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Abstract

A framework is introduced for the study of general Radon shape dif-
fusions. This is done via a convenient representation of unoriented Radon
shape diffusions in (unoriented) D.G. Kendall shape space Σ̃k

n through
a Brownian motion on the hypersphere. This representation leads to a
coordinate system for the generalized version of Radon diffusions (shape
diffusions induced by projections) since it is shown that shape can be
essentially identified with unoriented shape in the projected case. A bi-
jective correspondence between Brownian motion on real projective space
and Radon shape diffusions is established. Furthermore, equations are de-
rived for the general (unoriented) Radon diffusion of shape and stationary
measures are discussed.

1 Introduction: Shape Theory and the Diffusion
of Radon Shape

Although everyone seems to have an intuitive grasp of what shape is, shape
is a vague concept (using Tukey’s terminology, e.g. [14]), in the sense that its
meaning can be made precise in many ways. The statistical theory of shape
introduced by D.G. Kendall (Kendall et al. [7]; Dryden & Mardia [4]; Small
[19]; Stoyan et al. [20]) is a mathematical approach that makes the meaning
of shape precise and enables the statistical study of shape in data. Informally,
the shape of a data set is the set of those characteristics of the data that are
invariant under rotations, translations and scaling. More concretely, consider
a set of not totally coincident labelled points {xm}k

m=1 in Euclidean space Rn,
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centred to have centroid zero and scaled to have total size unity:

k∑
m=1

xm = 0 and

{
k∑

m=1

‖xm‖2
} 1

2

= 1. (1)

Then, the shape of the ensemble {xm}k
m=1 is its orbit under the group action of

SO(n) acting from the left (the left orbits of O(n) are the so-called unoriented
shape or reflection shape or modified shape). Under this definition, the shapes
of such ensembles can be thought of as points on a manifold, so as to allow
the definition of statistical procedures that assess, compare and estimate shape
characteristics . The geometry of shape spaces Σk

n of k labelled points in n
dimensions varies for different values of k and n and can be rather intricate
(Kendall [7], Le & Kendall [12], Carne [1], Le [11]).

The D.G. Kendall school of shape is thought to originate from a considera-
tion put forward by D.G. Kendall [6]: if k labelled points perform independent
Brownian motions in Rn, what is the induced process their shape performs? It
was shown by D.G. Kendall that the resulting process is a time-changed Brow-
nian motion in shape space (indicating how shape spaces are connected to the
Brownian motion of landmarks).

A different type of diffusion of shape within the D.G. Kendall framework was
introduced by the author [16], motivated from problems in structural biology
(see section 2.2). Consider, in particular, an arrangement of labelled points on
the plane, and assume that these are being rotated randomly, as a Brownian
motion on SO(2) acts on each of them from the left (that is, as it acts on each
column vector). The shape of the resulting planar diffusion remains invariant in
time, but the same is not true for the shape of its projection onto a fixed line.
The resulting shape diffusion was termed a Radon diffusion of shape, drawing
an analogy to the Radon transform.

It was shown in [16] that when the columns of V are not collinear, the shape
of the projection evolves as a diffusion whose support is a great circle of the
unit hypersphere. In addition, it was seen that the stationary distribution of
the shape diffusion with respect to Lebesgue measure on the particular great
circle was connected to the central angular Gaussian class (see Watson [22])
characterized by a matrix parameter that is in bijective correspondence with
the unoriented shape of V . This result can be viewed as a stochastic analogue
of the deterministic case of Radon transforms, within the framework of shape
theory: knowledge of the distribution of the shape of projections over random
angles determines the shape of the generating ensemble (so that a shape is
connected with a shape).

This paper introduces a framework for the study of Radon diffusions in
general shape space Σn

k . In particular, we observe that the distinction between
proper shape and unoriented shape is artificial in the case of projections, and
employ an inner product coordinate system. It is seen that this coordinate
system is quite convenient and can be made to depend bijectively on a Brownian
motion on a hypersphere of appropriate dimension. Intuitively, this reduces to

2



the fact that by rotational invariance, it makes no difference if we rotate an
ensemble and project it onto a fixed plane or keep the ensemble at a fixed place
and project it onto randomly moving planes.

Before introducing the general case of Radon shape diffusions, we recall the
definition of inner product coordinates (see also W.S. Kendall [9]). The inner
product coordinates for the unoriented shape of a centred ensemble {xm}k

m=1 ⊂
Rn of unit size are given by the matrix

S :=


‖x1‖2 〈x1,x2〉 . . . 〈x1,xk〉

〈x2,x1〉 ‖x2‖2 . . .
...

...
...

. . . 〈xk−1,xk〉
〈xk,x1〉 . . . 〈xk,xk−1〉 ‖xk‖2

 , (2)

whose ij-th element is the inner product 〈xi,xj〉. Thus, S provides all the norms
of the vectors defining the ensemble, along with their pairwise angles, encoding
their unoriented shape (since the size is assumed to be unity, and the centroid
is assumed to be zero). Notice the straightforward but important fact that
these coordinates are invariant under imbedding. By this it is meant, that if Rn

is imbedded as any n-dimensional hyperplane into RN , N > n, then the inner
product coordinates will be valid as a parametrization of the unoriented shape of
{xm}k

m=1 as an element of Σk
n. Furthermore, the inner product coordinates will

parametrize the proper shape (i.e. not unoriented) of {xm}k
m=1 as an element

of Σk
N , since any reflection of points living in a subspace of dimension n < N

can be carried out by a rotation in SO(N).
The paper is organized as follows. Section 2 introduces notation and the

general framework. Section 3 provides a setup for Radon shape diffusions in
arbitrary dimensions. This is done in two ways, the first using a Brownian
motion in the rotation group SO(n) and the second using a Brownian motion
on the unit hypersphere Sn−1. It is shown that although the two approaches
are equivalent, the second approach has important advantages. In section 4,
the representation through a hyperspherical Brownian motion is employed to
derive certain basic results on general unoriented Radon shape diffusions. It
is demonstrated that Radon shape processes are diffusions in the general case,
and that they are in bijective correspondence with Brownian motion on real
projective space (of appropriate dimension). Equations are obtained for the
shape-and-size process, and aspects of the stationary distributions are explored.
The paper closes with a brief discussion in section 5.

2 The Shape of Projections

2.1 Assumptions and Notation

Consider a labelled ensemble formed by k labelled vertices {xi, 1 ≤ i ≤ k} in
n-dimensional Euclidean space Rn (with n < k). We call this vertex ensemble
the generating ensemble, and take the ordering of the vertices to correspond to
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their labels. We may arrange the vertex set of this generating ensemble as the
columns of an n× k matrix V :

V :=
(

x1 x2 . . . xk

)
. (3)

Thus, the column arrangement provides the labels corresponding to each point.
Notice that we have assumed that the number of elements is k > n for di-

mension n. In addition, we shall assume that the vertex set V is not of an
effectively lesser dimension (and call it proper), in the sense that there is no
(n− 1)-dimensional hyperplane containing all of the k vertices. These assump-
tions aim at limiting us to situations where the shape characteristics of V are
genuinely n-dimensional. Since the location of V is not of interest, we may
further assume that the centroid of the generating ensemble is zero, i.e. the row
sums of V are zero.

When we rotate the ensemble according to a rotation matrix Φ ∈ SO(n),
we obtain the ensemble ΦV . The projection of the rotated ensemble onto the
hyperplane H := {(x1, ..., xn) ∈ Rn : xn = 0} can then be regarded as an
ensemble in Rn−1, given by the vertex matrix

p(V,Φ) = HΦV, (4)

where H is defined as

H
(n−1)×n

:=
(

In−1 0n−1

)
, (5)

with In−1 denoting the (n− 1)-dimensional identity matrix and 0n−1 denoting
an (n− 1)-vector of zeroes.

The pre-shape of p(V,Φ) is its orbit under the scaling group and its repre-
sentation can be obtained as

st =
HΦV√

trace(V >Φ>H>HΦV )
. (6)

We quotient out from the left by the group O(n− 1) in order to obtain the
unoriented shape of the projected vertex ensemble. The resulting equivalence
classes are naturally parameterized through the inner product coordinates

σ̃t = s>t st =
V >Φ>H>HΦV

trace(V >Φ>H>HΦV )
. (7)

The unoriented shape-and-size is parameterized by

S̃t = V >Φ>H>HΦV. (8)

In order to obtain the proper shape σ (and shape-and-size S), one has to couple
σ̃ (and S̃, respectively) with an indicator of the orientation of the column-space
of p(V,Φ), so as to discriminate between rotoinversions.
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2.2 A Biophysical Motivation

Consider a biological particle moving freely in an aqueous environment. A
simple model for this movement is a Brownian motion in R3. Suppose though,
that we do not want to think of the particle as a single point in space, but
want to model the movement of the actual particle, which is an ensemble of
different sub-parts (molecular assemblies). Specifically, we choose k physically
significant labelled loci on the particle (these could be molecular assemblies,
molecules, or even atoms) and suppose that the particle is characterized by the
shape of these loci. A simple model for the movement of the particle in its
aqueous environment would be

Vt = ΦtV0 + Bt1>3 , (9)

where V0 is a 3× k matrix whose columns give the initial position of the char-
acterising loci, {Φt} is a rotational Brownian motion (see section 3), {Bt} is
a Brownian motion in R3, independent of {Φt}, and 13 is a three-vector with
all of its entries equal to unity. Naturally, this sort of movement leaves the
shape-and-size of the particle unchanged. However, if we were able to observe
the movement of this particle through a microscope, we would be observing its
projection on the observation plane,

HVt = HΦtV0 + HBt1>3 , (10)

whose shape-and-size would constantly be changing in time. We would then
be interested in inferring the structural properties of V0 from the observation
of HVt. Of course, neither the location of the projected particle, nor its ori-
entation provide information on the original particle V . However, the shape
characteristics should be providing information, and it would be of interest to
study their evolution.

A real analogue of this idealised problem arises in single particle biophysics,
and, in particular, in the structural biology of macromolecular assemblies. There
are various ways to image a biological particle, and one such way is through
cryo-electron microscopy (see Glaeser [2]; Glaeser et al. [3]). This method
provides images of the particles under observation that are projections (in the
sense of line integrals) of the actual particles. If one is not imaging a crystalline
structure, then it is impossible to rotate the particles at will so as to directly
employ Radon-transform techniques. In particular, the particles (which are
assumed to be identical) are allowed to move freely in an aqueous environment
and are frozen at some random positions and orientations, so that the data are
projections of (many) particles at random positions and under varying random
orientations. The data must then be used to extract structural information on
the original particle.

2.3 The (Un)Importance of the Orientation of Projections

The shape of a Radon diffusion has a special nature because it always makes
reference to a generating ensemble V . Although the strict definition of shape
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requires that we distinguish between rotoinversions, such a distinction is artifi-
cial in the case of Radon diffusions. This is because rotoinversions of projections
always occur by rotations of V at “opposite” angles:

Lemma 1. Let σ1, σ2 ∈ Σk
n−1 be two shapes corresponding to the projections

p(V,Φ1) and p(V,Φ2), for some proper generating ensemble V and Φ1,Φ2 ∈
SO(n). Then σ1 is a reflection of σ2 if and only if

Φ1 =
(

R 0n−1

0>n−1 −1

)
Φ2, (11)

for some R ∈ O(n− 1) \ SO(n− 1), and 0n−1 as before.

Proof. Assume that σ1 is a reflection of σ2. This implies that p(V,Φ1) =
cBp(V,Φ2) for some B ∈ O(n − 1) \ SO(n − 1) and some scalar c > 0, so
that the corresponding unoriented shapes, σ̃1 and σ̃2, are equal. Hence, the
corresponding parametrizations must be equal:

σ̃1 = σ̃2 ⇒
V >Φ>1 H>HΦ1V

tr(V >Φ>1 H>HΦ1)
=

V >Φ>2 H>HΦ2V

tr(V >Φ>2 H>HΦ2V )
⇒ Φ>1 H>HΦ1 =

Φ>2 H>HΦ2

c2
,

(12)
where c2 is the ratio of the two sizes (the final implication follows from the
assumption that V is a proper generating ensemble). Since the left hand side in
the final equality is an idempotent matrix, it follows that c = 1 (i.e. the sizes
are the same).

The projection matrix onto the column space of Φ>1 H>, say M(Φ>1 H>), is
given by

Φ>1 H>(HΦ1Φ>1 H>)−1HΦ = Φ>1 H>HΦ1. (13)

Similarly, the projection matrix onto M(Φ>2 H>) is given by Φ>2 H>HΦ2. It
follows from relation (12) that

span(φ(1)
1 , ..., φ

(1)
n−1) = M(Φ>1 H>) = M(Φ>2 M>) = span(φ(2)

1 , ..., φ
(2)
n−1), (14)

where φ
(i)
j is the j-th row (1 ≤ j ≤ n) of Φi, i = 1, 2.

But Φ1 and Φ2 are special orthogonal matrices, hence they both have de-
terminant 1. This means that there is a dichotomy between the following two
cases:

1. The two spans, M(Φ>1 M) and M(Φ>2 M), have the same orientation and
φ

(1)
n = φ

(2)
n .

2. The two spans, M(Φ>1 M) and M(Φ>2 M), have opposite orientations and
φ

(1)
n = −φ

(2)
n .

Assume the first case is true. Then, we may write

HΦ1V = H

(
K 0n−1

0>n−1 1

)
Φ2V = KHΦ2V, (15)
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Figure 1: Schematic representation of the rotation of a Klein bottle (object (1))
according to Φ2 and Φ1, when these are related according to equation (11).
Bottle (2) is the result of the action of Φ2 on bottle (1). Bottle (3) is the result
of the action of Φ1, for for R = diag{1,−1}, on bottle (1). Bottle (4) in the
result of the action of Φ1 on bottle (1), for a different choice of R, namely being
the composition of diag{1,−1} with a clockwise rotation by π/3 radians.

for some K ∈ SO(n − 1), which contradicts our assumption that σ1 6= σ2.
Therefore, it must be that the second case holds, which is equivalent to equation
(11).

To establish the converse, assume that (11) holds. Then it suffices to observe
that,

HΦ1V = H

(
R 0n−1

0>n−1 −1

)
Φ2V = RHΦ2V, (16)

so that p(V,Φ1) = Rp(V,Φ2) for some R ∈ O(n− 1) \ SO(n− 1), and the proof
is complete.

This shows that reflected Radon shapes can only occur as projections of the
generating ensemble at ‘opposite’ rotations. In particular, for two dimensional
ensembles, this means that σ1 is a reflection of σ2 if and only if Φ1 = eiθ and
Φ2 = e−iθ. For three dimensional ensembles, σ1 is a reflection of σ2 if and only
if the Φ1 rotation works as follows: first it rotates the space according to Φ2.
Then it reflects the space with respect to the plane x3 = 0. Finally, it performs
a rotoinversion (improper rotation) with respect to the the x3-axis. The result
of the action of Φ1 is an ‘upside-down’ version of the result of the action of Φ2,
possibly with an additional (proper) rotation around the x3-axis (see Fig. 1).

As such, the distinction between rotoinversions does not yield any additional
information about the structure of the generating ensemble. Distinguishing
between unoriented shape and proper shape introduces a redundancy, that only
makes the geometry of the problem more complicated. We shall therefore only
consider unoriented shape (i.e. we will quotient out by O(n − 1) rather than
by SO(n − 1)). In some sense, when dealing with projected ensembles, shape
coincides with unoriented shape This is in analogy with the fact that, since any
reflection in Rn−1 can be realized as a rotation in Rn, the unoriented shape
of a projection coincides with its shape when imbedded in Rn. Consequently,
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we shall restrict our attention to the study of unoriented shape-and-size and
unoriented shape.

3 Representations for General Radon Diffusions

To generalize the planar case, we want to consider the evolution of the unori-
ented shape of the projection of V onto H as the former is being diffusively
rotated. The approach is to let a Brownian motion in SO(n) act on V from the
left, and observe the unoriented shape characteristics of the projections. There
are various approaches to defining Brownian motion on a manifold (e.g. W.S.
Kendall [8]). Here, we define BM(SO(n)) through the so-called product-integral
injection. Let A(G) be the Lie algebra generated by a multiplicative group G
of n× n matrices, i.e.

A(G) = {A ∈ GL(n) : etA ∈ G ∀t ∈ R}. (17)

It is possible to define Brownian motion on any such group G by defining Brow-
nian motion on A(G) through the Stratonovich SDE (Rogers & Williams [18]):

∂G = G∂A, (18)

where {A(t)} is BM(A(G)).
In the case of the special orthogonal group SO(n), the Lie algebra A(SO(n))

is the algebra SK(n) = {F ∈ GL(n) : F> = −F} of skew symmetric n × n
matrices. We first define Brownian motion on SK(n). To do this, let F (m, k) =
{fij(m, k)} ∈ SK(n) be defined as

fij(m, k) =

 1, if (i, j) = (m, k)
−1, if (i, j) = (k,m)
0, otherwise.

(19)

Then, the collection {F (m, k)}m<k constitutes a basis for SK(n), which allows
us to define BM(SK(n)) as

At :=
∑

1≤m<k≤n

F (m, k)Bt(m, k), (20)

where {Bt(m, k)}m<k is a collection of independent standard Brownian motions
on R.

A (bi-invariant) Brownian motion Φt on SO(n) will thus be the solution to
the Stratonovich equation

∂Φt = Φt∂At. (21)

We are now in a position to define the process of the diffusively rotated and
projected vertex ensemble,

p(V,Φt) = HΦtV, (22)
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where H is as before. The unoriented shape and unoriented shape-and-size
processes will thus be

σ̃t =
V >Φ>t H>HΦtV

trace(V >Φ>t H>HΦtV )
(23)

and
S̃t = V >Φ>t H>HΦtV, (24)

respectively. Thus, it may be suggested that the unoriented Radon shape diffu-
sion is apparently not very usefully represented through a Brownian motion in
the rotation group SO(n). One can argue that the approach is rather abstract
(involving a Brownian motion on a matrix group), and that it does not provide
a good means for simulation. It would seem desirable that we have an alter-
native representation of the unoriented Radon shape diffusion. One that would
be equivalent but more straightforward. Already, the form Φ>t H>HΦt can be
recognized as a spectral decomposition of some projection matrix of rank n− 1,
providing an indication that this should be possible.

So, let us adopt a slightly different viewpoint. Rather than study the evo-
lution of the projections of V onto a fixed hyperplane of dimension n − 1, as
BM(SO(n)) acts on V , we consider the process that results from projecting V
onto a randomly moving hyperplane. The motion of the hyperplane will be such
that it is normal to a Brownian motion on the unit hypersphere Sn−1. To be
more precise, if {ut}t≥0 is a Brownian motion on Sn−1, the hyperplane normal
to ut at time t is

Pt := {x ∈ Rn : x>ut = 0} (25)

and it follows that the projection operator onto the plane Pt is given by the
n× n matrix

Πt := I − utu
>
t . (26)

The projection of the ensemble V is a k-ad of vectors contained in the hyperplane
Pt, given by the columns of the n×k matrix ΠtV . The centroid of these vectors
is zero by assumption, so that the inner product coordinates for their unoriented
shape-and-size are given by

S̃t ≡ S̃(ΠtV ) = V >ΠtV, (27)

upon recalling that the projection Πt is idempotent. Accordingly, the unoriented
shape is parameterized by its inner product coordinates,

σ̃t ≡ σ̃(ΠtV ) =
W>ΠtW

tr(W>ΠtW )
. (28)

This representation is precisely equivalent to the original formulation, but
simplifies things by taking advantage of the special properties of shape:

Proposition 1. The unoriented Radon shape diffusions resulting from rota-
tional Brownian motion are equivalent to those resulting from hyperspherical
Brownian motion.
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Proof. Consider the action of {Φ>t } on the north pole ρ := (0, 0, ..., 1)>, say
Yt = Φ>t ρ. By equation (21),

∂Yt = ∂(Φ>t ρ) = (∂Φt)>ρ = (∂At)>Φ>t ρ = (∂A>t )Yt, (29)

where {A>t } is again a Brownian motion on the skew-symmetric group. The
equation ∂Yt = (∂A>t )Yt gives a Brownian motion on the hypersphere (Van Den
Berg & Lewis [21]). Moreover, consider the projection onto the plane normal
to Yt. This will be the projection P onto the span of the first n− 1 columns of
Φ>t , that is, the projection onto the columnspace of Φ>t H>,

P = Φ>t H>(HΦtΦ>t H>)−1HΦt = Φ>t H>HΦt. (30)

But P = I − YtY
>
t

d= I − βtβ
>
t , for {βt} a hyperspherical Brownian motion

started at β0 = ρ, and so,

W>Φ>t H>HΦtW
d= W>ΠtW, ∀ t ≥ 0. (31)

This completes the proof.

Of course, the two approaches are far from being equivalent as far as the
actual projections are concerned. For one, the projections in the first case
(BM(SO(n))) always live in the same subspace, namely H, whereas in the sec-
ond case (BM(Sn−1)), the projections live in constantly changing hyperplanes.
Furthermore, the BM(SO(n)) approach allows for the possibility of rotations
within the projection hyperplane, while for the BM(Sn−1), once a projection
hyperplane has been fixed, there can only be one projection within it. Nat-
urally, once we talk about shape, these distinctions make no difference. The
first approach is the exact translation of the physical situation, where the ob-
servation plane is fixed and the particle is being randomly rotated. However,
once we talk about shape, the precise description that requires a fixed plane
and the possibility of within-plane rotations is unnecessary, and, in fact, only
complicates things.

4 Stochastic Differential Equations and Station-
ary Distributions

In the planar case, one is able to take advantage of the metric equivalence of
the shape space to a sphere of appropriate dimension. In the case of general
shape spaces Σk

n, it seems not possible to find similarly simple representations.
In fact, the differential geometry of these spaces had not appeared in earlier con-
texts and, as noted in the introduction, can be rather involved. However, some
questions can be answered within the context provided by the inner product
representations of the unoriented shape and unoriented shape-and-size (equa-
tions (28) and (27), respectively). For example, suppose we are able to observe
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{σ̃t}t1
t=t0 and have knowledge of V . Is it possible to recover the process of pro-

jection hyperplanes? If yes, is this true for all possible V ? The answer is given
in the following proposition.

Proposition 2. Assume that V is known and that a sample path of {σ̃t} is
available. Then, it is possible to recover {ut} up to a sign change if and only if
V is of rank n (i.e. if and only if V is proper).

Proof. Fix t ∈ (t0, t1). Since t is fixed, we suppress the time index. For tidiness,
define ξ := tr(V >ΠV ) > 0 and Π� := Π/ξ.Then, we observe

σ = V >Π�V. (32)

Suppose we are able to recover Π�. Since Π is idempotent, we have that

(Π�)r =
1
ξr

Π, r = 1, 2, ... (33)

Now ξ > 0, so the ij-th element of (Π�) is non-zero if and only if the respective
element of Π� is non zero. Let i, j be such that (Π�)ij 6= 0 (there necessarily
exists such an element by Π being a projection onto a subspace of dimension
n− 1). Then,

(Π�)ij

(Π�2)ij

=
(Π)ijξ

2

(Π)ijξ
= ξ. (34)

Knowledge of Π� enables us to determine Π, and hence, uu>. Therefore, we
know that u lies on a specific straight line through the origin, and by ‖u‖ = 1
we can determine u as one of two antipodal points on Sn−1.

It remains to determine necessary and sufficient conditions for the unique
recovery of Π�. The determination of Π� requires the solution of

σ = V >Π�V. (35)

This is a matrix equation for the unknown matrix Π�. Such an equation may
be transformed into a vector equation for the elements of the vectorised version
of Π�,

(V > ⊗ V >)vec(Π�) = vec(σ), (36)

where “vec” is the vectorising operator (by column) and “⊗” is the Kronecker
product. The system of equations (36) contains k2 equations for n2 unknowns,
and in general is overdetermined, since k > n. However, we know that it has
a solution. Hence, the system has n2 consistent equations and a there is a
dichotomy between the existence of a unique solution (if the rank of the system
is n2), or of infinitely many solutions (if the rank is reduced). Of course, the
rank of the system is equal to the rank of V > ⊗ V >, with

rank(V > ⊗ V >) = rank(V >)2. (37)
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Summarising, if rank(V ) = n, the system has a unique solution. If V is of
reduced row rank, the system has infinitely many solutions. In particular, the
solution in the former case will be

Π� = (V V >)−1V σV >(V V >)−1 (38)

This completes the proof.

The possibility of such a recovery enables us to proceed with the questions
of whether {S̃t} and {σ̃t} are indeed diffusions, and of what can be inferred on
the shape of V from observation of a sample path of any of these two.

Theorem 1. Let V be a proper labelled ensemble consisting of k points in
Rn, k > n. Let Πt = I − utu

>
t , where {ut} is Brownian motion on the unit

hypersphere Sn−1, and {Bt} be standard Brownian motion in Rn. Then, the un-
oriented shape-and-size S̃t ≡ S̃(ΠtV ) of the Radon process {ΠtV } is a diffusion
solving the Itô stochastic differential equation

dS̃t = −V >
{
E(S̃t)dBtχ[E(S̃t)]> + χ[E(S̃t)]dB>t E(S̃t)>

}
V (39)

+V >
{

(n− 1)(I − E(S̃t)) +
1
2
T [E(S̃t)]

}
V dt,

where E(S̃t) = (V V >)−1V S̃tV
>(V V >)−1, χ[Π] signifies the unit vector of pos-

itive orientation defined by the line on which I −Π projects, and T is an n× n
matrix depending on S̃, to be defined below.

Proof. Since S̃t = V >ΠtV , we first concentrate on {Πt}. Recall that

Πt := I − utu
>
t . (40)

The process {ut} is a Brownian motion on the unit hypersphere Sn−1, solving
the Itô stochastic differential equation (e.g. Øksendal [15])

dut = −
(

n− 1
2

)
utdt + (I − utu

>
t )dB̆t, (41)

where {B̆t} is standard Brownian motion in Rn.
Let Π ≡ g(u) = I − uu> be a mapping from Rn to Rn×n. Viewed as a

mapping from Rn to Rn2
, g is twice continuously differentiable and we may apply

the multidimensional Itô lemma to obtain the stochastic differential equation
satisfied by the mk-th element of Π:

dΠmk =
n∑

i=1

∂gmk

∂ui
dui +

1
2

n∑
i=1

n∑
j=1

∂2gmk

∂ui∂uj
duiduj , (42)

where g(u) = {gmk(u)}n
m,k=1, and the time index has been suppressed for tidi-

ness.
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One can see that the first term on the right hand side of (42) may be obtained
as the {n(k − 1) + k}-element of,{

d

du
vec(I − uu>)

}
du = −(u⊗ I + I ⊗ u)du, (43)

which reduces to (using equation 41)

−(ut ⊗ I + I ⊗ ut)ΠtdB̆t +
n− 1

2
(ut ⊗ I + I ⊗ ut)utdt. (44)

Shifting attention to the second term on the right hand side of (42), we
notice that duiduj is the ij-th element of the matrix dudu>, which in turn is
equal to Πdt (by equation (41)). Furthermore, ∂2

∂ui∂uj
gmk is the ij-th element

of the Hessian matrix ∇2gmk. Keeping in mind that Π is symmetric, we have

1
2

n∑
i=1

n∑
j=1

∂2gmk

∂ui∂uj
duiduj =

1
2
dt

n∑
i=1

n∑
j=1

(
∇2gmk

)
ij

Πij

=
1
2
dt

n∑
i=1

n∑
j=1

(
∇2gmk

)
ij

Πji

=
1
2
dt

n∑
i=1

[(
∇2gmk

)
Π

]
ii

=
1
2
dt trace

{(
∇2gmk

)
Π

}
=

1
2
dtTmk(Π),

where T (Π) is the appropriate n× n matrix of traces. Therefore, the equations
in (42) may be expressed via a single vector equation,

dvec(Πt) = −(ut⊗I+I⊗ut)ΠtdB̆t+
n− 1

2
(ut⊗I+I⊗ut)utdt+

1
2
vec{T (Πt)}dt.

(45)
But, notice that (ut⊗I)ut = (I⊗ut)ut = vec(utu

>
t ) = vec(I−Πt). In addition,

T (Π) only depends on Π, since ∇2gmk is constant for all indices. Finally, if we
let ζt := −(ut⊗I+I⊗ut)Πt, we can see that ζtζ

>
t is invariant under sign changes

of ut. As a result of the above considerations, if Xt solves the Itô equation

dvec(Xt) = −(χ[Xt]⊗I+I⊗χ[Xt])XtdBt+(n−1)vec(I−Xt)dt+
1
2
vec{T (Xt)}dt

(46)
for {Bt} a standard Brownian motion in Rn, then Xt coincides in law with Πt.

To complete the proof, we observe that vec(V >ΠtV ) = (V > ⊗ V >)vec(Πt).
An application of Itô’s lemma along with the fact that (A> ⊗ C)vec(B) =
vec(ABC) yields equation (39), and hence shows that {S̃t} is a diffusion.
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Corollary 1. The unoriented shape σ̃t ≡ σ(ΠtV ) of the Radon process {ΠtV }
is a diffusion.

Proof. This follows from a combination of Proposition (2) and Theorem (1). If
one is to apply Itô’s lemma to the image of the Itô diffusion {S̃t} under the
twice continuously differentiable mapping A 7→ A/tr(A), it can be seen that
all the quantities involved in the drift and diffusion coefficient of the resulting
stochastic differential equation may be expressed as functions of σ̃t.

The Itô equation for {σ̃t} can also be obtained, but its form is complicated
and, as a result, appears rather uninformative.

Obtaining explicit expressions of stationary distributions for the matrices pa-
rameterizing the unoriented shape-and-size and unoriented shape of the Radon
processes seems a highly non-trivial task. Indeed, a workable form for the sta-
tionary density of Πt is not known. To outline these problems, recall that the
stationary distribution of a Brownian motion on the hypersphere Sn−1 will be
the uniform distribution on Sn−1. Hence, determination of the stationary dis-
tribution of {Πt} amounts to determining the distribution of G = UU>, where
U is uniform on Sn−1. This can be seen to have characteristic function (Mardia
& Khatri [13])

ΨG(Z) = E {exp [itr(ZG)]} = 1F1

(
1
2
;
n

2
; iZ

)
, (47)

where Z is a symmetric matrix and pFq stands for a generalized hypergeometric
function of matrix argument (defined in James [5]). It follows that the charac-
teristic function for the stationary distribution of the unoriented shape-and-size
diffusion, is given by

ΨS̃(Z) = E
{
exp [itr(ZV >(I −G)V )]

}
= exp{itr(V ZV >)}ΨG(−V ZV >)

= exp{itr(V ZV >)}
[
1F1

(
1
2
;
n

2
;−iV ZV >

)]
. (48)

Evidently, the task of inverting such a characteristic function to obtain an ex-
plicit form for the density is not at all simple. The stationary distribution of the
unoriented shape process is then obtained as the restriction of the stationary
distribution of the unoriented shape-and-size process to the set of symmetric
non-negative definite k × k matrices P such that P1 = 0 and tr(P ) = 1.

Returning to the stationary distribution of the unoriented shape-and-size
process, one can see that although there seems little hope of obtaining an explicit
form for its density, it is possible (in fact, straightforward) to obtain its mean
and covariance. In particular, one can take advantage of the fact that if N ∼
Nn(0, In), then N/‖N‖ ∼ U(Sn−1) to obtain (e.g. Watson [22]),

E[S̃] = V >V − V >E[G]V =
n− 1

n
V >V, (49)

C(vec(S̃)) = (V > ⊗ V >)C(vec(G))(V ⊗ V ), (50)
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where C(vec(G)) is the covariance of G = {gij} with

var(gii) =
2(n− 1)
n2(n + 2)

, (51)

var(gij) =
1

n(n + 2)
, (52)

cov(gii, gjj) = − 2
n2(n + 2)

, (53)

and all other covariances being zero.
Hence, there is a very simple explicit connection between the unoriented

shape-and-size of the original ensemble of points (i.e. the shape-and-size mod-
ulo reflections) and the mean of the corresponding stationary unoriented Radon
shape-and-size diffusion. As in the planar case, this may be exploited to pro-
vide a statistical inversion of the unoriented shape-and-size Radon diffusion, for
example, through the use of an appropriate ergodic theorem.

Remark 1. A standard procedure in shape theory is to apply a Helmert transfor-
mation Q of appropriate dimension to V (from the right) and obtain W = V Q.
The effect of this transformation is to reduce the dimensionality of the problem.
The idea is that knowledge of the centroid of k labelled points, along with k − 1
of the points suffices to determine the ensemble. But in our case the centroid
is known to be zero, so that k − 1 points only will suffice. The first column of
W will thus be zero, and so W can be identified with its remaining non-zero
columns, so that we move from an n× k matrix V to a n× (k − 1) matrix W .
All the results and formulae in this paper hold, of course, if V is replaced by W .

5 Concluding Remarks

When one deals with arbitrary ensembles in arbitrary dimensions, the com-
plexity of shape spaces increases dramatically, and, consequently, so does the
geometry of Radon diffusions. It has been shown that one can use the special
nature of Radon shape diffusions in order to introduce a straightforward coor-
dinate system, through the use of inner product coordinates and hyperspherical
Brownian motion.

Apart from being conceptually straightforward, the representation is advan-
tageous in terms of the simulation of unoriented Radon shape diffusions. In
fact, in the physically most significant case (that of ensembles in R3) one has
that spherical Brownian motion solves the equation

dβ = β × dB − βdt, (54)

where {B} is BM(R3) and ‘×’ is the cross product (Price and Williams [17]),
an equation which is linear in β, further simplifying simulation.

The inner product representation allowed us to answer some basic questions.
The line defined by the hyperspherical Brownian motion was shown to be in
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bijective correspondence with the unoriented shape (and unoriented shape-and-
size) process. It was further shown that the general unoriented Radon shape
and shape-and-size processes were diffusions, and Itô equations were derived for
the unoriented shape-and-size diffusion. Finally, the parametrization allowed
the use of matrix distribution theory to derive the characteristic function for
the stationary distribution of the unoriented shape-and-size diffusion. It was
seen that this distribution was very simply connected to the unoriented shape-
and-size of the generating ensemble.

Of course, in a practical situation such as the one described in section 2.2,
the size is actually observable and of interest, so that talking about strict shape
is perhaps not practically significant. However, the restriction of the process to
size unity has some interest in terms of the geometry of shape space. In partic-
ular, Proposition 1 suggests that the range of the unoriented shape diffusion is
diffeomorphic to n-dimensional real projective space RPn. In the planar case,
it was seen that the range of the shape-and-size diffusion is an ellipse, while the
range of the shape diffusion is a circle. One might thus ask what more can be
said about the geometry of the range of the unoriented Radon shape diffusion.
If one looks at proper shape (and shape-and-size), then similar considerations
apply if we replace RPn by Sn−1.
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