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Abstract

Consider the gene ranking problem of replicated microarray time course

experiments where there are multiple biological conditions, and genes of

interest are those whose temporal profiles are different across conditions.

We derive the multi-sample multivariate empirical Bayes statistic for rank-

ing genes in the order of differential expression, from both longitudinal and

cross-sectional replicated developmental microarray time course data. Our

longitudinal multi-sample model assumes that time course replicates are

i.i.d. multivariate normal vectors. On the other hand, we construct our

cross-sectional model using a normal regression framework with any appro-

priate basis for the design matrices. In both cases, we use natural conjugate

priors in our empirical Bayes setting which guarantee closed form solutions
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for the posterior odds. Our simulations and two case studies using pub-

lished worm and mouse microarray time course datasets indicate that the

proposed approaches work well.

keywords: longitudinal; cross-sectional; microarray time course; gene ranking; em-

pirical Bayes.
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1 Introduction

Many important biological events occur in a temporal fashion. Microarray time course

experiments permit the monitoring of temporal profiles for thousands of genes simul-

taneously, hence are useful tools for investigating the biological processes of interest

dynamically. Two major categories of time course experiments are those involving

periodic and developmental phenomena, respectively. Periodic time courses typically

involve natural biological processes (e.g. cell cycle (Cho et al., 1998; Spellman et al.,

1998; Chu et al., 1998), circadian rhythms (Storch et al., 2002)) whose temporal profiles

follow regular patterns, while in developmental time courses the temporal patterns are

more arbitrary. The latter can be further divided into two subclasses: longitudinal and

cross-sectional experiments. In longitudinal time course experiments, mRNA samples

are extracted from the same experimental units, while in cross-sectional ones they are

extracted from different units. The analysis of developmental time course experiments

has been a great challenge, mainly due to the fact that the time series are very short (on

average 3-12 time points), very few replicates (1-5 replications) per gene, and thousands

of genes in an experiment. The time series are so short such that analysis techniques

for standard time series data with hundreds of time points (e.g. Fourier transform and

wavelets) can not be applied. Given very few replicates per gene, the replicate variances

may be poorly estimated. For experiments with longitudinal design, the fact that gene

expression measurements are correlated over time further complicates the analysis. We

refer the reader to Tai and Speed (2005) for a detailed review on the background and

analysis challenges of developmental microarray time course experiments.

Following a microarray experiment, typically only a limited number of genes can be

further verified and studied. Thus, one immediate concern is how to identify genes of

interest from such a large gene set. In Tai and Speed (2006), we constructed the multi-

variate empirical Bayes statistic (MB-statistic) to rank genes in order of interest from
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longitudinal replicated developmental microarray time course experiments when there

are one or two biological conditions. The former leads to what we called the one-sample

problem, where genes of interest are those which change over time, perhaps in some

specific pattern. The latter refers to the two-sample problem, where genes of interest

are those whose temporal profiles are different between two biological conditions. We

built our hierarchical model by assuming the independent time course vectors of lon-

gitudinal gene expression levels are i.i.d. from multivariate normal distribution, with

gene-specific means and variance-covariance matrices. Natural conjugate priors were

assigned to the gene-specific mean and variance-covariance matrix to ensure the exis-

tence of closed-form formula for the posterior odds against the null hypothesis that the

gene stays constant (one-sample problem), or the temporal profiles are the same across

two biological conditions (two-sample problem). These posterior odds were shown to be

equivalent to their corresponding T̃ 2 statistics, variants of Hotelling T 2 statistics, when

the sample size(s) are identical across genes. The proposed statistics were illustrated in

a simulation study and on an Arabidopsis microarray time course dataset in Wildermuth

et al. (2007).

In this paper, we extend our longitudinal model in Tai and Speed (2006) to the

multi-sample problem, where genes of interest are those whose temporal profiles are

different across two or more biological conditions. The corresponding models for cross-

sectional design with any number of biological conditions are also developed. As noted

in Tai and Speed (2005, 2006), only a few methods have been proposed to deal with

this gene selection problem in the time course context, e.g. the B-spline approaches

proposed in Bar-Joseph et al. (2003); Storey et al. (2005); Hong and Li (2006), and the

Hidden Markov Model method in Yuan and Kendziorski (2006). We refer the reader to

Tai and Speed (2005, 2006) for a review of these approaches.

This paper is organized as follows. In section 2, we present our multivariate empir-

ical Bayes model for longitudinal replicated time course data with multiple biological
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conditions. A simulation study is performed to assess our proposed statistic and hy-

perparameter estimation procedures. Our model for cross-sectional data is described

in section 3. In section 4, we illustrate our cross-sectional method on two published

microarray time course datasets and compare it to the moderated F statistic (Smyth,

2004) and the functional hierarchical method in Hong and Li (2006) or ANOVA. We

summarize and discuss our approaches in section 5.

2 Longitudinal Design

We first introduce our notation for longitudinal experiments. Suppose that our mRNA

samples represent D independent biological conditions. Suppose further that each gene g

has ngd k×1 independent time course biological replicates Xgdi, d = 1, ..., D, i = 1, ..., nd,

where k is the number of time points. Our basic model for this multi-sample problem

starts with the assumption that Xgdi are i.i.d. multivariate normal with condition-

specific mean µgd and a common variance-covariance matrix Σg, denoted by N(µgd,Σg).

For simplicity, the subscript g will be dropped for the rest of this paper. The statistical

models presented in the rest of this paper are for an arbitrary single gene g. As in Tai

and Speed (2006), we denote our (composite) null and alternative hypotheses by H and

K, respectively, where H : µ1 = ... = µD = µ,Σ > 0 and K : µi 6= µj , for some i 6= j,

Σ > 0.

2.1 The Moderated Wilks’ lambda Statistic

A direct approach for testing the null H is the classical one-way multivariate analysis of

variance (MANOVA). We now summarize the results in section 12.3 from Mardia et al.
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(2000), first defining the within- and between- sums of squares and products

W =
D∑

d=1

nd∑

i=1

(Xdi − Xd)(Xdi − Xd)
′

,

B =

D∑

d=1

nd(Xd − X)(Xd − X)
′

,

where Xd = n−1
d

∑nd

i=1 Xdi, X = n−1
∑D

d=1

∑nd

i=1 Xdi, n =
∑D

d=1 nd are the condition-

specific and overall average time course vectors, and the total sample size, respectively.

The total sums of squares and products T equals to W + B. By Mardia et al. (2000),

the likelihood-based Wilks’ lambda is the ratio of two determinants

LR =
|W|

|T|
.

A moderated Wilks’ lambda can be defined by

L̃R =
|W̃|

|T̃|
, (1)

where T̃ = T + νΛ, W̃ = W + νΛ, ν is a suitable positive number and Λ is a suitable

positive definite matrix. This idea will be developed in what follows.

2.2 The Multivariate Empirical Bayes Model

2.2.1 Models and Priors

As in Tai and Speed (2006), we define a Bernoulli random variable I with success

probability p to indicate the status of any single gene

I =





1 if K is true

0 if H is true.

The model for the data can then be written as follows:




Xdi|µd,Σ, I = 1 ∼ N (µd,Σ) d = 1, ..., D, i = 1, ..., nd;

Xdi|µ,Σ, I = 0 ∼ N (µ,Σ) .
(2)
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We define the prior for the variance-covariance matrix Σ to be inverse-Wishart with

degrees of freedom ν and scale matrix νΛ (Gelman et al., 2000):

Σ ∼ Inv-Wishartν
(
(νΛ)−1

)
. (3)

In the case that the expected temporal patterns are different across biological conditions,

the priors for µd, d = 1, ..., D given Σ and I are assumed to be independent multivariate

normal with condition-specific mean αd and scale parameter βd, while when I = 0

(µ1 = ... = µD = µ), all the µd have a common prior:




µd|Σ, I = 1 ∼ N
(
αd, β

−1
d Σ

)
, d = 1, ..., D;

µ|Σ, I = 0 ∼ N
(
α, β−1Σ

)
,

(4)

where βd > 0 and β > 0 are hyperparameters. For two-channel comparative microar-

ray experiments where relative gene expression levels are measured, it is reasonable to

assume α = αd = 0, while in the single channel case these hyperparameters need to be

estimated.

2.2.2 Posterior Odds

The posterior odds against the null that the expected time course profiles are the same

can be easily derived using the above priors and models, and are

O =
p

1 − p

P (data|I = 1)

P (data|I = 0)

=
p

1 − p

(
n + β

β

) k

2
D∏

d=1

(
βd

nd + βd

) k

2

(
|T + MH + νΛ|

|W + MK + νΛ|

) 1

2
(n+ν)

,

(5)

where MK =
∑D

d=1(n
−1
d +β−1

d )−1(Xd−αd)(Xd−αd)
′

, and MH =
(
n−1 + β−1

)
−1

(X−

α)(X−α)
′

. When all genes have the same number of replicates nd for the d-th biological

condition, the posterior odds are equivalent to the last term in equation (5)

|T + MH + νΛ|

|W + MK + νΛ|
=

∣∣∣T̃ + MH

∣∣∣
∣∣∣W̃ + MK

∣∣∣
. (6)
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Equation (6) is our EB analogue of Wilks’ likelihood-based lambda from MANOVA

with both its denominator and numerator moderated by (condition-specific) matrices

involving prior means and variance-covariance matrices. When nd is identical across

genes, one can just use equation (6) for ranking instead of equation (5) since they give

the same results.

Several special and limiting cases of the posterior odds are presented in Web Ap-

pendix A. We describe how we estimate the hyperparameters associated with the pos-

terior odds in Web Appendix B.

2.3 Simulation Study

2.3.1 Method

In this section we report a simulation study to compare our fully moderated Wilks’

lambda involving MH and MK , the moderated F-statistic (Smyth, 2004), and the

likelihood-based moderated Wilks’ lambda without MH and MK to see if it helps to

include these two extra terms involving the βd and β. We further assess if hyperpa-

rameter estimation procedures we propose are satisfactory. We do this by plugging in

their true values into the formula and comparing the number of false positives and false

negatives with those obtained from our fully moderated Wilks’ lambda with all hy-

perparameters estimated and likelihood-based moderated Wilks’ lambda. We simulate

100 datasets, each with 10,000 genes. Again, genes are simulated independently as it

makes sense for comparison purposes. We assign 200 genes (p = 0.02) to have different

temporal profiles across biological conditions. The simulation has 3 biological condi-

tions (D = 3), 2 replicates (n1 = n2 = n3 = 2) within conditions, and 8 time points

(k = 8). The hyperparameters are assigned based on a real dataset we have analyzed:

ν = 13, β1 = β2 = β3 = β = 1, α
′

1 = (5, 5, 5, 5, 5, 5, 5, 5), α
′

2 = (6, 6, 6, 6, 6, 6, 6, 6), α
′

3 =
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(7, 7, 7, 7, 7, 7, 7, 7), α
′

= (6, 6, 6, 6, 6, 6, 6, 6), and

Λ =




29.2 1 0.9 0.6 0.1 0.2 0.3 0.3

1 29.2 1 1 0.4 0.5 0.7 0.6

0.9 1 17.2 1 0.5 0.4 0.5 0.6

0.6 1 1 18.3 1 0.5 0.5 0.4

0.1 0.4 0.5 1 27.3 2 0.4 0.3

0.2 0.5 0.4 0.5 2 30.3 1 0.2

0.3 0.7 0.5 0.5 0.4 1 20.2 0.8

0.3 0.6 0.6 0.4 0.3 0.2 0.8 19.2




× 10−2.

We compare our MB-statistic (equation 6), the likelihood-ratio moderated Wilks’ lambda

(equation 1), our MB-statistic (equation 6) with all the estimated hyperparameters re-

placed by their true values, and the moderated F-statistic under the linear model setting

(Smyth, 2004) implemented in the Bioconductor package limma (Smyth, 2005), by look-

ing at the numbers of false positives and negatives.

2.3.2 Simulation Results

Web Table 1 gives the mean and SD for the hyperparameter estimates. The mean for

all αd and α are identical to their true values. The hyperparameters β1, β2, β3, ν are

somewhat underestimated, while λ and β are a bit over estimated. To assess the effects

of hyperparameter estimates on the results, we plug in the true values for the β only

while keeping others fixed at their estimated values, and do the same for ν and Λ, then

calculate the MB-statistic. The rank correlations between the MB-statistics with the

above procedure for the β, (ν, Λ) and all the estimated hyperparameters are 0.97 and

0.99, respectively. The correlation between the MBs with all estimated and all true

hyperparameters is 0.95. Web Figure 1 compares the average numbers of false positives

and negatives between the four statistics. The lines from left to right refer to fully mod-
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erated Wilks’ lambda with all true hyperparameters, fully moderated Wilks’ lambda

with all hyperparameters estimated, the likelihood-based moderated Wilks’ lambda,

and the moderated F-statistic. Our fully moderated Wilks’ lambda with all hyperpa-

rameters estimated achieved both lower numbers of false positives and false negatives

than the likelihood-ratio moderated Wilks’ lambda. This suggests that it is worthwhile

to estimate the βd and β and to include the two extra terms MH , MK in gene ranking,

rather than just use likelihood-based moderated Wilks’ lambda, which is equivalent to

using flat priors on µd and µ. The fact that the red line is closer to the green line than to

the blue line suggests that although not entirely precise, our hyperparameter estimation

procedures lead to better results than would be obtained by setting them to 0 as in the

case of likelihood-ratio moderated Wilks’ lambda. The moderated F-statistic induces

more false positives and false negatives. The reason for this may be that it ignores the

correlations between gene expression values at different time points.

3 Cross-sectional Design

The longitudinal model in section 2 treats the entire time course as a vector, and make

use of the multivariate normality assumption. A similar scheme for cross-sectional data

is presented in this section. There are three key differences between longitudinal and

cross-sectional models. First, in cross-sectional experiments, there is no true biological

correlations among gene expression values over time. It should therefore be reasonable

to assume time course observations are independent across times. Thus, instead of a

general covariance matrix Σ, we assume a common variance σ2 for any observation.

Second, we are able to model the expected temporal profile(s) with both structured

and unstructured means, each having closed-form solutions for the posterior odds. By

contrast, a longitudinal model with structured means apparently requires computational

techniques such as MCMC for calculating the posterior odds. Third, our cross-sectional
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model no longer has the constraint of a fixed set of time points, as is the case in our

longitudinal models, although extending the longitudinal models to allow for arbitrary

times is a future research topic of interest here.

Now we introduce our notation. Suppose the d–th biological condition has Kd time

points, denoted by td1, ..., tdKd
. The number of time points maybe different across biolog-

ical conditions, and the sampling times maybe arbitrary within and between biological

conditions. Let Yd,tdj
be the ndj × 1 random vector of all observations at time tdj for

condition d and Yd be the nd × 1 random vector of observations for the d–th biological

condition: Y
′

d = (Yd,td1
, ...,Yd,tdKd

). The total number of observations is n =
∑D

d=1 nd.

We denote the mean gene expression level for condition d at time t by µd(t).

3.1 Multi-sample Problem

We begin with the multi-sample problem where genes of interest are those whose tem-

poral profiles are different among biological conditions. The model for the one-sample

problem where genes of interest are those which change over time can be derived using

a very similar argument.

3.1.1 Structured Means

The structured means model is particularly useful when mRNA samples are taken at

arbitrary times within and between biological conditions, for example, from mice of

differing ages. In such cases, we are no longer able to compare the temporal profiles

using the averages and replicate variances at a fixed set of time points. Instead, we

compare them by comparing the regression coefficients, assuming each mean temporal

profile can be modeled by a suitable function of time. This approach automatically

takes into account the time ordering into the analysis. Under the alternative, we treat

each biological condition as a single population and fit a linear model to each biological
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condition separately, while under the null the heterogeneity among biological conditions

is ignored, i.e., all the observations are assumed to come from the same population and a

common linear model is fitted to all the data. In other words, under the null, we assume

the mean temporal profiles for all the biological conditions lie on the same curve. In

this way, we can derive the posterior odds that the D mean temporal profiles of a gene

come from different populations (i.e. biological conditions) against their coming from a

common population.

3.1.2 Models and Priors

For the structured means model, µd(t) is modelled as a linear combination of m − 1

functions in time. We write

µd(t) =
m−1∑

q=0

βd,qfq(t), d = 1, ..., D.

The functions fq(t), q = 0, ..., m − 1 are m spline basis functions. The constant m

associated with the degree of freedom is subject to the constraint 0 < m ≤ min(Kd), d =

1, ..., D, so that the coefficients can be compared across biological conditions. Using

matrix notation, we write θ
′

d = (βd,0, ..., βd,m−1). Under the null (I = 0) that the

expected time courses are identical among biological conditions, all the θds equal to a

common vector, while under the alternative, they differ, i.e.

H : θ1 = ... = θD = θ, σ2 > 0

K : θd1
6= θd2

, σ2 > 0 for some pair d1 6= d2.

This model can be written





Yd|θd, σ
2, I = 1 ∼ N

(
Xdθd, σ

2I
)
, d = 1, ..., D;

Yd|θ, σ2, I = 0 ∼ N
(
Xdθ, σ2I

)
,
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where Xd is a nd × m design matrix of full rank with suitable spline bases.

We further define the overall time course observation vector Y and overall design

matrix X by

Y =




Y1

...

YD




X =




X1

...

XD




.

The natural conjugate priors for our multivariate normal models can be constructed

using inverse-gamma and multivariate normal distributions, denoted by

σ2 ∼ Inv-gamma

(
ν

2
,
νλ2

2

)





θd|σ
2, I = 1 ∼ N

(
αd, σ

2Ω−1
d

)
d = 1, ..., D

θ|σ2, I = 0 ∼ N
(
α, σ2Ω−1

)
,

where Ω−1
d , d = 1, ..., D and Ω−1 are m × m diagonal matrices, with diagonal elements

ω−1
dj and ω−1

j , j = 1, ..., m, respectively. Using the priors and models decribed above, we

obtain the posterior odds in the next section.

3.1.3 Posterior Odds

The posterior odds against the null that the expected temporal profiles among biological

conditions can be easily derived, and are

O =
p

1 − p

P (data|I = 1)

P (data|I = 0)

=
p

1 − p

(
|Im + (

∑D
d=1 X

′

dXd)Ω
−1|

∏D
d=1 |Im + (X

′

dXd)Ω
−1
d |

) 1

2
(

TSS + mH + νλ2

WSS + mK + νλ2

) 1

2
(n+ν)

,

(7)
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where

θ̂d = (X
′

dXd)
−1X

′

dYd,

WSSd = (Yd − Xdθ̂d)
′

(Yd − Xdθ̂d), WSS =
∑D

d=1 WSSd, and

md = (θ̂d − αd)
′

((X
′

dXd)
−1 + Ω−1

d )−1(θ̂d − αd), mK =
∑D

d=1 md,

are least squares estimate for θd, within-condition residual sums of squares from the

d-th regression fit, and quantities involving condition-specific prior means, respectively.

In addition, the single population quantities (under H) are

θ̂ = (X
′

X)−1X
′

Y,

TSS = (Y − Xθ̂)
′

(Y − Xθ̂), and

mH = (θ̂ − α)
′

((X
′

X)−1 + Ω−1)−1(θ̂ − α)

are least squares estimate for θ, the total residual sums of squares, and quantity involv-

ing prior means, respectively.

If the design matrices are orthonormalized, equation (7) can be further simplified by

replacing X
′

dXd by I. When Xd is the same across genes, O is a monotonic increasing

function of

TSS + mH + νλ2

WSS + mK + νλ2
. (8)

The above expression is our fully moderated F -statistic. Under the alternative when the

expected temporal profiles come from different curves (populations), the total residual

sums of squares (TSS) from fitting the same curve to all the data is larger than the

within-condition residual sums of squares (WSS) from fitting a separate curve to each
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biological condition. If ωdj → 0 and ωj → 0, m
′

and m vanish and the posterior odds

are equivalent to

TSS + νλ2

WSS + νλ2
.

In the limiting case that ν → ∞ , the posterior odds are

p

1 − p

(
|Im + (

∑D
d=1 X

′

dXd)Ω
−1|

∏D
d=1 |Im + (X

′

dXd)Ω
−1
d |

) 1

2

exp
{

TSS + m − WSS − m
′

}
.

On the other hand, when ν → 0, the posterior odds are just simply equation (7) with ν

replaced by 0.

3.2 Unstructured Means

The above structured means model can be used for aribitrary sampling times. Suppose

gene expression levels are measured at a fixed set of k time points across biological

conditions, i.e. Kd = k, d = 1, ..., D, and td1,j = td2,j = tj , d1 6= d2, j = 1, ..., k, we can

also use the unstructured means model which estimates the expected time course using

the (condition-specific) sample averages rather than the model-based fitted values. Now

the vector of regression coefficients equal to the mean time course vector, i.e. θd = µd,

θ = µ, m = k, and Xd and X are design matrices with 0s and 1s. Let nj and ndj be

the total number of replicates at the j–th time point and the number of replicates for

the d–th condition at the j–th time point, respectively. That is nj =
∑D

d=1 ndj . The

posterior odds become

p

1 − p

( ∏k
j=1(1 + nj/ωj)

∏D
d=1

∏k
j=1(1 + ndj/ωdj)

) 1

2
(

TSS + mH + νλ2

WSS + mK + νλ2

) 1

2
(n+ν)

, (9)

where Y dj = n−1
dj

ndj∑

i=1

Ydji, Y j = n−1
j

D∑

d=1

ndjY dj , TSS =
∑D

d=1

∑k
j=1

∑ndj

i=1(Ydji − Y j)
2,

WSS =
∑D

d=1

∑k
j=1

∑ndj

i=1(Ydji − Y dj)
2, mH =

∑k
j=1(n

−1
j + ω−1

j )−1(Y j − αj)
2, mK =

∑D
d=1

∑k
j=1(n

−1
dj +ω−1

dj )−1(Y dj −αdj)
2 are the average gene expression value at the j–th
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time point for condition d only and for all the conditions, the total and within sums of

squares, and quantities involving (condition-specific) prior means, respectively. Under

the alternative, the total sums of squares (TSS) is larger than within sums of squares

(WSS) compared to the null.

If ndj are the same across genes, and ωj → 0, ωdj → 0, and ν → 0, then the posterior

odds are equivalent to the standard F -statistic from one-way ANOVA treating biological

condition as the factor

O ∝
TSS

WSS
.

3.3 Outliers

The presence of outlying gene expression measurements in the microarray context is

not unusual. It is well known that least squares method is vulnerable to outliers (see

e.g. Rousseeuw and Leroy (1987)). Although our structured means model is based on

least squares estimates θ̂ and θ̂d, it is straightforward to deal with outliers by replacing

least squares estimates in equation (7) with robust estimators. Examples are the M -

estimators (Huber, 1981), including L1, Huber, and Tukey’s bisquare estimators, see

e.g. Rousseeuw and Leroy (1987). The latter two estimator are more commonly used,

and their estimation procedures are usually conducted using iterative reweighted least

squares (IRLS).

3.4 One-sample Problem

When there is only one biological condition (D = 1) and genes of interest are those which

change over time, we use the same framework in section 3.1 with slightly different priors

and models to derive the posterior odds O.
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3.5 Structured Means

3.5.1 Models and Priors

Using the same notation as section 3.1 with the subscript d dropped, the null hypothesis

is H : β1 = ... = βm−1 = 0, σ2 > 0 and the alternative hypothesis is K : θ 6= 0, σ2 > 0.

The models become





Y|θ, σ2, I = 1 ∼ N
(
Xθ, σ2I

)

Y|β0, σ
2, I = 0 ∼ N

(
1β0, σ

2I
)
.

The priors are

σ2 ∼ Inv-gamma

(
ν

2
,
νλ2

2

)





θ|σ2, I = 1 ∼ N
(
α, σ2Ω−1

)

β0|σ
2, I = 0 ∼ N

(
α0, ω

−1σ2
)
.

The posterior odds are

O =
p

1 − p

(
1 + nω−1

|Im + (X′

X)Ω−1|

) 1

2

(
RSSH + mH + νλ2

RSSK + mK + νλ2

) 1

2
(n+ν)

, (10)

where RSSK = (Y−Xθ̂)
′

(Y−Xθ̂) and RSSH = (Y−1β̂0)
′

(Y−1β̂0) are the residual

sums of squares under the alternative and null, respectively. The quantity mK = m in

section 3.1.1, and

mH = (n−1 + ω−1)−1(β̂0 − α0)
2.

In the case of a two-channel comparative experiment or a paired two-sample experiment,

it is reasonable to have the null hypothesis as H : θ = 0, σ2 > 0. In this case, the
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posterior odds against the null hypothesis become

O =
p

1 − p

∣∣∣Im + (X
′

X)Ω−1
∣∣∣
−

1

2

(
RSSH + mH + νλ2

RSSK + mK + νλ2

) 1

2
(n+ν)

, (11)

where RSSK and RSSH are the residual sums of squares under the alternative and null,

respectively, and

mH = nβ̂2
0 .

3.6 Unstructured Means

As in section 3.1, when the sampling times are fixed, it is possible to use the unstructured

means model. Using the same notation as in section 3.2 with d dropped, we get the

posterior odds

O =
p

1 − p

(
1 + nω−1

∏k
j=1(1 + njω

−1
j )

) 1

2
(

RSSH + mH + νλ2

RSSK + mK + νλ2

) 1

2
(n+ν)

, (12)

where Yj = n−1
j

∑nj

i=1 Yi, Y = n−1
∑k

j=1

∑nj

i=1 Yji, RSSK =
∑k

j=1

∑nj

i=1(Yji − Yj)
2

and RSSH =
∑k

j=1

∑nj

i=1(Yji − Y)2 are the average gene expression value at the j-th

time point and across all time points, within time and total sums of squares, respectively,

mK is defined as before with θ̂ = Y, and

mH = (n−1 + ω−1)−1(Y − α0)
2.

In the case of H : θ = 0, σ2 > 0, the posterior odds are

O =
p

1 − p




k∏

j=1

(1 + njω
−1
j )




−

1

2 (
RSSH + mH + νλ2

RSSK + mK + νλ2

) 1

2
(n+ν)

, (13)

mH = nY
2
.
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We describe how we estimate the hyperparameters associated with the posterior odds

in Web Appendix C.

3.7 Simulation Study

3.7.1 Method

As in the longitudinal model, we perform a simulation study to assess the performance

of our cross-sectional MB statistic. We simulate the data based on a real two-sample

data example (D=2). Specifically, 1, 000 datasets are simulated. Each dataset contains

10,000 genes, and among them, 200 (p=0.02) are differentially expressed. The first

biological condition has 14 samples (n1 = 14) at ages (days) 58, 58, 79, 79, 96, 96, 102,

124, 124, 124, 149, 157, 157, 157. The second condition has 15 samples (n2 = 15) at

ages 58, 79, 79, 80, 96, 97, 97, 117, 124, 124, 124, 149, 149, 155, 166. The data are

simulated based on a polynomial basis design matrix with quadratic terms (m=3). The

hyperparameters are ν = 4, λ = 1, α1 = (17, 10,−5), α2 = (5, 3,−2), α = (11, 2,−3),

and

Ω−1
1 = Ω−1

2 =




12 0 0

0 0.01 0

0 0 1.6 × 10−7




Ω−1 =




10 0 0

0 0.01 0

0 0 1.7 × 10−7




.

We compare our MB-statistic (equation 7) with design matrices of B-spline basis of 3

and 6 degrees of freedom (3-df and 6-df MB), and the fully moderated likelihood ratio

statistic (equation 7 with the diagonal elements of Ω−1, Ω−1
1 and Ω−1

2 approach ∞),

and the moderated F-statistic (Smyth, 2004) under the linear model setting.
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3.7.2 Simulation Results

The estimated hyperparameters are all very close to their true values, so we omit the

details here. This shows that our estimation procedures worked reasonably well. Web

Figure 2 shows the ROC curves for these four statistics. Our cross-sectional 3-df MB

performs slightly better than the 6-df MB when the number of false nagatives is less

than 14, and became worse than the 6-df MB when the number of false nagatives is more

than 14. They both achieve fewer numbers of false positives and false negatives than

the fully moderated likelihood ratio statistic and the moderated F-statistic, except that

the 3-df MB performed slightly wrose than the latter two statistics when the number of

false negatives was larger than 28. The moderated F-statistic and the fully moderated

likelihood ratio statistic perform similarly.

4 Applications

We illustrate the differences between our cross-sectional MB statistic and other pub-

lished methods using two published microarray time course datasets of cDNA and

Affymetrix platforms. Our goal is to find genes with large differences in their tem-

poral patterns between conditions. We should be aware that there are many ways to

define differential expression between such patterns, and investigators should choose the

one most appropriate to the aims of their study.

4.1 Dauer exit time course study

Under unfavorable conditions (e.g. low amounts of food, high population density or

temperature), C. elegans can develop into dauer larvae, which possess several properties

(arrested, non-feeding, long-lived, stress-resistant) leading to enhanced survival. When a

favorable environment returns, the dauer will continue growth. By contrast, L1 worms
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do not have these properties as dauer, although they will also be arrested under a

low food regime. In addition, L1 worms will resume their growth when more food is

available.

Wang and Kim (2003) performed a cDNA microarray experiment for the feeding

responses of dauer exit and L1 starvation processes over a 12-hour period (12 time

points). Each time point had either 3 or 4 replicates. One of the aims of this study

was to find dauer-recovery specific genes, which are the genes changing over time in the

dauer exit process and with different temporal profiles from the L1 starvation process.

To identify genes that change in expression during the dauer exit timecourse, Wang

and Kim (2003) performed a standard one-way ANOVA. A total of 2,430 genes were

identified, which were followed up for differential temporal patterns between the dauer

exit and L1 starvation processes.

Hong and Li (2006) used their functional hierarchical method to these 2,430 genes to

identify those with different temporal patterns between the two conditions. To compare

the MB with their method, we calculate the cross-sectional MB for the same set of

2,430 genes. We use a B-spline basis with 5 degrees of freedom in our analysis. In

addition, we also compare our MB results with the moderated F-statistic under the

linear model setting, testing the differences in time effects between the two conditions

to be 0.

4.1.1 Results

Figures 1-3 show the top 8 ranked genes from our 5-df MB statistic, the moderated F

statistic and Hong and Li (2006), respectively. Seven out of the top 8 genes by MB

are all in the top 8 genes by the moderated F . The MB and the moderated F perform

very similarly. The top genes from our MB and the moderated F show large differences

in temporal profiles between these two conditions. It is clear to see that our B-spline
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basis fits the data well. Many genes with large temporal profile differences between

conditions and ranked highly by our MB or moderated F are ranked differently by

Hong and Li (2006). For example, the gene ranked 1 by MB and moderated F (Kim

Lab ID=Y59A8C.D) is ranked 979 by Hong and Li (2006) even though this gene exhibits

a large difference in temporal profiles between conditions. The top 8 genes by MB are

ranked 1, 2, 3, 5, 4, 6, 9, and 7 by the moderated F model. In addition, these genes

are ranked 979, 930, 748, 982, 301, 64, 150 and 660 by the functional hierarchical model

(Hong and Li, 2006). On the other hand, the MB ranks for genes ranked from 1 to 8

by moderated F are 1, 2, 3, 5, 4, 6, 8, and 13. The MB ranks for genes ranked from 1

to 8 by Hong and Li (2006) are 1,541, 426, 1,110, 428, 654, 958, 161 and 270. The top

8 genes by MB and moderated F show large difference in temporal profiles, however,

most of them are not ranked as the top 400 by Hong and Li (2006). The MB ranks

for the top genes are very different from those obtained using the Hong and Li (2006)

ranking. On average, the gene rankings by MB and moderated F seem more fitted to

our goal.

4.2 Ames dwarf mice aging study

Ames dwarf mice have a mean life span at least 49% longer than their wildtype sib-

lings. Homozygous for the df allele at the transcription factor Prop1 responsible for

proper embryonic development, Ames dwarf mice suffer from multiple hormone defi-

ciency resulting in severe growth retardation. Amador-Noguez et al. (2004) studied

the biochemical and metabolic pathways that slow aging in this mouse model using

oligonucleotide arrays. Liver expression levels in 12 Ames dwarf mice and their wild-

type strains were measured at ages 3, 6, 12, and 24 months using Affymetrix MOE430A

microarrays. Three biological replicates were used for each time/strain, so there were

24 arrays in total. To identify alterations in gene expression that discriminate between
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mutant and wildtype mice, Amador-Noguez et al. (2004) performed ANOVA and found

1,125 differentially expressed genes. We applied our cross-sectional MB to this dataset,

using the structured mean model with a B-spline basis with 3 degrees of freedom.

4.2.1 Results

Figures 4 and 5 show the genes of different ranks by the MB, the moderated F and

ANOVA by Amador-Noguez et al. (2004), respectively. By visual inspection on the

temporal profiles of those top genes, the MB tends to favor genes with large differences

in temporal patterns. The ANOVA approach tends to favor genes with small replicate

variabilities regardless of the temporal differences. For example, 1452073 at is ranked 15

by ANOVA, however, it seems that there is barely any temporal difference between the

two genotypes. The gene 1455640 a at is ranked higher than 1421075 s at by ANOVA

even though the temporal difference of the former is smaller. There is a certain amount

of similarity between MB and moderated F (70% overlapping for the top 100), and

both methods select the same number 1 gene.

5 Discussion

In this paper, we revisit the gene ranking problem for microarray time course data.

We derive a multivariate empirical Bayes (MB) statistics for both the longitudinal and

cross-sectional multi-sample problem, where genes of interest are those having different

temporal profiles across multiple biological conditions. As in Tai and Speed (2006),

our focus here is on gene ranking, not on testing significance. Such a statistic is useful

in practice, since typically only a limited number of genes can be followed up. The

simulation studies suggest that our proposed statistics and estimation procedures give

reasonable results.
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Our longitudinal model assumes the same gene-specific Σ across biological condi-

tions. Although this assumption may not be entirely satisfactory in many cases, it does

not preclude us from getting sensible results. It is possible to relax this assumption

at the cost of more intensive computation. Without this assumption, the likelihood-

based method requires iterative procedures to compute the statistic, see section 5.4 in

Mardia et al. (2000), and in our context, a MCMC soluation would be needed. Our

cross-sectional model is also demonstrated using two published microarray time course

studies. One limitation of our cross-sectional model is that it assumes a common vari-

ance σ2 at all time points. Compared to the cost in computational burden when this

assumption is relaxed, there is much more gain than loss with this limitation. As shown

in our case studies, with this limitation it still gives good results.

Bayesian MANOVA or multivariate regression models were visited previously, see

e.g. Raiffa and Schlaifer (1961); Press (1980, 1982); Press and Shigemasu (1985); Je-

lenkowska and Press (1997). These works used either noninformative, natural conjugate

or generalized natural conjugate priors. In the multivariate normal setting, generalized

natural conjugate prior comes after ordinary natural conjugate prior to remove certain

constraints on the parameters from the prior density. The generalized natural conjugate

prior differs from the ordinary one in that the former assumes that the priors on each

parameters are independent (Press, 1982). However, both produce a Normal-Inverse

Wishart density (Aitchison and Dunsmore, 1975) for the joint posterior distribution of

the parameters (Press, 1980, 1982). We use conjugate priors to get closed-form solutions

for the longitudinal posterior odds. To the best of our knowledge, this is the first fully

moderated Wilks’ lambda derived in the literature.

The B-spline fitting for our cross-sectional model works reasonably well for both

long and short time courses as in the two case studies in section 4. Alternatively, for

short time courses with fixed time points across conditions (e.g. the Ames dwarf mice

aging study), the unstructured mean model could be used.
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Figure 1: Top 8 genes with the highest MB statistic using B-spline basis design

matrices. The solid curves are fitted values for the dauer exit timecourse (black)

and the L1 starvation time course (red).
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Figure 2: Top 8 genes from the moderated F-statistic. The solid curves are fitted

values for the dauer exit timecourse (black) and the L1 starvation time course

(red) from the MB statistic
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Figure 3: Top 8 genes from Hong and Li (2006). The solid curves are fitted values

for the dauer exit timecourse (black) and the L1 starvation time course (red) from

the MB statistic
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Figure 4: Genes of ranks 1, 2, 7, 8 by MB (left panel), moderated F (middle

panel) and ANOVA (right panel). The solid curves are fitted values for the Ames

dwarf mice (black) and the wildtype mice (red).
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Figure 5: Genes of ranks 15, 16, 29, 31 by MB (left panel), moderated F (middle

panel) and ANOVA (right panel). The solid curves are fitted values for the Ames

dwarf mice (black) and the wildtype mice (red).
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