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Abstract

Independent component analysis (ICA) has been widely used in separating hidden
sources from observed linear mixtures in many fields such as brain imaging analysis, sig-
nal processing, telecommunication. Many statistical techniques based on M-estimates
have been proposed in estimating the mixing matrix. Recently a few methods based on
nonparametric tools are also available. However, in-dept analysis on the convergence
rate and asymptotic efficiency has not been available. In this paper we analyze ICA un-
der the framework of semiparametric theories [see Bickel, Klaassen, Ritov and Wellner
(1993)] and propose a straightforword estimate based on the efficient score function by
using B-spline approximations. This estimate exhibits better performance than star-
dard ICA methods in a variety of simulations. It is proved that this estimate is Fisher
efficient under moderate conditions.

1. Introduction. Independent component analysis (ICA) aims to separate blind sources
from their observed linear mixtures without any prior knowledge, where blind sources are
assumed to be mutually independent. This technique has been widely used in the past decade
to extract useful features from observed data in many fields such as brain imaging analysis,
signal processing, telecommunication. Hyvarinen, Karhunen and Oja (2001) described many
effective applications of ICA in different fields. For example the ICA method was shown
able to separate artifacts from magnetoencephalography (MEG) data, without modelling
the process that generated the artifacts, by Vigario, Jousmaki, Hamalainen, Hari and Oja
(1998).

The standard ICA models am×1 random vectorX (e.g., instantaneous magnetoencepha-
logical image) by linear mixtures of m mutually independent random variables (S1, · · · , Sm)
(e.g., artifacts, other brain activities), but each Si’s distribution is totally unknown. That
is, for S = (S1, · · · , Sm)T and some m×m matrix θ,

X = θS. (1)

Here θ is called the mixing matrix, assumed nonsingular. Given n independent observations
(X1, · · · , Xn) from the distribution of X, it is desirable to estimate θ and thus to separate
each Si = (θ−1X)i. This is also called blind separation in engineering. Let W = θ−1 (called
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the demixing matrix). Then the aim is equivalent to find a W such as S = WX has mutually
independent components. This can be seen as a projection pursuit problem in seeking for m
directions such that the corresponding projections are most mutually independent.

The model (1) is in fact a special form of a linear structure whose characterization
properties have been well studied by Kagan, Linnik and Rao (1973). Comon (1993) showed
that θ (W ) is identifiable up to scaling and permutation of its columns (rows) iff at most one
of Sis is normal. Note that each random variable involved is assumed to be nondegenerate.
To illustrate the identifiability invariance to scaling and permutation, suppose S = WX has
mutually independent components. Then for a permutation or nonsingular diagonal matrix
B, T = (BW )X also has mutually independent components. So to identify W uniquely, it
is necessary to define an order and scale for either W ’s rows or S’s components. The model
(1) can be seen as a standard semiparametric model with parameters (W, r1, · · · , rm), where
ri parameterizes Si’s density/mass function and (W, r1, · · · , rm) satisfies some identifiability
conditions. In this paper, W is the parameter of interest and r = (r1, · · · , rm)T is the nuisance
parameter. (Note that a math-bold notation stands for a function matrix or vector in this
paper.)

Since ICA was motivated by neurophysiological problems in the early 1980s [e.g., Hy-
varinen, Karhunen and Oja (2001)], there have been many methods proposed to estimate
W . Most of them are based on estimating equations deduced from some contrast func-
tions, such as MLE [e.g., Pham and Garrat (1997) and Lee, Girolami and Sejnowski (1999)],
minimizing mutual information of WX [e.g., Comon (1994)] by parametrizing each Si’s
distribution finitely, minimizing higher-order correlation between WX’s components [e.g.,
Cardoso (1999)], and maximizing the non-gaussianity of WX’s components [e.g., Hyvari-
nen (1999)]. Amari (2002) formally demonstrated that to achieve the information bound
in this situation, estimates had to be based on methods which estimated the densities of
the sources and hence that no estimating equation method could be efficient. In fact it
can even be shown [Cardoso (1998)] that for any fixed estimating equation corresponding to
maximizing an objective function, there is a possible distribution of sources for which the
global maximizer which is a solution of the estimating equation is inconsistent! Recently,
some nonparametric methods to estimate W have appeared. For example, Bach and Jordan
(2002) proposed: i) To reduce the dimension of the data using a kernel representation; ii)
To choose W so as to minimize the empirical generalized variance between the components
of the vector obtained by applying W to the data. Hastie and Tibshirani (2002) proposed
maximizing the penalized likelihood as a function of (W, r1, · · · , rm). Various performance
analyses have been made using simulations. But in-depth analysis of the convergence rate
and the potential for asymptotic efficiency has to our knowledge not yet been carried out.
The construction of Fisher efficient estimates is our concern in this paper. We develop a
Fisher efficient estimator by using a sieve profile likelihood technique. This estimator is
produced by starting an algorithm at a consistent point. An estimate based on comparison
of characteristic functions (CHFICA) first proposed by Eriksson, Kankainen and Koivunen
(2001) and studied by us elsewhere is used both theoretically and in our simulations for this
purpose. (CHFICA has been shown to be consistent under identifiability conditions and
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to be
√
n consistent under further mild conditions [Chen & Bickel (2003)]. Samarov and

Tsybakov (2002) have also proposed a
√
n consistent estimate.)

In the following, we analyze the ICA model (1) under the framework of semiparametric
models [see, e.g., Bickel, Klaassen, Ritov and Wellner (1993)] and propose a new method of
estimating W using the efficient score function, as developed in Section 2. Numerical studies
are given in Section 3. Asymptotic properties are studied in Section 4. Section 5 and Section
6 contain the technical details.

In this paper, W denotes a m×m matrix, Wi and Wij denote the ith row and the (i, j)th

element of W separately, and |W | =
√

tr(W TW ). The supscript T denotes the transpose of
a matrix or vector.

2. Semiparametric inference.

2.1. Some notation. Let WP be one of the nonsingular demixing matrices such that
S = WPX has m mutually independent components. Without loss of generality, we may
assume that det(WP ) > 0. For any row vector w ∈ Rm, we use fw as the probability density
function of wX and define its logarithmic derivative φw by

φw(t) = − 1

fw(t)

∂fw(t)

∂t
I(fw(t) > 0).

Let v = wW−1
P . Then wX = vS. If vk 6= 0 for some k ∈ {1, · · · ,m}, then

fw(t) =

∫

Rm−1

1

vk
rk(

t− ∑

j 6=k vjsj

vk
)
∏

j 6=k

rj(sj)dsj

= E[
1

vk

rk(
t− ∑

j 6=k vjSj

vk

)]. (2)

Since fw(t) is a marginal density function of (vS, Sj : 1 ≤ j 6= k ≤ m), by a standard
formula [see, e.g., Bickel and Doksum (2001)]

φw(t) = −E[
∂

∂t
log(rk(

t− ∑

j 6=k vjSj

vk
))|vS = t]

=
1

vk

E[φk(Sk)|vS = t]. (3)

2.2. Efficient score function of W . As it is mentioned earlier, in the model (1) the order
and scaling of either W ’s rows or S’s components need to be defined for the identifiability
of W . Here we assume that each Si has absolute median 1 to control the scaling ambiguity,
i.e.,

med(|Si|) = 1 or 2

∫

|s|≤1

ri(s)ds = 1. (4)

Even after this choice, the correct demixing matrix requires 2mm! choices due to sign changes
and row permutations. This ambiguity can be resolved in many different ways, but we need
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not strictly specify this since we assume in this paper that we have at hand a raw consistent
starting value for WP . We use Chen and Bickel (2003)’s estimate of W obtained by using
empirical characteristic functions which is consistent under identifiability conditions and

√
n

consistent under mild additional regularity conditions. Define k(s) = 2I(|s| ≤ 1)− 1, where
I(.) is an indicator function. Then (4) is equivalent to

∫

Si=WiX

k(Si)dP(W,r) = 0.

By parametrizing the model (1) with (W, r1, · · · , rm), the likelihood function of X can
be expressed as pX(x) = | det(W )|

∏m
i=1 ri(Wix). In the following we heuristically calcu-

late the efficient score function of W under the framework of semiparametric theory [see
Bickel, Klaassen, Ritov and Wellner (1993)]. For simplicity, we assume E[Si] = 0. For the
convenience of notation, let S = WX and E be the expectation operator under P(W,r).

Let φi = − r′i
ri

and define Φ by Φ(s) = (φ1(s1), · · · , φm(sm))T . Then the score function of

W , l̇W (x) = ∂
∂W

log(pX(x)), is equal to

l̇W (x) = (Im×m − Φ(s)sT )W−T , where s = Wx.

From this, the minimal regularity conditions for talking about effecient estimation are that
each ri should be absolutely continuous, W nonsingular, and

E[φi(Si)
2] < ∞ and E[S2

i ] <∞. (5)

The tangent space of the nuisance score of ri can be expressed as

TSi = {hi(Wix) ∈ L2(P(W,r))|E[hi(Si)] = 0, E[hi(Si)Si] = 0, E[hi(Si)k(Si)] = 0}.

Notice that these tangent spaces are perpendicular to each other since Sis are mutually
independent. The efficient score of W can then be expressed as

e(.;W,Φ) = l̇W −
m

∑

i=1

π(l̇W |TSi),

where π(.|L) denotes the projection operator in the Hilbert space L2(P(W,r)) onto L. After
some calculation we find that the efficient score e(.;W,Φ) is equal to

e(x;W,Φ) = MW−T , (6)

where M is a m×m function matrix and its elements are given by

Mij = −φi(Wix)Wjx, for 1 ≤ i 6= j ≤ m, (7)

Mii = αiWix + βik(Wix), for i = 1, · · · ,m, (8)
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and α = (α1, · · · , αm)T , β = (β1, · · · , βm)T , σ2 = (σ2
1, · · · , σ2

m)T are defined by

αi = −(1 − ui)vi

σ2
i − v2

i

, βi =
(1 − ui)σ

2
i

σ2
i − v2

i

, σ2
i = E[S2

i ], (9)

vi = E[2SiI(|Si| ≤ 1)], ui = E[2SiφiI(|Si| ≤ 1)]. (10)

(Note: Most of these formulas appear in Amari and Cardoso (1997).) By the convolution
theorem on semiparametric models [Bickel, Klaassen, Ritov and Wellner (1993)], the
information bound for regular estimators of W is (E[e(X;W,Φ)T e(X;W,Φ)])−1, where
e(.;W,Φ) is considered as a column vector function, reshaped row by row. By Theorem
7.8.1 in Bickel, Klaassen, Ritov and Wellner (1993), a one-step MLE will be efficient if
there is available a

√
n consistent initial value of W and e(.;W,Φ) can be estimated. But

the requirement of a
√
n consistent initial estimate limits a direct implementation of the

one-step MLE.

2.3. Estimating a density score function by B-spline approximations. Let φ = − r′

r
be the

score of a density function r. An approximation of φ by a member of an N -dim linear space
G with differentiable basis functions B = (B1, · · · , BN )T , is to minimize, over β ∈ RN ,

c(β) =

∫

R

(φ(s) − βT
B(s))2r(s)ds.

This can be been as a variant of Cox (1985)’s penalized estimator of φ [see, e.g., Jin (1992)].
Notice that by partial integration,

c(β) = βTEr[B
T
B]β − 2βTEr[B

′] + Er[φ
2],

where Er is the expectation operator under the probability measure r(s)ds. Thus the optimal
β is βφ = (Er[B

T
B])−1Er[B

′] and the best approximation of φ in G in the sense of mean
square error is φG = βT

φ B. Given n random observations from the density function r, βφ can
be estimated by combinations of empirical moments. So a natural estimate of φ is given by

φ̂G = β̂T
φ B, where β̂φ = (Êr[B

T
B])−1Êr[B

′], (11)

and Êr denotes the empirical mean operator corresponding to Er.
B-spline basis functions because of nice properties such as smoothness are popular choices

for G. For example, to construct N quadratic B-splines, we may choose N + 3 inner points
with an equal interim distance δn = (bn − bn)/(N + 2) or N + 3 empirical quantiles in a
working interval [bn, bn] ⊆ supp(r). To choose bn and bn empirically, we may use for example
1% and 99% empirical quantiles. The basic rule for adaptation is that [bn, bn] → supp(r) very
slowly as n → ∞. The dimension number N is an empirical smoothing parameter, which
can be dealt with as usual by cross validation. Jin (1992) used B-spline basis functions for
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G and thoroughly studied the adaptive choice of N ; To be precise, under weak conditions on
r’s smoothness, a good adaptive choice of N by cross-validation is

N = O(nδ), where 0 < δ <
1

6
,

and δ depends on the tail property of r. The advantages of this estimator are its explicit
form and its easy implementation with small computational load O(n1+δ).

2.4. Estimation of W . Assume that an available starting estimate W
(0)
n is consistent for

WP . Following MLE, a plausible efficient estimate of W would be to solve its efficient score
equation

∫

e(X;W,Φ)dPn(X) = 0, where Φ needs to be replaced by a good approximation.
Alternatively, we use the sieve profile likelihood technique [e.g., Murphy and Van der Vaart
(2000) and Fan and Wong (2000)], that is, to find a path ΦW (possibly depending on some
sieve parameters) indexed by W such that the path ΦW (approximately) passes Φ at WP ,
and then to solve

∫

e(X;W,ΦW )dPn(X) = 0. The critical issue is that the approximated
efficient score function along this path must be

√
n unbiased at WP [Bickel & Ritov (2000)].

The following gives a way to construct the sieves and the path ΦW for W close to WP .
Choose a sequence of positive constants δn with δn ↓ 0. For each k ∈ {1, · · · ,m}, let

[bnk, bnk] ⊆ supp(rk) such that for some positive constants c1 and c2,

rk(t) ≥ c1δn for t ∈ [bnk, bnk], rk(t) ≤ c2δn for t ∈ [bnk, bnk]
c. (12)

This is always possible for large n when rk is absolutely continuous and can be obtained by
using the initial consistent estimate W

(0)
n . As ESk = 0 by assumption, we have bnk < 0 < bnk

for large n. Thus we may fix zero as one of the knots. Let us fix a k ∈ {1, · · · ,m}. Set the
knots for the estimation of φk as

[bnk/δn]δn, · · · ,−δn, 0, δn, · · · , [bnk/δn]δn

and denote them sequentially by

ξ
(k)
0 < ξ

(k)
1 < · · · < ξ

(k)
nk+3,

where nk = [bnk/δn] − [bnk/δn] − 3 and [t] denotes the largest integer no more than t for
t ∈ R. Using these knots sequentially, define the third-order (quadratic) B-splines as
follows: for i = 0, · · · , nk (dropping the superscript k in ξ(k) henceforth)

B
(k)
ni (x) =

(x− ξi)
2

2δ2
n

I(ξi < x ≤ ξi+1) + (
(x− ξi+1)(ξi+2 − x)

δ2
n

+
1

2
)I(ξi+1 < x ≤ ξi+2)

+
(ξi+3 − x)2

2δ2
n

I(ξi+2 < x ≤ ξi+3).

Then let

B
(k)
n = (B

(k)
n0 , B

(k)
n1 , · · · , B(k)

nnk
)T .
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Note that here the superscript B(k) does not mean kth order derivative, instead we will use
B′, B′′ to denote their first and second order pointwise derivatives separately, similarly for
B’s. B-splines have derivatives and nice smoothness properties [see, e.g., De Boor (1978)
and Hansen, Huang, Kooperberg, Stone and Truong (2001)].

Let

G(k)
n = {aT

B
(k)
n : a ∈ Rnk+1}.

Then for any m×m matrix W , we use (11) to estimate φWk
in G(k)

n for k = 1, · · · ,m, that
is,

φ̂Wk
= (A−1

n Dn)T
B

(k)
n (.), (13)

where An =
∫

B
(k)
n (WkX)B

(k)
n (WkX)TdPn and Dn =

∫

(B
(k)
n )′(WkX)dPn.

Φ̂W = (φ̂W1 , · · · , φ̂Wm
)T .

For the use of later proofs, define

φ̂Wk
= (A−1D)T

B
(k)
n (.), (14)

where A =
∫

B
(k)
n (WkX)B

(k)
n (WkX)TdP and D =

∫

(B
(k)
n )′(WkX)dP .

Now we replace the efficient score function e(X;W,Φ) defined in (6) by its profile form
e(X;W, Φ̂W ), where αi, βi, σ

2
i defined in (9)-(10) are estimated by moments with plugged-in

parameters (W, Φ̂W ). Denote their estimates by α̂i, β̂i, σ̂
2
i separately. Thus

α̂i = −(1 − ûi)v̂i

σ̂2
i − v̂2

i

, β̂i =
(1 − ûi)σ̂

2
i

σ̂2
i − v̂2

i

, σ̂2
i =

∫

(WiX)2dPn, (15)

where

ûi =

∫

Y =WiX

2Y φ̂Wi
(Y )I(|Y | ≤ 1)dPn, v̂i =

∫

Y =WiX

2Y I(|Y | ≤ 1)dPn.

Define en(W ) =
∫

e(X;W, Φ̂W )dPn and e(W ) =
∫

e(X;W,ΦW )dP .

Let Ŵn be the solution of

en(W ) = 0. (16)

We use the Newton-Rapson iteration method to solve this equation with the starting value
W

(0)
n . That is, Ŵn is the limit of the iteration sequence
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W (j+1)
n = W (j)

n − ėn(W (j)
n )−en(W (j)

n ), j = 0, 1, · · · (17)

where ėn is a super matrix with [ėn]ij,kl = ∂
∂Wkl

[en(W )]ij . Here we use the m×m matrix en

as a column vector and define the its partial derivative matrix ėn correspondingly of
dimension m2 ×m2. But notice that Φ̂W is also a function of W . For the convergence of
Newton-Rapson algorithm, the initial value needs to be close to the truth. Fortunately, it
is not hard to get a consistent estimate for ICA model. For example, CHFICA [Chen &
Bickel (2003)] is consistent in general and

√
n consistent when hidden components have

finite variances. The convergence and asymptotic properties are analyzed in Section 4. Call
Ŵn the SPMLE.

3. Numerical studies. We do two groups of experiments to test the empirical perfor-
mance of the SPMLE. We generate data from known source distributions listed in Table 0
and then obtain linear mixtures of them by a known mixing matrix θ = W−1

P .
In the first group of experiments, we use 2 hidden components, and WP = [2, 1; 2, 3].

The two components in the first 12 experiments are i.i.d from one of the distributions [1]-
[12], and the two components in experiments 13-15 are independent but are from different
distributions given in one of cases [13]-[15] in Table 0 separately. Each of these experiments
has been replicated 400 times.

In the second group of experiments, we increase the number m of hidden components to
4, 8 and 12 separately and the sample sizes are increased sequentially (the detailed setup of
the sample sizes and replication times is given in Table 2). The m hidden components are
chosen in order from the first m source distributions of [0], [1], · · ·, [11] in Table 0, and WP

is the m×m identity matrix.
Comparisons are made with three existing ICA algorithms: the FastICA algorithm [Hy-

varinen & Oja (1997)], the JadeICA algorithm [Cardoso (1999)], and the KernelICA-Kgv
algorithm [Bach & Jordan (2002)]. To obtain an initial estimated value of the demixing
matrix for the SPMLE, in the first group of experiments, we use the Monte-Carlo version of
CHFICA (Mc-ICA) [Chen & Bickel (2003)], while in the second group, we use the KernelICA-
Kgv algorithm. The performance of each algorithm is measured by the so-called Amari error
d(Ŵ ,WP ) [Amari, Cichocki & Yang (1996)]:

d(V,W ) =
1

2m

m
∑

i=1

(

∑m
j=1 |aij |

maxj|aij |
− 1) +

1

2m

m
∑

j=1

(

∑m
i=1 |aij|

maxi|aij|
− 1),

where V,W are rescaled into V̄ , W̄ separately such that each row of V̄ and W̄ has norm 1,
and aij = (V̄ W̄−1)ij. It is noticed that d(V,W ) is invariant to permutation and scaling of
the rows of V and W , is always between 0 and (m − 1), and is equal to zero if and only if
V and W represent the same row components.

Table 1 and Table 2 provide the simulation results of the two groups of experiments
separately. Table 0 lists all the source distributions used in the simulations.
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pdfs Fast Jade Kgv Mc SPMLE Fast Jade Kgv Mc SPMLE
1 57 44 16 20 11 48 29 14 16 8
2 53 44 36 45 32 23 23 28 41 21
3 38 34 16 18 8 34 23 13 14 6
4 80 63 68 75 48 54 44 39 39 30
5 117 86 109 121 85 54 44 69 73 42
6 44 35 15 19 10 35 25 11 14 6
7 59 48 17 20 13 37 33 13 15 9
8 65 50 17 20 14 45 36 13 16 11
9 53 38 15 18 7 30 25 10 13 5
10 85 68 33 55 49 60 52 22 35 34
11 48 36 28 35 44 34 26 16 22 30
12 85 58 49 61 71 48 36 31 32 33
13 61 60 17 24 17 41 41 11 18 10
14 62 62 17 26 17 43 43 12 19 8
15 49 38 17 20 9 36 26 11 14 6

Table 1: Reporting the medians of the Amari errors (multiplied by 1000) for two components ICA

with 1000 samples(left) and 2000 samples(right) in 400 replications

Table 0: Source distributions used in the simulations

_________________________________________________________________

[0]. N(0,1) [8]. exp.(1)+ U(0,1)

[1]. exp.(1) [9]. mixture exp.

[2]. t(3) [10]. mixture of exp. and normal

[3]. lognormal(1,1) [11]. mixture Gaussians: multimodal

[4]. t(5) [12]. mixture Gaussians: unimodal

[5]. logistic(0,1) [13]. exp.(1) vs normal(0,1)

[6]. Weibull(3,1) [14]. lognormal(1,1) vs normal(0,1)

[7]. exp.(10)+normal(0,1) [15]. Weibull(3,1) vs exp(1)

_________________________________________________________________

As we can see from the simulation results, the SPMLE has the smallest Amari errors in
most experiments except in cases that all the sources are mixture Gaussians which decay
rapidly in the tails. This can be explained by two facts: First, the KernelICA-Kgv itself is
very accurate as shown in Bach & Jordan (2002), especially when hidden sources have rapid
decaying densities; Second, the efficiency of the SPMLE is in the sense of large sample size.

4. Asymptotic properties. Suppose that there exists εn with εn → 0 ,
√
nεn → ∞

such that as n→ ∞ ,

P (|W (0)
n −WP | ≤ εn) → 1. (18)
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m N #repl Fast Jade Kgv SPMLE
4 1000 100 146 135 62 58

4000 100 85 77 31 27
8 2000 50 455 430 205 162

4000 50 322 305 138 114
12 4000 25 515 492 385 250

Table 2: Reporting the medians of the Amari errors (multiplied by 1000) for m components with N

samples: m components are first m pdfs in the source list

Let

Ωn = {W ∈ Rm×m : |W −WP | < εn}.

Here is our main theorem. (Let ULLN denote the Uniform Law of Large Numbers [e.g.,
Van der Geer (2000)].)

Theorem 1. In the ICA model (1), if (18) and the following conditions are satisfied for
i, j, k = 1, · · · ,m, i 6= k and j 6= k :

[i]. E[Sk] = 0, E[S2
k ] <∞, med(|Sk|) = 1 and E(φk(Sk))

2 <∞ ;

[ii]. |rk|∞ <∞, |r′k|∞ <∞, supt∈R|tr′k(t)| <∞;

[iii]. WP is nonsingular;

[iv]. εnδ
− 9

2
n n

1
2
k = o(1), εn(bnk − bnk) = o(1) and [bnk, bnk] satisfies (12);

[v]. supW∈Ωn
|φ′′′

Wk,n|∞δn = o(1);

[vi]. ULLN holds for {φWk
(WkX)Xi : W ∈ Ωn} and for {φ′

Wk
(WkX)WiXXj : W ∈ Ωn}.

Then Ŵn defined by (25) exists and satisfies

√
n(Ŵn −WP ) = I−1

eff

√
n

∫

e(X;WP ,ΦP )dPn + oP (1), (19)

where Ieff =
∫

e(X;WP ,ΦP )e(X;WP ,ΦP )TdP , that is, Ŵn is Fisher efficient. (Note: (19)
is considered in a vector form.)

Remark: Condition [i] assumes that each hidden component has a finite variance and
finite Fisher information, together with mean zero and absolute median of 1, where absolute
median of 1 is for rescaling so that the demixing matrix may be uniquely identified [Comon
(1994)]. It should be clear that the zero mean assumption is in no way crucial to the general
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argument as the mean can be estimated adaptively, but serves to keep algebraic complication
to a minimum; Condition [ii] assumes that the score function φk of each hidden component
is smooth enough to make its B-spline approximation well behaved; Condition [iv] requires
that the initial value be consistent or reasonably close to the truth and that the domain
and the number of knots of the B splines do not grow so quickly that we lose control of
the approximation to ΦW . [v]&[vi] looks complicated but are not strong. (For example, if
φk(t)

t
= O(1) and φ′

k(t) = O(1) as t → ∞ or −∞, then by (3) φWk
is bounded by a linear

form of X and φW ′
k

is bounded from infinity, thus [vi] holds.)

5. Some technical details. The estimator defined by (16)-(17) can be viewed as
a generalized M-estimators (GM-estimator). The convergence and asymptotic linearity of
GM-estimators have been studied in Bickel, Klaassen, Ritov and Wellner (1993). Define this
citation as BKRW and use it thereafter. Suppose that Mn(θ, Pn) is a functional of θ ∈ Ω (a
subset of a finite Euclidean space) and Pn, but is not necessarily linear with Pn. The subscript
n in Mn allows the existence of a possible smoothing or sieve parameter dependent on n.
The zero of Mn(θ, Pn) w.r.t θ is called a generalized M-estimator. Let M(θ, P ) = M∞(θ, P ).

Theorem 2 [Bkrw] (Asymptotic linearity properties of GM-estimator) Let θ̂n

solve Mn(θ, Pn) = op(n
−1/2). Let Vn(θ) =

√
n(Mn(θ, Pn) −M(θ, P )). If the following

conditions hold:

[GM0]. M(θP , P ) = 0 and θP ∈ Ω is the unique solution of M(θ, P ) = 0 in Ω.

[GM1]. for any εn → 0, sup||θ−θP ||≤εn
|Vn(θ) − Vn(θP )|/(1 +

√
n||θ − θP ||) = op(1);

[GM2]. Mn(θP , Pn) =
∫

ψθP
(X)dPn + op(n

−1/2) for some ψθP
∈ L2(P );

[GM3]. M(θ, P ) is differentiable w.r.t θ in a neighbourhood of θP and ∂M(θ,P )
∂θ

|θP
is

nonsingular;

[GM4]. ||θ̂n − θP || = oP (1).

Then,
√
n(θ̂n − θP ) = −√

n[∂M(θP ,P
∂θ

]−1
∫

ψθP
(X)dPn + op(1).

We will prove these are true for our SPMLE under the conditions of Theorem 1 by using
the Iteration Theorem in Bickel, Klaassen, Ritov and Wellner (1993). Let Mn(θ, Pn) =
en(W ). Note that en(W ) is a nonlinear functional of Pn and the sieve parameters include
δn, bnk, bnk for k ∈ {1, · · · ,m}. But instead of (GM1), we use the following stronger condition:

[U]. supW∈Ωn
|ėn(W ) − ė(WP )| = oP (1).

Theorem 3 [Bkrw]. Suppose (GM0),(GM2),(GM3) with Mn(θ, Pn) = en(W ) and (U)

hold. If the starting point satisfies P (|W (0)
n −WP | < εn) → 1, then with probability

converging to 1, en(W ) in (16) has a unique root W
(∞)
n in Ωn, and W

(∞)
n is asymptotically

linear with the influence function −E[ė(X;WP ,ΦP )]−1e(.;WP ,ΦP ).
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Theorem 3 is called the Iteration Theorem. It is obvious that (GM0) holds under the
conditions of Theorem 1 as it is the efficient score function. The following propositions 1, 2
and 3 verify (GM2), (GM3) and (U) separately, which thus proves the convergence and
asymptotic linearity of the SPMLE. Futher, for the efficient score function, we have that

−E[ė(X;WP ,ΦP )] = E[e(X;WP ,ΦP )e(X;WP ,ΦP )T ] = Ieff ,

thus the SPMLE is asymptotic efficient in the setup of BKRW’s Fisher efficiency.

6. Proposition 1-3. The following table lists all the notations used in the proofs, for
k ∈ {1, · · · ,m}, W ∈ Ωn:

————————————————————————————————————

P, Pn population, empirical law of X given IID copies (X (1), · · · , X(n))

W,Wk,Wij m×m matrix, its kth row vector, its (i, j) element

WP ,WPk,WPij m×m matrix (truth for P ), its kth row, its (i, j) element

rk density function of the kth hidden component Sk(= WPkX)

φk = −r′k/rk score function of the kth hidden component Sk(= WPkX)

ΦP = (φ1, · · · , φm)T function vectors

fWk
density function of WkX (fWPk

≡ rk)

φWk
= −f ′

Wk
/fWk

score function of WkX (φWPk
≡ φk)

ΦW = (φW1 , · · · , φWm
)T function vector

B
(k)
n = (B

(k)
n0 , · · · , B

(k)
nnk)

T B spline functions defined on [bnk, bnk] with interim distance δn

An(Wk) =
∫

Y =WkX
B

(k)
n (Y )B

(k)T
n (Y )dPn in coefficients of φ̂Wk

Dn(Wk) =
∫

(B
(k)
n )′(WkX)dPn in coefficients of φ̂Wk

γn(Wk) = An(Wk)
−1Dn(Wk) coefficients of φ̂Wk

A(Wk) =
∫

Y =WkX
B

(k)
n (Y )B

(k)T
n (Y )dP in coefficients of φ̂Wk

D(Wk) =
∫

(B
(k)
n )′(WkX)dP in coefficients of φ̂Wk

γ(Wk) = A(Wk)
−1D(Wk) coefficients of φ̂Wk

G(k)
n = {aT

B
(k)
n : a ∈ Rnk} closed linear span of B spline functions

12



φ̂Wk
= γn(Wk)

T
B

(k)
n estimator of φWk

in G(k)
n , defined in (13)

φ̂Wk
= γ(Wk)

T
B

(k)
n estimator of φWk

in G(k)
n , defined in (14)

φk,n, φWk,n truncation of φk, φWk
on [bnk, bnk]

e(X;W,Φ) efficient score function of W , defined in (6)

e(W ) =
∫

e(X;W,ΦW )dP expectation

en(W ) =
∫

e(X;W, Φ̂W )dPn empirical expectation

——————————————————————————————————

It is noted that all the lemmas used in this section are provided and proved in Appendix A.

Proposition 1. Under the conditions Theorem 1,
en(WP ) =

∫

e(x;WP ,ΦP )dPn + oP (n−1/2).

Proof: It is sufficient to show that for 1 ≤ i 6= j ≤ m, α̂i − αi = oP (1), β̂i − βi = oP (1),
where (αi, βi) and (α̂i, β̂i) are defined in (9) and (15) separately, and

∫

φ̂WPi
(Si)SjdPn =

∫

φWPi
(Si)SjdPn + oP (n−1/2), (20)

where Si = WPiX, Sj = WPjX.

The first two are not hard to be verified by the Central Limit Theorem and Lemma 10.
Here we just show the last argument (20). Observing that

|
∫

φ̂WPi
(Si)SjdPn −

∫

φWPi
(Si)SjdPn| = |

∫

[φ̂WPi
(Si) − φ̂WPi

(Si)]SjdPn|

+|
∫

[φ̂WPi
(Si) − φi,n(Si)]SjdPn|

+|
∫

(φi(Si) − φi,n(Si))SjdPn|

= [1] + [2] + [3].

In the following, we show that all of [1], [2] and [3] are oP (n−1/2).

First,

[1] = |
∫

(A−1
n (WPi)Dn(WPi) − A−1(WPi)D(WPi))

T
B

(i)
n (Si)SjdPn|

≤ ||A−1
n Dn − A−1D||2||

∫

B
(i)
n (Si)SjdPn||2

= εnδ
−4
n

√

ni log ni

n
OP (1)OP (n−1/2)

= oP (n−1/2),

where the rate equality is from Lemma 4 and Lemma 6 in Appendix A.
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Further, E([2])2 = 1
n
E(φ̂WPi

(Si) − φWPi,n(Si))
2E(S2

j ). By Lemma 9 in Appendix A,

|φ̂WPi
− φWPi,n|∞ ≤ cδ2

n|φ′′′
WPi,n

|∞, thus

[2] = n−1/2δ2
n|φ′′′

WPi,n
|∞OP (1) = oP (n−1/2).

For [3], since P (Si /∈ [bni, bni]) → 0, we have

E([3])2 =
1

n
E(φi(Si)

2I(Si ∈ [bni, bni]
c))E(S2

j ) = o(
1

n
).

So [3] = oP (n−1/2). �

Proposition 2. Under condition [i] & [iii] in Theorem 1, ∂e(W )
∂W

|WP
is nonsingular and

e(W ) is differential w.r.t W in a neighbourhood of WP .

Proof. By the classical likelihood theory, we have

−∂e(W )

∂W
|WP

= E[e(X;WP ,ΦP )e(X;WP ,ΦP )T ], (21)

and arguments of e(.;WP ,ΦP ) are linearly independent, so the first claim holds. The
second claim holds as all terms in e(W ) are differentiable. �

Proposition 3. Under the conditions of Theorem 1, for k = 1, · · · ,m, we have

supΩn
|
∫

φ̂Wi
(WiX)XkdPn(X) −

∫

φPi(WPiX)XkdP | = oP (1), (22)

and

supΩn
|
∫

∂

∂Wi

[φ̂Wi
(WiX)]WjXdPn(X) −

∫

∂

∂Wi

[φPi(WiX)]WPi
WPjXdP | = oP (1).(23)

That is, condition [U] for theorem 3 holds.

Proof. Notice that ( dropping superscript (i) in B
(i)
n henceforth)

||
∫

B
(i)
n (WiX)XkdPn||22 =

ni
∑

l=0

(

∫

Bnl(WiX)XkdPn)2

≤ ||Xk||2Pn

∫ ni
∑

l=0

B2
nl(WiX)dPn

≤ 3||Xk||2Pn
, where ||Xk||2Pn

=

∫

|Xk|2dPn.
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Then

supΩn
||

∫

Bn(WiX)XkdPn||2 = OP (1). (24)

And by Lemma 4 in Appendix A, (dropping Wk for simplicity),
supΩn

||A−1
n Dn − A−1D||2 = oP (1), so

supΩn
|
∫

φ̂Wi
(WiX)XkdPn(X) −

∫

φ̂Wi
(WiX)XkdPn|

= supΩn
|(A−1

n Dn − A−1D)T

∫

Bn(WiX)XkdPn|

≤ supΩn
||A−1

n Dn − A−1D||2supΩn
||

∫

Bn(WiX)XkdPn||2
= oP (1) (25)

Further, by Lemma 9, supΩn
|φ̂Wi

(WiX) − φWi,n|∞ ≤ supΩn
c|φ′′′

Wi,n
|∞δ2

n = o(1), then

supΩn
|
∫

φ̂Wi
(WiX)XkdPn(X) −

∫

φWi,n(WiX)XkdPn|

≤ supΩn
|φ′′′

Wi,n
|∞δ2

n

∫

|Xk|Pn

= oP (1). (26)

And by Condition [vi], ULLN holds for {φWi
(WiX)Xk : W ∈ Ωn}, and by Lemma 1

supΩn
P (WiX /∈ [bni, bni]) = o(1), then

supΩn
|
∫

(φWi
− φWi,n)(WiX)XkdPn| = supΩn

|
∫

φWi
(WiX)XkI(WiX /∈ [bni, bni])dPn|

= oP (1). (27)

From (24)-(27), we get

supΩn
|
∫

φ̂Wi
(WiX)XkdPn(X) −

∫

φWi
(WiX)XkdPn(X)| = oP (1). (28)

Now by the condition [vi],

supΩn
|
∫

φWi
(WiX)Xkd(Pn − P )| = oP (1); (29)

And by continuity,

supΩn
|
∫

φWi
(WiX)XkdP −

∫

φWPi
(WPiX)XkdP | = o(1). (30)

Then (22) follows from (28)-(30).
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In the following, we prove the second one.

Since φ̂Wi
(WiX) = γT

n (Wi)Bn(WiX), where γn(Wi) = A−1
n (Wi)Dn(Wi). Thus

∂

∂Wi

φ̂Wi
(WiX) =

∂

∂Wi

[γT
n (Wi)]Bn(WiX) + φ̂′

Wi
(WiX)X. (31)

It is enough to show that the following [4]&[5] hold:

[4]. supΩn
|
∫

φ̂′
Wi

(WiX)XkWjXdPn(X) −
∫

φ′
Pi(WPiX)XkWPjXdP | = oP (1);

[5]. supΩn
|
∫

∂
∂Wi

[γT
n (Wi)]Bn(WiX)WjXdPn(X)| = oP (1).

Let’s first show [4].

By Lemma 4 in Appendix A and the condition [iv], we have (dropping Wi)

supΩn
|φ̂′

Wi
− φ̂

′

Wi
|∞ = supΩn

|(A−1
n Dn − A−1D)T [B(i)

n ]′|∞
≤ supΩn

||A−1
n Dn − A−1D||2δ−1

n

= δ
− 7

2
n

√

ni log ni/nOP (1)

= oP (1), (32)

so

supΩn
|
∫

[φ̂′
Wi

− φ̂
′

Wi
]XkWjXdPn|

≤ supΩn
|φ̂′

Wi
− φ̂

′

Wi
|∞2

∫

||X||22dPn

= oP (1). (33)

By Lemma 9, |φ̂
′

Wi
− φ′

Wi,n
|∞ ≤ c|φ′′′

Wi,n
|∞δn = oP (1), then

supΩn
|
∫

[φ̂
′

Wi
(WiX) − φ′

Wi,n
(WiX)]XkWjXdPn|

≤ supΩn
c|φ′′′

Wi,n
|∞δn

∫

||X||22Pn

= oP (1). (by Condition [v]) (34)

Furthermore, by Condition [vi], ULLN holds for {φ′
Wk

(WkX)WiXXj : W ∈ Ωn}, and by

Lemma 1, supΩn
P (WiX /∈ [bni, bni]) = o(1), then

supΩn
|
∫

φ′
Wi

(WiX)I(WiX /∈ [bni, bni])XkWjXdPn| = oP (1); (35)
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From Condition [vi],

supΩn
|
∫

φ′
Wi

(WiX)XkWjXd(Pn − P )| = oP (1). (36)

From (33)-(36) we have

supΩn
|
∫

φ̂′
Wi

(WiX)XkWjXdPn(X) −
∫

φ′
Wi

(WiX)XkWjXdP | = oP (1). (37)

By continuity,

supΩn
|
∫

φ′
Wi

(WiX)XkWjXdP − φ′
WPi

(WPiX)XkWPjXdP | = o(1). (38)

Then [4] follows from (37)&(38).

In [5],

(LHS)k ≤ supΩn
||( ∂

∂Wi

γn(Wi))k||2supΩn
||

∫

B
(i)
n (WiX)WjXdPn||2. (39)

By Lemma 7, supΩn
||

∫

B
(i)
n (WiX)WjXdPn||2 = Op(εnδ

−1
n ). Thus it is enough to show that

supΩn
||( ∂

∂Wi
γn(Wi))k||2εnδ

−1
n = oP (1). (40)

By taking partial derivatives,

∂

∂Wik
γn(Wi) =

∂

∂Wik
A−1

n (Wi)Dn(Wi) + A−1
n (Wi)

∂

∂Wik
Dn(Wi),

and

∂

∂Wik
A−1

n (Wi) = −A−1
n

∂

∂Wik
An(Wi)A

−1
n .

Then

∂

∂Wik
γn(Wi) = −A−1

n

∂

∂Wik
An(Wi)γn(Wi) + A−1

n (Wi)
∂

∂Wik
Dn(Wi).

Now by Lemma 2-5 in Appendix A, we get

supΩn
|| ∂

∂Wik

γn(Wi)||2 ≤ supΩn
||A−1

n ||2(||
∂

∂Wik

An(Wi)||2||γn(Wi)||2 + || ∂

∂Wik

Dn(Wi)||2)

= Op(δ
−2
n ){Op(δ

− 1
2

n )Op(δ
−1
n

√
ni) + δ−2

n Op(1)}
= δ

− 7
2

n
√
niOP (1).

Provided that εnδ
− 9

2
n n

1
2
i = o(1) in Condition [iv], (40) holds. Thus we have in [5]

(LHS)k = oP (1) for k = 1, · · · ,m. �
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APPENDIX

Some lemmas and their proofs used in Proposition 1-3. In this section, we provide
and prove all the lemmas used in the proof of Propositon 1-3. Note that for each φk, we
has constructed a sequence of sieves G(k)

n using B
(k)
n = (B

(k)
n0 , · · · , B

(k)
nnk)

T and a class of

estimates φ̂Wk
∈ G(k)

n and φ̂Wk
∈ G(k)

n for φWk
with W ∈ Ωnaccording to (13) and (14),

where φWk
is given in (3). By assumption, S = WPX, where S = (S1, · · · , Sm)T has

independent components and X = (X1, · · · , Xm)T . In the following c will denote a constant
(only dependent on the population law P ), but its exact value may vary in different places
(even in a line) without clarifying.

If x ∈ Rm is a column vector, |x| ≡ ||x||2 =
√
xTx.

If A is a m×m real matrix, ||A||1 = max1≤i≤m||Ai||2, ||A||2 = maxx∈Rm,|x|=1|Ax|,
|A| =

√

tr(ATA).

Let Ω
(k)
n = {Wk : W ∈ Ωn} for k = 1, · · · ,m.

For w ∈ Ω
(k)
n , recall the definition of φ̂w = [A

(k)
n (w)−1D

(k)
n (w)]′B

(k)
n and

φ̂w = [A(k)(w)−1D(k)(w)]′B
(k)
n , where A

(k)
n (w) =

∫

[B
(k)
n (wX)][B

(k)
n (wX)]TdPn,

A(k)(w) =
∫

[B
(k)
n (wX)][B

(k)
n (wX)]TdP , D

(k)
n (w) =

∫

(B
(k)
n )′(wX)dPn and

D(k)(w) =
∫

(B
(k)
n )′(wX)dP . In the following, we often drop the superscript k and the

argument w in B
(k)
n , A

(k)
n (w), D

(k)
n (w), A(k)(w),D(k)(w) whenever possible.

The following Lemma 1-10 hold under the conditions of Theorem 1.

Lemma 1. sup
w∈Ω

(k)
n
|fw|∞ <∞, sup

w∈Ω
(k)
n
|f ′

w|∞ <∞, sup
w∈Ω

(k)
n
mint∈[bnk,bnk]fw(t) ≥ cδn,

and sup
w∈Ω

(k)
n
P (wX /∈ [bni, bni]) = o(1).

Proof. Remember that mint∈[bnk,bnk]rk(t) ≥ cδn. For any w ∈ Ω
(k)
n , |w −WPk| ≤ εn . Let

v = wW−1
P , then |vj | → 0 for 1 ≤ j 6= k ≤ m and |vk − 1| → 0 as n→ ∞. Fix a

t ∈ [bnk, bnk].

Since fw(t) = E[ 1
vk
rk(

t−
∑

j 6=k vjSj

vk
)], consider the right hand side as a function (say h) of v.

By the first order Taylor expansion,

|fw(t) − rk(t)| ≤ εn||W−1
P ||2{

m
∑

j=1

max
w∈Ω

(k)
n
| ∂
∂vj

h(v)|} ≤ cεn = o(δn),

where by direct calculation, | ∂
∂vj
h(v)| is uniformly bounded with w ∈ Ω

(k)
n . Thus

sup
w∈Ω

(k)
n
mint∈[bnk,bnk]fw(t) ≥ cδn and sup

w∈Ω
(k)
n
|fw|∞ <∞.
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Further, sup
w∈Ω

(k)
n
|f ′

w|∞ <∞ follows from |r′k|∞ <∞.

Finally,

P (wX ∈ [bni, bni]) =

∫

[bnk,bnk]

fw(t)dt

≥
∫

[bnk,bnk]

(rk(t) − cεn)dt

= P (Sk ∈ [bnk, bnk]) − cεn(bnk − bnk).

Since εn(bnk − bnk) = o(1) and P (Sk ∈ [bnk, bnk]) ↑ 1, thus

inf
w∈Ω

(k)
n
P (wX ∈ [bni, bni]) ≥ P (Sk ∈ [bnk, bnk]) − cεn(bnk − bnk) → 1.

�

Lemma 2. sup
w∈Ω

(k)
n
||D(w)||2 ≤ c

√
nkδn; cδ2

n ≤ eig(A(w)) ≤ cδn for w ∈ Ω
(k)
n .

Proof. Notice that D(w) = (D0(w), · · · , Dnk
(w))T and by direct calculation we have

|Di(w)| = |
∫ 1

0

t(fw(ξi + δnt) − fw(ξi+1 + δnt) + fw(ξi+2 − δnt) − fw(ξi+3 − δnt))dt|

≤ |f ′
w|∞δn

where the inequality is by the mean value theorem. So the first result holds. By Lemma
5.1 in Jin (1992), cδnmint∈[bnk,bnk]fw(t) ≤ eig(A(w)) ≤ cδnmaxt∈[bnk,bnk]fw(t), thus

cδ2
n ≤ eig(A(w)) ≤ cδn. �

Lemma 3. sup
w∈Ω

(k)
n
||Dn(w) −D(w)||2 =

√

nk log nk

nδn
OP (1);

sup
w∈Ω

(k)
n
||An(w) − A(w)||2 =

√

δn log nk

n
OP (1).

Proof.

Pr(sup
w∈Ω

(k)
n
||Dn(w) −D(w)||2 ≥ t) = Pr(sup

W∈Ω
(k)
n
||

∫

B
′
n(wX)d(Pn − P )||2 ≥ t)

≤
nk
∑

i=0

Pr(sup
w∈Ω

(k)
n
|
∫

B′
n,i(wX)d(Pn − P )| ≥ t√

nk + 1
).

By calculating the generalized bracketing entropy [see, e.g., Van de Geer (2000)] with the
facts that |B′

n,i| ≤ δ−1
n , |B′′

n,i| ≤ δ−2
n ,

HB,δ−1
n

(u, {B′
n,i(wx) : w ∈ Ω(k)

n }, P ) ≤ cm log(εnδ
−2
n /u), 0 < u < εnδ

−2
n .
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Then using Theorem 5.11 in Van Der Geer (2000) , we have for
√

nk

nδn
≤ t ≤ √

nk,

Pr(supw∈Ω|
∫

B′
n,i(wX)d(Pn − P )| ≥ t/

√
nk + 1) ≤ exp(−cnt2δn/nk).

So Pr(sup
w∈Ω

(k)
n
||Dn(w) −D(w)||2 ≥ t) ≤ (nk + 1) exp(−cnt2δn/nk).

Thus

sup
Ω

(k)
n
||Dn −D||2 = Op(

√

nk log nk

nδn
).

Similarly we get

sup
Ω

(k)
n
||An − A||2 ≤ sup

Ω
(k)
n
||An − A||1 = Op(

√

δn log nk/n).

(Notice the fact that at most 7 elements in each row of An − A are nonzero).�

Lemma 4. sup
w∈Ω

(k)
n
|Dn(w)| = Op(δn

√
nk), supw∈Ω

(k)
n
|A−1

n (w)Dn(w)| = Op(
√
nk/δn), and

sup
Ω

(k)
n
||A−1

n (w)Dn(w) − A−1(w)D(w)||2 = δ
− 5

2
n

√

nk log nk

n
OP (1).

Proof. The first result directly follows from Lemma 2 and 3.

The following proves the second and third results.

Since A−1
n = (A+ An − A)−1 = A−1(I − (An − A)A−1)−1, and by Lemma 2 and 3

sup
W∈Ω

(k)
n
||An − A||2||A−1||2 = op(1),

then

sup
w∈Ω

(k)
n
||A−1

n ||2 ≤ sup
w∈Ω

(k)
n

||A−1||2(1 − ||An − A||2||A−1||2)−1 = δ−2
n OP (1).

(Here we use the inequality of matrix norm ||(I +N)−1||2 ≤ (1 − ||N ||2)−1for a square
matrix N with ||N ||2 < 1, where I is the identity matrix.) Thus
sup

w∈Ω
(k)
n
|A−1

n (w)Dn(w)| = Op(
√
nk/δn).

For the last one, by Lemma 2 and 3, we have

sup
w∈Ω

(k)
n
||A−1

n Dn − A−1D||2
≤ sup

w∈Ω
(k)
n
||A−1(Dn −D) − A−1

n (An − A)A−1Dn||2
≤ sup

Ω
(k)
n
{||A−1||2||Dn −D||2} + sup

Ω
(k)
n
{||An − A||2||Dn||2||A−1||22}(1 + op(1))

= Op(δ
−2
n )Op(

√

nk log nk

nδn
) +Op(

√

δn log nk

n
)Op(δn

√
nk)Op(δ

−4
n )

= Op(δ
− 5

2
n

√

nk log nk

n
).

�
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Lemma 5. sup
Ω

(i)
n
|| ∂

∂wk
An(w)||2 = OP (δ

− 1
2

n ), sup
Ω

(i)
n
|| ∂

∂wk
Dn(w)||2 = OP (δ−2

n ) for
i, k = 1, · · · ,m.

Proof. First notice that (dropping (i)in B
(i)
n )

∂

∂wk

An(w) =

∫

(BnB
′T
n + B

′
nB

T
n )(wX)XkdPn

has less than 7ni nonzero elements since [BnB
′T
n ]jl = 0 for 0 ≤ j, l ≤ ni with |j − l| > 3. By

the Cauchy-Schwartz inequality,

|
∫

[BnB
′T
n + B

′
nB

T
n ]jl(wX)XkdPn| ≤

√

∫

(BnjB′
nk +B′

njBnk)(wX)dPn

√

∫

X2
kdPn.

Following the proof in Lemma 3 using the generalized bracketing entropy, we have

sup0≤j,l≤ni,|j−l|≤3supw∈Ω
(i)
n

∫

(BnjB
′
nl +B′

njBnl)
2(wX)d(Pn − P ) = op(1).

Further from Lemma 1, we have sup
w∈Ω

(i)
n

∫

(BnjB
′
nl +B′

njBnl)
2(wX)dP ≤ cδ−1

n .

So sup
Ω

(i)
n
|| ∂

∂wk
An(w)||2 ≤ sup

Ω
(i)
n
|| ∂

∂wk
An(w)||1 = Op(δ

− 1
2

n ).

For the second result, since ∂
∂wk

Dn(w) =
∫

B
′′
n(wX)XkdPn, we have

|| ∂

∂wk

Dn(w)||2 ≤
√

∫

|Xk|2dPn

√

√

√

√

∫ nk
∑

l=0

(B′′
nl)

2(wX)dPn

≤
√

∫

|Xk|2dPn

√

∫

4δ−4
n dPn

= 2δ−2
n

√

∫

|Xk|2dPn.

�

Lemma 6. ||
∫

B
(i)
n (Si)SjdPn||2 = OP (n−1/2), where Si = WPiX, 1 ≤ i 6= j ≤ m.
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Proof. (dropping (i)in B
(i)
n , B

(i)
nk)

E(||
∫

Bn(Si)SjdPn||22) = E(

ni
∑

k=0

(

∫

Bnk(Si)SjdPn)2)

=

ni
∑

k=0

1

n2
E[

n
∑

l=1

(Bnk(S
(l)
i )S

(l)
j )2

+
∑

1≤l1 6=l2≤n

(Bnk(S
(l1)
i )S

(l1)
j )(Bnk(S

(l2)
i )S

(l2)
j )]

=

ni
∑

k=0

1

n
E(Bnk(Si)Sj)

2

=
1

n
E(

ni
∑

k=0

Bnk(Si)
2S2

j )

≤ 3

n
E(S2

j ).

�

Lemma 7. supΩn
||

∫

B
(i)
n (WiX)WjXdPn||2 = Op(εnδ

−1
n ), for 1 ≤ i 6= j ≤ m.

Proof.
∫

Bn(WiX)WjXdPn =

∫

Bn(WPiX)WPjXdPn +

∫

Bn(WiX)(Wj −WPj)XdPn

+

∫

[Bn(WiX) − Bn(WPiX)]WPjXdPn.

By Lemma 6, ||
∫

Bn(WPiX)WPjXdPn||2 = OP (n−1/2). And

||
∫

Bn(WiX)(Wj −WPj)XdPn||2 ≤ ||
∫

Bn(WiX)|X|dPn||2|Wj −WPj|

≤ εn

√

√

√

√

ni
∑

k=0

(

∫

Bnk(WiX)|X|dPn)2

≤ εn

√

√

√

√

∫

|X|2dPn

∫ ni
∑

k=0

B2
nk(WiX)dPn

≤ εn

√

3

∫

|X|2dPn.

Further,

||
∫

[Bn(WiX) − Bn(WPiX)]WPjXdPn||2

22



≤ ||
∫

[Bn(WiX) − Bn(WPiX)]WPjXdPn||2

=

√

√

√

√

ni
∑

k=0

(

∫

[Bnk(WiX) −Bnk(WPiX)]WPjXdPn)2

≤

√

√

√

√

∫

|WPjX|2dPn

∫ ni
∑

k=0

(Bnk(WiX) −Bnk(WPiX))2dPn

≤ δ−1
n εn||WPjX||2,Pn

√

3

∫

|X|2dPn.

Thus

supΩn
||

∫

Bn(WiX)WjXdPn||2 = Op(n
−1/2) +OP (εn) +OP (δ−1

n εn).

�

Lemma 8. E(φ̂Wi
(WiX)−φWi,n(WiX))2 ≤ δ6

n|φ′′′
Wi,n

|2∞.

Proof. Since for any h ∈ Gn,

E(φ̂Wi
(WiX) − φWi,n(WiX))2 ≤ E(h(WiX) − φWi,n(WiX))2,

then

E(φ̂Wi
(WiX) − φWi,n(WiX))2 ≤ d(φWi,n,Gn)2,

where d(φWi,n,Gn) = infh∈Gn
|φWi,n − h|∞.

Now the result follows by the Jackson type theorem [De Boor (1978)],

d(φWi,n,Gn) ≤ cδ3
n|φ′′′

Wi,n
|∞.

�

Lemma 9. |φ̂Wi
− φWi,n|∞ ≤ cδ2

n|φ′′′
Wi,n

|∞; |φ̂
′

Wi
− φ′

Wi,n
|∞ ≤ c|φ′′′

Wi,n
|∞δn.

Proof. By Theorem XII.4 of De Boor (1978), there exists a quasi-interpolant with some
a ∈ Rni+1,

˜̂
φWi

(t) = aT
B

(i)
n (t),

such that
˜̂
φWi

simultaneously approximates φWi,n and its first derivative to optimal order,
that is

|˜̂φWi
− φWi,n|∞ = c|φ′′′

Wi,n
|∞δ3

n

and

|˜̂φ
′

Wi
− φ′

Wi,n
|∞ = c|φ′′′

Wi,n
|∞δ2

n.
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So

E(
˜̂
φWi

(WiX) − φWi,n(WiX))2 ≤ c|φ′′′
Wi,n

|2∞δ6
n.

Together with Lemma 8, we have

E(φ̂Wi
− ˜̂
φWi

)2 ≤ E(
˜̂
φWi

− φWi,n)2 + E(φ̂Wi
− φWi,n)2 ≤ c|φ′′′

Wi,n
|2∞δ6

n.

Let coef(
˜̂
φWi

), coef(φ̂Wi
) be coefficients of B

(i)
n in

˜̂
φWi

and φ̂Wi
separately, then

E(φ̂Wi
− ˜̂
φWi

)2 = E((coef(
˜̂
φWi

) − coef(φ̂Wi
))T

B
(i)
n )2 ≥ λn||coef(

˜̂
φWi

) − coef(φ̂Wi
)||22,

where λn is the minimum eigenvalue of A(Wi) = E[B
(i)
n (WiX)B

(i)
n (WiX)T ]. By Lemma 2,

λn ≥ cδ2
n.

Thus

||coef(
˜̂
φWi

) − coef(φ̂Wi
)||22 ≤ c|φ′′′

Wi,n
|∞δ2

n.

and

|φ̂Wi
− ˜̂
φWi

|∞ ≤ ||coef(
˜̂
φWi

) − coef(φ̂Wi
)||2 ≤ c|φ′′′

Wi,n
|∞δ2

n.

So

supΩn
|φ̂Wi

− φWi,n| ≤ supΩn
c|φ′′′

Wi,n
|∞δ2

n.

Further by observing |(B(i)
nk)

′|∞ ≤ δ−1
n , we have

|φ̂
′

Wi
− ˜̂
φ
′

Wi
|∞ ≤ ||coef(

˜̂
φWi

) − coef(φ̂Wi
)||2δ−1

n ≤ c|φ′′′
Wi,n

|∞δn.

Thus

|φ̂
′

Wi
− φ′

Wi,n
|∞ ≤ |˜̂φ

′

Wi
− φ′

Wi,n
|∞ + |φ̂

′

Wi
− ˜̂
φ
′

Wi
|∞ ≤ c|φ′′′

Wi,n
|∞δn.

�

Lemma 10.
∫

(φ̂WPk
(Sk) − φk(Sk))

2dPn = op(1).
Proof. Observe that
∫

(φ̂WPk
(Sk) − φk(Sk))

2dPn ≤ 3{
∫

(φ̂WPk
(Sk) − φ̂WPk

(Sk))
2dPn +

∫

(φ̂WPk
(Sk) − φk,n(Sk))

2dPn

+

∫

φk(Sk)
2I(Sk ∈ [bnk, bnk]

c)dPn}.
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First, (dropping WPk in An(WPk), Dn(WPk), A(WPk), D(WPk)), by Lemma 4, ||A−1
n Dn −

A−1D||2 = op(1), and by Lemma 2 and Lemma 3, ||An||2 ≤ ||An −A||2 + ||A||2 = op(1), then
∫

(φ̂WPk
(Sk) − φ̂WPk

(Sk))
2dPn =

∫

[(A−1
n Dn − A−1D)T

B
(k)
n (Sk)]

2dPn

≤ ||A−1
n Dn − A−1D||22||An||2

= op(1).

By Lemma 9, |φ̂WPk
−φk,n|∞ = o(1), then

∫

(φ̂WPk
(Sk)−φk,n(Sk))

2dPn = op(1). Further since

P (Sk ∈ [bnk, bnk]
c) ↓ 0,

∫

φk(Sk)
2I(Sk ∈ [bnk, bnk]

c)dPn = op(1). Hence the result follows.
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