalent to
conditioning on B1 = 0, the ranked excursion lengths of such a bridge have pd(α, α)
distribution. As first shown in [49], this implies that both the unconditioned process
B and the bridge B given B1 = 0 share a common conditional distribution for the
ranked excursion lengths (Pi) given the local time L1. In present notation, this
conditional distribution of (Pi) given L1 = `, with or without conditioning on B1 = 0,
is pk(ρα|(c`)−1/α).
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One final identity is worth noting. As a consequence of the above discussion, for
the process B, the conditional distribution of the meander length 1−G1 given L1 = `
is given by

P
0
α(1 −G1 ∈ dp|L1 = `) = P

0
α(P̃1 ∈ dp|L1 = `) = f̃α(p|(c`)−1/α)dp (87)

where f̃α(p|t) as in (57) is the structural density of the Poisson model for stable (α)
distributed T conditioned on T = t. So the moment function µα(q | t) appearing in
the EPPF (66) of this model can be interpreted in the present setting as

µα(q | t) = E
0
α[(1 −G1)q |L1 = c−1t−α]. (88)

8 The Brownian excursion partition

In this section let Π be the Brownian excursion partition, that is the random par-
tition of N generated by uniform random sampling of points from the interval [0, 1]
partitioned by the excursion intervals of a standard Brownian motion B. According
to the result of [49] recalled in (84),

Π is a pk(ρ 1
2
) = pd(1

2 , 0) partition. (89)

With conditioning on B1 = 0, the process B becomes a standard Brownian bridge.
So Π given B1 = 0 is a pd(1

2 ,
1
2) partition, as discussed in the previous subsection.

Features of the distribution of Π and the conditional distribution of Π given B1 = 0
were described in [46]. This section presents refinements of these results obtained by
conditioning on L1, the local time of B at 0 up to time 1, with the usual normal-
ization of Brownian local time as occupation density relative to Lebesgue measure.
Unconditionally, L1 has the same distribution as |B1|, that is

P(L1 ∈ dλ) = P(|B1| ∈ dλ) = 2ϕ(λ)dλ (λ > 0)

where ϕ(z) := (1/
√

2π) exp(−1
2z

2) is the standard Gaussian density of B1. Whereas
the conditional distribution of L1 given B1 = 0 is the Rayleigh distribution

P(L1 ∈ dλ |B1 = 0) =
√

2πλϕ(λ)dλ (λ > 0).

Note from (85) that the 1
2 -diversity of Π is the random variable

√
2L1. So the number

Kn of blocks of Π grows almost surely like
√

2nL1 as n → ∞. For λ ≥ 0 let Π(λ)
denote a random partition with

Π(λ) d= (Π |L1 = λ) d= (Π |L1 = λ,B1 = 0) (90)

where d= denotes equality in distribution. So according to the previous discussion,

Π(λ) is a pk(ρ 1
2
| 1

2λ
−2) partition (91)
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whose 1
2 -diversity is

√
2λ. Let pd(1

2 ||λ) denote the probability distribution on P↓

associated with Π(λ), that is the common distribution of ranked lengths of excursions
of a Brownian motion or Brownian bridge over [0, 1] given L1 = λ. Then by Definition
11 and (53), for θ > −1

2 there is the identity of probability laws on P↓

pd(1
2 , θ) =

2
E[|B1|2θ]

∫ ∞

0
pd(1

2 ||λ)λ2θϕ(λ)dλ (92)

where, according to the gamma(1
2) distribution of 1

2B
2
1 and the duplication formula

for the gamma function,

E(|B1|2θ) = 2θ
Γ(θ + 1

2)
Γ(1

2)
= 2−θ

Γ(2θ + 1)
Γ(θ + 1)

(θ > −1
2). (93)

It was shown in [3] (see also [5, 48]) that it is possible to construct the Brownian
excursion partitions as a partition valued fragmentation process (Π(λ), λ ≥ 0), mean-
ing that Π(λ) is constructed for each λ on the same probability space, in such a way
that Π(λ) is a coarser partition than Π(µ) whenever λ < µ. The question of whether
a similar construction is possible for index α instead of index 1

2 remains open. A
natural guess is that such a construction might be made with one of the self-similar
fragmentation processes of Bertoin [6], but Miermont and Schweinsberg [38] have
recently shown that a construction of this form is possible only for α = 1

2 .

8.1 Length biased sampling

Let P̃j(λ) denote the frequency of the jth class of Π(λ). So (P̃j(λ), j = 1, 2 . . .) is
distributed like the lengths of excursions of B over [0, 1] given L1 = λ, as discovered by
a process of length-biased sampling. In view of Lévy’s formula (53) for the stable(1

2)
density, the formula (57) reduces for α = 1

2 to the following more explicit formula for
the structural density of Π(λ):

P(P̃1(λ) ∈ dp) =
λ√
2π
p−

1
2 (1 − p)−

3
2 exp

(
−λ

2

2
p

(1 − p)

)
dp (0 < p < 1) (94)

or equivalently

P(P̃1 ≤ y) = 2Φ
(
λ

√
y

1 − y

)
− 1 (0 ≤ y < 1) (95)

where Φ(z) := P(B1 ≤ z) is the standard Gaussian distribution function. Put another
way, there is the equality in distribution

P̃1(λ) d=
B2

1

λ2 +B2
1

. (96)
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Furthermore, by a similar analysis using Lemma 1, there is the following result which
shows how to construct the whole sequence (P̃j(λ), j ≥ 1) for any λ > 0 from a single
sequence of independent standard Gaussian variables. Then Π(λ) can be constructed
by sampling from (P̃j(λ), j ≥ 1) as discussed in Section 2.

Proposition 14 [3, Corollary 5] Fix λ > 0. A sequence (P̃j(λ), j ≥ 1) is distributed
like a length-biased random permutation of the lengths of excursions of a Brownian
motion or standard Brownian bridge over [0, 1] conditioned on L1 = λ if and only if

P̃j(λ) =
λ2

λ2 + Sj−1
− λ2

λ2 + Sj
(97)

where Sj :=
∑j

i=1Xi for Xi which are independent and identically distributed like B2
1

for a standard Gaussian variable B1.

Let µ(q ||λ) denote the qth moment of the distribution of P̃1(λ). So in the notation
of (65) and (68)

µ(q ||λ) := E[(P̃1(λ))q] = µ 1
2
(q | 1

2λ
−2). (98)

Lemma 15 For each λ > 0

µ(q ||λ) = E

[(
B2

1

λ2 +B2
1

)q]
= E(|B1|2q)h−2q(λ) (q > −1

2) (99)

where E(|B1|2q) is given by (93) and h−2q is the Hermite function of index −2q, that
is h0(λ) = 1 and for q /∈ {0, 1, 2 . . .}

h−2q(λ) :=
1

2Γ(2q)

∞∑
j=0

Γ(q + j/2)2q+j/2
(−λ)j

j!
. (100)

Also,
µ(q ||λ) = E[exp(−λ√2Γq] (q > 0) (101)

where Γq denotes a Gamma random variable with parameter q:

P(Γq ∈ dt) = Γ(q)−1tq−1e−tdt (t > 0).

Proof. The first equality in (99) is read from (96). The second equality in (99) is
the integral representation of the Hermite function provided by Lebedev [35, Problem
10.8.1], and (100) is read from [35, (10.4.3)]. According to another well known integral
representation of the Hermite function [35, (10.5.2)], [16, 8.3 (3)], for q > 0

h−2q(x) =
1

Γ(2q)

∫ ∞

0
t2q−1e−

1
2 t

2−xtdt =
2q−1

Γ(2q)

∫ ∞

0
vq−1e−v−x

√
2vdv. (102)

Formula (101) follows easily from this and (99). 2
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The identity

E

[(
B2

1

λ2 +B2
1

)q]
= E[exp(−λ√2Γq] (q > 0), (103)

which is implied by the previous proposition, can also be checked by the following
argument suggested by Marc Yor. Let X be a positive random variable independent
of Γq, and let ε with ε d= Γ1 be a standard exponential variable independent of both
X and Γq. Then by elementary conditioning arguments, for θ ≥ 0

E

[(
X

θ +X

)q]
= E

[
e−θΓq/X

]
= P(εX/Γq > θ). (104)

Take X = B2
1 and θ = λ2, and use the identity εB2

1
d= ε2/2, which is a well known

probabilistic expression of the gamma duplication formula, to deduce (103) from
(104).

The following display identifies hν(z) in the notation of various authors:

hν(z) = 2−ν/2Hν(z/
√

2) = 2ν/2Ψ(−ν/2, 1/2, z2/2) (Lebedev[35])
= 2ν/2U(−ν/2, 1/2, z2/2) (Abramowitz and Stegun) [1]

= e
1
4
z2U(−ν − 1

2 , z) (Miller[39])

= e
1
4
z2Dν(z) (Erdelyi [16], Toscano [56])

The functions U(a, z) and Dν(z) are known as parabolic cylinder functions, Weber
functions or Whittaker functions. The function U(a, b, z), which is available in Math-
ematica as HypergeometricU[a,b,z], is a confluent hypergeometric function of the
second kind. Note that hn(z) defined for n = 0, 1, 2, . . . by continuous extension of
(100) is the sequence of Hermite polynomials orthogonal with respect to the standard
Gaussian density ϕ(x). Also, the function h−1(x) for real x is identified as Mill’s
ratio [26, 33.7]:

h−1(x) =
P(B1 > x)
ϕ(x)

= e
1
2
x2

∫ ∞

x
e−

1
2
z2dz. (105)

For all complex ν and z, the Hermite function satisfies the recursion

hν+1(z) = zhν(z) − νhν−1(z), (106)

which combined with (105) and h0(x) = 1 yields

h−2(x) = 1 − xh−1(x) (107)

2!h−3(x) = −x+ (1 + x2)h−1(x) (108)

3!h−4(x) = 2 + x2 − (3x+ x3)h−1(x) (109)

and so on. See [51] for further interpretations of the Hermite function in terms of
Brownian motion and related stochastic processes.
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8.2 Partition probabilities

Recall the notation

[12 ]n :=
n∏
j=1

(j − 1
2) =

Γ(1
2 + n)
Γ(1

2)
=

(2n)!
22nn!

.

Corollary 16 The distribution of Π(λ), a Brownian excursion partition conditioned
on L1 = λ, is determined by the following EPPF: for n1, . . . , nk with

∑k
i=1 ni = n

p 1
2
(n1, . . . , nk ||λ) = 2n−kλk−1hk+1−2n(λ)

k∏
i=1

[12 ]ni−1. (110)

Proof. This is read from (66), (99) and (93). 2

Formula (110) combined with (14) gives an expression in terms of the Hermite
function for the positive integer moments of the sum Sm(λ) of mth powers of lengths
of excursions of Brownian motion on [0, 1] given L1 = λ. This formula for m = 2
was derived in another way by Janson [25, Theorem 7.4]. There the distribution of
S2(λ) appears as the asymptotic distribution, in a suitable limit regime, of the cost
of linear probing hashing.

According to (91) and Definition 11, for each θ > −1
2 , the EPPF (110) describes

the conditional distribution of a pd(1
2 , θ) partition (Πn) given limnKn/

√
2n = λ,

where Kn is the number of blocks of Πn. Easily from (110), for each fixed λ > 0, a
sequential description of (Πn(λ), n = 1, 2, . . .) is obtained by replacing the prediction
rules (75) and (76) by

P(j ↑ |n1, · · · , nk) = (2nj − 1)
hk−1−2n(λ)
hk+1−2n(λ)

(1 ≤ j ≤ k) (111)

P(k + 1 ↑ |n1, · · · , nk) =
λhk−2n(λ)
hk+1−2n(λ)

. (112)

The addition rule for the EPPF (110) is equivalent to the fact that these transition
probabilities sum to 1. As a check, this is implied the recurrence formula (106) for
the Hermite function.

Corollary 17 LetKn(λ) be the number of blocks of Πn(λ), where (Πn(λ), n = 1, 2, . . .)
is the Brownian excursion partition conditioned on L1 = λ. Then (Kn(λ), n =
1, 2, . . .) is a Markov chain with the following inhomogeneous transition probabilities:
for 1 ≤ k ≤ n

P(Kn+1(λ) = k |Kn(λ) = k) = (2n− k)
hk−1−2n(λ)
hk+1−2n(λ)

(113)
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P(Kn+1(λ) = k + 1 |Kn(λ) = k) =
λhk−2n(λ)
hk+1−2n(λ)

. (114)

Moreover, the distribution of Kn(λ) is given by the formula

P(Kn(λ) = k) =
(2n− k − 1)!λk−1hk+1−2n(λ)

(n− k)!(k − 1)!2n−k
(1 ≤ k ≤ n). (115)

Proof. The Markov property of (Kn(λ), n = 1, 2, . . .) and the transition probabilities
(113)–(114) follow easily from (111)–(112). Then (115) follows by induction on n,
using the forwards equations implied by the transition probabilities. 2

Let Kn denote the number of blocks of Πn, where (Πn) is the unconditioned
Brownian excursion partition. Then, from the discussion around (90),

(Kn(λ), n ≥ 1) d= (Kn, n ≥ 1 | lim
n
Kn/

√
2n = λ). (116)

According to (89), (75) and (76), the sequence (Kn, n ≥ 1) is an inhomogeneous
Markov chain with transition probabilities

P(Kn+1 = k |Kn = k) =
2n− k

2n
(117)

P(Kn+1 = k + 1 |Kn = k) =
k

2n
(118)

which imply that the unconditional distribution of Kn is given by the formula [46,
Corollary 3]

P(Kn = k) =
(

2n− k − 1
n− 1

)
2k+1−2n (1 ≤ k ≤ n). (119)

Due to (116), for each λ > 0 the inhomogeneous Markov chain (Kn(λ), n ≥ 1) has
the same co-transition probabilities as (Kn, n ≥ 1). From (117), (118) and (119), the
co-transition probabilities of (Kn, n ≥ 1) are

P(Kn = k |Kn+1 = k) =
2(n− k + 1)
2n− k + 1

(120)

P(Kn = k − 1 |Kn+1 = k) =
k − 1

2n− k + 1
. (121)

As a check, the fact that (Kn(λ), n ≥ 1) has the same co-transition probabilities
can be read from (113), (114) and (115). It can be shown that the Markov chains
(Kn(λ), n ≥ 1) for λ ∈ [0,∞], with definition by weak continuity for λ = 0 or ∞,
are the extreme points of the convex set of all laws of Markov chains with these co-
transition probabilities. A generalization of this fact, to α ∈ (0, 1) instead of α = 1

2 ,
and similar considerations for α = 0, yield the second sentence of Theorem 8.
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To illustrate the formulas above, according to (9) and (99), or (110) for n = 2,
given L1 = λ, two independent uniform [0, 1] variables fall in the same excursion
interval of the Brownian motion with probability

p 1
2
(2 ||λ) = µ(1 ||λ) = h−2(λ) = 1 − λh−1(λ) (122)

and in different excursion intervals with probability λh−1(λ). According to (110)
for n = 3, given L1 = λ, three independent uniform random points U1, U2, U3 with
uniform distribution on [0, 1] fall in the same excursion interval of a Brownian motion
or Brownian bridge with probability

P(K3(λ) = 1) = p 1
2
(3 ||λ) = 3h−4(λ) = 1 + 1

2λ
2 − (3

2 λ+ 1
2λ

3)h−1(λ) (123)

while U1 and U2 fall in one excursion interval and U3 in another with probability

1
3 P(K3(λ) = 2) = p 1

2
(2, 1 ||λ) = λh−3(λ) = −1

2λ
2 + (1

2λ+ 1
2λ

3)h−1(λ) (124)

and the three points fall in three different excursion intervals with probability

P(K3(λ) = 3) = p 1
2
(1, 1, 1 ||λ) = λ2h−2(λ) = λ2 − λ3h−1(λ). (125)

As a check, the sum of expressions for P(K3(λ) = k) over k = 1, 2, 3 reduces to 1.
Since

P(Kn(λ) = k) =
∑

n1≥···≥nk

#(n1, · · · , nk)p 1
2
(n1, · · · , nk ||λ) (126)

where the sum is over all decreasing sequences of positive integers (n1, · · · , nk) with
sum n, and #(n1, · · · , nk) is the number of distinct partitions of Nn into k subsets of
sizes (n1, · · · , nk), formula (115) amounts to

∑
n1≥···≥nk

#(n1, · · · , nk)
k∏
i=1

[12 ]ni−1 =
(

2n− k − 1
n− 1

)
Γ(n)
Γ(k)

22k−2n (127)

which can be checked as follows. According to (74) and (89), the unconditional EPPF
of the Brownian excursion partition Π is

p 1
2
,0(n1, · · · , nk) =

Γ(k)
2k−1Γ(n)

k∏
i=1

[12 ]ni−1 (128)

so (127) can be deduced from (128), (119), and the unconditioned form of (126).
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8.3 Some identitities

As a consequence of (92) and (99), for all q > −1
2 and θ > −1

2 there is the identity

2
E(|B1|2θ)

∫ ∞

0
λ2θµ(q ||λ)φ(λ)dλ =

Γ(θ + 1)Γ(q + 1
2)

Γ(1
2)Γ(q + θ + 1)

(129)

where the right side is the qth moment of the beta(1
2 ,

1
2 + θ) structural distribution

of pd(1
2 , θ), and on the left side this moment is computed by conditioning on L1.

As in (80), for each fixed q this formula provides a Mellin transform which uniquely
determines µ(q ||λ) as a function of λ. In view of (129) and (93), the formula (99)
for µ(q ||λ) in terms of the Hermite function amounts to the identity

2
∫ ∞

0
λ2θh−2q(λ)φ(λ)dλ = 2−θ−q

Γ(2θ + 1)
Γ(q + θ + 1)

. (130)

As checks, since h0(x) = 1 and h−1(x) = Φ(x)/ϕ(x), the case q = 0 is obvious, and the
case q = 1

2 is easily verified since then the left side of (129) equals (2θ+1)−1
E(|B1|2θ+1)

by integration by parts. Formula (130) can then be verified for q = m/2 for all
m = 0, 1, 2, . . ., using the recursion (106). Formula (130) was just derived for q > −1

2 ,
but both sides are entire functions of q, so the identity holds for all q ∈ C. Using the
series formula (100) and integrating term by term, the substitution r = θ + 1

2 allows
the identity (130) to be rewritten in the symmetric form

∞∑
j=0

Γ
(
q +

j

2

)
Γ
(
r +

j

2

)
(−2)j

j!
=

4
√
πΓ(2q)Γ(2r)

Γ(q + r + 1/2)
(131)

where the series is absolutely convergent for real q and r with q + r + 1
2 < −1,

and can otherwise be summed by Abel’s method provided neither 2q nor 2r is a non-
positive integer. This version of the identity is easily verified using standard identities
involving Gauss’s hypergeometric function and the gamma function. For −2q = n a
positive integer, when hn is the nth Hermite polynomial

hn(x) =
bn/2c∑
k=0

hn,k x
n−2k with hn,k = (−1)k

(
n

2k

)
(2k)!
2kk!

the identity (130) reduces easily to the following pair of identities of polynomials in
θ, which relate the rising and falling factorials [x]n := x(x + 1) · · · (x + n − 1) and
(x)n := x(x−1) · · · (x−n+1), and which are easily verified directly: form = 0, 1, 2 . . .

m∑
k=0

h2m,k2−k[θ + 1
2 ]m−k = (θ)m

and
m∑
k=0

h2m+1,k2−k[θ + 1]m−k = (θ − 1
2)m.
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Thus the coefficients of the Hermite polynomials are related to some instances of
generalized Stirling numbers [22, 48].
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[16] A. Erdélyi et al. Higher Transcendental Functions, volume II of Bateman
Manuscript Project. McGraw-Hill, New York, 1953.
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