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Abstract

This paper addresses the question of making inferencesdingdea-
tures of conditional independence graphs in settings ctenaed by the
availability of rich prior information regarding such fea¢s. We focus on
Bayesian networks, and use Markov chain Monte Carlo to dramvpdes
from the relevant posterior over graphs. We introduce asotdslocally-
informative priors” which are highly flexible and capabletaking account
of specific information regarding graph features, and aradidition, infor-
mative at a scale appropriate to local sampling moves. Weepteexamples
of such priors for beliefs regarding edges, groups and etasfedges, de-
gree distributions and sparsity, applying our methods &dlehging synthetic
data as well as data obtained from a biological network ircean

1 Introduction

In recent decades, rich developments in computationalodsthave allowed statis-
ticians to perform inference using increasingly realjstismplex data models. At
the same time, in the broader research community there leassbgrowing interest
in complex, multi-variable systems, a trend which has beeatly influenced by
continuing advances in experimental methodologies cepabinaking measure-
ments on such systems.

Bayesian statistics in particular has benefited greatiy fiioese technical and
scientific developments. Computational tools like Markbaio Monte Carlo have
broadened the applicability of rich Bayesian models, amditicreasingly close



integration between computational statistics and field$ ss bioinformatics, fi-
nance and data mining has been accompanied by an increasmmand for statis-
tical methods capable of taking account of relevant domaowkedge.

A specific trend which has begun to gather pace is an intaregtidying sys-
tems characterized by multiple interacting componentsekample, in the field of
molecular biology, there has been a movement away fromitigrédout one gene
or protein at a time to thinking about multiple genes andginst acting in concert.
Indeed, it is largely this type of thinking that charactedzso-called “systems”
approaches to biology (see e.g. Kitano, 2002; Ideker andfergwurger, 2003).
In statistical terms, this has led to much interest in matiate methods, and in
network-orientated models.

Graphical models (Pearl, 1988; Lauritzen and Spiegelhd&88; Lauritzen,
1996; Jordan, 2004) are a class of statistical models whiohige graph-based
representations of conditional independence relatipsshietween random vari-
ables. A graphical model consists of a graghdescribing a set of conditional in-
dependence statements, and paramé&engich specify conditional distributions
implied by G. Often, the grapld~ is known, and inferential questions concern spe-
cific marginal and conditional distributions. Three decadéresearch have pro-
vided a rich array of theory and computer algorithms withahhio address such
guestions. However, in many settings, questions of intexascern the conditional
independence graph itself. For example, in molecular biglave may be inter-
ested in saying something about which molecules or combmatof molecules
influence one another; in the social sciences we may be #téetén relationships
between various economic and demographic variables. Suestigns can often
be cast, in a quite natural manner, in terms of features, aa@dges, classes of
edges, or paths, of conditional independence graphs.

The daunting nature of inference on graphical model stredgiwell known,
and is largely due to the vast space of possible models in e\agterately large
domains. Yet, equally, in many settings, an understandinpeorelevant domain
may suggest that not every possible graph is equally pleysimd that certain
features should be regardedagpriori more likely than others. Where available,
such knowledge, even when uncertain, is surely a valuaBleuree, making the
guestion of how to capture and exploit it an important one.

This paper seeks to address precisely this question, ofngakferences re-
garding conditional independence graphs in the presenpeiaf knowledge re-
garding graph features. We focus on directed graphical feadled Bayesian
networks, and use Markov chain Monte Carlo (MCMC) for stuuat inference.
Motivated by the kinds of questions alluded to above, theehaderaging methods
described in this paper are aimed not so much at recoveringdirect graph, but
more as a flexible device for addressing questions conagfeetures of graphs.

2



MCMC-based inference on conditional independence graphgaopic which has
attracted a great deal of interest in recent years in statiss well as machine learn-
ing (Madigan et al., 1995; Dellaportas and Forster, 1998¢d@i and Green, 1999;
Friedman and Koller, 2003; Giudici and Castelo, 2003; Terlan2004; Dellapor-
tas and Tarantola, 2005). Our work adds to the existingalitee in two ways.
Firstly, we place an emphasis on making use of rich priorrmftion regarding
graph structure. Much of the existing literature on streadtinference has used
flat priors on graphs (e.g. Madigan et al., 1995; Giudici aadt€lo, 2003), or pri-
ors designed to promote sparse models by penalizing graiphsoe many edges
(e.g. Friedman and Koller, 2003; Jones et al., 2005). Inreshtwe seek to take
account of detailed information concerning features opbsasuch as individual
edges, classes of edges and degree distributions on gertinemany domains,
such beliefs follow, in a natural manner, from a consideratf the underlying
science or semantics of the variables under study. We ahgiiestich information
can be profitably exploited in structural inference. We en¢riors which can
be used in this fashion, and show examples of how these ideabeput to use
for practical problems. A second emphasis is on settingshiiclwthe number of
observations is small relative to the complexity of the eystunder study. It is
frequently observed that there is a “deluge” of data in modeience. Yet, in our
experience, it is often the case that therads enougtdata concerning rich, mul-
tivariate systems. In molecular biology, for example, obite large datasets can
be costly and labour-intensive, especially if a high leviebiochemical detail is
desired. Equally, in the social sciences, there may be aaldimit on the number
of units upon which measurements can be made, such as ingheotatudying
demographic or economic variables at the level of zip codes.

These elements - approximate inference on graphs, staliptiors and sample
size - are inter-related. At smaller sample sizes, postdigtributions over graph
space tend to be diffuse, with significant probability masmany regions of the
space. This can serve as a motivation for the use of samplethads, but at
the same time can mean that such methods must explore eger, ldispersed
areas of graph space in order to account for a given fracfigmabability mass.
This in turn motivates the need to exploit prior informatie@garding competing
graphs to guide inference and refine the questions beinglabi#eed, one of our
key empirical findings is that in the analysis of small sangike data the use of
structural priors leads to substantive gains in the acgurdinferences regarding
graph features. A Receiver Operating Characteristic or R@dlysis of decisions
on individual edges, presented in Section 4, reveals laagesgn sensitivity and
specificity compared with both structural inference with & firior and simple
pairwise associations.

A natural concern regarding informative priors on graphstiether their use
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amounts to “putting too much in” during inference. We holé thew that even

strong priors on graphs can play a valuable role in shargegirestions being
asked, in a manner analogous to a well thought out set of hgpes, but with

an added degree of flexibility and generality. Consider, ragxample, the five
variables illustrated in Figure 1. Suppose we knew, fronsidetknowledge, that
the As tend to influence th®&s, and that the main question we were interested
addressing was which combination 4§ influence each of th&s. One way of

posing this question would be as a classical multiple deciproblem. A second
approach would be to perform structural inference on thakibes, with a strong

prior in favour of models in whickls influenceBs. The structural prior would then
play a role similar to the hypothesis formulation step infirg approach. Yet the
structural analysis offers two key advantages. Firstiglldws for the discovery of
unexpected relationships, when such relationships areswpported by the data.
When the variables of immediate interest are embedded imgarlaystem such
relationships could also include outside influences of dnd kr another. Sec-
ondly, structural inference offers a mechanism by whictinauttaneously address
a range of possible guestions concerning relationshipsdeet variables: once we
have described a posterior distribution over models, wéraeeto evaluate proba-
bilities or odds concerning essentially any structuratuess of interest.

in

Figure 1: Priors for hypothesis formulation. A prior prefieg models in which4s
influenceBs can play a role similar to a hypothesis formulation steprimudtiple
decision approach.

The remainder of this paper is organized as follows. We bbygineviewing
basic ideas and notation for Bayesian networks and staldnference. We then
turn our attention to priors on graphs. We introduce a clagsiors which we call
locally-informative priors These priors are highly flexible and can take account
of rich, specific information regarding graph features. dididon, they provide
information at a scale appropriate to local sampling movek as a consequence,
are particularly well-suited to our sampling-based apgho&Ve present a number
of examples of the use of our methods, including analysebalfanging synthetic
data and of a biological network in breast cancer. We closg#per with a dis-
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cussion of the key points and shortcomings of our work andesioleas for further
research.

2 Background

2.1 Bayesian Networks

Bayesian networks (Pearl, 1988; Lauritzen, 1996) are a ¢fpaultivariate sta-
tistical model in which a directed acyclic graph describounditional indepen-
dence statements regarding a group of random variablesplsited to provide
a compact description of their joint distribution. A Bayasinetwork consists of
two elements: (i) a directed acyclic graph= (V(G), E(G)), whose verticed”
represent random variables, . .. X, of interest, and whose edge-détcontains
edges describing conditional independencies betweee trafables, and (i) pa-
rameters® which specify the conditional distributions implied by theaph. In
particular, the grapldz implies that each variable is conditionally independent of
its non-descendants given its immediate parents. Imptytdhis means that the
joint distribution P(X; ... X,) can be factorized into a product of local terms:

p
P(X1...X,|G) = []P(Xi|Pag(X,)) 1)
=1

where,Pag(X;) is the set of parents of; in graphG.

The goal of structural inference is make inferences reggriie graplG given
observations of the variableX; ... X,. Let X represent @ x n data matrix,
wheren is the number of multivariate samples available. Using Bagleorem,
the posterior probability of grapi’ can be written as follows:

PG x) — PXIGPG) @
p(X)

where,p(X | G) is the (marginal) likelihood and(G) is a prior distribution
over directed acyclic graphs; we refer to the latter agactural prior.

Now, the graphG does not in itself specify a full data model, since it dessib
only the conditional independence structure of the vagmdbut neither the form of
the conditional distributions which relate child nodes amgmts, nor the parameters
of those distributions. If we assume that the form of the @il distributions
P(X; | Pa(Xj;)) is known, we need only specify parameters to obtain a fullehod
Let © represent a complete set of model parameters. Then, thémaldigelihood
p(X | G) can be evaluated by integrating over parame®@rs

p(X|G) = / (X |G.O)pO | G)de 3)
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where,p(®) is a prior over parameters.

This paper is concerned mainly with inferences regardieggitaphG itself,
and the ideas presented below are applicable for any chbicenditional distri-
butions and parameter priors under which the marginalitikeld p(X | G) can be
evaluated. In our experiments, we follow previous authGmoper and Herskovits,
1992; Heckerman et al., 1995; Giudici and Castelo, 2003s8uia@ing parameter
independence and using Multinomial conditionals and Digt priors. This al-
lows the marginal likelihood to be evaluated in closed foitdere, we reproduce
the well-known result of Heckerman et al. (1995) and referittierested reader to
the reference for further details:

rN’ +Nw> ; F(szk)

=15=1 =1

(4)

where,N;;, is the number of observations in which takes the valu&, given
that Pa;(X;) has configuratiory; ¢; are the number of possible configurations
of parentsPaq(X;); andr; are the number of possible valuesﬁf Nj;, are
Dirichlet hyperparameters. Finalli|;; = >~;* | N and, N{]k

2.2 MCMC for structural inference

The posterior distributior?(G | X) is a discrete distribution over the spagef
all possible directed acyclic graphs wittvertices. We may rewrite (2) as follows,
explicitly summing over graphs in the denominator:

p(X | G)P(G)
chg P(X ‘ G)P(G)

The number of possible graphs grows super-exponentiallly e number of
variablesp. Indeed, Robinson (1973) has shown that the nun@grof possi-

ble directed acyclic graphs with vertices is given by the following recurrence
formula:

PG X) (®)

p
_ i+1 [ P\ oi(p—i
Gl = 0 (7)ol

where,|G;| = 1 and| - | indicates the cardinality of its argument.

This gives|Ga| = 3, |G| = 25, |Gio| ~ 4.2 x 10'8, |G14| ~ 1.4 x 1036 and
so on. The number of possible graphs is therefore usuallyhrraglarge to permit
the distribution to be enumerated exhaustively. Thus, ewwié can evaluate the
posterior probability of a graph upto a multiplicative ctarg, we cannot actually
consider every possible graph in the course of inference.
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The intractability of the sum in (5) motivates the use of bastic simulation
methods to approximate posterior distributions over gsaptarkov Chain Monte
Carlo or MCMCrepresents a general class of such methods which are wisiedly u
in computational statistics. The basic idea of MCMC is tostorct a Markov
chain whose state space is the domain of the desired randantityuand whose
stationary distribution is its posterior. Then, simulgtthe Markov chain provides
a means by which to make inferences based on the posteriobdii®n of interest.

In a Metropolis-Hastingssampler (Hastings, 1970), draws are made from a
proposal distribution, which depends on current state, and then accepted or re-
jected in such away as to guarantee that, asymptoticatly,libhave as draws from
the desired target distribution. Here, following Madigdrak (1995) and Giudici
and Castelo (2003), we develop a MCMC sampler of the Metisjpddstings type
for the purpose of simulating the posterior distributiBOG | X) over conditional
independence graphs.

Let n(G) denote aneighbourhoodaround a directed acyclic gragh, consist-
ing of every directed acyclic graph which can be obtained dnjiray, deleting or
reversing a single edge . Define proposal distributiofy as follows:

M(lG)' if G'en(G)
0 otherwise

QG G) = (6)

Then, calculate the followingcceptance probability::

. _ PEX)QG:E) -
P(G | X)Q(G";G)

Since the proposal distribution is uniform over the relévaighbourhood, the
ratio Q(G; G')/Q(G’; G) may be written in terms of neighbourhood size:
P(G" | X)[n(G)]

S (b SIL(ed] ®)

A proposed graplt’, drawn from@), is thenacceptedvith probabilitymin(1, «),
and otherwiseejected If accepted(’ is added to the sequence of samples drawn,
and becomes the current graph. ElSés added to the sequence of samples, and
remains the current graph. As shown in Madigan et al. (1988) Giudici and
Castelo (2003), the proposal distributigh gives rise to an irreducible Markov
chain, since there is positive probability of reaching aast jpf the state spadgg.
Standard results (see, e.g., Tierney, 1994; Gilks et a@6)Lthen guarantee that
the Markov chain must converge to the desired poste?i@r | X). The sampler
described above is summarized in Algorithm 1.



Algorithm 1 A Metropolis-Hastings sampler for structural inference.

(1) Initialize graphG("), sett = 1, G — G
(2) Propose G’ ~ Q(G'; G)
. - . _ P(@'1X)Q(G;¢
(3) Accept G’ with probabilitymin(1, o), v = W.
(4) UpdateIf G is accepted?*t1) — G/, G — GUFD elseGHH) — G. Sett — t+1
(5) Whilet < T, repeat (2)-(4).

During sampling, we only need the posterior distributiorofder to compute
acceptance ratio. This means that the unnormalized quantii€X | G')P(G")
andp(X | G)P(G) are sufficient for our purposes. We have discussed the nargin
likelihood p(X | G)) above; we turn our attention to the priB{G) below. We note
also that efficient local computations, as described in Heukn et al. (1995) and
Giudici and Castelo (2003), suffice to compute the Baye®fagX | G')/p(X |
G) at each iteration.

As shown in Algorithm 1, iterating “propose”, “accept” andpdate” steps
gives rise to sample&'™ ... G(T). An important property of these samples is
that, provided the Markov chain has converged to its statulistribution, they
provide a means by which to compute the expectation of dafigrany function
on graphs. Specifically, iE[¢(G)] p(qx) is the expectation, under the posterior,
of a functiong(G), then

T
Bo(G)] = 7> 6(C0) (©)
t=1

is, by standard results, an asymptotically valid estimafd[¢(G)] p(qx)-

An important special case of (9), which we shall make use lmipeconcerns
the posterior probability of an individual edge or P(e | X). We may write
P(e | X) as a posterior expectation as follows:

Ple|X) = > Ple|GX)P(G|X)
Geg
- Z I (e)P(G | X)
Geg
= Ellge (@)lpex)

where,1 4 is the indicator function for sed.



Then, applying (9), we may use samp&s) ... G(7) to obtain an asymptoti-
cally valid estimate oE[/ ) (e)]:

T

Ellpg(e)] = %ZIE(G(O)(B) (10)
t=1

where,G®) = (V(G®), B(GW)).

3 Priorson graphs

In this Section, we discuss the use of prior information eoning graph features.
We begin with a motivating example which highlights somehef dlifferent kinds

of prior beliefs which are encountered in practice and whiehmight like to take
account of during inference. We then introduce a class ofpion graphs which
we calllocally-informative priors These priors are quite general in nature, and are
well-suited to structural inference using the sampler diesd above. We provide
examples of locally-informative priors for informationgarding individual edges,
classes of edges, degree distributions and sparsity. We ttie Section by looking

at the use of proposal distributions based on structuratgri

3.1 A motivating example

We begin with a motivating example taken from cancer biolegyich is paradig-
matic of the broad class of structural inference problentk which this paper is
concerned. Our choice of example is motivated by our owniegphterests, but
guestions of this general type arise in many areas of biplihgysocial sciences,
and data mining, so we invite the reader to substitute inlé&sgpa motivating ex-
ample of her own choice.

Table 1 shows 14 proteins which are components of a biolbgétavork called
the Epidermal Growth Factor Receptamr EGFR system. Here, each protein is
either aligand, receptoror cytosolic protein for our present purposes, these may
be regarded as well-defined classes of variable.

Our general goal is to infer structural features of the lyalal network in
which these components participate. We model the relevenathémical con-
nectivity in terms of conditional independence. Then, tjoas regarding rela-
tionships between molecular components can be expressednatural fashion,
as questions regarding features of conditional indeparedgnaphs. (Naturally,
this conceptualization raises important semantic isduatsin light of the largely
methodological goals of the present paper, we do not digbese here.)



Table 1: Some components of the Epidermal Growth FactorReceystem.

Protein | Type Protein | Type

EGF Ligand GAP Cytosolic protein
AMPH | Ligand SHC Cytosolic protein
NRG1 | Ligand RAS Cytosolic protein
NRG2 | Ligand Raf Cytosolic protein
EGFR | Receptor MEK Cytosolic protein
ERBB2 | Receptor ERK Cytosolic protein
ERBB3 | Receptor

ERBB4 | Receptor

The biochemistry of the system provides us with some prioxkedge regard-
ing graph features, which we would like to take account ofrdunference. Some
illustrative examples of the kind of knowledge which migletadwvailable include:

(S1) Ligands influence cytosolic proteins via ligand-réoefinteractions. As a
conseguence, we do not expect them to directly influencesaljtoproteins.
Equally, we do not expect either receptors or cytosolicginat to directly
influence ligands.

(S2) Certain ligand-receptor binding events occur witttipalarly high affinity;
these include EGF and AMPH with EGFR, NRG1 with ERBB3, and NRG
and NRG2 with ERBB4. Equally, the receptors EGFR, ERBB3 aR8B4
are all capable of influencing the state of ERBB2 (via hetiened formation
and transphosphorylation). Also, there is much evidendie#@ting that Raf
can influence MEK, which in turn can influence ERK.

(S3) Since we observe ligand-mediated activity at the lefrelytosolic proteins,
we expect to see a path from ligands to receptors, and froeptecs to
cytosolic proteins.

Without going into a great deal of biological detail it is @atehat these beliefs
correspond to information regarding graph structure: (@ijtains information
concerning classes of edges; (S2) contains informatioardéry specific edges
and (S3) contains information regarding edges betweeseadasf vertices.

3.2 Locally informative priors

Since the scale of Metropolis-Hastings moves is controigdhe proposal dis-
tribution (), it makes sense to use a prior which is informative at the ssrake
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as the proposal. In this Section we introduce a class of porgraphs which
are designed to match the local scale of our Metropolisihigstsampler: we call
theselocally-informative priors We first describe locally-informative priors at a
very general level, and go on to provide specific examplesdi priors for beliefs
regarding individual edges, classes of edges, degreébdistns and graph spar-
sity. We highlight a number of connections to existing ideascerning priors on
graphs, and finally offer a few comments on the contrast betvggobal and local
information in the context of sampling.

3.21 Concordance functions

Let f(G) be areal-valued function on graphs which:
(i) isincreasing in thelegreeto which graphG accords with prior beliefs, and
(i) typically takes on more than one distinct value in a iigurhood;(G).

We call f a concordance functignsince it indicates concordance with prior
beliefs. Then, docally-informative prioris a prior of the following form:

P(G) o g(f(G)) (11)

where,g is @ monotone increasing function.
In all our experiments, we use:

9(f(@) = N A>1 (12)

with the parametek used to control the strength of the prior.

3.22 Examples

The crucial element in the formulation (11) is the concomdafunctionf. If f
typically takes on multiple distinct values in local neighithoods, the resulting
prior will be informative in such local neighbourhoods.

It turns out to be relatively straightforward to specify cordance functions
corresponding to prior beliefs of various kinds. We provide a few examples of
concordance functions.

Individual edges. Suppose we believe that certain edgesagpeori more plausi-
ble than others. Such beliefs mayesitiveor negative depending on whether we
belief the edges are likely to be present or absent in thegtatarating graph. Let
E., denote a set of edges concerning which we have positivef fgliEsitive edge
set”) andE_ be a set of edges concerning which we have negative beliefdtive
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edge set”). We assume that these two sets are disjoint, bati’'t N £ = ().
Then, we suggest the following concordance function:

F(G) = |B(G)n By - |B(@G)NE. (13
&
Ey
E(G)
E_

Figure 2: Positive and negative edge sétgenotes the set of all possible edges.

This is essentially a counting function on individual edgekich attains its
maximum valug £ | if and only if G contains all the positive edges and no neg-
ative edges. Importantly, the function can take on a rangms$ible values, and
is sensitive to local changes in graph structure involvidges which are members
of either the positive or negative edge sets.

In the motivating example presented above, (S1) contaigative prior infor-
mation, while (S2) contains positive prior information aeding individual edges.
Such information can be captured in quite natural way usir). (We note also
that the notion of specifying a particular prior gragh = (5, Ep), and penal-
izing graphs on the basis of the number of edges by which tifesr rom G
(Heckerman et al., 1995) is a special case of (13), With= £y andE_ = Ef.

In the remainder of the paper we will use (13) to capture gr@iefs concern-
ing individual edges. We note however that the following,rengeneral concor-
dance function allows beliefs regarding individual edgebe weighted in accor-
dance with their strength:

f(G) = Z?UJE(G)(GZP) (14)

where, {e},} denotes a set of edges concerning which we have prior heliefs
either positive or negative, and are edge-specific weights.

The simpler function in (13) is then a special case of thisegancounting
function withw; = 1 if the corresponding edge., represents a positive prior
belief andw; = —1 if edgee’, represents a negative prior belief.
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Classes of edges. Concordance function (13) may also be used to capture belief
regarding classes of edges. €} } be a set of classes into which vertices V'

can be categorised. Suppose we wish to penalize graphayigpledges between
vertices of type and;. This can be accomplished simply by using the concordance
function(13) with a negative edge st containing all such edges:

E_ = {e=(vgv) Clug) =C;,C(vy) =Cj} (15)
Positive priors on classes of edges can be defined in a sifadhion.

Higher-level graph features. In many cases, we may wish to capture prior knowl-
edge concerning higher-level graph features which caneatdscribed by refer-
ence to individual edges. To take but one example, we magJgethat there ought
to be at least one edge between certain classes of verteas,(83) above. Ex-
amples of knowledge of this kind are abundant in moleculafolgy, where the
classes may represent distinct types of molecule thoughfiteence one other in
specific ways.

As above, lefCy } be vertex classes. Also, Iéfv) denote the class to which a
vertexv belongs. Let; be a set of ordered pairs of classes such(at;) € E¢
means that we have a belief that there ought to be at leastdygefeom clas€;
to classC;. Then, the following concordance function captures theebtat there
ought to be at least one edge between specified pairs of slasse

F@) = > I > S((Cm),C(v), (CiC) | (16)

(Ci,Cj)GEC (v1,v2)EE(G)

where,Z ™ is the set of positive integers.

Thus, (16) counts the number of pairshiy which are represented by at least
one edge in a graph. We provide a practical example and agiplicof a concor-
dance function of this kind in an analysis of a protein netnmesented below.

Degree distributions. Suppose we have reason to believe that the degree distri-
bution of the graph is likely to be scale-free. This is a prop&hich has been
investigated widely in recent years, in contexts rangimmgnfrsystems biology to
the structure of the internet (refs). Thlegreedeg(v) of a vertexv is the total
number of edges in which vertexparticipates. The degree distribution of a graph
G is a functionm (0) describing the total number of vertices having degree

ra(d) = > 1 (17)
veV(G)-deg(v)=6

A graph is said to have scale-freedegree distribution ifrs follows a power-
law with 75(0) o< 677, > 0 such thatlog(w(4)) should be approximately
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linear inlog(d). Accordingly, we suggest using the negative correlaticeffament
betweerlog(m(4)) andlog(d) as a concordance function to capture the extent to
which the degree distribution of a graphcan be regarded as scale-free:

f(G) = —r(log(na(9)),log(d)) (18)

where,r(-, -) denotes the correlation coefficient of its arguments.

Again, since the concordance function (18) is sensitiveotall changes in
graph structure, it will typically take on multiple distinealues in a given neigh-
bourhood.

Sparsity. In many settings, it can be advantageous to promote parummod-
els by using priors which promote sparse graphs. Such pdiffer from those
discussed already in that they aim to promote a generaktatatly desirable fea-
ture rather than capture specific domain knowledge. Hereajeseribe two ways
of promoting sparsity: by penalizing large-degreesand by penalizing théotal
number of edges

Since Bayesian networks factorize joint distributionitdcal terms condi-
tioned on parent configurations, model complexity typicatows - often very
rapidly - with the number of parents. Controlling the in-tdeg of graphs can
therefore be an effective means of controlling model comiple The in-degree
indeg(v) of avertexv € V is the number of edges in edge-#ekeading intov, that
isindeg(v) = [{(vi,v)-(vi,vj) € E,vj = v}|. LetA(G) = max,cy () indeg(v)
be themaximum in-degreef graphG. Then, the following concordance function
expresses a preference for graphs having in-degree Nna#@iREE\; de, -

f(G) = min(0, Aindeg — A(G)) (19)

An alternative way to promote sparsity is by penalizing th&ltnumber of
edges in a graph, for example using a Binomial distributieardhe total number
of edges, with parameters set to ensure an expected numbdges$ equal to the
number of variablegp, and an appropriate maximum number of possible edges
(Buntine, 1991; Jones et al., 2005).

Combining concordance functions. Finally we note that multiple concordance
functions{ f;(G)} may be combined using a functiaiifi(G), f2(G), . ..) which
is monotone increasing in each of its arguments. We suggest

P(G) o [T A (20)
where the);’s are strength parameters for the concordance functions.
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3.2.3 Local and global information
The Metropolis-Hastings acceptance ratiin (7) may be written as a product

P(X|G)  QIG:GE)  P(G)
P(X[G) " QG5G) * P(G)

of a likelihood ratio, Hastings ratio and prior odds. Thisamg that the only way
in which prior knowledge enters into the sampling procesgiasthe prior odds
P(G@")/P(G) in favour of a proposed graph over a current graph. As a conse-
quence, the behavior of the rati(G’)/P(G) during sampling is central to the
effectiveness of the prior. In particular, a prior whichitgily takes on a range of
values over the local neighbourhoods in which the propomsatilbution operates
will tend to provide informative prior odds ratios duringngaling.

To illustrate this point, consider a naive prior of the daling form:

A if Gegp

1 otherwise (21)

P(G) x {

where,Gp is a set containing all graphs which fully accord with priaibfs

and\ > 1 is the prior odds in favour of such graphs. For our motivagrgmple,

such a prior would take on the value\ (for some constant) only for graphs
displaying all characteristics in (S1), (S2) and (S3) aradherwise.

“Naive” “Naive”
Q Q I
Gr Gr
g g
(a) Naive prior (b) Locally-informative (LI) prior

Figure 3: Local versus global information. The relatiopsbetween the scales
of the proposal and prior distributions play a key role inwimgy that the prior

provides information during sampling. Here, (a) a naiviergs flat across a typ-
ical local neighbourhood, while (b) a locally-informatipeior takes on a range of
values in such a neighbourhood.

This naive prior expresses an clear preference for grajthscertain features
and is therefore informative at a global scale. Yet, fortieddy specific prior
information and a moderate number of variables, typicily| < |G|, such that
the prior will very often take on theamevalue across a given neighbourhood and
therefore provide relatively little information at a locstale. Such a prior may

15



therefore, in practice, operate asl@factoflat prior on graphs. It is in this sense
that it is important to reconcile the scale of the prior are pihoposal distribution,
and in this sense that the priors we have put forward arelyetdbrmative. Figure

3 shows schematically why it is that a naive prior tends tdléeacross local
neighbourhoods, while a locally-informative prior tendsshow variation in such
neighbourhoods.

3.3 Prior-based proposals

The proposal distribution (6) is uniform over a neighbourthg(G). Yet the prior
P(G) provides potentially valuable information regarding whgraphs are pri-
ori most likely. A natural idea, then, is to use this informatiorguide the proposal
mechanism. However, care must be taken to ensure thatdguicibility of the
Markov chain is maintained, and (ii) that the Hastings facdG; G')/Q(G’; G)
and the prior odd€?(G’)/P(G) do not simply cancel each other out or result in
a lowering of the acceptance probability farpriori likely graphs. Due to the
second of these concerns, we do not recommend the use obpsed proposals
as a matter of course, but rather only when necessitated fmciedly complex,
multi-modal graph spaces and in the presence of strong ipfmation. In such
settings, and for integer-valued concordance functipnae suggest a proposal
distribution of the following form:

Ao if P(G') > P(G)

1 if P(G)=P(G)
1/Aq if P(G") < P(G)

0 if G¢nG)

where,\g > 1is a parameter controlling the strength with which the psapo
mechanism prefera priori likely graphs.

This ensures that (i) all graphs if{G) have a non-zero probability of being
proposed, thereby preserving irreducibility, and (ii) thastings factor is at most
on the order of)\%, such that forP(G) o« M(&), setting\ > )\é ensures thad
priori likely graphs remain likely to obtain good acceptance gtio

Qp(G;G) x (22)

4 Experiments

4.1 Simulation
411 Data
We simulated data for the= 14 variables described previously in Table 1, using

the data-generating graph shown in Figure 4(a). One of atedgoals was to ad-
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dress the question of structural inference at small sanigds;saccordingly we set
the sample size for our simulation dataset te200. Details of our data-generating
model are as follows: the random variables are bidary }; all conditional distri-
butions are Bernoulli, with success parametelepending upon the configuration
of the parents. In particular, root nodes are sampled with0.5, while for each
child nodep=0.8 if at least one parent takes on the valyandp =0.2 otherwise.
This gives each child node a relationship to its parents visisimilar to a logical
OR.

412 Priors

The graph shown in Figure 4(a) is based on the biochemistihefEpidermal
Growth Factor Receptor system alluded to the motivatinggta presented above.
We constructed locally informative priors correspondingthie beliefs (S1) and
(S2) described in Section 3.1 above. Using (15), we definedegative edge set
E_ from (S1); (S2) defined a positive edge #&t in a natural manner. The con-
cordance function (13) was then used with these edge se®3. W not used in
these experiments. To investigate the effects of weakergaind of priors contain-
ing erroneous information, we also constructgghatial prior and amis-specified
prior. The partial prior uses (S2) but not (S1) and therefore @ostaformation
on some specific edges, but no information on classes of edgesmis-specified
prior includes in its negative edge set edges from Raf to ME& faom MEK to
ERK, and in its positive edge set an edge from Ras to ERK. Tihiis pllows us
to consider a realistic setting in which the prior is largedasonable but contains
a number of egregiously false beliefs. Finally, as a basatomparison, we also
computed results using a “flat” prior witR(G) = k. For all locally-informative
priors, we sef\ = e.

413 Reaults

Receiver Operating Characteristar ROC curvesre plots of true positive against
false positive rates, and provide an ‘at a glance’ summamgriafr rates across a
range of thresholds. The fact that we know the true datargéing graph allowed
us to generate ROC curves from true and false positive caliadividual edges.
Let G* = (V*, E*) denote the true data-generating graph. As beford?(et| X)
denote the posterior probability of an edge= (v;,v;). Then, the set of edges
called at threshold € [0, 1] is

E: = {e=(v,vj) v eV,v;€V,Ple|X)>r1},
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Figure 4: ROC curves, synthetic data. (a) Data-generatiaghy (b) Full ROC
curves; (c) Detalil of (b).
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the number of true positives i47; N E*| and the number of false positives is
|E- \ E*|.

ROC curves were then obtained by plotting, for each samiiiernumber of
true positives against the number of false positives patenized by threshold.
Thus, these curves are computed by comparison with the “glatlidard” edge-set
E*; they provide our key comparative result. Figure 4(b),(@ve ROC curves
obtained using each of the full, partial, and mis-specifaghlly-informative pri-
ors, and, for comparison, the flat prior and absolageodds ratios; ;| computed
for each pair(i, j) of variables; these provided a natural measure of associati
between pairs of binary variables.

The locally-informative priors provide substantial gaimsensitivity and speci-
ficity: the full and mis-specified priors called 11 edges dmpartial prior called
9 edges correctly before encountering a false positive.falhprior discovered all
16 edges in the data-generating graph at the cost of only® fadsitives; the par-
tial prior required 8, the mis-specified prior 9 and the flabipBO false positives
to recover all true edges. The log-odds ratio did substéntieorse than any of
the Bayesian network analyses, requiring 62 false positivdind all edges in the
data-generating graph.

Figure 5(a) shows, for each sampler, the average prolyatiiliicceptance plot-
ted against number of MCMC iterations. Figure 5(b) showsawrage number
of edges plotted against number of MCMC iterations. Intigly, although none
of the priors used in these experiments explicitly promatearsity, the samplers
are all able to discover sparse graphs, with an average mwhbdges close to the
true value of 16. We based our inferences on a single, longfdn = 100000
iterations for each sampler, with 5000 samples discardéouas-in” in each case.
For diagnostic purposes, we also performed several sheetZ0000) runs using
each sampler. Figure 6 shows profiles obtained from thegmao&ic runs; in each
case the monitored quantities converged within a few thadigarations.

Taking advantage of our knowledge of the correct graph, we ebmputed,
for each sampler, the average distance, across all samgle®,dfrom the data-
generating graph. We used thguared Frobenius norm- ||% to quantify distance
from true graphG*. This is given by:

IGY -Gz = > > IGH -Gyl
i=1 j=1

whereG® and G* are adjacency matrices corresponding to graptis and G*

respectively, and-);; denotes thei, j)™" element of its (matrix) argument. For
the flat, mis-specified, partial and full priors the averagatces were 16, 9.23,
8.64 and 6.91 respectively. This accords with the ROC resuksented above,
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Table 2: Posterior odds in favour of the path ERBB3HC—RAS (correct) over
ERBB2-GAP—RAS (incorrect).

Prior type Posterior odds
Flat 32
Mis-specified 213
Partial 748
Full 366

Table 3: Posterior probabilities for path RARMEK —ERK.

Prior type Posterior probability
Flat 0.79
Mis-specified 0.74
Partial 0.95
Full 0.95

and suggests that the priors are indeed capable of guidinglisey towards good
regions of graph space.

The samplesz™ ... G(T) obtained using each sampler can be used to com-
pute posterior probabilities or odds for more-or-lessteaby graph features. Here,
we present two examples of this type of analysis. The prd®gis is the “entry-
point” to the ERK pathway; ERBB2 is an important up-strearftugnce on this
pathway. Suppose we wished to ask whether ERBB2 activates/ideSHC or
GAP. A natural way to capture the evidence in favour of these specific hy-
potheses is via the posterior odds in favour of the path ERBBRIC—RAS over
the path ERBB2-GAP—RAS. Table 2 shows these odds ratios for each of the
four samplers. What is interesting is that even though ndrikeoprior informa-
tion used specifically concerns the paths considered, tadlyeinformative priors
give stronger odds in favour of the correct path than the fi@tr.p In fact, the
strongest odds results from the partial prior which doesemet contain informa-
tion on classes of edges. This highlights the role priorspay in constraining
inference to the benefit of questions concerning graph fesitgenerally, and not
just those questions concerning features captured in the pr

A second example is shown in Table 3 and concerns postebapilities for
the path RAF-MEK—ERK. The full and partial priors give the highest proba-
bilities for this correct feature: this is not surprisinglight of the fact that they
contain information, from (S2), in favour of this path. Whsitinteresting is that
the mis-specified prior finds the complete path i¥7df its samples, despite the
fact that it contains information which explicitigenalizesgraphs containing this
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very path.

4.2 Proteomic data

TheMitogen-Activated Protein Kinaser MAPK pathwayis a a biochemical path-
way which plays a central role in cellular signaling and waberrant function-
ing is heavily implicated in a number of cancers. Despite yngars of intensive
research, cancer-specific features of the MAPK pathway irepworly character-
ized, and relatively little is known regarding connectivétpecific to certain im-
portant subtypes of proteins callptiospho-formsandisoforms In this Section
we present some of the results obtained in an analysis ofylsiem using the
structural inference methods developed here. The aimseopithsent paper are
primarily methodological; we therefore defer a full dissias of the biological de-
tails and experimental implications of our work to a forthdng paper. We note
that our investigation into this system started out as algingorrelational analysis.
The complex nature of relationships between componentarinar pathways mo-
tivated us to move towards a multivariate approach, whitertbed to take account
of rich but uncertain biochemical knowledge and to sharpestions concerning
specific features of the pathway motivated the work we hagerdeed here.

421 Data

Proteomic data were obtained for the 14 protein phosphod@nd isoforms shown
in Table 4; these included two isoforms of the proteiRaf four phosphoforms
of MAPK/ERK Kinaseor MEK; two isoforms ofExtracellular Regulated Kinase
or ERK; four isoforms ofProtein Kinase Gr PKC, and two phosphoforms @tkt
The data were obtained from an assay performed by Kinexus (Wiancouver,
Canada) on a panel of 18 breast cancer cell lines. The datapreprocessed by
(i) setting all zeros to 1/100 of the smallest non-zero valiiigtaking logs and (iii)
discretizing around the median for each protein. This gaeto binary data for
each of the 14 proteins.

422 Priors

Our prior beliefs concerning the network can be summarizsoliows:

(P1) The Rafs are expected to have edges going only to isefamd phospho-
forms of MEK; the MEKs are expected to have edges only to ERKs;
AKTs are expected to have edges only to Rafs.

(P2) There is expected to be at least one edge going from ®RMEKS and from
MEKSs to ERKSs.
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Table 4. Some protein isoforms and phosho-forms from thed#ib-Activated
Protein Kinase or MAPK pathway.

Protein | Isoforms/phosho-forms | Notes

Raf Raf(60) These are isoforms of c-Raf
Raf(70)

MEK MEK1(S5298) MEK stands foM APK/ERK Kinase;
MEKZ1(T292) also known as MAPK Kinase
MEK1(T386)

MEK1/2

ERK ERK1 ERK is ExtracellularRegulatedK inase;
ERK2 also known as MAPK

AKT AKT (T308) Also known as Protein Kinase B
Akt (S473)

PKC PKCu PKC stands foProteinKinaseC
PKCa/3(T638)

PKCe
PKC( (T410)

(P3) We do not expect the in-degree of any node to exceed 3.

We constructed locally-informative priors for these biglieusing (15), (P1)
defined a negative edge g6t for concordance function (13); (P2) and (P3) were
captured using concordance functions (16) and (19) reispbct The three func-
tions were combined multiplicatively, using (20), with alfs set to 100. A prior-
based proposal was used, using (22) withset to 4. This is an example of using
a relatively strong prior to refine a scientific question:hirstcase we are primarily
interested in patterns of connectivity between subtypgwateins Raf, MEK and
ERK, but remain interested in other possibilities also.

423 Reaults

Figure 7(a) shows the single most probable graph encouhtieming sampling, us-
ing a locally-informative prior for (P1)-(P3). Each edgis annotated with the cor-
responding posterior probabilit}?(e | X). Figure 7(b) shows average acceptance
probabilities, while Figure 7(c) shows average number afesdplotted against
number of iterations. Here, “locally-informative” refers a locally-informative
prior which does not explicitly promote sparsity, whilec¢hlly-informative, sparse”
refers to a locally-informative prior which additionallygmotes sparsity. That is,
the first prior encodes (P1) and (P2) but not (P3), while tloese encodes (P1),
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Figure 7: Results from protein data. (a) The single mostgqntdbgraph sampled
using a sparse, locally-informative prior, each edge iotatad with its posterior
probability; (b) average acceptance rate and (c) averagwauof edges plotted
against sampling iterations.
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Figure 8: Diagnostic runs for protein data. Five shdrt=t 20000) runs were
performed using each sampler: (a)-(c) show average acuaptates, (d)-(f) show
average number of edges plotted against number of sampéiragions, for flat,
locally-informative (LI) and sparse, locally-informagi\(LI,sparse) priors.

(P2) and (P3). We note that in contrast to the simulation expats, in this case
the flat prior is unable to control model complexity, with theerage number of
edges converging to a relatively high value. Also, thered#farence in the level

of sparsity obtained by the two locally-informative priovgth the sparse locally-
informative prior sampling models which are noticeably emparsimonious. We
used single, long runs af = 500000 iterations in each case, with 5000 samples
discarded as “burn-in". For diagnostic purposes, we alstopaed several short
(T'=20000) runs using each sampler; these are shown in Figure 8.

5 Discussion

In this paper, we have discussed the use of rich structubdor model averaging

in Bayesian networks. In our view, such priors play two edatoles. Firstly, they

provide a means by which to capture valuable domain knovdedgarding graph

features. Secondly, they allow us to refine or sharpen questf interest, in effect

playing a role analogous to formulating an initial set of bigeses, but with much
greater flexibility. This flexibility, combined with the wieknown robustness of
Bayesian model averaging, means that it is possible torobiseful results even
when priors are mis-specified, essentially by borrowingrgjth from a large space
of models, many of which accord only partially with prior ied$.
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We saw also that the use of structural priors can lead to wdygtantive gains
at small sample sizes. Much of the literature on MCMC-baseattural inference
has focused on moderate-to-large sample sizes: for exampleecent paper, Giu-
dici and Castelo (2003) analyzed a dataset with6 andn = 1846. In contrast,
our experiments focused on quite challenging settings iithvthere are both a
greater number of variables and far fewer observationioditjh, unsurprisingly,
we found that the basic sampling approach does not do welisnsetting, we
discovered that reasonably well-specified priors do indemdhit effective infer-
ence under these conditions, yielding substantive gaies ahen the features of
eventual interest were not described in the prior, or wherptiors were partially
mis-specified.

Bayesian formulations can, in general, be viewed as a forpepélized likeli-
hood, and in that sense they quite naturally promote parsone models. An ad-
ditional penalty on model complexity in the form of a spargitior may therefore
be unnecessary in many cases. However, when a paucity ¢iodatanis-specified
model, exacerbate problems of over-fitting, explicit sppargiors can play a useful
role. Indeed, we saw that for the small-sample protein datparsity-promoting
prior had a noticeable effect on controlling model compiexin such settings, we
recommend examining the average number of edges in samgptggto decide
whether or not such priors are called for.

We note that our structural priors dwt satisfy so-called prior equivalence in
that they allow us to express a prior preference for one gogh another even
when both graphs imply the same conditional independemtensents. Thus, we
may express a prior preference fér— B over B — A, despite the fact that both
graphs describe the same likelihood model. This propettwal us to express
preferences derived from domain knowledge. For exampheibelieve thatd
precedesB in time, or thatA is capable of physically influencing, we may
express a preference fegr — B over B — A. Viewed in this way, the ability of
non-equivalent priors to incorporate outside informaiimo inference is a useful,
even desirable, property.

In a recent paper, Friedman and Koller (2003) proposed aresting ap-
proach to structural inference, in which samples are draam fthe space obr-
ders where an ordek is defined as a total order relation on vertices such that if
X; € Pag(X;) theni < j. The appeal of this approach lies in the fact that the
space of orders is much smaller than the space of graphs. eJsthiar hand, the
use of order space means that structural priors must bddtadsnto priors on
orders, and inferences on graph features must be carriadaoatder space. This
turns out to place restrictions on the kinds of structuradmsrwhich can be utilized,
and moreover makes it difficult to compute the posterior philities of arbitrary
graph features. Furthermore, the authors own experiménts that sampling in
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order space offers no advantage at smaller sample sizegntrast, we find that
remaining in graph space offers real advantages in termsinfjkable to specify
rich priors in a natural and readily interpretable fashiod,gust as important, in
making inferences regarding essentially arbitrary feztwf graphs. Also, as we
have seen, the use of such priors can lead, in turn, to muctoirg performance
at small sample sizes.

There remains much to be done in extending the methods peelsenthis
paper to higher-dimensional problems. One approach tongakich problems
tractable would be to place strong priors on some parts obveeall graph. This
would, in effect, amount to using background knowledge taufolimited inferen-
tial power on the least well-understood, or scientificallgsninteresting, parts of
the graph.

Our current applied efforts are directed towards questioreancer biology.
We have found the ability to specify rich, interpretableopsidirectly on graphs and
make posterior inferences on features of graphs such as,agtgeips of edges and
paths to be valuable in casting biologically interestinggtions within a statistical
framework. We therefore hope that the methods presentedvilimprove useful
in a number of settings where questions of this kind need t&doeessed.
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