EMBEDDING A MARKOV CHAIN INTO A RANDOM WALK ON A PERMUTATION GROUP

STEVEN N. EVANS

Abstract

Using representation theory, we obtain a necessary and sufficient condition for a discrete-time Markov chain on a finite state space E to be representable as $\Psi_{n} \Psi_{n-1} \cdots \Psi_{1} z, n \geq 0$, for any $z \in E$, where the Ψ_{i} are independent, identically distributed random permutations taking values in some given transitive group of permutations on E. The condition is particularly simple when the group is 2-transitive on E. We also work out the explicit form of our condition for the dihedral group of symmetries of a regular polygon.

1. Introduction

Consider a discrete-time (left) random walk Φ on a transitive group Γ of permutations of a finite set E. That is, $\Phi=\left(\Phi_{n}, \mathbb{Q}^{\varphi}\right)$ is a Markov chain with state-space Γ such that for $\varphi \in \Gamma$

$$
\mathbb{Q}^{\varphi}\left\{\Phi_{0}=\varphi\right\}=1
$$

and

$$
\mathbb{Q}^{\varphi}\left\{\Phi_{n+1}=\psi \mid \Phi_{0}, \Phi_{1}, \ldots, \Phi_{n}\right\}=Q\left(\psi \Phi_{n}^{-1}\right)
$$

for some probability distribution Q on Γ. Equivalently, $\Phi_{1} \Phi_{0}^{-1}, \Phi_{2} \Phi_{1}^{-1}, \ldots$ are i.i.d. under each measure \mathbb{Q}^{φ} with common distribution Q.

For any $z \in E$ we have

$$
\mathbb{Q}^{\varphi}\left\{\Phi_{n+1} z=y \mid \Phi_{0}, \ldots, \Phi_{n}\right\}=P\left(\Phi_{n} z, y\right)
$$

where

$$
\begin{equation*}
P(x, y)=\sum_{\psi \in \Gamma: \psi x=y} Q(\psi) . \tag{1.1}
\end{equation*}
$$

Thus $\left(\Phi_{n} z\right)_{n \geq 0}$ is a Markov chain with transition matrix P that doesn't depend on z.

We are interested in the extent to which this "projection" of a random walk on Γ onto a Markov chain on E can be reversed. That is, given a Markov chain $X=\left(X_{n}, \mathbb{P}^{x}\right)$ on E with transition matrix P, when can we "lift" X to find a random walk on Γ with increment distribution Q such that (1.1) holds? The existence of such a lifting allows one to employ the extremely powerful tools, particularly representation theory, that have been used to analyse random walks on groups. A typical and impressive example is [DS87], where the Bernoulli-Laplace diffusion

[^0]model is lifted to a walk on the symmetric group that is bi-invariant under a certain subgroup and the theory of Gelfand pairs is then used to analyse how fast the diffusion model converges to stationarity (see also [Dia88]).

The question of when a lifting exists has a simple answer when Γ is the symmetric group on E (that is, the group of all permutations of E). Firstly, note that if (1.1) holds, then $\sum_{x \in E} P(x, y)=\sum_{\psi \in \Gamma} Q(\psi)=1$ for each $y \in E$, and hence P is doubly stochastic (this observation holds for an arbitrary group Γ). On the other hand, if P is doubly stochastic, then, by a celebrated result of G. Birkhoff [Bir46, HJ90], P is in the convex hull of the permutation matrices, which is just another way of saying that (1.1) holds.

Even for the symmetric group, the choice of Q is not unique. For example, if $E=\{1,2,3\}$ and $P(x, y)=\frac{1}{3}$ for all x, y, then one possible choices for Q is the probability measure that assigns mass $\frac{1}{6}$ to each possible permutation, and another is the measure that assigns mass $\frac{1}{3}$ to the even permutations and mass 0 to the odd permutations (in the usual cycle notation, the even permutations are (1)(2)(3), $(1,2,3)$, and $(1,3,2)$, while the odd permutations are the transpositions $(1,2)(3)$, $(1,3)(2)$, and $(1)(2,3))$.

In order to describe our results we need to recall a little notation from representation theory. A convenient reference for the facts we need is [Ker99]. Let $\hat{\Gamma}$ denote the collection of irreducible (unitary) representations of Γ. Given $\rho \in \hat{\Gamma}$, write χ_{ρ} for the character of ρ and d_{ρ} for the dimension of ρ. The action of Γ on E has an associated representation: each element of Γ is associated with the corresponding $|E| \times|E|\{0,1\}$-valued permutation matrix. This so-called permutation representation decomposes into a direct sum of irreducible representations. Write $\hat{\Gamma}_{+}$for the collection of irreducible representations $\rho \in \hat{\Gamma}$ that appear with positive multiplicity $\nu_{\rho}>0$ in the decomposition of the permutation representation, and write $\hat{\Gamma}_{0}$ for the collection of irreducible representations that do not appear. The character of the permutation representation is $N(\varphi)=|\{x: \varphi x=x\}|$ (that is, the number of fixed points of the permutation $\varphi \in \Gamma)$. Thus,

$$
\begin{aligned}
\nu_{\rho} & =\frac{1}{|\Gamma|} \sum_{\psi \in \Gamma} N(\psi) \chi_{\rho}(\psi) \\
& =\frac{1}{|\Gamma|} \sum_{x \in E} \sum_{\psi \in \Gamma: \psi x=x} \chi_{\rho}(\psi),
\end{aligned}
$$

with $\nu_{\rho}=0$ when ρ does not appear in the decomposition of the permutation representation.

Theorem 1.1. Let $P(x, y), x, y \in E$, be a transition matrix on E. There exists a probability vector Q on Γ such that (1.1) holds if and only if

$$
\begin{equation*}
P(x, y)=\sum_{\rho \in \hat{\Gamma}_{+}} \sum_{z \in E} \sum_{\varphi \in \Gamma: \varphi x=y} \sum_{\psi \in \Gamma} \frac{d_{\rho}^{2}}{|\Gamma|^{2} \nu_{\rho}} \chi_{\rho}\left(\psi \varphi^{-1}\right) P(z, \psi z) \tag{1.2}
\end{equation*}
$$

for all $x, y \in E$, and, for some choice of $h \in \mathbb{R}^{\Gamma}$,

$$
\begin{align*}
& R_{h}(\varphi):= \sum_{\rho \in \hat{\Gamma}_{+}} \sum_{z \in E} \sum_{\psi \in \Gamma} \frac{d_{\rho}^{2}}{|\Gamma|^{2} \nu_{\rho}} \chi_{\rho}\left(\psi \varphi^{-1}\right) P(z, \psi z) \\
&+\sum_{\rho \in \hat{\Gamma}_{0}} \sum_{\psi \in \Gamma} \frac{d_{\rho}}{|\Gamma|} \chi_{\rho}\left(\psi \varphi^{-1}\right) h(\psi) \tag{1.3}\\
& \geq 0
\end{align*}
$$

for all $\varphi \in \Gamma$. Moreover, if (1.2) and (1.3) hold for some $h \in \mathbb{R}^{\Gamma}$, then the class of probability vectors Q satisfying (1.1) coincides with the class of $R_{h^{\prime}}$ satisfying (1.3) for some $h^{\prime} \in \mathbb{R}^{\Gamma}$ (in particular, all such $R_{h^{\prime}}$ are automatically probability vectors).
Remark 1.2. If P is such that (1.1) holds for a particular probability vector Q, then it follows from the observations made in the proof of Theorem 1.1 that taking $h=Q$ in (1.3) gives $R_{h}=Q$.
Remark 1.3. Finding a probability distribution Q that satisfies equation (1.1) involves solving $|E| \times|E|$ equalities and $|\Gamma|$ inequalities in $|\Gamma|$ unknowns, whereas applying Theorem 1.1 involves solving only $|\Gamma|$ inequalties in $|\Gamma|$ unknowns. Although the characters χ_{ρ} can certainly be complex-valued, it is apparent from the proof of Theorem 1.1 that (1.3) is a system of inequalities of the form $A x+b \geq 0$, with A a real $|\Gamma| \times|\Gamma|$ matrix and b a real vector of length $|\Gamma|$. Linear programming methods such as the simplex algorithm can be used to solve such inequalities or to ascertain that they are insoluble (see Chapter 6 of [Pad95]). We also remark that there is a Farkas-type "theorem of the alternative" which gives an equivalent condition for (1.3) to hold: namely (1.3) will hold for some h if and only if there is no $k \in \mathbb{R}_{+}^{\Gamma}$ such that both

$$
\sum_{\rho \in \hat{\Gamma}_{0}} \sum_{\varphi \in \Gamma} \frac{d_{\rho}}{|\Gamma|} \chi_{\rho}\left(\psi \varphi^{-1}\right) k(\varphi)=0
$$

for all $\psi \in \Gamma$ and

$$
\sum_{\varphi \in \Gamma} \sum_{\rho \in \hat{\Gamma}_{+}} \sum_{z \in E} \sum_{\psi \in \Gamma} \frac{d_{\rho}^{2}}{|\Gamma|^{2} \nu_{\rho}} \chi_{\rho}\left(\psi \varphi^{-1}\right) P(z, \psi z) k(\varphi)<0
$$

(see Exercise 6.5(i) of [Pad95]).
Example 1.4. Suppose that $\Gamma=E$ and Γ acts on E via the left regular representation. Of course, in this case it is obvious that a lifting exists if and only if $P(\varphi, \psi)$ is of the form $Q\left(\psi \varphi^{-1}\right)$, and this Q is the unique lifted increment distribution. It is easy to check that this conclusion follows from Theorem 1.1. In this case $\nu_{\rho}=d_{\rho}$ (see Corollary 11.5.4 of [Ker99]) and so

$$
\begin{aligned}
& \sum_{\rho} \frac{d_{\rho}^{2}}{|\Gamma|^{2} \nu_{\rho}} \sum_{\varphi, \psi \in \Gamma} 1\left\{y^{\prime}=\varphi x^{\prime}, y^{\prime \prime}=\psi x^{\prime \prime}\right\} \chi_{\rho}\left(\psi \varphi^{-1}\right) \\
& \quad=\sum_{\rho} \frac{d_{\rho}}{|\Gamma|^{2}} \chi_{\rho}\left(y^{\prime \prime}\left(x^{\prime \prime}\right)^{-1}\left(y^{\prime}\left(x^{\prime}\right)^{-1}\right)^{-1}\right) \\
& \quad= \begin{cases}\frac{1}{\Gamma \Gamma}, & \text { if } y^{\prime}\left(x^{\prime}\right)^{-1}=y^{\prime \prime}\left(x^{\prime \prime}\right)^{-1}, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

Thus conditions (1.2) of Theorem 1.1 holds if and only if $P(x, y)$ only depends on $y x^{-1}$. We know that there is a lifting in this case. Because $\hat{\Gamma}_{0}$ is empty, this lifting is unique by Theorem 1.1.

Representation theory is at its most useful for analysing the lifted random walk when the walk has some extra structure. For example, if K is a subgroup of Γ such that (Γ, K) form a Gelfand pair, then the analysis of random walks on Γ that are K-bi-invariant (that is, $Q\left(k^{\prime} \varphi k^{\prime \prime}\right)=Q(\varphi)$ for $\varphi \in \Gamma$ and $k^{\prime}, k^{\prime \prime} \in K$) is particularly simple (see [DS87, Dia88]). A necessary and sufficient condition for a Markov chain on the quotient $E=\Gamma / K$ with transition matrix P to posess a K-bi-invariant lifting is that

$$
\begin{equation*}
P(x, y)=P(\varphi x, \varphi y) \text { for all } x, y \in E \text { and } \varphi \in \Gamma \tag{1.4}
\end{equation*}
$$

(see Lemma 1 of [DS87], where this result is attributed to Philippe Bougerol).
Another situation in which the representation theoretic analysis of random walks is particularly simple is when the increment distribution is a class function (that is, is constant on conjugacy classes) because the matrix $(\varphi, \psi) \mapsto Q\left(\psi \varphi^{-1}\right)$ can then be explicitly diagonalised using the characters of Γ - see Chapter 3 of [Dia88]. The following result is clear from Theorem 1.1 and Remark 1.2.

Corollary 1.5. Let $P(x, y), x, y \in E$, be a transition matrix on E. There exists a probability vector Q on Γ such that (1.1) holds and Q is a class function if and only if condition (1.2) holds, condition (1.3) holds with h a class function, and

$$
\begin{equation*}
\varphi \mapsto \sum_{\rho \in \hat{\Gamma}_{+}} \sum_{z \in E} \sum_{\psi \in \Gamma} \frac{d_{\rho}^{2}}{|\Gamma|^{2} \nu_{\rho}} \chi_{\rho}\left(\psi \varphi^{-1}\right) P(z, \psi z) \tag{1.5}
\end{equation*}
$$

is a class function. Moreover, if these conditions hold for some class function h, then the class of probability vectors Q satisfying (1.1) that are class functions coincides with the class of $R_{h^{\prime}}$ satisfying (1.3) for some class function h^{\prime} (in particular, all such $R_{h^{\prime}}$ are automatically probability vectors).

Remark 1.6. Condition (1.5) is implied by condition (1.4).
Theorem 1.1 takes a considerably simpler form if the group Γ is 2 -transitive on E; that is, if for any two pairs $(u, v),(x, y) \in E$ with $u \neq v$ and $x \neq y$ there exists a $\varphi \in \Gamma$ with $(u, v)=(\varphi x, \varphi y)$. The group Γ is 2-transitive on E if and only if

$$
\frac{1}{|\Gamma|} \sum_{\varphi \in \Gamma} N(\varphi)(N(\varphi)-1)=1
$$

or, equivalently,

$$
\frac{1}{|\Gamma|} \sum_{\varphi \in \Gamma} N(\varphi)^{2}=2
$$

(see Corollaries 8.1.2 and 8.1.6 of [Ker99]). For example, the symmetric group of all permutations of E is certainly 2 -transitive.

Corollary 1.7. Suppose that Γ is 2 -transitive on E. Let $P(x, y), x, y \in E$, be a transition matrix on E. There exists a probability vector Q on Γ such that (1.1) holds if and only if

$$
\begin{equation*}
\sum_{x \in E} P(x, y)=1 \tag{1.6}
\end{equation*}
$$

for all $y \in E$, and, for some choice of $h \in \mathbb{R}^{\Gamma}$,

$$
\begin{align*}
R_{h}(\varphi): & =\frac{1}{|\Gamma|}\left[(|E|-1) \sum_{x \in E} P(x, \varphi x)-|E|+2\right]+h(\varphi) \\
& -\frac{1}{|\Gamma|} \sum_{\psi \in \Gamma}\left[(|E|-1) N\left(\psi \varphi^{-1}\right)-|E|+2\right] h(\psi) \tag{1.7}\\
& \geq 0
\end{align*}
$$

for all $\varphi \in \Gamma$. Moreover, if (1.6) and (1.7) hold for some $h \in \mathbb{R}^{\Gamma}$, then the class of probability vectors Q satisfying (1.1) coincides with the class of $R_{h^{\prime}}$ satisfying (1.7) for some $h^{\prime} \in \mathbb{R}^{\Gamma}$ (in particular, all such $R_{h^{\prime}}$ are automatically probability vectors).

We leave the formulation of an analogue of Corollary 1.5 for 2 -transitive groups to the reader.

Example 1.8. Taking h to be a constant in Corollary 1.7, we see that a sufficient condition for equation (1.1) to hold is that equation (1.6) holds and

$$
\sum_{x \in E} P(x, \varphi x) \geq \frac{|E|-2}{|E|-1}
$$

for all $\varphi \in \Gamma$ (for example, $P(x, y) \geq(|E|-2) /(|E|(|E|-1))$ for all $x, y \in E$ certainly suffices). One can then take

$$
Q(\varphi)=\frac{1}{|\Gamma|}\left[(|E|-1) \sum_{x \in E} P(x, \varphi x)-|E|+2\right]
$$

The outline of the rest of the paper is the following. Section 2 briefly recalls some facts about the singular value decomposition of a matrix and its connection to solving linear equations. Section 3 contains a proof of Theorem 1.1 and Section 4 contains a derivation of Corollary 1.7 from Theorem 1.1 as well as an indication of an alternative proof that avoids the use of representation theory. In Section 5 we work out explicitly the objects appearing in Theorem 1.1 for the case where Γ is the group of symmetries of a regular n-gon and E is the corresponding set of vertices.

2. The singular value decomposition and Moore-Penrose inverse

For the sake of completeness and to establish some notation, we recall some facts from linear algebra (see, for example, [Meh77, HJ90]). Let A be an $n \times k$ matrix with rank r (which is also the rank of $A^{*} A$ and $A A^{*}$). The matrix A has the singular value decomposition

$$
A=U L V^{*}
$$

where:

- $L=\operatorname{diag}\left(\lambda_{1}^{1 / 2}, \ldots, \lambda_{r}^{1 / 2}\right)$, with $\lambda_{1}, \ldots, \lambda_{r}$ the non-zero eigenvalues of $A^{*} A$;
- V is the $k \times r$ matrix with columns consisting of the corresponding orthonormalized eigenvectors (so that $V^{*} V=I$);
- U is the $n \times r$ matrix given by $A V L^{-1}$ (so that $U^{*} U=I$ and the columns of U are the orthonormalized eigenvectors of $A A^{*}$).

The Moore-Penrose generalized inverse of A is the $k \times n$ matrix

$$
A^{\dagger}=V L^{-1} U^{*}
$$

The linear equation $A x=b$ has a solution if and only if $A A^{\dagger} b=b$. Moreover, if $A x=b$ has a solution, then any solution is of the form

$$
x=A^{\dagger} b+\left(I-A^{\dagger} A\right) z
$$

for an arbitrary k-vector z. Note that

$$
A^{\dagger} A=V V^{*}
$$

and

$$
A A^{\dagger}=U U^{*}
$$

and so $A x=b$ will have a solution if and only if $U U^{*} b=b$, in which case a general solution is

$$
x=A^{\dagger} b+\left(I-V V^{*}\right) z
$$

for an arbitrary z. The matrix $U U^{*}$ is the orthogonal projection onto the range of A and the matrix $I-V V^{*}$ is the orthogonal projection onto the kernel of A.

3. Proof of Theorem 1.1

We can write the equation (1.1) in the form

$$
A Q=P
$$

where P is the transition matrix written out as a column vector indexed by $E \times E$ and A is the matrix with rows indexed by $E \times E$ and columns indexed by Γ that is given by

$$
A((x, y), \psi)= \begin{cases}1, & \text { if } y=\psi x \\ 0, & \text { otherwise }\end{cases}
$$

(Of course, we are seeking solutions Q that have nonnegative entries that sum to 1.)

Now

$$
\begin{aligned}
A^{*} A(\varphi, \psi) & =\sum_{x, y} \mathbf{1}\{y=\varphi x\} \mathbf{1}\{y=\psi x\} \\
& =|\{x: \varphi x=\psi x\}| \\
& =N\left(\psi^{-1} \varphi\right)
\end{aligned}
$$

Here, as in the Introduction, N is the character of the permutation representation of Γ that counts the number of fixed points of a permutation. In particular, N is a class function (that is, depends only on the conjugacy class of a permutation).

We now apply a standard procedure to find diagonalize $A^{*} A$ (see, for example, p48 of [Dia88] for a similar argument).

Consider an irreducible representation ρ of Γ with
dimension d_{ρ} and character χ_{ρ}. Because N is a class function, the Fourier transform of N at ρ is

$$
\begin{aligned}
\hat{N}(\rho) & =\sum_{\varphi \in \Gamma} N(\varphi) \rho(\varphi) \\
& =\left(\frac{1}{d_{\rho}} \sum_{\varphi \in \Gamma} N(\varphi) \chi_{\rho}(\varphi)\right) I \\
& =\lambda_{\rho} I
\end{aligned}
$$

say (see Lemma 11.5.5 of [Ker99]). Note that

$$
\lambda_{\rho}=\frac{|\Gamma|}{d_{\rho}} \nu_{\rho}
$$

where, as in the Introduction,

$$
\nu_{\rho}=\frac{1}{|\Gamma|} \sum_{\varphi \in \Gamma} N(\varphi) \chi_{\rho}(\varphi)
$$

is the multiplicity of the representation ρ in the decomposition of the permutation representation into irreducible components.

Let $\left(\rho_{i j}\right)_{1 \leq i, j \leq d_{\rho}}$ be a unitary matrix realization of ρ. We have

$$
\begin{aligned}
\sum_{\psi \in \Gamma} A^{*} A(\varphi, \psi) \bar{\rho}_{j i}(\psi) & =\sum_{\psi \in \Gamma} N\left(\psi^{-1} \varphi\right) \rho_{i j}\left(\psi^{-1}\right) \\
& =\sum_{\psi \in \Gamma} N(\psi) \rho_{i j}\left(\psi \varphi^{-1}\right) \\
& =\sum_{\psi \in \Gamma} N(\psi) \sum_{k=1}^{d_{\rho}} \rho_{i k}(\psi) \rho_{k j}\left(\varphi^{-1}\right) \\
& =\sum_{k=1}^{d_{\rho}} \hat{N}(\rho)_{i k} \bar{\rho}_{j k}(\varphi) \\
& =\lambda_{\rho} \bar{\rho}_{j i}(\varphi)
\end{aligned}
$$

Thus

$$
v_{\rho, i, j}=\left(\frac{d_{\rho}}{|\Gamma|}\right)^{1 / 2} \bar{\rho}_{j i}, 1 \leq i, j \leq d_{\rho}
$$

are d_{ρ}^{2} orthonormalized eigenvectors associated with the eigenvalue λ_{ρ}. Because $\sum_{\rho} d_{\rho}^{2}=|\Gamma|$ (see Corollary 11.5.4 of [Ker99]), we have found all the eigenvalues of the $|\Gamma| \times|\Gamma|$ matrix $A^{*} A$.

The elements appearing in the singular value decomposition of A are thus the following.

- The matrix V has a column $v_{\rho, i, j}$ for each $\rho \in \hat{\Gamma}_{+}$(that is, for each ρ appearing in the permutation representation) and each pair $1 \leq i, j \leq d_{\rho}$.
- The diagonal matrix L has

$$
\lambda_{\rho}^{1 / 2}=\left(\frac{|\Gamma| \nu_{\rho}}{d_{\rho}}\right)^{1 / 2}
$$

appearing d_{ρ}^{2} times on the diagonal.

- The matrix U has columns given by

$$
\begin{aligned}
u_{\rho, i, j}(x, y) & =\lambda_{\rho}^{-1 / 2}\left(A v_{\rho, i, j}\right)(x, y) \\
& =\lambda_{\rho}^{-1 / 2} \sum_{\psi \in \Gamma} 1\{y=\psi x\}\left(\frac{d_{\rho}}{|\Gamma|}\right)^{1 / 2} \bar{\rho}_{j i}(\psi) \\
& =\frac{d_{\rho}}{|\Gamma| \nu_{\rho}^{1 / 2}} \sum_{\psi \in \Gamma} 1\{y=\psi x\} \bar{\rho}_{j i}(\psi)
\end{aligned}
$$

The Moore-Penrose inverse of A is thus given by

$$
\begin{aligned}
A^{\dagger}(\varphi,(x, y)) & =\sum_{\rho, i, j}\left(\frac{d_{\rho}}{|\Gamma|}\right)^{1 / 2} \bar{\rho}_{j i}(\varphi)\left(\frac{d_{\rho}}{|\Gamma| \nu_{\rho}}\right)^{1 / 2} \frac{d_{\rho}}{|\Gamma| \nu_{\rho}^{1 / 2}} \sum_{\psi \in \Gamma} 1\{y=\psi x\} \rho_{j i}(\psi) \\
& =\sum_{\rho \in \hat{\Gamma}_{+}} \frac{d_{\rho}^{2}}{|\Gamma|^{2} \nu_{\rho}} \sum_{\psi \in \Gamma} 1\{y=\psi x\} \sum_{i, j} \rho_{j i}(\psi) \rho_{i j}\left(\varphi^{-1}\right) \\
& =\sum_{\rho \in \hat{\Gamma}_{+}} \frac{d_{\rho}^{2}}{|\Gamma|^{2} \nu_{\rho}} \sum_{\psi \in \Gamma} 1\{y=\psi x\} \chi_{\rho}\left(\psi \varphi^{-1}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
A A^{\dagger}\left(\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right)\right) & =U U^{*}\left(\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right)\right) \\
& =\sum_{\rho, i, j} \frac{d_{\rho}^{2}}{|\Gamma|^{2} \nu_{\rho}} \sum_{\varphi, \psi \in \Gamma} \mathbf{1}\left\{y^{\prime}=\varphi x^{\prime}\right\} \mathbf{1}\left\{y^{\prime \prime}=\psi x^{\prime \prime}\right\} \bar{\rho}_{j i}(\varphi) \rho_{j i}(\psi) \\
& =\sum_{\rho \in \hat{\Gamma}_{+}} \frac{d_{\rho}^{2}}{|\Gamma|^{2} \nu_{\rho}} \sum_{\varphi, \psi \in \Gamma} \mathbf{1}\left\{\left(y^{\prime}, y^{\prime \prime}\right)=\left(\varphi x^{\prime}, \psi x^{\prime \prime}\right)\right\} \chi_{\rho}\left(\psi \varphi^{-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
A^{\dagger} A(\varphi, \psi) & =V V^{*}(\varphi, \psi) \\
& =\sum_{\rho, i, j} \frac{d_{\rho}}{|\Gamma|} \bar{\rho}_{j i}(\varphi) \rho_{j i}(\psi) \\
& =\sum_{\rho \in \hat{\Gamma}_{+}} \frac{d_{\rho}}{|\Gamma|} \chi_{\rho}\left(\psi \varphi^{-1}\right)
\end{aligned}
$$

Thus

$$
\left(I-A^{\dagger} A\right)(\varphi, \psi)=\sum_{\rho \in \hat{\Gamma}_{0}} \frac{d_{\rho}}{|\Gamma|} \chi_{\rho}\left(\psi \varphi^{-1}\right)
$$

because

$$
\sum_{\rho \in \hat{\Gamma}} d_{\rho} \chi_{\rho}(\eta)= \begin{cases}|\Gamma|, & \eta=e \\ 0, & \text { otherwise }\end{cases}
$$

(see Corollary 11.5.4 of [Ker99]).
Theorem 1.1 will now follow if we can show that $\sum_{\varphi \in \Gamma} R_{h}(\varphi)=1$ for any $h \in \mathbb{R}^{\Gamma}$. This, however, follows from the two observations:

- $\sum_{\varphi \in \Gamma} \chi_{\rho}\left(\psi \varphi^{-1}\right)$ is $|\Gamma|$ if ρ is the trivial one-dimensional representation with character 1 and is 0 for any other $\rho \in \hat{\Gamma}$ (see Theorem 11.5.3 of [Ker99]);
- the trivial representation appears with multiplicity 1 in the permutation representation (see Lemma 2.1.1 and Theorem 11.5.3 of [Ker99]).

4. Proof of Corollary 1.7

The corollary follows directly from Theorem 1.1 and a little algebra once we observe that the permutation representation associated with Γ acting on E decomposes into two irreducible representations. The trivial representation with dimension 1 and character the constant 1 appears with multiplicity 1 , and the representation with dimension $|E|-1$ and character $N(\cdot)-1$ also appears with multiplicity 1 (see Exercise 11.5.7 of [Ker99]).

Alternatively, it is interesting to note that it is also possible to prove Corollary 1.7 directly without recourse to the representation theory of Γ. The argument goes as follows.

Let A be as in Section 3. Rather than work with $A^{*} A$ to find a Moore-Penrose inverse, as we did in Section 3, we will work with $A A^{*}$.

By the 2-transitivity of Γ we have

$$
\begin{aligned}
A A^{*}\left(\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)= & \sum_{\psi \in \Gamma} 1\left\{y^{\prime}=\psi\left(x^{\prime}\right), y^{\prime \prime}=\psi\left(x^{\prime \prime}\right)\right\} \\
& = \begin{cases}\frac{|\Gamma|}{|E|}, & x^{\prime}=x^{\prime \prime}, y^{\prime}=y^{\prime \prime} \\
0, & x^{\prime} \neq x^{\prime \prime}, y^{\prime}=y^{\prime \prime} \\
0, & x^{\prime}=x^{\prime \prime}, y^{\prime} \neq y^{\prime \prime} \\
\frac{|\Gamma|}{|E|(|E|-1)}, & x^{\prime} \neq x^{\prime \prime}, y^{\prime} \neq y^{\prime \prime}\end{cases}
\end{aligned}
$$

Thus, by a suitable indexing of rows and columns, $A A^{*}$ has the block form

$$
\frac{|\Gamma|}{|E|(|E|-1)}\left(\begin{array}{cccc}
S & T & \ldots & T \\
T & S & \ldots & T \\
\vdots & \vdots & \ddots & \vdots \\
T & T & \ldots & S
\end{array}\right)
$$

where $S=(|E|-1) I_{|E|}$ and

$$
T=\left(\begin{array}{cccc}
0 & 1 & \ldots & 1 \\
1 & 0 & & 1 \\
\vdots & & \ddots & \\
1 & & & 0
\end{array}\right)
$$

Identify E with the cyclic group \mathcal{C} of order $|E|$ by any bijective correspondence. Then $A A^{*}\left(\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right)\right)=F\left(\left(x^{\prime \prime}, y^{\prime \prime}\right)-\left(x^{\prime}, y^{\prime}\right)\right)$, where the function $F: \mathcal{C} \times \mathcal{C} \rightarrow$ \mathbb{R} is given by

$$
F(x, y)= \begin{cases}\frac{|\Gamma|}{|E|}, & x=0, y=0 \\ \frac{|\Gamma|}{|E|(|E|-1)}, & x \neq 0, y \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Because $A A^{*}$ is a convolution matrix, we can find the eigenvalues and eigenvectors of $A A^{*}$ using Fourier analysis on $\mathcal{C} \times \mathcal{C}$ in the following manner.

There is an isomorphism between \mathcal{C} and its dual group. Write $\left\{\theta_{a}: a \in \mathcal{C}\right\}$ for the dual group. The characters of $\mathcal{C} \times \mathcal{C}$ are then of the form

$$
(x, y) \mapsto \theta_{a}(x) \theta_{b}(y), a, b \in \mathcal{C}
$$

Then

$$
\begin{aligned}
& \sum_{\left(x^{\prime \prime}, y^{\prime \prime}\right)} A A^{*}\left(\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right)\right) \theta_{a}\left(x^{\prime \prime}\right) \theta_{b}\left(y^{\prime \prime}\right) \\
& \quad=\sum_{\left(x^{\prime \prime}, y^{\prime \prime}\right)} F\left(\left(x^{\prime \prime}, y^{\prime \prime}\right)-\left(x^{\prime}, y^{\prime}\right)\right) \theta_{a}\left(x^{\prime \prime}\right) \theta_{b}\left(y^{\prime \prime}\right) \\
& \quad=\sum_{(x, y)} F(x, y) \theta_{a}\left(x+x^{\prime}\right) \theta_{b}\left(y+y^{\prime}\right) \\
& \quad=\left[\sum_{(x, y)} F(x, y) \theta_{a}(x) \theta_{b}(y)\right] \theta_{a}\left(x^{\prime}\right) \theta_{b}\left(y^{\prime}\right)
\end{aligned}
$$

A set of orthonormalized eigenvectors of $A A^{*}$ is thus $(x, y) \mapsto \frac{1}{|E|} \theta_{a}(x) \theta_{b}(y) a, b \in$ $\mathcal{C} \times \mathcal{C}$ (these are all the
eigenvectors because they are linearly independent and there are $|E|^{2}$ of them), and the corresponding eigenvalues are $\sum_{(x, y)} F(x, y) \theta_{a}(x) \theta_{b}(y)$. (This is, of course, is analogous to what we did in in the typically non-commutative setting of Section 3 and is a standard argument: see, for example, [Dav79].)

Observe that

$$
\begin{aligned}
\sum_{x \neq 0, y \neq 0} \theta_{a}(x) \theta_{b}(y) & =\sum_{x, y} \theta_{a}(x) \theta_{b}(y)-\sum_{y} \theta_{b}(y)-\sum_{x} \theta_{a}(x)+1 \\
& =[|E| \mathbf{1}\{a=0\}-1][|E| \mathbf{1}\{b=0\}-1]
\end{aligned}
$$

so that

$$
\sum_{(x, y)} F(x, y) \theta_{a}(x) \theta_{b}(y)= \begin{cases}|\Gamma|, & a=b=0 \\ \frac{|\Gamma|}{|E|-1}, & a \neq 0, b \neq 0 \\ 0, & \text { otherwise }\end{cases}
$$

Thus there is a non-zero eigenvalue of $A A^{*}$ corresponding to each point of

$$
\{(0,0)\} \cup(\mathcal{C} \backslash\{0\}) \times(\mathcal{C} \backslash\{0\})=\mathcal{E}
$$

The ingredients in the singular value decomposition of A are the following.

- The matrix U has a column for each point of \mathcal{E}, with the column for (a, b) given by

$$
u_{(a, b)}(x, y)=\frac{1}{|E|} \theta_{a}(x) \theta_{b}(y), x, y \in \mathcal{C}
$$

- The diagonal matrix L has diagonal entries $\lambda_{(a, b)}^{1 / 2},(a, b) \in \mathcal{E}$, where

$$
\lambda_{(0,0)}=|\Gamma|
$$

and

$$
\lambda_{(a, b)}=\frac{|\Gamma|}{|E|-1}, \quad(a, b) \in \mathcal{E} \backslash\{(0,0)\}
$$

- The matrix $V=A^{*} U L^{-1}$ has columns $v_{(a, b)},(a, b) \in \mathcal{E}$, with

$$
\begin{aligned}
v_{(a, b)}(\psi) & =\sum_{x, y} \mathbf{1}\{y=\psi x\} \frac{1}{|E|} \theta_{a}(x) \theta_{b}(y) \lambda_{(a, b)}^{-1 / 2} \\
& =\frac{1}{|E|} \sum_{z} \theta_{a}(z) \theta_{b}(\psi z) \lambda_{(a, b)}^{-1 / 2}
\end{aligned}
$$

It is now a straightforward to compute the matrices $A^{\dagger}, A A^{\dagger}$ and $A^{\dagger} A$ and check that one obtains the same objects that one gets using the method of Section 3.

5. An example: the dihedral group

In this section we compute the objects appearing in the statement of Theorem 1.1 in the case where E is the set of vertices of a regular n-gon and Γ is the group of symmetries of the n-gon (that is, Γ is the dihedral group of order $|\Gamma|=2 n$). For simplicity, we will consider the case where n is odd. The case where n is even is similar but a little messier.

A good account of the representation theory of Γ may be found in [Sim96]. The group Γ is the semidirect product of \mathbb{Z}_{n}, the group of integers modulo n, and \mathbb{Z}_{2}, the group of integers modulo 2 . It will simplify matters if we think of \mathbb{Z}_{n} as $\{0,1, \ldots, n-1\}$ and write the group operation as addition, but think of \mathbb{Z}_{2} as $\{+1,-1\}$ and write the group operation as multiplication. We take $+1 \in \mathbb{Z}_{2}$ to act on \mathbb{Z}_{n} as the identity and take $-1 \in \mathbb{Z}_{2}$ to act on \mathbb{Z}_{n} via negation (that is, inversion). The group operation is given by $(a, \sigma)(b, \tau):=(a+\sigma b, \sigma \tau)$ for $(a, \sigma),(b, \tau) \in \Gamma$ with $a, b \in \mathbb{Z}_{n}$ and $\sigma, \tau \in \mathbb{Z}_{2}$.

The irreducible representations of Γ consist of:

- the (one-dimensional) trivial representation with character the constant function 1,
- the one-dimensional representation arising from the non-trivial representation of \mathbb{Z}_{2} with character given by $(a, \sigma) \mapsto \sigma$ (where we identify $\pm 1 \in \mathbb{Z}_{2}$ with $\pm 1 \in \mathbb{R}$),
- $\frac{n-1}{2}$ two-dimensional representations indexed by $\ell=1,2, \ldots, \frac{n-1}{2}$ with characters

$$
\begin{aligned}
& (a,+1) \mapsto 2 \cos \left(\frac{2 \pi a \ell}{n}\right) \\
& (a,-1) \mapsto 0 .
\end{aligned}
$$

The group Γ acts on the set $E=\mathbb{Z}_{n}$ by $(a, \sigma) x:=a+\sigma x$. Hence, the identity element $(0,+1)$ has n fixed points, each element of the form $(a,-1)$ has 1 fixed point, and the remaining group elements are without fixed points. Thus the trivial representation and each of the two-dimensional representations appear in the decomposition of the permutation representation into irreducibles (that is, these representations form the set $\hat{\Gamma}_{+}$) and the corresponding multiplicities (that is, the numbers ν_{ρ}) are all 1 .

It follows that

$$
\begin{aligned}
\sum_{\rho \in \hat{\Gamma}_{+}} \frac{d_{\rho}^{2}}{\nu_{\rho}} \chi_{\rho}((a, \sigma)) & =1+\mathbf{1}\{\sigma=+1\} 8 \sum_{\ell=1}^{\frac{n-1}{2}} \cos \left(\frac{2 \pi a \ell}{n}\right) \\
& =1+4 \mathbf{1}\{\sigma=+1\}[n \mathbf{1}\{a=0\}-1]
\end{aligned}
$$

Note that for fixed $x, y \in E$, the equation $(a, \sigma) x=y$ has two solutions $(a, \sigma)=$ $(y-x,+1)$ and $(a, \sigma)=(y+x,-1)$. In particular, if (a, σ) solves this equation and (b, τ) solves the equation $(b, \tau) u=v$ for fixed $u, v \in E$, then the possible values of $(b, \tau)(a, \sigma)^{-1}$ are of the form $\left(v-\tau^{\prime} u-\tau^{\prime} y+\sigma^{\prime} \tau^{\prime} x, \sigma^{\prime} \tau^{\prime}\right)$ where σ^{\prime} and τ^{\prime} both range over \mathbb{Z}_{2}. It follows from some straightforward manipulations that the quantity appearing on the right-hand of condition (1.2) is

$$
\begin{aligned}
& \frac{1}{4 n^{2}} \sum_{w=0}^{n-1} \sum_{k=0}^{n-1}[(P(w,-x+y+w+k)+P(w,-x-y-w+k) \\
& \quad+P(w, x-y-w+k)+P(w, x+y+w+k)] \\
& \quad+\frac{(n-1)}{n^{2}} \sum_{w=0}^{n-1}[(P(w,-x+y+w)+P(w,-x-y-w))] \\
& \quad-\frac{1}{n^{2}} \sum_{w=0}^{n-1} \sum_{k=1}^{n-1}[P(w,-x+y+w+k)+P(w,-x-y-w+k)] \\
& =\frac{1}{n} \sum_{w=0}^{n-1}[P(w,-x+y+w)+P(w,-x-y-w)]-\frac{1}{n}
\end{aligned}
$$

Similarly, the first term in the quantity on the right-hand side of condition (1.3) is, writing $\varphi=(a, \sigma)$,

$$
\begin{aligned}
\frac{1}{2 n} & +\frac{n-1}{n^{2}} \sum_{w=0}^{n-1} P(w, \sigma a+\sigma w)-\frac{1}{n^{2}} \sum_{w=0}^{n-1} \sum_{k=1}^{n-1} P(w, \sigma a+\sigma w+k) \\
& =\frac{1}{n} \sum_{w=0}^{n-1} P(w, \sigma a+\sigma w)-\frac{1}{2 n} .
\end{aligned}
$$

Lastly, the second term in the quantity on the right-hand side of condition (1.3) is, again writing $\varphi=(a, \sigma)$,

$$
\frac{\sigma}{2 n} \sum_{k=0}^{n-1}[h((k,+1))-h((k,-1))] .
$$

A consequence of this last observation is that if Q^{\prime} and $Q^{\prime \prime}$ are two liftings of the same transition matrix P, then there exists a constant c such that $Q^{\prime}((b, \tau))=$ $Q^{\prime \prime}((b, \tau))+\tau c$ for all $(b, \tau) \in \Gamma$.

Acknowledgment: The author thanks Persi Diaconis, Vaughan Jones, and an anonymous referee for helpful comments.

References

[Bir46] Garrett Birkhoff. Three observations on linear algebra. Univ. Nac. Tucumán. Revista A., 5:147-151, 1946.
[Dav79] Philip J. Davis. Circulant matrices. John Wiley \& Sons, New York-Chichester-Brisbane, 1979. A Wiley-Interscience Publication, Pure and Applied Mathematics.
[Dia88] Persi Diaconis. Group representations in probability and statistics. Institute of Mathematical Statistics, Hayward, CA, 1988.
[DS87] Persi Diaconis and Mehrdad Shahshahani. Time to reach stationarity in the BernoulliLaplace diffusion model. SIAM J. Math. Anal., 18(1):208-218, 1987.
[HJ90] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, 1990. Corrected reprint of the 1985 original.
[Ker99] Adalbert Kerber. Applied finite group actions. Springer-Verlag, Berlin, second edition, 1999.
[Meh77] M. L. Mehta. Elements of matrix theory. Hindustan Publishing Corp., Delhi, 1977.
[Pad95] Manfred Padberg. Linear optimization and extensions, volume 12 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 1995.
[Sim96] Barry Simon. Representations of finite and compact groups, volume 10 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1996.
E-mail address: evans@stat.Berkeley.EDU
Department of Statistics \#3860, University of California at Berkeley, 367 Evans Hall, Berkeley, CA 94720-3860, U.S.A

[^0]: Date: June 10, 2003.
 2000 Mathematics Subject Classification. 60J10, 60G50, 60B99, 20 B 99.
 Key words and phrases. doubly stochastic, Markov function, singular value decomposition, generalised inverse, representation, character, 2-transitive group, dihedral group.

 Research supported in part by NSF grant DMS-0071468 and a research professorship from the Miller Institute for Basic Research in Science.

