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Abstract

This paper addresses the question of making inferences regarding fea-
tures of conditional independence graphs in settings characterized by the
availability of rich prior information regarding such features. We focus on
Bayesian networks, and use Markov chain Monte Carlo to draw samples
from the relevant posterior over graphs. We introduce a class of “locally-
informative priors” which are highly flexible and capable oftaking account
of specific information regarding graph features, and are, in addition, infor-
mative at a scale appropriate to local sampling moves. We present examples
of such priors for beliefs regarding edges, groups and classes of edges, de-
gree distributions and sparsity, applying our methods to challenging synthetic
data as well as data obtained from a biological network in cancer.

1 Introduction

In recent decades, rich developments in computational methods have allowed statis-
ticians to perform inference using increasingly realistic, complex data models. At
the same time, in the broader research community there has been a growing interest
in complex, multi-variable systems, a trend which has been greatly influenced by
continuing advances in experimental methodologies capable of making measure-
ments on such systems.

Bayesian statistics in particular has benefited greatly from these technical and
scientific developments. Computational tools like Markov chain Monte Carlo have
broadened the applicability of rich Bayesian models, and the increasingly close
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integration between computational statistics and fields such as bioinformatics, fi-
nance and data mining has been accompanied by an increasing demand for statis-
tical methods capable of taking account of relevant domain knowledge.

A specific trend which has begun to gather pace is an interest in studying sys-
tems characterized by multiple interacting components. For example, in the field of
molecular biology, there has been a movement away from thinking about one gene
or protein at a time to thinking about multiple genes and proteins acting in concert.
Indeed, it is largely this type of thinking that characterizes so-called “systems”
approaches to biology (see e.g. Kitano, 2002; Ideker and Lauffenburger, 2003).
In statistical terms, this has led to much interest in multivariate methods, and in
network-orientated models.

Graphical models (Pearl, 1988; Lauritzen and Spiegelhalter, 1988; Lauritzen,
1996; Jordan, 2004) are a class of statistical models which provide graph-based
representations of conditional independence relationships between random vari-
ables. A graphical model consists of a graphG, describing a set of conditional in-
dependence statements, and parametersΘ which specify conditional distributions
implied byG. Often, the graphG is known, and inferential questions concern spe-
cific marginal and conditional distributions. Three decades of research have pro-
vided a rich array of theory and computer algorithms with which to address such
questions. However, in many settings, questions of interest concern the conditional
independence graph itself. For example, in molecular biology, we may be inter-
ested in saying something about which molecules or combinations of molecules
influence one another; in the social sciences we may be interested in relationships
between various economic and demographic variables. Such questions can often
be cast, in a quite natural manner, in terms of features, suchas edges, classes of
edges, or paths, of conditional independence graphs.

The daunting nature of inference on graphical model structure is well known,
and is largely due to the vast space of possible models in evenmoderately large
domains. Yet, equally, in many settings, an understanding of the relevant domain
may suggest that not every possible graph is equally plausible, and that certain
features should be regarded asa priori more likely than others. Where available,
such knowledge, even when uncertain, is surely a valuable resource, making the
question of how to capture and exploit it an important one.

This paper seeks to address precisely this question, of making inferences re-
garding conditional independence graphs in the presence ofprior knowledge re-
garding graph features. We focus on directed graphical models called Bayesian
networks, and use Markov chain Monte Carlo (MCMC) for structural inference.
Motivated by the kinds of questions alluded to above, the model averaging methods
described in this paper are aimed not so much at recovering the correct graph, but
more as a flexible device for addressing questions concerning features of graphs.
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MCMC-based inference on conditional independence graphs is a topic which has
attracted a great deal of interest in recent years in statistics as well as machine learn-
ing (Madigan et al., 1995; Dellaportas and Forster, 1999; Giudici and Green, 1999;
Friedman and Koller, 2003; Giudici and Castelo, 2003; Tarantola, 2004; Dellapor-
tas and Tarantola, 2005). Our work adds to the existing literature in two ways.
Firstly, we place an emphasis on making use of rich prior information regarding
graph structure. Much of the existing literature on structural inference has used
flat priors on graphs (e.g. Madigan et al., 1995; Giudici and Castelo, 2003), or pri-
ors designed to promote sparse models by penalizing graphs with too many edges
(e.g. Friedman and Koller, 2003; Jones et al., 2005). In contrast, we seek to take
account of detailed information concerning features of graphs such as individual
edges, classes of edges and degree distributions on vertices. In many domains,
such beliefs follow, in a natural manner, from a consideration of the underlying
science or semantics of the variables under study. We argue that such information
can be profitably exploited in structural inference. We present priors which can
be used in this fashion, and show examples of how these ideas can be put to use
for practical problems. A second emphasis is on settings in which the number of
observations is small relative to the complexity of the system under study. It is
frequently observed that there is a “deluge” of data in modern science. Yet, in our
experience, it is often the case that there isnot enoughdata concerning rich, mul-
tivariate systems. In molecular biology, for example, obtaining large datasets can
be costly and labour-intensive, especially if a high level of biochemical detail is
desired. Equally, in the social sciences, there may be a natural limit on the number
of units upon which measurements can be made, such as in the case of studying
demographic or economic variables at the level of zip codes.

These elements - approximate inference on graphs, structural priors and sample
size - are inter-related. At smaller sample sizes, posterior distributions over graph
space tend to be diffuse, with significant probability mass in many regions of the
space. This can serve as a motivation for the use of sampling methods, but at
the same time can mean that such methods must explore ever larger, dispersed
areas of graph space in order to account for a given fraction of probability mass.
This in turn motivates the need to exploit prior informationregarding competing
graphs to guide inference and refine the questions being asked. Indeed, one of our
key empirical findings is that in the analysis of small samplesize data the use of
structural priors leads to substantive gains in the accuracy of inferences regarding
graph features. A Receiver Operating Characteristic or ROCanalysis of decisions
on individual edges, presented in Section 4, reveals large gains in sensitivity and
specificity compared with both structural inference with a flat prior and simple
pairwise associations.

A natural concern regarding informative priors on graphs iswhether their use
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amounts to “putting too much in” during inference. We hold the view that even
strong priors on graphs can play a valuable role in sharpening questions being
asked, in a manner analogous to a well thought out set of hypotheses, but with
an added degree of flexibility and generality. Consider, as an example, the five
variables illustrated in Figure 1. Suppose we knew, from outside knowledge, that
theAs tend to influence theBs, and that the main question we were interested in
addressing was which combination ofAs influence each of theBs. One way of
posing this question would be as a classical multiple decision problem. A second
approach would be to perform structural inference on the variables, with a strong
prior in favour of models in whichAs influenceBs. The structural prior would then
play a role similar to the hypothesis formulation step in thefirst approach. Yet the
structural analysis offers two key advantages. Firstly, itallows for the discovery of
unexpected relationships, when such relationships are well-supported by the data.
When the variables of immediate interest are embedded in a larger system such
relationships could also include outside influences of one kind or another. Sec-
ondly, structural inference offers a mechanism by which to simultaneously address
a range of possible questions concerning relationships between variables: once we
have described a posterior distribution over models, we arefree to evaluate proba-
bilities or odds concerning essentially any structural features of interest.

Figure 1: Priors for hypothesis formulation. A prior preferring models in whichAs
influenceBs can play a role similar to a hypothesis formulation step in amultiple
decision approach.

The remainder of this paper is organized as follows. We beginby reviewing
basic ideas and notation for Bayesian networks and structural inference. We then
turn our attention to priors on graphs. We introduce a class of priors which we call
locally-informative priors. These priors are highly flexible and can take account
of rich, specific information regarding graph features. In addition, they provide
information at a scale appropriate to local sampling moves and, as a consequence,
are particularly well-suited to our sampling-based approach. We present a number
of examples of the use of our methods, including analyses of challenging synthetic
data and of a biological network in breast cancer. We close the paper with a dis-
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cussion of the key points and shortcomings of our work and some ideas for further
research.

2 Background

2.1 Bayesian Networks

Bayesian networks (Pearl, 1988; Lauritzen, 1996) are a typeof multivariate sta-
tistical model in which a directed acyclic graph describingconditional indepen-
dence statements regarding a group of random variables is exploited to provide
a compact description of their joint distribution. A Bayesian network consists of
two elements: (i) a directed acyclic graphG = (V (G), E(G)), whose verticesV
represent random variablesX1 . . . Xp of interest, and whose edge-setE contains
edges describing conditional independencies between those variables, and (ii) pa-
rametersΘ which specify the conditional distributions implied by thegraph. In
particular, the graphG implies that each variable is conditionally independent of
its non-descendants given its immediate parents. Importantly, this means that the
joint distributionP (X1 . . . Xp) can be factorized into a product of local terms:

P (X1 . . . Xp | G) =

p
∏

i=1

P (Xi | PaG(Xi)) (1)

where,PaG(Xi) is the set of parents ofXi in graphG.
The goal of structural inference is make inferences regarding the graphG given

observations of the variablesX1 . . . Xp. Let X represent ap × n data matrix,
wheren is the number of multivariate samples available. Using Bayes’ theorem,
the posterior probability of graphG can be written as follows:

P (G | X) =
p(X | G)P (G)

p(X)
(2)

where,p(X | G) is the (marginal) likelihood andP (G) is a prior distribution
over directed acyclic graphs; we refer to the latter as astructural prior.

Now, the graphG does not in itself specify a full data model, since it describes
only the conditional independence structure of the variables, but neither the form of
the conditional distributions which relate child nodes to parents, nor the parameters
of those distributions. If we assume that the form of the conditional distributions
P (Xi | Pa(Xi)) is known, we need only specify parameters to obtain a full model.
LetΘ represent a complete set of model parameters. Then, the marginal likelihood
p(X | G) can be evaluated by integrating over parametersΘ:

p(X | G) =

∫

p(X | G,Θ)p(Θ | G) dΘ (3)
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where,p(Θ) is a prior over parameters.
This paper is concerned mainly with inferences regarding the graphG itself,

and the ideas presented below are applicable for any choice of conditional distri-
butions and parameter priors under which the marginal likelihoodp(X | G) can be
evaluated. In our experiments, we follow previous authors (Cooper and Herskovits,
1992; Heckerman et al., 1995; Giudici and Castelo, 2003) in assuming parameter
independence and using Multinomial conditionals and Dirichlet priors. This al-
lows the marginal likelihood to be evaluated in closed form.Here, we reproduce
the well-known result of Heckerman et al. (1995) and refer the interested reader to
the reference for further details:

p(X | G) =

p
∏

i=1

qi
∏

j=1

Γ(N ′
ij)

Γ(N ′
ij +Nij)

·
ri
∏

k=1

Γ(N ′
ijk +Nijk)

Γ(Nijk)
(4)

where,Nijk is the number of observations in whichXi takes the valuek, given
that PaG(Xi) has configurationj; qi are the number of possible configurations
of parentsPaG(Xi); andri are the number of possible values ofXi. N ′

ijk are
Dirichlet hyperparameters. Finally,Nij =

∑ri

k=1Nijk andN ′
ij =

∑ri

k=1N
′
ijk.

2.2 MCMC for structural inference

The posterior distributionP (G | X) is a discrete distribution over the spaceG of
all possible directed acyclic graphs withp vertices. We may rewrite (2) as follows,
explicitly summing over graphs in the denominator:

P (G | X) =
p(X | G)P (G)

∑

G∈G p(X | G)P (G)
(5)

The number of possible graphs grows super-exponentially with the number of
variablesp. Indeed, Robinson (1973) has shown that the number|Gp| of possi-
ble directed acyclic graphs withp vertices is given by the following recurrence
formula:

|Gp| =

p
∑

i=1

(−1)i+1

(

p

i

)

2i(p−i)|G(p−i)|

where,|G1| = 1 and| · | indicates the cardinality of its argument.
This gives|G2| = 3, |G3| = 25, |G10| ≈ 4.2 × 1018, |G14| ≈ 1.4 × 1036 and

so on. The number of possible graphs is therefore usually much too large to permit
the distribution to be enumerated exhaustively. Thus, while we can evaluate the
posterior probability of a graph upto a multiplicative constant, we cannot actually
consider every possible graph in the course of inference.
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The intractability of the sum in (5) motivates the use of stochastic simulation
methods to approximate posterior distributions over graphs. Markov Chain Monte
Carlo or MCMC represents a general class of such methods which are widely used
in computational statistics. The basic idea of MCMC is to construct a Markov
chain whose state space is the domain of the desired random quantity, and whose
stationary distribution is its posterior. Then, simulating the Markov chain provides
a means by which to make inferences based on the posterior distribution of interest.

In a Metropolis-Hastingssampler (Hastings, 1970), draws are made from a
proposal distributionQ, which depends on current state, and then accepted or re-
jected in such a way as to guarantee that, asymptotically, they behave as draws from
the desired target distribution. Here, following Madigan et al. (1995) and Giudici
and Castelo (2003), we develop a MCMC sampler of the Metropolis-Hastings type
for the purpose of simulating the posterior distributionP (G | X) over conditional
independence graphs.

Let η(G) denote aneighbourhoodaround a directed acyclic graphG, consist-
ing of every directed acyclic graph which can be obtained by adding, deleting or
reversing a single edge inG. Define proposal distributionQ as follows:

Q(G′;G) =

{ 1
|η(G)| if G′ ∈ η(G)

0 otherwise
(6)

Then, calculate the followingacceptance probabilityα:

α =
P (G′ | X)Q(G;G′)

P (G | X)Q(G′;G)
(7)

Since the proposal distribution is uniform over the relevant neighbourhood, the
ratioQ(G;G′)/Q(G′;G) may be written in terms of neighbourhood size:

α =
P (G′ | X)|η(G)|

P (G | X)|η(G′)|
(8)

A proposed graphG′, drawn fromQ, is thenacceptedwith probabilitymin(1, α),
and otherwiserejected. If accepted,G′ is added to the sequence of samples drawn,
and becomes the current graph. Else,G is added to the sequence of samples, and
remains the current graph. As shown in Madigan et al. (1995) and Giudici and
Castelo (2003), the proposal distributionQ gives rise to an irreducible Markov
chain, since there is positive probability of reaching any part of the state spaceG.
Standard results (see, e.g., Tierney, 1994; Gilks et al., 1996) then guarantee that
the Markov chain must converge to the desired posteriorP (G | X). The sampler
described above is summarized in Algorithm 1.

7



Algorithm 1 A Metropolis-Hastings sampler for structural inference.

(1) Initialize graphG(1), sett = 1,G← G(1)

(2) Propose G′ ∼ Q(G′;G)

(3) Accept G′ with probabilitymin(1, α), α = P (G′|X)Q(G;G′)
P (G|X)Q(G′;G) .

(4) Update If G′ is accepted,G(t+1) ← G′,G← G(t+1) elseG(t+1) ← G. Sett← t+ 1

(5) While t < T , repeat (2)-(4).

During sampling, we only need the posterior distribution inorder to compute
acceptance ratioα. This means that the unnormalized quantitiesp(X | G′)P (G′)
andp(X | G)P (G) are sufficient for our purposes. We have discussed the marginal
likelihoodp(X | G) above; we turn our attention to the priorP (G) below. We note
also that efficient local computations, as described in Heckerman et al. (1995) and
Giudici and Castelo (2003), suffice to compute the Bayes factor p(X | G′)/p(X |
G) at each iteration.

As shown in Algorithm 1, iterating “propose”, “accept” and “update” steps
gives rise to samplesG(1) . . . G(T ). An important property of these samples is
that, provided the Markov chain has converged to its stationary distribution, they
provide a means by which to compute the expectation of essentially any function
on graphs. Specifically, ifE[φ(G)]P (G|X) is the expectation, under the posterior,
of a functionφ(G), then

Ê[φ(G)] =
1

T

T
∑

t=1

φ(G(t)) (9)

is, by standard results, an asymptotically valid estimatorof E[φ(G)]P (G|X).
An important special case of (9), which we shall make use of below, concerns

the posterior probability of an individual edgee, or P (e | X). We may write
P (e | X) as a posterior expectation as follows:

P (e | X) =
∑

G∈G

P (e | G,X)P (G | X)

=
∑

G∈G

IE(G)(e)P (G | X)

= E[IE(G)(e)]P (G|X)

where,IA is the indicator function for setA.
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Then, applying (9), we may use samplesG(1) . . . G(T ) to obtain an asymptoti-
cally valid estimate ofE[IE(G)(e)]:

Ê[IE(G)(e)] =
1

T

T
∑

t=1

IE(G(t))(e) (10)

where,G(t) = (V (G(t)), E(G(t))).

3 Priors on graphs

In this Section, we discuss the use of prior information concerning graph features.
We begin with a motivating example which highlights some of the different kinds
of prior beliefs which are encountered in practice and whichwe might like to take
account of during inference. We then introduce a class of priors on graphs which
we call locally-informative priors. These priors are quite general in nature, and are
well-suited to structural inference using the sampler described above. We provide
examples of locally-informative priors for information regarding individual edges,
classes of edges, degree distributions and sparsity. We close the Section by looking
at the use of proposal distributions based on structural priors.

3.1 A motivating example

We begin with a motivating example taken from cancer biology, which is paradig-
matic of the broad class of structural inference problems with which this paper is
concerned. Our choice of example is motivated by our own applied interests, but
questions of this general type arise in many areas of biology, the social sciences,
and data mining, so we invite the reader to substitute in its place a motivating ex-
ample of her own choice.

Table 1 shows 14 proteins which are components of a biological network called
the Epidermal Growth Factor Receptoror EGFRsystem. Here, each protein is
either aligand, receptoror cytosolic protein; for our present purposes, these may
be regarded as well-defined classes of variable.

Our general goal is to infer structural features of the biological network in
which these components participate. We model the relevant biochemical con-
nectivity in terms of conditional independence. Then, questions regarding rela-
tionships between molecular components can be expressed, in a natural fashion,
as questions regarding features of conditional independence graphs. (Naturally,
this conceptualization raises important semantic issues,but in light of the largely
methodological goals of the present paper, we do not discussthese here.)
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Table 1: Some components of the Epidermal Growth Factor Receptor system.

Protein Type Protein Type
EGF Ligand GAP Cytosolic protein
AMPH Ligand SHC Cytosolic protein
NRG1 Ligand RAS Cytosolic protein
NRG2 Ligand Raf Cytosolic protein
EGFR Receptor MEK Cytosolic protein
ERBB2 Receptor ERK Cytosolic protein
ERBB3 Receptor
ERBB4 Receptor

The biochemistry of the system provides us with some prior knowledge regard-
ing graph features, which we would like to take account of during inference. Some
illustrative examples of the kind of knowledge which might be available include:

(S1) Ligands influence cytosolic proteins via ligand-receptor interactions. As a
consequence, we do not expect them to directly influence cytosolic proteins.
Equally, we do not expect either receptors or cytosolic proteins to directly
influence ligands.

(S2) Certain ligand-receptor binding events occur with particularly high affinity;
these include EGF and AMPH with EGFR, NRG1 with ERBB3, and NRG1
and NRG2 with ERBB4. Equally, the receptors EGFR, ERBB3 and ERBB4
are all capable of influencing the state of ERBB2 (via heterodimer formation
and transphosphorylation). Also, there is much evidence indicating that Raf
can influence MEK, which in turn can influence ERK.

(S3) Since we observe ligand-mediated activity at the levelof cytosolic proteins,
we expect to see a path from ligands to receptors, and from receptors to
cytosolic proteins.

Without going into a great deal of biological detail it is clear that these beliefs
correspond to information regarding graph structure: (S1)contains information
concerning classes of edges; (S2) contains information regarding specific edges
and (S3) contains information regarding edges between classes of vertices.

3.2 Locally informative priors

Since the scale of Metropolis-Hastings moves is controlledby the proposal dis-
tribution Q, it makes sense to use a prior which is informative at the samescale
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as the proposal. In this Section we introduce a class of priors on graphs which
are designed to match the local scale of our Metropolis-Hastings sampler: we call
theselocally-informative priors. We first describe locally-informative priors at a
very general level, and go on to provide specific examples of such priors for beliefs
regarding individual edges, classes of edges, degree distributions and graph spar-
sity. We highlight a number of connections to existing ideasconcerning priors on
graphs, and finally offer a few comments on the contrast between global and local
information in the context of sampling.

3.2.1 Concordance functions

Let f(G) be a real-valued function on graphs which:

(i) is increasing in thedegreeto which graphG accords with prior beliefs, and

(ii) typically takes on more than one distinct value in a neighbourhoodη(G).

We call f a concordance function, since it indicates concordance with prior
beliefs. Then, alocally-informative prioris a prior of the following form:

P (G) ∝ g(f(G)) (11)

where,g is a monotone increasing function.
In all our experiments, we use:

g(f(G)) = λf(G), λ ≥ 1 (12)

with the parameterλ used to control the strength of the prior.

3.2.2 Examples

The crucial element in the formulation (11) is the concordance functionf . If f
typically takes on multiple distinct values in local neighbourhoods, the resulting
prior will be informative in such local neighbourhoods.

It turns out to be relatively straightforward to specify concordance functions
corresponding to prior beliefs of various kinds. We providenow a few examples of
concordance functions.

Individual edges. Suppose we believe that certain edges area priori more plausi-
ble than others. Such beliefs may bepositiveor negative, depending on whether we
belief the edges are likely to be present or absent in the data-generating graph. Let
E+ denote a set of edges concerning which we have positive belief (“positive edge
set”) andE− be a set of edges concerning which we have negative belief (“negative
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edge set”). We assume that these two sets are disjoint, such thatE+ ∩ E− = ∅.
Then, we suggest the following concordance function:

f(G) = |E(G) ∩E+| − |E(G) ∩ E−| (13)

E

E+

E(G)

E−

Figure 2: Positive and negative edge sets;E denotes the set of all possible edges.

This is essentially a counting function on individual edges, which attains its
maximum value|E+| if and only if G contains all the positive edges and no neg-
ative edges. Importantly, the function can take on a range ofpossible values, and
is sensitive to local changes in graph structure involving edges which are members
of either the positive or negative edge sets.

In the motivating example presented above, (S1) contains negative prior infor-
mation, while (S2) contains positive prior information regarding individual edges.
Such information can be captured in quite natural way using (13). We note also
that the notion of specifying a particular prior graphG0 = (V0, E0), and penal-
izing graphs on the basis of the number of edges by which they differ from G0

(Heckerman et al., 1995) is a special case of (13), withE+ = E0 andE− = Ec
0.

In the remainder of the paper we will use (13) to capture priorbeliefs concern-
ing individual edges. We note however that the following, more general concor-
dance function allows beliefs regarding individual edges to be weighted in accor-
dance with their strength:

f(G) =
∑

i

wiIE(G)(e
i
P ) (14)

where,{eiP } denotes a set of edges concerning which we have prior beliefs,
either positive or negative, andwi are edge-specific weights.

The simpler function in (13) is then a special case of this general counting
function with wi = 1 if the corresponding edgeeiP represents a positive prior
belief andwi = −1 if edgeeiP represents a negative prior belief.
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Classes of edges. Concordance function (13) may also be used to capture beliefs
regarding classes of edges. Let{Ck} be a set of classes into which verticesv ∈ V
can be categorised. Suppose we wish to penalize graphs displaying edges between
vertices of typei andj. This can be accomplished simply by using the concordance
function(13) with a negative edge setE− containing all such edges:

E− = {e = (vk, vl) · C(vk) = Ci, C(vl) = Cj} (15)

Positive priors on classes of edges can be defined in a similarfashion.

Higher-level graph features. In many cases, we may wish to capture prior knowl-
edge concerning higher-level graph features which cannot be described by refer-
ence to individual edges. To take but one example, we may believe that there ought
to be at least one edge between certain classes of vertices, as in (S3) above. Ex-
amples of knowledge of this kind are abundant in molecular biology, where the
classes may represent distinct types of molecule thought toinfluence one other in
specific ways.

As above, let{Ck} be vertex classes. Also, letC(v) denote the class to which a
vertexv belongs. LetEC be a set of ordered pairs of classes such that(Ci, Cj) ∈ EC

means that we have a belief that there ought to be at least one edge from classCi
to classCj . Then, the following concordance function captures the belief that there
ought to be at least one edge between specified pairs of classes:

f(G) =
∑

(Ci,Cj)∈EC

IZ+





∑

(v1,v2)∈E(G)

δ ((C(v1), C(v2)), (Ci, Cj))



 (16)

where,Z+ is the set of positive integers.
Thus, (16) counts the number of pairs inEC which are represented by at least

one edge in a graph. We provide a practical example and application of a concor-
dance function of this kind in an analysis of a protein network presented below.

Degree distributions. Suppose we have reason to believe that the degree distri-
bution of the graph is likely to be scale-free. This is a property which has been
investigated widely in recent years, in contexts ranging from systems biology to
the structure of the internet (refs). Thedegreedeg(v) of a vertexv is the total
number of edges in which vertexv participates. The degree distribution of a graph
G is a functionπG(δ) describing the total number of vertices having degreeδ:

πG(δ) =
∑

v∈V (G)·deg(v)=δ

1 (17)

A graph is said to have ascale-freedegree distribution ifπG follows a power-
law with πG(δ) ∝ δ−γ , γ > 0 such thatlog(πG(δ)) should be approximately
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linear inlog(δ). Accordingly, we suggest using the negative correlation coefficient
betweenlog(πG(δ)) andlog(δ) as a concordance function to capture the extent to
which the degree distribution of a graphG can be regarded as scale-free:

f(G) = −r(log(πG(δ)), log(δ)) (18)

where,r(·, ·) denotes the correlation coefficient of its arguments.
Again, since the concordance function (18) is sensitive to local changes in

graph structure, it will typically take on multiple distinct values in a given neigh-
bourhood.

Sparsity. In many settings, it can be advantageous to promote parsimonious mod-
els by using priors which promote sparse graphs. Such priorsdiffer from those
discussed already in that they aim to promote a general, statistically desirable fea-
ture rather than capture specific domain knowledge. Here, wedescribe two ways
of promoting sparsity: by penalizing largein-degreesand by penalizing thetotal
number of edges.

Since Bayesian networks factorize joint distributions into local terms condi-
tioned on parent configurations, model complexity typically grows - often very
rapidly - with the number of parents. Controlling the in-degree of graphs can
therefore be an effective means of controlling model complexity. The in-degree
indeg(v) of a vertexv ∈ V is the number of edges in edge-setE leading intov, that
is indeg(v) = |{(vi, vj)·(vi, vj) ∈ E, vj = v}|. Let∆(G) = maxv∈V (G) indeg(v)
be themaximum in-degreeof graphG. Then, the following concordance function
expresses a preference for graphs having in-degree not exceedingλindeg:

f(G) = min(0, λindeg −∆(G)) (19)

An alternative way to promote sparsity is by penalizing the total number of
edges in a graph, for example using a Binomial distribution over the total number
of edges, with parameters set to ensure an expected number ofedges equal to the
number of variablesp, and an appropriate maximum number of possible edges
(Buntine, 1991; Jones et al., 2005).

Combining concordance functions. Finally we note that multiple concordance
functions{fi(G)} may be combined using a functiong(f1(G), f2(G), . . .) which
is monotone increasing in each of its arguments. We suggest

P (G) ∝
∏

i

λ
fi(G)
i (20)

where theλi’s are strength parameters for the concordance functions.
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3.2.3 Local and global information

The Metropolis-Hastings acceptance ratioα in (7) may be written as a product

α =
P (X | G′)

P (X | G)
×
Q(G;G′)

Q(G′;G)
×
P (G′)

P (G)

of a likelihood ratio, Hastings ratio and prior odds. This means that the only way
in which prior knowledge enters into the sampling process isvia the prior odds
P (G′)/P (G) in favour of a proposed graph over a current graph. As a conse-
quence, the behavior of the ratioP (G′)/P (G) during sampling is central to the
effectiveness of the prior. In particular, a prior which typically takes on a range of
values over the local neighbourhoods in which the proposal distribution operates
will tend to provide informative prior odds ratios during sampling.

To illustrate this point, consider a naı̈ve prior of the following form:

P (G) ∝

{

λ if G ∈ GP

1 otherwise
(21)

where,GP is a set containing all graphs which fully accord with prior beliefs
andλ ≥ 1 is the prior odds in favour of such graphs. For our motivatingexample,
such a prior would take on the valuekλ (for some constantk) only for graphs
displaying all characteristics in (S1), (S2) and (S3) andk otherwise.

Q
“Naı̈ve”

GP

G

(a) Naı̈ve prior

Q
“Naı̈ve”

GP

G

“LI”

(b) Locally-informative (LI) prior

Figure 3: Local versus global information. The relationship between the scales
of the proposal and prior distributions play a key role in ensuring that the prior
provides information during sampling. Here, (a) a naı̈ve prior is flat across a typ-
ical local neighbourhood, while (b) a locally-informativeprior takes on a range of
values in such a neighbourhood.

This naı̈ve prior expresses an clear preference for graphs with certain features
and is therefore informative at a global scale. Yet, for relatively specific prior
information and a moderate number of variables, typically|GP | ≪ |G|, such that
the prior will very often take on thesamevalue across a given neighbourhood and
therefore provide relatively little information at a localscale. Such a prior may
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therefore, in practice, operate as ade factoflat prior on graphs. It is in this sense
that it is important to reconcile the scale of the prior and the proposal distribution,
and in this sense that the priors we have put forward are locally-informative. Figure
3 shows schematically why it is that a naı̈ve prior tends to beflat across local
neighbourhoods, while a locally-informative prior tends to show variation in such
neighbourhoods.

3.3 Prior-based proposals

The proposal distribution (6) is uniform over a neighbourhood η(G). Yet the prior
P (G) provides potentially valuable information regarding which graphs area pri-
ori most likely. A natural idea, then, is to use this informationto guide the proposal
mechanism. However, care must be taken to ensure that (i) irreducibility of the
Markov chain is maintained, and (ii) that the Hastings factor Q(G;G′)/Q(G′;G)
and the prior oddsP (G′)/P (G) do not simply cancel each other out or result in
a lowering of the acceptance probability fora priori likely graphs. Due to the
second of these concerns, we do not recommend the use of prior-based proposals
as a matter of course, but rather only when necessitated by especially complex,
multi-modal graph spaces and in the presence of strong priorinformation. In such
settings, and for integer-valued concordance functionsf , we suggest a proposal
distribution of the following form:

QP (G′;G) ∝















λQ if P (G′) > P (G)
1 if P (G′) = P (G)

1/λQ if P (G′) < P (G)
0 if G′ /∈ η(G)

(22)

where,λQ ≥ 1 is a parameter controlling the strength with which the proposal
mechanism prefersa priori likely graphs.

This ensures that (i) all graphs inη(G) have a non-zero probability of being
proposed, thereby preserving irreducibility, and (ii) theHastings factor is at most
on the order ofλ2

Q, such that forP (G) ∝ λf(G), settingλ > λ2
Q ensures thata

priori likely graphs remain likely to obtain good acceptance ratios.

4 Experiments

4.1 Simulation

4.1.1 Data

We simulated data for thep= 14 variables described previously in Table 1, using
the data-generating graph shown in Figure 4(a). One of our stated goals was to ad-
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dress the question of structural inference at small sample sizes; accordingly we set
the sample size for our simulation dataset ton=200. Details of our data-generating
model are as follows: the random variables are binary{0, 1}; all conditional distri-
butions are Bernoulli, with success parameterp depending upon the configuration
of the parents. In particular, root nodes are sampled withp= 0.5, while for each
child node,p=0.8 if at least one parent takes on the value1, andp=0.2 otherwise.
This gives each child node a relationship to its parents which is similar to a logical
OR.

4.1.2 Priors

The graph shown in Figure 4(a) is based on the biochemistry ofthe Epidermal
Growth Factor Receptor system alluded to the motivating example presented above.
We constructed locally informative priors corresponding to the beliefs (S1) and
(S2) described in Section 3.1 above. Using (15), we defined a anegative edge set
E− from (S1); (S2) defined a positive edge setE+ in a natural manner. The con-
cordance function (13) was then used with these edge sets. (S3) was not used in
these experiments. To investigate the effects of weaker priors and of priors contain-
ing erroneous information, we also constructed apartial prior and amis-specified
prior. The partial prior uses (S2) but not (S1) and therefore contains information
on some specific edges, but no information on classes of edges. The mis-specified
prior includes in its negative edge set edges from Raf to MEK and from MEK to
ERK, and in its positive edge set an edge from Ras to ERK. This prior allows us
to consider a realistic setting in which the prior is largelyreasonable but contains
a number of egregiously false beliefs. Finally, as a baseline comparison, we also
computed results using a “flat” prior withP (G) = k. For all locally-informative
priors, we setλ = e.

4.1.3 Results

Receiver Operating Characteristicor ROC curvesare plots of true positive against
false positive rates, and provide an ‘at a glance’ summary oferror rates across a
range of thresholds. The fact that we know the true data-generating graph allowed
us to generate ROC curves from true and false positive calls on individual edges.
LetG∗ = (V ∗, E∗) denote the true data-generating graph. As before, letP (e | X)
denote the posterior probability of an edgee = (vi, vj). Then, the set of edges
called at thresholdτ ∈ [0, 1] is

Eτ = {e = (vi, vj) · vi ∈ V, vj ∈ V, P (e | X) ≥ τ},
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(a) Data-generating graph
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(c) Detail

Figure 4: ROC curves, synthetic data. (a) Data-generating graph; (b) Full ROC
curves; (c) Detail of (b).
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the number of true positives is|Eτ ∩ E
∗| and the number of false positives is

|Eτ \ E
∗|.

ROC curves were then obtained by plotting, for each sampler,the number of
true positives against the number of false positives parameterized by thresholdτ .
Thus, these curves are computed by comparison with the “gold-standard” edge-set
E∗; they provide our key comparative result. Figure 4(b),(c) show ROC curves
obtained using each of the full, partial, and mis-specified locally-informative pri-
ors, and, for comparison, the flat prior and absolutelog odds ratios|ψij | computed
for each pair(i, j) of variables; these provided a natural measure of association
between pairs of binary variables.

The locally-informative priors provide substantial gainsin sensitivity and speci-
ficity: the full and mis-specified priors called 11 edges and the partial prior called
9 edges correctly before encountering a false positive. Thefull prior discovered all
16 edges in the data-generating graph at the cost of only 5 false positives; the par-
tial prior required 8, the mis-specified prior 9 and the flat prior 30 false positives
to recover all true edges. The log-odds ratio did substantially worse than any of
the Bayesian network analyses, requiring 62 false positives to find all edges in the
data-generating graph.

Figure 5(a) shows, for each sampler, the average probability of acceptance plot-
ted against number of MCMC iterations. Figure 5(b) shows theaverage number
of edges plotted against number of MCMC iterations. Interestingly, although none
of the priors used in these experiments explicitly promotedsparsity, the samplers
are all able to discover sparse graphs, with an average number of edges close to the
true value of 16. We based our inferences on a single, long runof T = 100000
iterations for each sampler, with 5000 samples discarded as“burn-in” in each case.
For diagnostic purposes, we also performed several short (T = 20000) runs using
each sampler. Figure 6 shows profiles obtained from these diagnostic runs; in each
case the monitored quantities converged within a few thousand iterations.

Taking advantage of our knowledge of the correct graph, we also computed,
for each sampler, the average distance, across all samples drawn, from the data-
generating graph. We used thesquared Frobenius norm‖ · ‖2F to quantify distance
from true graphG∗. This is given by:

‖G(t) −G
∗‖2F =

p
∑

i=1

p
∑

j=1

|(G(t) −G
∗)ij |

2,

whereG
(t) andG

∗ are adjacency matrices corresponding to graphsG(t) andG∗

respectively, and(·)ij denotes the(i, j)th element of its (matrix) argument. For
the flat, mis-specified, partial and full priors the average distances were 16, 9.23,
8.64 and 6.91 respectively. This accords with the ROC results presented above,
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Figure 5: Acceptance rate and number of edges, synthetic data. (a) Average ac-
ceptance rate and (b) average number of edges for synthetic data, plotted against
number of sampling iterations.
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Figure 6: Diagnostic runs for synthetic data. Five short (T =20000) runs were per-
formed using each sampler: (a)-(d) show acceptance rates, (e)-(h) show number of
edges plotted against number of sampling iterations for flat, mis-specified, partial
and full priors.
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Table 2: Posterior odds in favour of the path ERBB2→SHC→RAS (correct) over
ERBB2→GAP→RAS (incorrect).

Prior type Posterior odds
Flat 32
Mis-specified 213
Partial 748
Full 366

Table 3: Posterior probabilities for path RAF→MEK→ERK.
Prior type Posterior probability
Flat 0.79
Mis-specified 0.74
Partial 0.95
Full 0.95

and suggests that the priors are indeed capable of guiding sampling towards good
regions of graph space.

The samplesG(1) . . . G(T ) obtained using each sampler can be used to com-
pute posterior probabilities or odds for more-or-less arbitrary graph features. Here,
we present two examples of this type of analysis. The proteinRas is the “entry-
point” to the ERK pathway; ERBB2 is an important up-stream influence on this
pathway. Suppose we wished to ask whether ERBB2 activates Ras via SHC or
GAP. A natural way to capture the evidence in favour of these two specific hy-
potheses is via the posterior odds in favour of the path ERBB2→SHC→RAS over
the path ERBB2→GAP→RAS. Table 2 shows these odds ratios for each of the
four samplers. What is interesting is that even though none of the prior informa-
tion used specifically concerns the paths considered, the locally-informative priors
give stronger odds in favour of the correct path than the flat prior. In fact, the
strongest odds results from the partial prior which does noteven contain informa-
tion on classes of edges. This highlights the role priors canplay in constraining
inference to the benefit of questions concerning graph features generally, and not
just those questions concerning features captured in the prior.

A second example is shown in Table 3 and concerns posterior probabilities for
the path RAF→MEK→ERK. The full and partial priors give the highest proba-
bilities for this correct feature: this is not surprising inlight of the fact that they
contain information, from (S2), in favour of this path. Whatis interesting is that
the mis-specified prior finds the complete path in 74% of its samples, despite the
fact that it contains information which explicitlypenalizesgraphs containing this
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very path.

4.2 Proteomic data

TheMitogen-Activated Protein Kinaseor MAPK pathwayis a a biochemical path-
way which plays a central role in cellular signaling and whose aberrant function-
ing is heavily implicated in a number of cancers. Despite many years of intensive
research, cancer-specific features of the MAPK pathway remain poorly character-
ized, and relatively little is known regarding connectivity specific to certain im-
portant subtypes of proteins calledphospho-formsand isoforms. In this Section
we present some of the results obtained in an analysis of thissystem using the
structural inference methods developed here. The aims of the present paper are
primarily methodological; we therefore defer a full discussion of the biological de-
tails and experimental implications of our work to a forthcoming paper. We note
that our investigation into this system started out as a simpler correlational analysis.
The complex nature of relationships between components in cancer pathways mo-
tivated us to move towards a multivariate approach, while the need to take account
of rich but uncertain biochemical knowledge and to sharpen questions concerning
specific features of the pathway motivated the work we have described here.

4.2.1 Data

Proteomic data were obtained for the 14 protein phospho-forms and isoforms shown
in Table 4; these included two isoforms of the proteinc-Raf; four phosphoforms
of MAPK/ERK Kinaseor MEK; two isoforms ofExtracellular Regulated Kinase
or ERK; four isoforms ofProtein Kinase Cor PKC, and two phosphoforms ofAkt.
The data were obtained from an assay performed by Kinexus Inc. (Vancouver,
Canada) on a panel of 18 breast cancer cell lines. The data were pre-processed by
(i) setting all zeros to 1/100 of the smallest non-zero value, (ii) taking logs and (iii)
discretizing around the median for each protein. This gave rise to binary data for
each of the 14 proteins.

4.2.2 Priors

Our prior beliefs concerning the network can be summarized as follows:

(P1) The Rafs are expected to have edges going only to isoforms and phospho-
forms of MEK; the MEKs are expected to have edges only to ERKs;the
AKTs are expected to have edges only to Rafs.

(P2) There is expected to be at least one edge going from Rafs to MEKs and from
MEKs to ERKs.
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Table 4: Some protein isoforms and phosho-forms from the Mitogen-Activated
Protein Kinase or MAPK pathway.

Protein Isoforms/phosho-forms Notes
Raf Raf(60) These are isoforms of c-Raf

Raf(70)
MEK MEK1(S298) MEK stands forMAPK/ERK Kinase;

MEK1(T292) also known as MAPK Kinase
MEK1(T386)
MEK1/2

ERK ERK1 ERK is ExtracellularRegulatedKinase;
ERK2 also known as MAPK

AKT AKT (T308) Also known as Protein Kinase B
Akt (S473)

PKC PKCα PKC stands forProteinKinaseC
PKCα/β(T638)
PKCǫ
PKCζ (T410)

(P3) We do not expect the in-degree of any node to exceed 3.

We constructed locally-informative priors for these beliefs: using (15), (P1)
defined a negative edge setE− for concordance function (13); (P2) and (P3) were
captured using concordance functions (16) and (19) respectively. The three func-
tions were combined multiplicatively, using (20), with allλi’s set to 100. A prior-
based proposal was used, using (22) withλQ set to 4. This is an example of using
a relatively strong prior to refine a scientific question: in this case we are primarily
interested in patterns of connectivity between subtypes ofproteins Raf, MEK and
ERK, but remain interested in other possibilities also.

4.2.3 Results

Figure 7(a) shows the single most probable graph encountered during sampling, us-
ing a locally-informative prior for (P1)-(P3). Each edgee is annotated with the cor-
responding posterior probabilityP (e | X). Figure 7(b) shows average acceptance
probabilities, while Figure 7(c) shows average number of edges plotted against
number of iterations. Here, “locally-informative” refersto a locally-informative
prior which does not explicitly promote sparsity, while “locally-informative, sparse”
refers to a locally-informative prior which additionally promotes sparsity. That is,
the first prior encodes (P1) and (P2) but not (P3), while the second encodes (P1),
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(a) Single most probable graph
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(b) Acceptance probability
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Figure 7: Results from protein data. (a) The single most probable graph sampled
using a sparse, locally-informative prior, each edge is annotated with its posterior
probability; (b) average acceptance rate and (c) average number of edges plotted
against sampling iterations.
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Figure 8: Diagnostic runs for protein data. Five short (T = 20000) runs were
performed using each sampler: (a)-(c) show average acceptance rates, (d)-(f) show
average number of edges plotted against number of sampling iterations, for flat,
locally-informative (LI) and sparse, locally-informative (LI,sparse) priors.

(P2) and (P3). We note that in contrast to the simulation experiments, in this case
the flat prior is unable to control model complexity, with theaverage number of
edges converging to a relatively high value. Also, there is adifference in the level
of sparsity obtained by the two locally-informative priors, with the sparse locally-
informative prior sampling models which are noticeably more parsimonious. We
used single, long runs ofT = 500000 iterations in each case, with 5000 samples
discarded as “burn-in”. For diagnostic purposes, we also performed several short
(T =20000) runs using each sampler; these are shown in Figure 8.

5 Discussion

In this paper, we have discussed the use of rich structural priors for model averaging
in Bayesian networks. In our view, such priors play two related roles. Firstly, they
provide a means by which to capture valuable domain knowledge regarding graph
features. Secondly, they allow us to refine or sharpen questions of interest, in effect
playing a role analogous to formulating an initial set of hypotheses, but with much
greater flexibility. This flexibility, combined with the well-known robustness of
Bayesian model averaging, means that it is possible to obtain useful results even
when priors are mis-specified, essentially by borrowing strength from a large space
of models, many of which accord only partially with prior beliefs.

25



We saw also that the use of structural priors can lead to very substantive gains
at small sample sizes. Much of the literature on MCMC-based structural inference
has focused on moderate-to-large sample sizes: for example, in a recent paper, Giu-
dici and Castelo (2003) analyzed a dataset withp= 6 andn= 1846. In contrast,
our experiments focused on quite challenging settings in which there are both a
greater number of variables and far fewer observations. Although, unsurprisingly,
we found that the basic sampling approach does not do well in this setting, we
discovered that reasonably well-specified priors do indeedpermit effective infer-
ence under these conditions, yielding substantive gains even when the features of
eventual interest were not described in the prior, or when the priors were partially
mis-specified.

Bayesian formulations can, in general, be viewed as a form ofpenalized likeli-
hood, and in that sense they quite naturally promote parsimonious models. An ad-
ditional penalty on model complexity in the form of a sparsity prior may therefore
be unnecessary in many cases. However, when a paucity of data, or a mis-specified
model, exacerbate problems of over-fitting, explicit sparsity priors can play a useful
role. Indeed, we saw that for the small-sample protein data,a sparsity-promoting
prior had a noticeable effect on controlling model complexity. In such settings, we
recommend examining the average number of edges in sampled graphs to decide
whether or not such priors are called for.

We note that our structural priors donot satisfy so-called prior equivalence in
that they allow us to express a prior preference for one graphover another even
when both graphs imply the same conditional independence statements. Thus, we
may express a prior preference forA→ B overB → A, despite the fact that both
graphs describe the same likelihood model. This property allows us to express
preferences derived from domain knowledge. For example, ifwe believe thatA
precedesB in time, or thatA is capable of physically influencingB, we may
express a preference forA → B overB → A. Viewed in this way, the ability of
non-equivalent priors to incorporate outside informationinto inference is a useful,
even desirable, property.

In a recent paper, Friedman and Koller (2003) proposed an interesting ap-
proach to structural inference, in which samples are drawn from the space ofor-
ders, where an order≺ is defined as a total order relation on vertices such that if
Xi ∈ PaG(Xj) theni ≺ j. The appeal of this approach lies in the fact that the
space of orders is much smaller than the space of graphs. On the other hand, the
use of order space means that structural priors must be translated into priors on
orders, and inferences on graph features must be carried outvia order space. This
turns out to place restrictions on the kinds of structural priors which can be utilized,
and moreover makes it difficult to compute the posterior probabilities of arbitrary
graph features. Furthermore, the authors own experiments show that sampling in
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order space offers no advantage at smaller sample sizes. In contrast, we find that
remaining in graph space offers real advantages in terms of being able to specify
rich priors in a natural and readily interpretable fashion and, just as important, in
making inferences regarding essentially arbitrary features of graphs. Also, as we
have seen, the use of such priors can lead, in turn, to much improved performance
at small sample sizes.

There remains much to be done in extending the methods presented in this
paper to higher-dimensional problems. One approach to making such problems
tractable would be to place strong priors on some parts of theoverall graph. This
would, in effect, amount to using background knowledge to focus limited inferen-
tial power on the least well-understood, or scientifically most interesting, parts of
the graph.

Our current applied efforts are directed towards questionsin cancer biology.
We have found the ability to specify rich, interpretable priors directly on graphs and
make posterior inferences on features of graphs such as edges, groups of edges and
paths to be valuable in casting biologically interesting questions within a statistical
framework. We therefore hope that the methods presented here will prove useful
in a number of settings where questions of this kind need to beaddressed.
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