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Abstract

We review the basis for inferring causation by statistical modeling. Parameters should be stable
under interventions, and so should error distributions. There are also statistical conditions on the
errors. Stability is difficult to establish a priori, and the statistical conditions are equally problematic.
Therefore, causal relationships are seldom to be inferred from a data set by running statistical
algorithms, unless there is substantial prior knowledge about the mechanisms that generated the
data. We begin with linear models (regression analysis) and then turn to graphical models, which
may in principle be non-linear.

Introduction

Regression models are often used to infer causation from association. For instance,Yule (1899)
showed—or tried to show—that welfare was a cause of poverty. Path models and structural equation
models are later refinements of the technique. Besides Yule, examples to be discussed here include
Blau and Duncan (1967) on stratification, as well as Gibson (1988) on the causes of McCarthyism.
Strong assumptions are required to infer causation from association by modeling. The assumptions
are of two kinds: (i) causal, and (ii) statistical. These assumptions will be formulated explicitly,
with the help of response schedules in hypothetical experiments. In particular, parameters and error
distributions must be stable under intervention. That will be hard to demonstrate in observational
settings. Statistical conditions (like independence) are also problematic, and latent variables create
further complexities. Inferring causation by regression analysis will be the primary topic. Graphical
models will be considered briefly. The issues are not simple, so examining them from several
perspectives may be helpful. The article ends with a review of the literature and a summary.

Regression models in social science

Legendre (1805) and Gauss (1809) developed regression to fit data on orbits of astronomical
objects. The relevant variables were known from Newtonian mechanics, and so were the functional
forms of the equations connecting them. Measurement could be done with great precision, and much
was known about the nature of errors in the measurements and in the equations. Furthermore, there
was ample opportunity for comparing predictions to reality. By the turn of the century, investigators
were using regression on social science data where such conditions did not hold, even to a rough
approximation. Yule (1899) was a pioneer. At the time, paupers in England were supported either
inside grim Victorian institutions called “poor-houses” or outside, according to decisions made by
local authorities. Did policy choices affect the number of paupers? To study this question, Yule
proposed a regression equation,

(1) �Paup = a + b × �Out + c × �Old + d × �Pop + error.

In this equation,
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� is percentage change over time,
Paup is the number of Paupers
Out is the out-relief ratio N/D,

N = number on welfare outside the poor-house,
D = number inside,

Old is the population over 65,
Pop is the population.

Data are from the English Censuses of 1871, 1881, 1891. There are two �’s, one each for 1871–81
and 1881–91.

Relief policy was determined separately in each “union,” a small geographical area like a
parish. At the time, there were about 600 unions, and Yule divides them into four kinds: rural,
mixed, urban, metropolitan. There are 4 × 2 = 8 equations, one for each type of union and time
period. Yule fits each equation to data by least squares. That is, he determines a, b, c, and d by
minimizing the sum of squared errors,∑ (

�Paup − a − b × �Out − c × �Old − d × �Pop
)2
.

The sum is taken over all unions of a given type in a given time period—which assumes, in essence,
that coefficients are constant within each combination of geography and time. For example, consider
the metropolitan unions. Fitting the equation to the data for 1871–81, Yule gets

�Paup = 13.19 + 0.755�Out − 0.022�Old − 0.322�Pop + error.(2)

For 1881–91, his equation is

�Paup = 1.36 + 0.324�Out + 1.37�Old − 0.369�Pop + error.(3)

The coefficient of �Out being relatively large and positive, Yule concludes that outrelief causes
poverty.

Table 1 has the ratio of 1881 data to 1871 data for Pauperism, Outrelief ratio, Proportion of
Old, and Population. If we subtract 100 from each entry, column 1 gives �Paup in equation (2).
Columns 2, 3, 4 give the other variables. For Kensington (the first union in the table),

�Out = 5 − 100 = −95, �Old = 104 − 100 = 4, �Pop = 136 − 100 = 36.

The predicted value for �Paup from (2) is therefore

13.19 + 0.755 × (−95) − 0.022 × 4 − 0.322 × 36 = −70.

The actual value for �Paup is −73, so the error is −3. Other lines in the table are handled in a
similar way. As noted above, coefficients were chosen to minimize the sum of the squared errors.

Quetelet (1835) wanted to uncover “social physics”—the laws of human behavior—by using
statistical technique:

“In giving my work the title of Social Physics, I have had no other aim than to collect, in a
uniform order, the phenomena affecting man, nearly as physical science brings together the
phenomena appertaining to the material world. . . . in a given state of society, resting under the
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influence of certain causes, regular effects are produced, which oscillate, as it were, around a
fixed mean point, without undergoing any sensible alterations. . . .

“This study. . .has too many attractions—it is connected on too many sides with every branch
of science, and all the most interesting questions in philosophy—to be long without zealous
observers, who will endeavour to carry it further and further, and bring it more and more to
the appearance of a science.”

Table 1. Pauperism, Outrelief ratio, Proportion of Old, Population. Ratio of 1881 data
to 1871 data, times 100. Metropolitan Unions, England. Yule (1899, Table XIX).

Paup Out Old Pop

Kensington 27 5 104 136
Paddington 47 12 115 111
Fulham 31 21 85 174
Chelsea 64 21 81 124
St. George’s 46 18 113 96
Westminster 52 27 105 91
Marylebone 81 36 100 97
St. John, Hampstead 61 39 103 141
St. Pancras 61 35 101 107
Islington 59 35 101 132
Hackney 33 22 91 150
St. Giles’ 76 30 103 85
Strand 64 27 97 81
Holborn 79 33 95 93
City 79 64 113 68
Shoreditch 52 21 108 100
Bethnal Green 46 19 102 106
Whitechapel 35 6 93 93
St. George’s East 37 6 98 98
Stepney 34 10 87 101
Mile End 43 15 102 113
Poplar 37 20 102 135
St. Saviour’s 52 22 100 111
St. Olave’s 57 32 102 110
Lambeth 57 38 99 122
Wandsworth 23 18 91 168
Camberwell 30 14 83 168
Greenwich 55 37 94 131
Lewisham 41 24 100 142
Woolwich 76 20 119 110
Croydon 38 29 101 142
West Ham 38 49 86 203

Yule is using regression to infer the social physics of poverty. But this is not so easily to be done.
Confounding is one issue. According to Pigou (a leading welfare economist ofYule’s era), parishes
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with more efficient administrations were building poor-houses and reducing poverty. Efficiency of
administration is then a confounder, influencing both the presumed cause and its effect. Economics
may be another confounder. Yule occasionally tries to control for this, using the rate of population
change as a proxy for economic growth. Generally, however, he pays little attention to economics.
The explanation: “A good deal of time and labour was spent in making trial of this idea, but the
results proved unsatisfactory, and finally the measure was abandoned altogether. [p. 253]”

The form of Yule’s equation is somewhat arbitrary, and the coefficients are not consistent over
time and space. This is not necessarily fatal. However, unless the coefficients have some existence
apart from the data, how can they predict the results of interventions that would change the data?
The distinction between parameters and estimates runs throughout statistical theory; the discussion
of response schedules, below, may sharpen the point.

There are other interpretive problems. At best, Yule has established association. Conditional
on the covariates, there is a positive association between �Paup and �Out. Is this association
causal? If so, which way do the causal arrows point? For instance, a parish may choose not to build
poor-houses in response to a short-term increase in the number of paupers. Then pauperism is the
cause and out-relief the effect. Likewise, the number of paupers in one area may well be affected
by relief policy in neighboring areas. Such issues are not resolved by the data analysis. Instead,
answers are assumed a priori. Although he was busily parceling out changes in pauperism—so much
is due to changes in out-relief ratios, so much to changes in other variables, so much to random
effects—Yule was aware of the difficulties. With one deft footnote (number 25), he withdrew all
causal claims: “Strictly speaking, for ‘due to’ read ‘associated with.’ ”

Figure 1. Yule’s Model. Metropolitan Unions, 1871–81.

∆Paup

∆Old∆Out ∆Pop

*** ***

Yule’s approach is strikingly modern, except there is no causal diagram with stars indicating
statistical significance. Figure 1 brings him up to date. The arrow from �Out to �Paup indicates
that �Out is included in the regression equation that explains �Paup. Three asterisks mark a
high degree of statistical significance. The idea is that a statistically significant coefficient must
differ from zero. Thus, �Out has a causal influence on �Paup. By contrast, a coefficient that
lacks statistical significance is thought to be zero. If so, �Old would not exert a causal influence
on �Paup.

The reasoning is seldom made explicit, and difficulties are frequently overlooked. Statistical
assumptions are needed to determine significance from the data. Even if significance can be
determined and the null hypothesis rejected or accepted, there is a deeper problem. To make causal
inferences, it must be assumed that equations are stable under proposed interventions. Verifying
such assumptions—without making the interventions—is problematic. On the other hand, if the
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coefficients and error terms change when variables are manipulated, the equation has only a limited
utility for predicting the results of interventions.

Social stratification

Blau and Duncan (1967) are thinking about the stratification process in the US. According to
Marxists of the time, the US is a highly stratified society. Status is determined by family background,
and transmitted through the school system. Blau and Duncan present cross-tabs (in their Chapter 2)
to show that the system is far from deterministic, although family background variables do influence
status. The US has a permeable social structure, with many opportunities to succeed or fail. Blau
and Duncan go on to develop the path model shown in Figure 2, in order to answer questions like
these:

“how and to what degree do the circumstances of birth condition subsequent status? how does
status attained (whether by ascription or achievement) at one stage of the life cycle affect the
prospects for a subsequent stage?”

The five variables in the diagram are father’s education and occupation, son’s education, son’s
first job, and son’s occupation. Data come from a special supplement to the March 1962 Current
Population Survey. The respondents are the sons (age 20–64), who answer questions about current
jobs, first jobs, and parents. There are 20,000 respondents. Education is measured on a scale from
0 to 8, where 0 means no schooling, 1 means 1–4 years of schooling, and so forth; 8 means some
post-graduate education. Occupation is measured on Duncan’s prestige scale from 0 to 96. The
scale takes into account income, education, and raters’ opinions of job prestige. Hucksters are at
the bottom of the ladder, with clergy in the middle, and judges at the top.

Figure 2. Path model. Stratification, US, 1962.
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Y is SONS’ OCC
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How is Figure 2 to be read? The diagram unpacks to three regression equations:

U = aV + bX + δ,(4)

W = cU + dX + ε,(5)

Y = eUi + fX + gW + η.(6)

Parameters are estimated by least squares. Before regressions are run, variables are standardized
to have mean 0 and variance 1. That is why no intercepts are needed, and why estimates can be
computed from the correlations in Table 2.

Table 2. Correlation matrix for variables in Blau and Duncan’s path model.

Y W U X V

Sons’occ Sons’1st job Sons’ed Dads’occ Dads’ed

Y Sons’occ 1.000 .541 .596 .405 .322
W Sons’1st job .541 1.000 .538 .417 .332
U Sons’ed .596 .538 1.000 .438 .453
X Dads’occ .405 .417 .438 1.000 .516
V Dads’ed .322 .332 .453 .516 1.000

In Figure 2, the arrow from V to U indicates a causal link, and V is entered on the right hand
side in the regression equation (4) that explains U . The path coefficient .310 next to the arrow is the
estimated coefficient â ofV . The number .859 on the “free arrow” that points intoU is the estimated
standard deviation of the error term δ in (4). The other arrows are interpreted in a similar way. The
curved line joining V and X indicates association rather than causation: V and X influence each
other or are influenced by some common causes, not further analyzed in the diagram. The number
on the curved line is just the correlation between V and X (Table 2). There are three equations
because three variables in the diagram (U,W, Y ) have arrows pointing into them.

The large standard deviations in Figure 2 show the permeability of the social structure. (Since
variables are standardized, it is a little theorem that the standard deviations cannot exceed 1.) Even
if father’s education and occupation are given, as well as respondent’s education and first job, the
variation in status of current job is still large. As social physics, however, the diagram leaves
something to be desired. Why linearity? Why are the coefficients the same for everybody? What
about variables like intelligence or motivation? And where are the mothers?

The choice of variables and arrows is up to the analyst, as are the directions in which the arrows
point. Of course, some choices may fit the data less well, and some may be illogical. If the graph is
“complete”—every pair of nodes joined by an arrow—the direction of the arrows is not constrained
by the data (Freedman 1997 pp. 138, 142). Ordering the variables in time may reduce the number
of options.

If we are trying to find laws of nature that are stable under intervention, standardizing may be
a bad idea, because estimated parameters would depend on irrelevant details of the study design
(see below). Generally, the intervention idea gets muddier with standardization. Are means and
standard deviations held constant even though individual values are manipulated? On the other
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hand, standardizing might be sensible if units are meaningful only in comparative terms (e.g.,
prestige points). Standardizing may also be helpful if the meaning of units changes over time (e.g.,
years of education), while correlations are stable. With descriptive statistics for one data set, it is
really a matter of taste: do you like pounds, kilograms, or standard units? Moreover, all variables
are on the same scale after standardization, which makes it easier to compare regression coefficients.

Hooke’s law

According to Hooke’s law, stretch is proportional to weight. If weight x is hung on a spring,
the length of the spring is a + bx + ε, provided x is not too large. (Near the elastic limit of the
spring, the physics will be more complicated.) In this equation, a and b are physical constants that
depend on the spring not the weights. The parameter a is the length of the spring with no load. The
parameter b is the length added to the spring by each additional unit of weight. The ε is random
measurement error, with the usual assumptions. Experimental verification is a classroom staple.

If we were to standardize, the crucial slope parameter would depend on the weights and the
accuracy of the measurements. Let v be the variance of the weights used in the experiment, let σ 2

be the variance of ε, and let s2 be the mean square of the deviations from the fitted regression line.
The standardized regression coefficient is

(7)

√
b̂2v

b̂2v + s2
≈

√
b2v

b2v + σ 2 ,

as can be verified by examining the sample covariance matrix. Therefore, the standardized coeffi-
cient depends on v and σ 2, which are features of our measurement procedure not the spring.

Hooke’s law is an example where regression is a very useful tool. But the parameter to estimate
is b, the unstandardized regression coefficient. It is the unstandardized coefficient that says how
the spring will respond when the load is manipulated. If a regression coefficient is stable under
interventions, standardizing it is probably not a good idea, because stability gets lost in the shuffle.
That is what (7) shows. Also see Achen (1977), Blalock (1989, p. 451).

Political repression during the McCarthy era

Gibson (1988) tries to determine the causes of McCarthyism in the US. Was repression due to
the masses or the elites? He argues that elite intolerance is the root cause, the chief piece of evidence
being a path model (Figure 3, redrawn from the paper). The dependent variable is a measure of
repressive legislation in each state. The independent variables are mean tolerance scores for each
state, derived from the Stouffer survey of masses and elites. The “masses” are just respondents in a
probability sample of the population. “Elites” include school board presidents, commanders of the
American Legion, bar association presidents, labor union leaders. Data on masses were available
for 36 states; on elites, for 26 states. The two straight arrows in Figure 3 represent causal links:
mass and elite tolerance affect repression. The curved double-headed arrow in Figure 3 represents
an association between mass and elite tolerance scores. Each one can influence the other, or both
can have some common cause. The association is not analyzed in the diagram.

Gibson computes correlations from the available data, then estimates a standardized regression
equation,

Repression = β1Mass tolerance + β2Elite tolerance + δ.
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He says, “Generally, it seems that elites, not masses, were responsible for the repression of the
era. . . . The beta for mass opinion is −.06; for elite opinion, it is −.35 (significant beyond .01).”

Figure 3. Path model. The causes of McCarthyism.

–.06

–.35**

Repression

Elite
tolerance

Mass
tolerance

The paper asks an interesting question, and the data analysis has some charm too. However, as
social physics, the path model is not convincing. What hypothetical intervention is contemplated?
If none, how are regressions going to uncover causal relationships? Why are relationships among
the variables supposed to be linear? Signs apart, for example, why does a unit increase in tolerance
have the same effect on repression as a unit decrease? Are there other variables in the system? Why
are the states statistically independent? Such questions are not addressed in the paper.

McCarthy became a force in national politics around 1950. The turning point came in 1954,
with public humiliation in the Army-McCarthy hearings. Censure by the Senate followed in 1957.
Gibson scores repressive legislation over the period 1945–65, long before McCarthy mattered, and
long after. The Stouffer survey was done in 1954, when the McCarthy era was ending. The timetable
is puzzling.

Even if such issues are set aside, and we grant the statistical model, the difference in path
coefficients fails to achieve significance. Gibson finds that β̂1 is significant and β̂2 is insignificant,
but that does not impose much of a constraint on β̂1 − β̂2. (The standard error for this difference can
be computed from data generously provided in the paper.) Since β1 = β2 is a viable hypothesis,
the data are not strong enough to distinguish masses from elites.

Inferring causation by regression

Path models are often thought to be rigorous statistical engines for inferring causation from
association. Statistical techniques can be rigorous, given their assumptions. But the assumptions
are usually imposed on the data by the analyst. This is not a rigorous process, and it is rarely made
explicit. The assumptions have a causal component as well as a statistical component. It will be
easier to proceed in terms of a specific example. In Figure 4, a hypothesized causal relationship
between Y and Z is confounded by X. The free arrows leading into Y and Z are omitted.
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Figure 4. Path model. The relationship between Y and Z is confounded by X. Free
arrows leading into Y and Z are not shown.

Y Z
 

X

The diagram describes two hypothetical experiments, and an observational study where the
data are collected. The two experiments help to define the assumptions. Furthermore, the usual
statistical analysis can be understood as an effort to determine what would happen under those
assumptions if the experiments were done. Other interpretations of the analysis are not easily to
be found. The experiments will now be described.

(i) First hypothetical experiment. Treatment is applied to a subject, at level x. A response Y is
observed, corresponding to the level of treatment. There are two parameters, a and b, that describe
the response. With no treatment, the response level for each subject will be a, up to random error.
All subjects are assumed to have the same value for a. Each additional unit of treatment adds b

to the response. Again, b is the same for all subjects, at all levels of x, by assumption. Thus, if
treatment is applied at level x, the response Y is assumed to be

(8) a + bx + random error.

For Hooke’s law, x is weight and Y is length of a spring under load x. For evaluation of job training
programs, x might be hours spent in training and Y might be income during a followup period.

(ii) Second hypothetical experiment. In the second experiment, there are two treatments and
a response variable Z. There are two treatments because there are two arrows leading into Z; the
treatments are labeled X and Y (Figure 4). Both treatments may be applied to a subject. There
are three parameters, c, d, and e. With no treatment, the response level for each subject is taken to
be c, up to random error. Each additional unit of treatment #1 adds d to the response. Likewise,
each additional unit of treatment #2 adds e to the response. The constancy of parameters across
subjects and levels of treatment is an assumption. If the treatments are applied at levels x and y,
the response Z is assumed to be

(9) c + dx + ey + random error.

Three parameters are needed because it takes three parameters to specify the linear relationship (9),
namely, an intercept and two slopes. Random errors in (8) and (9) are assumed to be independent
from subject to subject, with a distribution that is constant across subjects; expectations are zero
and variances are finite. The errors in (9) are assumed to be independent of the errors in (8).
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The observational study. When using the path model in Figure 4 to analyze data from an
observational study, we assume that levels for the variable X are independent of the random errors
in the two hypothetical experiments (“exogeneity”). In effect, we pretend that Nature random-
ized subjects to levels of X for us, which obviates the need for experimental manipulation. The
exogeneity of X has a graphical representation: arrows come out of X, but no arrows lead into X.

We take the descriptions of the two experiments, including the assumptions about the response
schedules and the random errors, as background information. In particular, we take it that Nature
generates Y as if by substituting X into (8). Nature proceeds to generate Z as if by substituting X

and Y—the same Y that has just been generated from X—into (9). In short, (8) and (9) are assumed
to be the causal mechanisms that generate the observational data, namely, X, Y , and Z for each
subject. The system is “recursive,” in the sense that output from (8) is used as input to (9) but there
is no feedback from (9) to (8).

Under these assumptions, the parameters a, b can be estimated by regression of Y on X. Like-
wise, c, d, e can be estimated by regression of Z on X and Y . Moreover, these regression estimates
have legitimate causal interpretations. This is because causation is built into the background as-
sumptions, via the response schedules (8) and (9). If causation were not assumed, causation would
not be demonstrated by running the regressions.

One point of running the regressions is usually to separate out direct and indirect effects of X
on Z. The direct effect is d in (9). If X is increased by one unit with Y held fast, then Z is expected
to go up by d units. But this is shorthand for the assumed mechanism in the second experiment.
Without the thought experiments described by (8) and (9), how can Y be held constant when X is
manipulated? At a more basic level, how would manipulation get into the picture?

Another path-analytic objective is to determine the effect e of Y on Z. If Y is increased by one
unit with X held fast, then Z is expected to go up by e units. (If e = 0, then manipulating Y would
not affect Z, and Y does not cause Z after all.) Again, the interpretation depends on the thought
experiments. Otherwise, how could Y be manipulated and X held fast?

To state the model more carefully, we would index the subjects by a subscript i in the range
from 1 to n, the number of subjects. In this notation, Xi is the value of X for subject i. Similarly,
Yi and Zi are the values of Y and Z for subject i. The level of treatment #1 is denoted by x, and
Yi,x is the response for variable Y if treatment at level x is applied to subject i. Similarly, Zi,x,y

is the response for variable Z if treatment #1 at level x and treatment #2 at level y are applied to
subject i. The response schedules are to be interpreted causally:

• Yi,x is what Yi would be if Xi were set to x by intervention.
• Zi,x,y is what Zi would be if Xi were set to x and Yi were set to y by intervention.

Counterfactual statements are even licensed about the past: Yi,x is what Yi would have been, if Xi

had been set to x. Similar comments apply to Zi,x,y .
The diagram unpacks into two equations, which are more precise versions of (8) and (9), with

a subscript i for subjects. Greek letters are used for the random error terms.

Yi,x = a + bx + δi .(10)

Zi,x,y = c + dx + ey + εi .(11)

The parameters a, b, c, d, e and the error terms δi, εi are not observed. The parameters are
assumed to be the same for all subjects.
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Additional assumptions, which define the statistical component of the model, are imposed on
the error terms:

(i) δi and εi are independent of each other within each subject i.
(ii) δi and εi are independent across subjects.

(iii) The distribution of δi is constant across subjects; so is the distribution of εi .
(However, δi and εi need not have the same distribution.)

(iv) δi and εi have expectation zero and finite variance.
(v) The δ’s and ε’s are independent of the X’s.

The last is “exogeneity.”
According to the model, Nature determines the response Yi for subject i by substituting Xi

into (10):
Yi = Yi,Xi

= a + bXi + δi .

Here, Xi is the value of X for subject i, chosen for us by Nature, as if by randomization. The rest
of the response schedule—the Yi,x for other x—is not observed, and therefore stays in the realm of
counterfactual hypotheticals. After all, even in an experiment, subject i would be assigned to one
level of treatment, foreclosing the possibility of observing the response at other levels.

Similarly, we observe Zi,x,y only for x = Xi and y = Yi . The response for subject i is
determined by Nature, as if by substituting Xi and Yi into (11):

Zi = Zi,Xi,Yi = c + dXi + eYi + εi .

The rest of the response schedule, Zi,x,y for other x and y, remains unobserved. Economists call
the unobserved Yi,x and Zi,x,y “potential outcomes.” The model specifies unobservable response
schedules, not just regression equations. Notice too that a subject’s responses are determined by
levels of treatment for that subject only. Treatments applied to subject j are not relevant to subject i.
The response schedules (10) and (11) represent the causal assumptions behind the path diagram.

The conditional expectation of Y given X = x is the average of Y for subjects with X = x.
The formalism connects two very different ideas of conditional expectation: (i) finding subjects
with X = x, versus (ii) an intervention that sets X to x. The first is something you can actually do
with observational data. The second would require manipulation. The model is a compact way of
stating the assumptions that are needed to go from observational data to causal inferences.

In econometrics and cognate fields, “structural” equations describe causal relationships. The
model gives a clearer meaning to this idea, and to the idea of “stability under intervention.” The
parameters in Figure 3, for instance, are defined through the response schedules (8) and (9), sep-
arately from the data. These parameters are constant across subjects and levels of treatment (by
assumption, of course). Parameters are the same in a regime of passive observation and in a regime
of active manipulation. Similar assumptions of stability are imposed on the error distributions. In
summary, regression equations are structural, with parameters that are stable under intervention,
when the equations derive from response schedules like (10) and (11).

Path models do not infer causation from association. Instead, path models assume causation
through response schedules, and—using additional statistical assumptions—estimate causal effects
from observational data. The statistical assumptions (independence, expectation zero, constant
variance) justify estimation by ordinary least squares. With large samples, confidence intervals
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and significance tests would follow. With small samples, the errors would have to follow a normal
distribution in order to justify t-tests.

Figure 5. The path diagram as a box model.

δX ε

Y = a + b +

Z = c + d + e +

The box model in Figure 5 illustrates the statistical assumptions. Independent errors with
constant distributions are represented as draws made at random with replacement from a box of
potential errors (Freedman-Pisani-Purves 1998). Since the box remains the same from one draw
to another, the probability distribution of one draw is the same as the distribution of any other.
The distribution is constant. Furthermore, the outcome of one draw cannot affect the distribution
of another. That is independence. Verifying the causal assumptions (10) and (11), which are
about potential outcomes, is a daunting task. The statistical assumptions present difficulties of
their own. Assessing the degree to which the modeling assumptions hold is therefore problematic.
The difficulties noted earlier—in Yule on poverty, Blau and Duncan on stratification, Gibson on
McCarthyism—are systemic.

Embedded in the formalism is the conditional distribution of Y , if we were to intervene and
set the value of X. This conditional distribution is a counterfactual, at least when the study is
observational. The conditional distribution answers the question, what would have happened if we
had intervened and set X to x, rather than letting Nature take its course? The idea is best suited to
experiments or hypothetical experiments.

There are also non-manipulationist ideas of causation: the moon causes the tides, earthquakes
cause property values to go down, time heals all wounds. Time is not manipulable; neither are
earthquakes or the moon. Investigators may hope that regression equations are like laws of motion
in classical physics. (If position and momentum are given, you can determine the future of the
system and discover what would happen with different initial conditions.) Some other formalism
may be needed to make this non-manipulationist account more precise.

Latent variables

There is yet another layer of complexity when the variables in the path model remain “latent”—
unobserved. It is usually supposed that the manifest variables are related to the latent variables by
a series of regression-like equations (“measurement models”). There are numerous assumptions
about error terms, especially when likelihood techniques are used. In effect, latent variables are
reconstructed by some version of factor analysis and the path model is fitted to the results. The
scale of the latent variables is not usually identifiable, so variables are standardized to have mean 0
and variance 1. Some algorithms will infer the path diagram as well as the latents from the data,
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but there are additional assumptions that come into play. Anderson (1984) provides a rigorous
discussion of statistical inference for models with latent variables, given the requisite statistical
assumptions. He does not address the connection between the models and the phenomena. Kline
(1998) is a well-known text. Ullman and Bentler (2003) survey recent developments.

A possible conflict in terminology should be mentioned. In psychometrics and cognate fields,
“structural equation modeling” (typically, path modeling with latent variables) is sometimes used
for causal inference and sometimes to get parsimonious descriptions of covariance matrices. For
causal inference, questions of stability are central. If no causal inferences are made, stability under
intervention is hardly relevant; nor are underlying equations “structural” in the econometric sense
described earlier. The statistical assumptions (independence, distributions of error terms constant
across subjects, parametric models for error distributions) would remain on the table.

Graphical models

Yule’s equation (1) was linear: a unit increase in �Out is supposed to cause an increase of b
units in �Paup, for any value of �Out and any values of the control variables �Old and �Pop.
Similarly, the Blau and Duncan equations (4-5-6) were linear, as were equations (10-11). Linearity
is a restrictive assumption. Graphical techniques have been suggested for relaxing this assumption
and dealing with relationships that may be non-linear. Developments can only be sketched here.

In one setup, the graph is known a priori, and the issue is to achieve control of unmeasured
confounders. (Another setup, where the graph is inferred from the data, will be considered below.)
Figure 6 is an example used by Pearl (1995, pp. 675-66; 2000, pp. 81–83) to illustrate his methods.
The graph is to be taken as given. The arrows are assumed by Pearl to represent causation rather
than mere association. The variables at the nodes are governed by a joint probability distribution.
What features of this distribution correspond can be read off the graph?

Figure 6. A graphical model for smoking and lung cancer. genes are unobserved, con-
founding the relationship between smoking and lung cancer.

Smoking Tar
Deposits

Lung
Cancer

Genotype
(Unobserved)

Notice that—by assumption—there is no arrow from genes to tar deposits, or from smoking
to lung cancer. The first exclusion means that genes have no direct influence on tar deposits. In
probabilistic terms, the implication is that

P(Tar Deposits|Genes, Smoking) = P(Tar Deposits|Smoking)
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The second exclusion—no arrow from smoking to lung cancer—means that smoking affects lung
cancer risj only through the buildup of tar deposits, implying that

P(Lung Cancer|Genes, Smoking, Tar Deposits)

= P(Lung Cancer|Genes, Tar Deposits)

The probabilistic conditions are said to make the graph “Markovian.” Another key point about
the graph: genotype is unobserved, signalled by the open dot. The joint distribution of the ob-
served variables—smoking, tar deposits, and lung cancer—is taken as given. However, the joint
distribution of all four variables remains unknown, because genotype is unobserved.

Does smoking cause lung cancer? The relationship between smoking and lung cancer is
confounded by an unobserved variable. But the causal effect of smoking on lung cancer (averaged
over the various possible genotypes in the population) can be determined from the data—given
the assumptions behind Figure 6. This intriguing theorem is due to Robins (1986, 1987). It was
rediscovered by Pearl (1995) as well as Spirtes, Glymour and Scheines (1993).

What are the implications for applied work? To begin with, it is only by assumption that the
arrows in Figure 6 represent causation. Moreover, there are three special assumptions.

(i) Genes have no direct effect on tar deposits.

(ii) Smoking has no direct effect on lung cancer.

(iii) Smoking, tar deposits, and lung cancer can be measured with good accuracy.

Pearl (2000, p. 83) acknowledges making these assumptions, but there is no support for them in
the literature. (i) The lung has a mechanism—“the mucociliary escalator”—for eliminating foreign
matter, including tar. This mechanism seems to be under genetic control. (Of course, clearance
mechanisms can be overwhelmed by smoking.) The forbidden arrow from genes to tar deposits
may have a more solid empirical basis than the permitted arrows from genes to smoking and lung
cancer. Assumption (ii) is just that—an assumption. And (iii) is not plausible, especially for tar
deposits in living subjects. If arrows are permitted from genes to tar deposits or from smoking to
lung cancer, then the theory does not apply to Figure 6. If measurements are subject to large errors,
the theory does not apply either. Other examples in Pearl (1995, 2000) are equally problematic.
Graphical models cannot overcome the difficulties created by unmeasured confounders without
introducing strong and artificial assumptions.

Figure 6 addresses a question with some intellectual history. Fisher’s “constitutional hypothe-
sis” explained the association between smoking and disease on the basis of a gene that caused both.
This idea is refuted not by making assumptions but by empirical work. For example, Kaprio and
Koskenvuo (1989) present data from their twin study. The idea is to find pairs of identical twins
where one smokes and one does not. That sets up a race: who will die first, the smoker or the
non-smoker? The smokers win hands down, for total mortality or death from heart disease. The
genetic hypothesis is incompatible with these data.

For lung cancer, the smokers win both of the races that have been run. (Why only two?
Smoking-discordant twin pairs are unusual, lung cancer is a rare disease, and the population of
Scandinavia is small.) Carmelli and Page (1996) have a similar analysis with a larger cohort of
twins. Do not bet on Fisher. International Agency for Research on Cancer (1986) reviews the health
effects of smoking and indicates the difficulties in measuring tar deposits (pp.179–98). Nakachi et
al. (1993) and Shields et al. (1993) illustrate conflicts on the genetics of smoking and lung cancer.
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Also see Miller et al. (2003). Other examples in Pearl (1995, 2000) are equally unconvincing on sub-
stantive grounds. Finding the mathematical consequences of assumptions matters, but connecting
assumptions to reality matters even more. For additional detail, see Freedman (1997, 2004).

Inferring the graph from the data

Spirtes, Glymour, and Scheines (1993, 2000) and Pearl (1988) have algorithms for inferring
causal graphs from the data, if the “faithfulness” assumption is imposed. It will be easier to explain
this idea by example. Let us assume that the graphs in Figure 7 are Markovian. In the left hand panel,
Y and Z will be independent given X; moreover, X and W will be independent given Y and Z. In
the right hand panel, these independence relations will hold only for special values of the parameters
governing the joint probability distribution of the variables X, Y,Z,W . The faithfulness condition
precludes such “accidents:” the only independence relations that are permitted are independence
relations that can be read off the graph. Given the faithfulness condition, there is some theory to
determine which features of graphs can be recovered from the joint distributions of observables,
and there are statistical algorithms to implement the theory.

Figure 7. The faithfulness condition: No accidental independence
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Rather than exploring theoretical issues, it will be more helpful to consider applications.
SGS (Spirtes, Glymour, and Scheines) seem to give abundant examples to show the power of
their algorithms. However, many of the examples turn out to be simulations, where the computer
generates the data. Assumptions are satisfied by fiat, having been programmed into the computer;
questions about the real world are finessed. Many other examples relate to the health effects of
smoking. These causal diagrams are hypothetical too. No contact is made with data, and no
substantive conclusions are drawn.

SGS do use their algorithms to analyze a number of real data sets, mainly from the social-
science literature. What about those applications? Analyses were replicated for the most solid-
looking cases (Freedman, 1997; Freedman and Humphreys, 1999). The examples all turned out to
have the same texture; only one need be discussed here. Rindfuss et al. (1980) developed a model
to explain the process by which a woman decides how much education to get, and when to have
her first child. The variables in the model are defined in Table 3.

The statistical assumptions made by Rindfuss et al., let alone the conditions imposed by SGS,
may seem rather implausible if examined at all closely. Here, we focus on results. According to
SGS,
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Table 3. Variables in the model.

ED Respondent’s education
(Years of schooling completed at first marriage)

AGE Respondent’s age at first birth
DADSOCC Respondent’s father’s occupation
RACE Race of respondent (Black=1, other=0)
NOSIB Respondent’s number of siblings
FARM Farm background

(coded 1 if respondent grew up on a farm, else 0)
REGN Region where respondent grew up (South=1, other=0)
ADOLF Broken family

(coded 0 if both parents present at age 14, else 1)
REL Religion (Catholic=1, other=0)
YCIG Smoking

(coded 1 if respondent smoked before age 16, else coded 0)
FEC Fecundability

(coded 1 if respondent had a miscarriage before first birth;
else coded 0)

Figure 8. The left hand panel shows the model reported by SGS (1993, p. 140; 2000,
p. 104). The right hand panel shows the whole graph produced by the SGS algorithms.
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Given the prior information that ED and AGE are not causes of the other variables, the
PC algorithm (using the .05 significance level for tests) directly finds the model [in the
left hand panel of Figure 8] where connections among the regressors are not pictured.
[1993, p. 139; 2000, p. 103]

The main conclusion in Rindfuss et al. is that AGE does not influence ED. Apparently, the
left hand panel in Figure 8 confirms this finding, which allows SGS to claim a success for their
algorithms. However, the graph in the left hand panel is not the one actually produced by the
algorithms. The unedited graph is shown in the right hand panel. The unedited graph says, for
instance, that race and religion cause region of residence. Other peculiarities need not detain us.

The SGS algorithms are successful only if one is very selective in reading the computer output.
The difficulty seems to be this. The algorithms depend on strong and artificial assumptions, which
are unlikely to be satisfied in real applications. Graphical models are interesting, and may provide
a natural mathematical language for discussing certain philosophical issues. But these models are
unlikely to help applied workers in making valid causal inferences from observational data.

Directed Acyclic Graphs

The graphs in Figures 6-7-8 are DAGs (Directed Acyclic Graphs)—directed because each
arrow points in a certain direction, acyclic because you cannot get from a node back to itself by
following arrows. In particular, reciprocal causation is excluded by assumption. Interestingly, the
SGS algorithms do sometimes produce graphs with cycles, showing that the algorithms are not
internally consistent. For additional detail on DAGs and the SGS algorithms, see (Freedman, 1997,
2004; Freedman and Humphreys, 1996, 1999).

Literature review

There is by now an extended critical literature on statistical models, starting perhaps with
the exchange between Keynes (1939, 1940) and Tinbergen (1940). Other familiar citations in the
economics literature include Liu (1960), Lucas (1976), and Sims (1980). Manski (1995) returns
to the under-identification problem that was posed so sharply by Liu and Sims. In brief, a priori
exclusion of variables from causal equations can seldom be justified, so there will typically be more
parameters than data. Manski suggests methods for bounding quantities that cannot be estimated.
Sims’ idea was to use simple, low-dimensional models for policy analysis, instead of complex-high
dimensional ones. Leamer (1978) discusses the issues created by specification searches, as does
Hendry (1993). Heckman (2000) traces the development of econometric thought from Haavelmo
and Frisch onwards, stressing the role of “structural” or “invariant” parameters, and “potential
outcomes.” Lucas too was concerned about parameters that changed under intervention. Engle,
Hendry, and Richard (1983) distinguish several kinds of exogeneity, with different implications
for causal inference. Recently, some econometricians have turned to natural experiments for the
evaluation of causal theories. These investigators stress the value of careful data collection and data
analysis. Angrist and Krueger (2001) have a useful survey.

One of the drivers for modeling in economics and other fields is rational choice theory. There-
fore, any discussion of empirical foundations must take into account a remarkable series of papers,
initiated by Kahneman and Tversky (1974), that explores the limits of rational choice theory. These
papers are collected in Kahneman, Slovic, and Tversky (1982), and in Kahneman and Tversky
(2000). The heuristics and biases program has attracted its own critics (Gigerenzer, 1996). That
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critique is interesting and has some merit. But in the end, the experimental evidence demonstrates
severe limits to the power of rational choice theory (Kahneman and Tversky, 1996). If people
are trying to maximize expected utility, they generally don’t do it very well. Errors are large and
repetitive, go in predictable directions, and fall into recognizable categories. Rather than making
decisions by optimization—or bounded rationality, or satisficing—people seem to use plausible
heuristics that can be identified. If so, rational choice theory is generally not a good basis for
justifying empirical models of behavior. Drawing in part on the work of Kahneman and Tversky,
Sen (2002) gives a far-reaching critique of rational choice theory. This theory has its place, but also
leads to “serious descriptive and predictive problems.”

Almost from the beginning, there were critiques of modeling in other social sciences too (Platt,
1996). Bernert (1983) reviews the historical development of causal ideas in sociology. Recently,
modeling issues have been much canvassed in sociology. Abbott (1997) finds that variables like
income and education are too abstract to have much explanatory power, with a broader examination
of causal modeling in Abbott (1998). He finds that “an unthinking causalism today pervades
our journals”; he recommends more emphasis on descriptive work and on middle-range theories.
Berk (2003) is skeptical about the possibility of inferring causation by modeling, absent a strong
theoretical base. Clogg and Haritou (1997) review difficulties with regression, noting that you can
too easily include endogenous variables as regressors.

Goldthorpe (1998, 2000, 2001) describes several ideas of causation and corresponding meth-
ods of statistical proof, with different strengths and weaknesses. Although skeptical of regression,
he finds rational choice theory to be promising. He favors use of descriptive statistics to deter-
mine social regularities, and statistical models that reflect generative processes. In his view, the
manipulationist account of causation is generally inadequate for the social sciences. Hedström and
Swedberg (1998) present a lively collection of essays by sociologists who are quite skeptical about
regression models; rational choice theory also takes its share of criticism. There is an influential
book by Lieberson (1985), with a followup by Lieberson and Lynn (2002). Nı́ Bhrolcháin (2001)
has some particularly forceful examples to illustrate the limits of modeling. Sobel (1998) reviews
the literature on social stratification, concluding that “the usual modeling strategies are in need of
serious change.” Also see Sobel (2000).

Meehl (1978) reports the views of an empirical psychologist. Also see Meehl (1954), with
data showing the advantage of using regression to make predictions, rather than experts. Meehl
and Waller (2002) discuss the choice between two similar path models, viewed as reasonable
approximations to some underlying causal structure, but do not reach the critical question—how
to assess the adequacy of the approximation. Steiger (2001) has a critical review of structural
equation models. Larzalere and Kuhn (2004) offer a more general discussion of difficulties with
causal inference by purely statistical methods. Abelson (1995) has an interesting viewpoint on the
use of statistics in psychology.

There is a well-known book on the logic of causal inference, by Cook and Campbell (1979).
Also see Shadish, Cook, and Campbell (2002), which has among other things a useful discussion
of manipulationist vs non-manipulationist ideas of causation. In political science, Duncan (1984)
is far more skeptical about modeling than Blau and Duncan (1967). Achen (1982, 1986) provides a
spirited and reasoned defense of the models. Brady and Collier (2004) compare regression methods
with case studies; invariance is discussed under the rubric of causal homogeneity.

There is an extended literature on graphical models for causation. Greenland, Pearl and

18



Robins (1999) give a clear account in the context of epidemiology. Lauritzen (1996, 2001) has a
careful treatment of the mathematics. These authors do not recognize the difficulties in applying the
methods to real problems. Strong claims are made for non-linear methods that elicit the model from
the data and control for unobserved confounders (SGS, 1993, 2000; Pearl, 2000). However, the
track record is not encouraging (Freedman, 1997, 2004; Freedman and Humphreys, 1996, 1999).
Cites from other perspectives include Oakes (1986), Pearl (1995), McKim and Turner (1997), as
well as Freedman (1985, 1987, 1991, 1995, 1999).

The statistical model for causation was proposed by Neyman (1923). It has been rediscovered
many times since: see, for instance, Hodges and Lehmann (1964, section 9.4). The setup is often
called “Rubin’s model,” but that simply mistakes the history. See the comments by Dabrowska
and Speed on their translation of Neyman (1923), with a response by Rubin; compare to Rubin
(1974) and Holland (1986). Holland (1986, 1988) explains the setup with a super-population
model to account for the randomness, rather than individualized error terms. Error terms are often
described as the overall effects of factors omitted from the equation. But this description introduces
difficulties of its own, as shown by Pratt and Schlaifer (1984, 1988). Stone (1993) presents a
super-population model with some observed covariates and some unobserved. Formal extensions
to observational studies—in effect, assuming these studies are experiments after suitable controls
have been introduced—are discussed by Holland and Rubin among others.

Conclusion

Causal inferences can be drawn from non-experimental data. However, no mechanical rules can
be laid down for the activity. Since Hume, that is almost a truism. Instead, causal inference seems
to require an enormous investment of skill, intelligence, and hard work. Many convergent lines of
evidence must be developed. Natural variation needs to be identified and exploited. Data must be
collected. Confounders need to be considered. Alternative explanations have to be exhaustively
tested. Before anything else, the right question needs to be framed. Naturally, there is a desire
to substitute intellectual capital for labor. That is why investigators try to base causal inference
on statistical models. The technology is relatively easy to use, and promises to open a wide
variety of questions to the research effort. However, the appearance of methodological rigor can be
deceptive. The models themselves demand critical scrutiny. Mathematical equations are used to
adjust for confounding and other sources of bias. These equations may appear formidably precise,
but they typically derive from many somewhat arbitrary choices. Which variables to enter in the
regression? What functional form to use? What assumptions to make about parameters and error
terms? These choices are seldom dictated either by data or prior scientific knowledge. That is why
judgment is so critical, the opportunity for error so large, and the number of successful applications
so limited.

Author’s footnote

Richard Berk, Persi Diaconis, Michael Finkelstein, Paul Humphreys, Roger Purves, and Philip
Stark made useful comments. This paper is based on Freedman (1987, 1991, 1997, 1999, 2004,
2005ab). Figure 1 is redrawn from Freedman (19970; figure 2, from Blau and Duncan (1967);
figure 3, from Gibson (1988), also see Freedman (1991); figures 7 and 8, from Freedman (1997).
Figure 8 appeared in Freedman and Humphreys (1996).
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