
Convergence Analysis of Reweighted Sum-Product Algorithms

Tanya Roosta∗ Martin J. Wainwright∗,† Shankar Sastry∗

Department of Electrical and Computer Sciences∗, and
Department of Statistics†

UC Berkeley, Berkeley, CA, 94720
{roosta,wainwrig,sastry}@eecs.berkeley.edu

Abstract

Markov random fields are designed to represent structured dependencies among large col-
lections of random variables, and are well-suited to capture the structure of real-world signals.
Many fundamental tasks in signal processing (e.g., smoothing, denoising, segmentation etc.) re-
quire efficient methods for computing (approximate) marginal probabilities over subsets of nodes
in the graph. The marginalization problem, though solvable in linear time for graphs without
cycles, is computationally intractable for general graphs with cycles. This intractability moti-
vates the use of approximate “message-passing” algorithms. This paper studies the convergence
and stability properties of the family of reweighted sum-product algorithms, a generalization of
the widely-used sum-product or belief propagation algorithm, in which messages are adjusted
with graph-dependent weights. For homogeneous models, we provide a complete characteriza-
tion of the potential settings and message weightings that guarantee uniqueness of fixed points,
and convergence of the updates. For more general inhomogeneous models, we derive a set of
sufficient conditions that ensure convergence, and provide bounds on convergence rates. The
experimental simulations on various classes of graphs validate our theoretical results.

Keywords: Markov random fields; graphical models; belief propagation; sum-product algo-
rithm; convergence analysis; approximate marginalization.

1 Introduction

Graphical models provide a powerful framework for capturing the complex statistical dependen-

cies exhibited by real-world signals. Accordingly, they play a central role in many applications,

including statistical signal and image processing [1–3], error-control coding [4], computer vision [5],

and computational biology [6]. A core problem common to applications in all of these domains

is the marginalization problem—namely, to compute marginal distributions over local subsets of

random variables. For graphical models without cycles, including Markov chains and trees (see

Figure 1(a) and (b)), the marginalization problem is exactly solvable in linear-time via the sum-

product algorithm, which operates in a distributed manner by passing “messages” between nodes

in the graph. This sum-product framework includes many well-known algorithms as special cases,

among them the α-β or forward-backward algorithm [1] for Markov chains, the peeling algorithm

in bioinformatics, and the Kalman filter; see the review articles [2–4] for further background on the

sum-product algorithm and its uses.

Although Markov chains/trees are tremendously useful, many classes of real-world signals are

best captured by graphical models with cycles. (For instance, the lattice or grid-structured model in

Figure 1(c) is widely used in computer vision and statistical image processing.) At least in principle,
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the nodes in any such graph with cycles can be clustered into “supernodes”, thereby converting

the original graph into junction tree form [7], to which the sum-product algorithm can be applied

to obtain exact results. However, the cluster sizes required by this junction tree formulation—

and hence the computational complexity of the sum-product algorithm—grow exponentially in the

treewidth of the graph. For many classes of graphs, among them the lattice model in Figure 1(c),

the treewidth grows in an unbounded manner with graph size, so that the junction tree approach

rapidly becomes infeasible. Indeed, the marginalization problem is known to be computationally

intractable [8, 9] for general graphical models.

This difficulty motivates the use of efficient algorithms for computing approximations to the

marginal probabilities. In fact, one of the most successful approximate methods is based on ap-

plying the sum-product updates to the graphs with cycles. Convergence and correctness, though

guaranteed for tree-structured graphs, are no longer ensured when the underlying graph has cycles.

Nonetheless, this “loopy” form of the sum-product algorithm has proven very successful in many

applications [2–5]. However, there remain a variety of theoretical questions concerning the use of

sum-product and related message-passing algorithms for approximate marginalization. It is well

known that the standard form of sum-product message-passing is not guaranteed to converge, and

in fact may have multiple fixed points in certain regimes. Recent work has shed some light on

the fixed points and convergence properties of the ordinary sum-product algorithm. Yedidia et

al. [10] showed that sum-product fixed points correspond to local minima of an optimization prob-

lem known as the Bethe variational principle. Tatikonda and Jordan [11] established an elegant

connection between the convergence of the ordinary sum-product algorithm and the uniqueness of

Gibbs measures on the associated computation tree, and provided several sufficient conditions for

convergence. Wainwright et al. [12] showed that the sum-product algorithm can be understood as

seeking an alternative reparameterization of the distribution, and used this to characterize the error

in the approximation. Heskes [13] discussed convergence and its relation to stability properties of

the Bethe variational problem. Other researchers [14, 15] have used contraction arguments to pro-

vide sharper sufficient conditions for convergence of the standard sum-product algorithm. Finally,

several groups [16–18] have proposed modified algorithms for solving the Bethe variational problem

with convergence guarantees, albeit at the price of increased complexity.

In this paper, we study the broader class of reweighted sum-product algorithms [19–22], including

the ordinary sum-product algorithm as a special case, in which messages are adjusted by edge-based

weights determined by the graph structure. For suitable choices of these weights, the reweighted

sum-product algorithm is known to have a unique fixed point for any graph and any interaction

potentials [19]. An additional desirable property of reweighted sum-product is that the message-

passing updates tend to be more stable, as confirmed by experimental investigation [19,21,22]. This

algorithmic stability should be contrasted with the ordinary sum-product algorithm, which can be

highly unstable due to phase transitions in the Bethe variational problem [10, 11]. Despite these

encouraging empirical results, current theoretical understanding of the stability and convergence
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properties of reweighted message-passing remains incomplete.

The main contributions of this paper are a number of theoretical results characterizing the

convergence properties of reweighted sum-product algorithms, including the ordinary sum-product

updates as a special case. Beginning with the simple case of homogeneous binary models, we provide

sharp guarantees for convergence, and prove that there always exists a choice of edge weights for

which the associated reweighted sum-product algorithm converges. We then analyze more general

inhomogeneous models, both for binary variables and the general multinomial model, and provide

sufficient conditions for convergence of reweighted algorithms. Relative to past work, a notable

feature of our analysis is that it incorporates the benefits of making observations, whether partial

or noisy, of the underlying random variables in the Markov random field to which message-passing

is applied. Intuitively, the convergence of message-passing algorithms should be function of both

the strength of the interactions between random variables, as well as the local observations, which

tend to counteract the interaction terms. Indeed, when specialized to the ordinary sum-product

algorithm, our results provide a strengthening of the best previously known convergence guarantees

for sum-product [14, 15]. As we show empirically, the benefits of incorporating observations into

convergence analysis can be substantial, particularly in the regimes most relevant to applications.

The remainder of this paper is organized as follows. In Section 2, we provide basic background

on graphical models (with cycles), and the class of reweighted sum-product algorithms that we

study. Section 3 provides convergence analysis for binary models, which we then extend to general

discrete models in Section 4. In Section 5, we describe experimental results that illustrate our

findings, and we conclude in Section 6.

2 Background

In this section we provide some background on Markov random fields, and message-passing algo-

rithms, including the reweighted sum-product that is the focus of this paper.

2.1 Graphical models

Undirected graphical models, also known as Markov random fields, are based on associating a

collection of random variables X = {X1, . . . , Xn} with the vertices of a graph. More precisely, an

undirected graph G = (V,E), where V = {1, . . . , n} are vertices, and E ⊂ V × V are edges joining

pairs of vertices. Each random variable Xi is associated with node i ∈ V , and the edges in the

graph (or more precisely, the absences of edges) encode Markov properties of the random vector X.

These Markov properties are captured by a particular factorization of the probability distribution

p of the random vector X, which is guaranteed to break into a product of local functions on the

cliques of the graph. (A graph clique is a subset C of vertices that are all joined by edges.)
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Figure 1. Examples of graphical models. (a) A hidden Markov chain model (with noisy observations
Ys of each hidden Xs), on which the marginalization problem is solved by the forward-backward
algorithm. (b) Marginalization can also be performed in linear time on a tree (graph without cycles),
as widely used in multi-resolution signal processing [2]. (c) A lattice-based model frequently used in
image processing [23], for which the marginalization problem is intractable in general.

In this paper, we focus on discrete (multinomial) random variables Xs ∈ X : = {0, 1, . . . ,m−1}

with distribution specified according to a pairwise Markov random field. Any such model has a

probability distribution of the form

p(x; θ) ∝ exp




∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)



 . (1)

Here the quantities θs and θst are potential functions that depend only on the value Xs = xs, and

the pair values (Xs, Xt) = (xs, xt) respectively. Otherwise stated, each singleton potential θs is a

real-valued function of X = {0, 1, . . . ,m}, whose values can be represented as an m-vector, whereas

each edge potential θst is a real-valued mapping on the Cartesian product X × X , whose values

can be represented as a m ×m matrix. For the discrete Markov random fields that we consider,

the assumption of pairwise interactions only entails no loss of generality (see Yedidia et al. [10] for

details).

With this set-up, the marginalization problem is to compute the singleton marginal distributions

p(xs; θ) =
∑

xt,t6=s p(x; θ), and possibly higher-order marginal distributions (e.g., p(xs, xt; θ)) as

well. Note that if viewed naively, the summation defining p(xs; θ) involves an exponentially growing

number of terms (mn−1 to be precise).

2.2 Sum-product algorithms

The sum-product algorithm is an iterative algorithm for computing either exact marginals (on

trees), or approximate marginals (for graphs with cycles). It operates in a distributed manner, with

nodes in the graph exchanging statistical information via a sequence of “message-passing” updates.

For tree-structured graphical models, the updates can be derived as a form of non-serial dynamic

programming, and are guaranteed to converge and compute the correct marginal distributions at
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each node. However, the updates are routinely applied to more general graphs with cycles, which

is the application of interest in this paper. Here we describe the more general family of reweighted

sum-product algorithms, which include the ordinary sum-product updates as a particular case.

In any sum-product algorithm, one message is passed in each direction of every edge (s, t) in the

graph. The message from node t to node s, denoted by Mts(xs), is a function of the possible states

xs ∈ {0, 1, . . . ,m−1} at node s. Consequently, in the discrete case, the message can be represented

by an m-vector of possible function values. The family of reweighted sum-product algorithms is

parameterized by a set of edge weights, with ρst ∈ (0, 1] associated with edge (s, t). Various choices

of these edge weights have been proposed [19, 21, 22], and have different theoretical properties.

The simplest case of all—namely, setting ρst = 1 for all edges—recovers the ordinary sum-product

algorithm. Given some fixed set of edge weights ρst ∈ (0, 1], the reweighted sum-product updates

are given by the recursion

Mts(xs) ←
∑

x′

t

exp

{
θst(xs, x

′
t)

ρst
+ θt(x

′
t)

}
∏

u∈N(t)\s

[Mut(x
′
t)]

ρut

[Mst(x′t)]
ρst

, (2)

where N(t) : = {s ∈ V | (s, t) ∈ E} denotes the neighbors of node t in the graph. Typically, the

message vector Mts is normalized to unity after each iteration (i.e.,
∑

xs
Mts(xs) = 1). Once the

updates converge to some message fixed point M ∗, then the fixed point can be used to compute

(approximate) marginal probabilities τs at each node via

τs(xs) ∝ exp {θs(xs)}
∏

t∈N(s)

[M∗
ts(xs)]

ρst (3)

When the ordinary updates(ρst = 1) are applied to a tree-structured graph, it can be shown

by induction that the algorithm converges after a finite number of steps. Moreover, a calculation

using Bayes’ rule shows that τs(xs), computed via equation (3), is equal to the desired marginal

probability p(xs; θ). However, the sum-product algorithm is routinely applied to graphs with cy-

cles, in which case the message updates (2) are not guaranteed to converge, and the quantities

τs(xs) represent approximations to the true marginal distributions. Our focus in this paper is to

determine conditions under which the reweighted sum-product message updates (2) are guaranteed

to converge.

3 Convergence Analysis

In this section, we describe and provide proofs of our main results on the convergence properties

of the reweighted sum-product updates (2) when the messages belong to a binary state space,

which we represent as X = {−1, 1}. In this special case, the general MRF distribution (1) can be
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simplified into the Ising model form

p(x; θ) ∝ exp




∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt



 , (4)

so that the model is parameterized1 by a single real number θs for each node, and a single real

number θst for each edge.

3.1 Convergence for binary homogeneous models

We begin by stating and proving some convergence conditions for a particularly simple class of

models: homogeneous models on d-regular graphs. A graph is d-regular if each vertex has exactly

d neighbors. Examples include single cycles (d = 2), and lattice models with toroidal boundary

conditions (d = 4). In a homogeneous model, the edge weights θst are equal to a common value

θed, and similarly the node parameters θs are all equal to a common value θvx.

In order to state our convergence result, we first define, for any real numbers u and φ, the

function

G(u;φ) =
exp(φ+ u)

1 + exp(φ+ u)
−

exp(u)

exp(φ) + exp(u)
. (5)

Note that for any fixed φ ∈ R, the function G(· φ) is bounded in absolute value by |G(0;φ)|.

Proposition 1. For any homogeneous binary model on a d-regular graph with arbitrary choice of

(θvx, θed), the reweighted updates (2) have a unique fixed point and converge as long as R < 1,

where δ := 2|θvx| − 2|ρd− 1| |θed|
ρ

, and

Rd(θvx, θed; ρ) :=




|ρd− 1| G

(
0; 2|θed|

ρ

)
if δ ≤ 0

|ρd− 1|G
(
δ; 2|θed|

ρ

)
otherwise.

Moreover, if ρ ≤ 2/d, then R < 1 for all finite choices of (θvx, θed), so that the reweighted updates

converge for any problem.

Remarks: Consider the choice of edge weight ρ = 1, corresponding to the standard sum-product

algorithm. If the graph is a single cycle (d = 2), Proposition 1 shows that the standard sum-product

algorithm always converges, consistent with previous work on the single cycle case [11,25]. For more

general graphs with d > 2, convergence depends on the relation between the observation strength

θvx and the edge strengths θed. For the case d = 4, corresponding for instance to a lattice model with

toroidal boundary as in Figure 1(c), Figure 2(a) provides a plot of the coefficient R4(θvx, θed; 1) as

1This assumption is valid, because the distribution (1) does not change if we replace θs(xs) with eθs(xs) : =
θs(xs) − θs(−1), with a similar calculation for the edges. See [24] for details.
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a function of the edge strength θvx, for different choices of the observation potential θvx. The curve

marked with squares corresponds to θvx = 0. Observe that it crosses the threshold R4 = 1 from

convergence to non-convergence at the critical value arctanh( 1
3) ≈ 0.3466, corresponding classical
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Figure 2. Plots of the contraction coefficient R4(θvx, θed; ρ) versus the edge strength θed. Each
curve corresponds to a different choice of the observation potential θvx. (a) For ρ = 1, the updates
reduces to the standard sum-product algorithm; note that the transition from convergence to non-
convergence occurs at θ∗

ed
≈ 0.3466 in the case of no observations (θvx = 0). (b) Corresponding plots

for reweighted sum-product with ρ = 0.50. Since ρd = (0.50)4 = 2, the contraction coefficient is
always less than one in this case, as predicted by Proposition 1.

result due to Bethe [26], and also confirmed in other analyses of standard sum-product [11, 14,

15]. The other curves correspond to non-zero observation potentials (θvx ∈ {1, 2, 3}) respectively.

Here it is interesting to note with θvx > 0, Proposition 1 reveals that the standard sum-product

algorithm continues to converge well beyond the classical breakdown point without observations

(θ∗ed ≈ 0.3466).

Figure 2 shows the corresponding curves of R4(θvx, θed; 0.50), corresponding to the reweighted

sum-product algorithm with ρ = 0.50. Note that ρd = 0.5(4) = 2, so that as predicted by Propo-

sition 1, the contraction coefficient R4 remains below 1 for all values of θvx and θed, meaning that

the reweighted sum-product algorithm converges for all values of the potentials θvx and θed.

Proof of Proposition 1: Given the edge and node homogeneity of the model and the d-

regularity of the graph, the message-passing updates can be completely characterized by a single

log message z = logM(1)/M(−1) ∈ R, and the update

F (z; θvx, θed, ρ) = log

[
exp[2θed

ρ
+ (ρd− 1)z + 2θvx] + 1

exp[(ρd− 1)z + 2θvx] + exp(2θed

ρ
)

]
. (6)
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We begin by observing that for any choice of z ∈ R, we have |F (z; θvx, θed, ρ)| ≤ 2 θed

ρ
, so that

the message z must belong to the admissible interval [−2 θed

ρ
, 2 θed

ρ
]. Next we compute and bound

the derivative of F over this set of admissible messages. A straightforward calculation yields

that F ′(z) = (ρd − 1)G
(
2θvx + (ρd− 1)z ; 2 θed

ρ

)
, where the function G was defined previously

in (5). Note that for any fixed φ ∈ R, the function |G(u ;φ)| achieves its maximum at u∗ = 0.

Consequently, the unconstrained maximum of |F ′(z)| is achieved at the point z∗ = −2θvx satisfying

2θvx + (ρd − 1)z∗ = 0, with F (z∗) = G(0 ; 2 |θed|
ρ

). Otherwise, if |z∗| > 2 |θed|
ρ

, then the constrained

maximum is obtained at the boundary point of the admissible region closest to 0—namely, at the

point 2θvx − 2 sign(θvx)
θed

ρ
. Overall, we conclude that for all admissible messages z, we have

|F ′(z)|

|ρd− 1|
≤




G(0; 2 |θed|

ρ
) if |θvx| ≤

|θed|
ρ

|G(2θvx − 2 sign(θvx)
θed

ρ
; 2θed

ρ
)| = G(2|θvx| − 2 |θed|

ρ
; 2|θed|

ρ
) otherwise,

(7)

so that |F ′(z)| < R as defined in the statement. Note that if R < 1, the update is an iterated

contraction, and hence converges [27].

3.2 Extension to binary inhomogeneous models

We now turn to the generalization of the previous result to the case of inhomogeneous models,

in which the node parameters θs and edge parameters θst may differ across nodes and edges,

respectively. For each directed edge (t→ s), define the quantity

Dt→s(θ; ρ) = 2



|θt| −

∑

u∈N(t)\s

ρut|θut|+ (1− ρst)
|θst|

ρst



 (8)

and the weight

Lt→s =




G(0; 2 |θst|

ρst

) if Dt→s(θ; ρ) ≤ 0.

G
(
Dt→s(θ; ρ); 2 |θst|

ρst

)
otherwise,

(9)

where the function G was previously defined (5). Finally, define a 2|E|×2|E| matrix M = M(θ; ρ),

with entries indexed by directed edges (t→ s), and of the form

M(t→s),(u→v) =





ρutLt→s if v = t and u 6= s

(1− ρst) Lt→s if v = t and u = s

0 otherwise.

(10)

Theorem 2. For an arbitrary pairwise Markov random field, the reweighted sum-product algorithm

converges if the spectral radius of M(θ; ρ) is less than 1.
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When specialized to the case of uniform edge weights ρst = 1, then Theorem 2 strengthens

previous results, due independently to Ihler et al. [14] and Mooij and Kappen [15], on the ordinary

sum-product algorithm. This earlier work provided conditions based on matrices that involved

only terms of the form G(0; 2|θst|), as opposed to the smaller and observation-dependent weights

G(Dt→s(θ; ρ); 2 |θst|) that our analysis yields once Dt→s(θ; ρ) > 0. As a consequence, Theorem 2

can yield sharper estimates of convergence by incorporating the benefits of having observations. In

addition to these consequences for the ordinary sum-product algorithm, Theorem 2 also provides

sufficient conditions for convergence of any reweighted sum-product algorithm.
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Figure 3. Illustration of the benefits of observations. Plots of the contraction coefficient versus the
edge strength. Each curve corresponds to a different setting of the noise variance σ2 as indicated.
(a) Ordinary sum-product algorithm ρ = 1. Upper-most curve labeled σ2 = +∞ corresponds to the
best bounds from previous work [14,15]. (b) Reweighted sum-product algorithm ρ = 0.50.

In order to illustrate the benefits of including observations in the convergence analysis, we

conducted experiments on grid-structured graphical models in which a binary random vector, with

a prior distribution of the form (4), is observed in Gaussian noise (see Section 5.1 for the complete

details of the experimental set-up). Figure 3 provides summary illustrations of our findings, for

the ordinary sum-product (ρ = 1) in panel (a), and reweighted sum-product (ρ = 0.50) in panel

(b). Each plot shows the contraction coefficient predicted by Theorem 2 as a function of an edge

strength parameter. Different curves show the effect of varying the noise variance σ2 specifying

the signal-to-noise ratio in the observation model ( see Section 5 for the complete details). The

extreme case σ2 = +∞ corresponds to the case of no observations. Notice how the contraction

coefficient steadily decreases as the observations become more informative, both for the ordinary

and reweighted sum-product algorithms.
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3.3 Proof of Theorem 2

We begin by establishing a useful auxiliary result that plays a key role in this proof, as well as

other proofs in the sequel:

Lemma 3. For real numbers φ and u, define the function

H(u;φ) = log
exp(φ+ u) + 1

exp(u) + exp(φ)
. (11)

For each fixed φ, we have supu∈R |H(u;φ)| ≤ |φ|.

Proof. Computing the derivative of H with respect to u, we have

H ′(u;φ) =
exp(φ+ u)

1 + exp(φ+ u)
−

exp(u)

exp(u) + exp(φ)
=

exp(u) {exp(2φ)− 1}

[exp(u) + exp(φ)] [1 + exp(φ+ u)]
,

so that H is strictly increasing if φ > 0 and strictly decreasing if φ < 0. Consequently, the

supremum is obtained by taking u→ ±∞, and is equal to |φ| as claimed.

With this lemma in hand, we begin by re-writing the message update (2) in a form more

amenable to analysis. For each directed edge (t → s), define the log message ratio zt→s =

log Mt→s(1)
Mt→s(−1) . From the standard form of the updates, a few lines of algebra show that it is equivalent

to update these log ratios via

Ft→s(z) : = log

exp

[
2θst

ρst

+ 2θt +
∑

v∈N(t)\s

ρvtzv→t + (1− ρst)zs→t

]
+ 1

exp

[
2θt +

∑
v∈N(t)\s

ρvtzv→t + (1− ρst)zs→t

]
+ exp

[
2θst

ρst

] . (12)

A key property of the message update function Ft→s is that it can be written as a function

H of the form (11), with φ = 2 θst

ρst

and u = 2θt +
∑

v∈N(t)\s

ρvtzvt + (1 − ρst)zst. Consequently, if

we apply Lemma 3, we may conclude that |Ft→s(z)| ≤ 2 |θst|
ρst

for all z ∈ R, and consequently that

|zn
ts| ≤ 2 |θst|

ρst

for all iterations n ≥ 1. Consequently, we may assume that message vector zn for all

iterations n ≥ 1 belongs to the box of admissible messages defined by

B(θ; ρ) :=

{
z ∈ R

2|E| | |zt→s| ≤ 2
|θst|

ρst
for all edges (t→ s)

}
. (13)

We now bound the derivative of the message-update equation over this set of admissible mes-

sages:
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Lemma 4. For all z ∈ B(θ; ρ), the elements of ∇Ft→s(z) are bounded as

∣∣∣∣
∂Ft→s

∂zu→t
(z)

∣∣∣∣ ≤ ρutLt→s ∀ u ∈ N(t)\s, and

∣∣∣∣
∂Ft→s

∂zs→t
(z)

∣∣∣∣ ≤ (1− ρst)Lt→s, (14)

where the directed weights Lt→s were defined previously (9). All other gradient elements are zero.

See Appendix A for the proof. In order to exploit Lemma 4, for any iteration n ≥ 2, let us use

the mean-value theorem to write

zn+1
st − zn

st = Ft→s(z
n)− Ft→s(z

n−1) = ∇Ft→s(z
λ)T (zn − zn−1), (15)

where zλ = λzn +(1−λ)zn−1 for some λ ∈ (0, 1). Since zn and zn−1 both belong to the convex set

B(θ; ρ), so does the convex combination zλ, and we can apply Lemma 4. Starting from equation (15),

we have

∣∣zn+1
t→s − z

n
t→s

∣∣ ≤
∣∣∣∇Ft→s(z

λ)
∣∣∣
T ∣∣zn − zn−1

∣∣ (16)

≤




∑

u∈N(t)\s

ρutLt→s|z
n
u→t − z

n−1
u→t|


+ (1− ρst)Lt→s|z

n
s→t − z

n−1
s→t |.

Since this bound holds for each directed edge, we have established that the vector of message

differences obeys |zn+1 − zn| ≤ M(θ, ρ) |zn − zn−1|, where the non-negative matrix M = M(θ, ρ)

was defined previously. By standard results on non-negative matrix recursions [28], if the spectral

radius of M is less than 1, then the sequence |zn − zn−1| converges to zero. Thus, the sequence

{zn} is a Cauchy sequence, and so must converge.

3.4 Explicit conditions for convergence

A drawback of Theorem 2 is that it requires computing the spectral radius of the 2|E|×2|E| matrix

M , which can be a non-trivial computation for large problems. Accordingly, we now specify some

corollaries that are sufficient to ensure convergence of the reweighted sum-product algorithm. As in

the work of Mooij and Kappen [15], the first two conditions follow by upper bounding the spectral

norm by standard matrix norms. Conditions (c) and (d) are refinements that require further work.

Corollary 5. Convergence of reweighted sum-product is guaranteed by any of the following condi-

tions:

(a) Row sum condition:

max
(t→s)




∑

u∈N(t)\s

ρut + (1− ρst)


Lt→s < 1. (17)
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(b) Column sum condition:

max
(t→s)

Ct→s = max
(t→s)



ρts

( ∑

u∈N(t)\s

Lu→t

)
+ (1− ρts)Ls→t



 < 1. (18)

(c) Reweighted norm condition:

K(θ) := max
(t→s)




( ∑

u∈N(t)\s

ρutLu→t

)
+ (1− ρts)Ls→t



 < 1. (19)

(d) Pairwise neighborhood condition: the quantity

min
λ∈[0,1]

max
(t→s)



ρts

( ∑

w∈N(t)\s

Lw→t

)
+ (1− ρts)Ls→t





λ

max
u∈N(t)



ρts

( ∑

v∈N(u)\t

Lv→u

)
+ (1− ρtu)Lt→u





1−λ

is less than one.

Remarks: To put these results in perspective, if we specialize to ρst = 1 for all edges and use

the weaker version of the weights Lt→s that ignore the effects of observations, then the `∞-norm

condition (18) is equivalent to earlier results on the ordinary sum-product algorithm [14, 15]. In

addition, one may observe that for the ordinary sum-product algorithm (where ρab = 1 for all

edges), condition (19) is equivalent to the `∞-condition (18). However, for the general reweighted

algorithm, these two conditions are distinct.

Proof. Conditions (a) and (b) follows immediately from the fact that the spectral norm of M is

upper bounded by any other matrix norm [28]. It remains to prove conditions (c) and (d) in the

corollary statement.

(c) Defining the vector ∆n = |zn − zn−1| of successive changes, from equation (16), we have

∆n+1
t→s ≤ Lt→s





∑

u∈N(t)\s

ρut∆
n
u→t + (1− ρst)∆

n
s→t



 (20)

The previous step of the updates yields a similar equation—namely

∆n
u→t ≤ Lu→t





∑

v∈N(u)\t

ρvu∆n−1
v→u + (1− ρut)∆

n−1
t→u



 . (21)

Now let us define a norm on ∆ by ‖∆‖∗ = max(t→s)∈E

{∑
u∈N(t)\s ρut|∆u→t|+ (1− ρst)|∆s→t|)

}
.

With this notation, the bound (21) implies that ∆n
u→t ≤ Lu→t‖∆

n−1‖∗. Substituting this bound
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into equation (20) yields that

∆n+1
t→s ≤ Lt→s





∑

u∈N(t)\s

ρutLu→t + (1− ρst)Ls→t



 ‖∆

n−1‖∗ ≤ K(θ)‖∆n−1‖∗.

For any edge (s → u), summing weighted versions of this equation over all neighbors of s yields

that

∑

v∈N(s)\u

ρvs∆
n+1
v→s + (1− ρus)∆

n+1
u→s ≤





∑

v∈N(s)\u

ρvsLv→s + (1− ρus)Lu→s



 K(θ)‖∆n−1‖∗

≤ K2(θ) ‖∆n−1‖∗.

Finally, since the edge (s→ u) was arbitrary, we can maximize over it, which proves that ‖∆n+1‖∗ ≤

K2(θ) ‖∆n−1‖∗. Therefore, if K(θ) < 1, the updates are an iterated contraction in the ‖ · ‖∗ norm,

and hence converge by standard contraction results [27].

(d) Given a non-negative matrix A, let Cα(A) denote the column sum indexed by some element

α. In general, it is known [28] that for any λ ∈ [0, 1], the spectral radius of A is upper bounded

by the quantity maxα,β [Cα(A)]λ [Cβ(A)]1−λ, where α and β range over all column indices. A more

refined result due to Kolotilina [29, 30] asserts that if A is a sparse matrix, then one need only

optimize over column index pairs α, β such that Aαβ 6= 0. For our problem, the matrix M is

indexed by directed edges (s → t), and M(t→s),(u→v) is non-zero only if v = t. Consequently, we

can reduce the maximization over column sums to maximizing over directed edge pairs (t → s)

with (u→ t), which yields the stated claim.

4 Convergence for General Discrete Models

In this section, we describe how our results generalize to multinomial random variables, with the

variable Xs at each node s taking a total of m ≥ 2 states in the space X = {0, 1, . . . ,m−1}. Given

our Markov assumptions, the distribution takes the factorized form

p(x; θ) ∝ exp




∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)



 , (22)

where each θs(·) is a vector of m numbers, and each θst(· , ·) is a m×m matrix of numbers.

In our analysis, it will be convenient to work with an alternative parameter vector θ̃ that
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represents the same Markov random field as p(x; θ), given by

θ̃st(xs, xt) : = θst(xs, xt)− θst(xs, 0)− θst(0, xt) + θst(0, 0), and (23a)

θ̃s(xs) = θs(xs) +
∑

t∈N(s)

[θst(xs, 0)− θst(0, 0)] . (23b)

This set of functions θ̃ is a different parameterization of the distribution p(x; θ) because

∑

s∈V

θ̃s(xs) +
∑

(s,t)∈E

θ̃st(xs, xt) =
∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt) + C,

where C is a constant independent of x. Moreover, note that θ̃s(0) = 0 for all nodes s ∈ V , and

θst(xs, 0) = θst(0, xt) = 0 for all xs, xt ∈ {0, 1, . . . ,m− 1}.

4.1 Convergence Theorem and Some Consequences

In order to state a result about convergence for multinomial Markov random fields, we require some

preliminary definitions. For each directed edge (t → s) and states i, k ∈ {1, . . . ,m − 1}, define

functions of the vector ~v = (v(1), . . . , v(m− 1)) as follows

ψt→s(~v; k, i) :=
1

2

∣∣∣∣∣−βt→s(~v; i, k)− αt→s(~v; i, k) + v(k) + θ̃t(k) +
θ̃t(k, i)

ρst

∣∣∣∣∣ , and (24a)

φt→s(~v; k, i) :=
1

2

∣∣∣∣∣βt→s(~v; k, i)− αt→s(~v; k, i) +
θ̃t→s(k, i)

ρst

∣∣∣∣∣ , (24b)

where

αt→s(~v; k, i) := log


1 +

∑

xt 6=0,k

exp

{
θ̃ts(i, xt)

ρst
+ v(xt) + θ̃t(k)

}
 (25a)

βt→s(~v; k, i) := log


1 +

∑

xt 6=0,k

exp(v(xt) + θ̃t(k))


 . (25b)

With these definitions, we now specify, for each directed edge (t → s), the following non-negative

weight

Lt→s := max
i,k∈{1,...,m}

max
~v∈Bts(eθ;ρ)

|G (ψt→s(~v; i, k);φt→s(~v; i, k))| , (26)
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where the function G was defined previously (5) and the box of admissible vectors is given by

Bts(θ; ρ) :=



~v ∈ R

m−1 | |v(k)| ≤
∑

u∈N(t)\s

max
j

|θ̃u→t(j, k)|

ρut
+ (1− ρst) max

j

|θ̃s→t(j, k)|

ρst



 . (27)

Finally, using the choice of weights Lt→s in equation (26), we define the 2|E| × 2|E| matrix M =

M(L) as before (see equation (10)).

Theorem 6. The reweighted sum-product algorithm converges if the spectral radius of M is less

than one.

Despite its notational complexity, Theorem 6 is simply a natural generalization of our earlier

results for binary variables. When m = 2, note that the functions βt→s and αt→s are identically zero

(since there are no states other than k = 1 and 0), so that the form of φ and ψ simplify substantially.

Moreover, as in our earlier development on the binary case, when specialized to ρst = 1, Theorem 6

provides a strengthening of previous results [14, 15] on the ordinary sum-product algorithm. In

particular, we now show how these previous results can be recovered from Theorem 6 by ignoring

the box constraints (27):

Corollary 7. The reweighted sum-product algorithm converges if

max
t→s

∑

u∈N(t)\s

ρu→tWu→t + (1− ρs→t)Ws→t < 1, (28)

where Wu→t = tanh
(

1
4ρut

maxi6=j max 6̀=k |θts(`, i)− θts(`, j)− θts(k, i) + θts(k, j)|
)
.

Proof. We begin by proving that Lu→t ≤ Wu→t. First of all, ignoring the box constraints (27),

then certainly

Lt→s ≤ max
i,k∈{1,...,m}

max
~v∈Rm−1

|G (ψt→s(~v; i, k);φt→s(~v; i, k))|

≤ max
i,k∈{1,...,m}

max
~v∈Rm−1

|G (0;φt→s(~v; i, k))|

= max
i,k∈{1,...,m}

max
~v∈Rm−1

tanh

(
1

2
|φt→s(~v; i, k)|

)
,

since for any fixed φ, the function G(u∗;φ) is maximized at u∗ = 0, and G(0; |φ|) = tanh(|φ|/2). Due

to the monotonicity of G(0; |φ|) in φ, it now suffices to maximize the absolute value of |φt→s(~v; i, k)|.
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Since φ is defined in terms of β and α, we first bound their difference. In one direction, we have

αt→s(~v; i, k)− βt→s(~v; i; k) = log
1 +

∑
xt 6=0,k exp

{
eθt→s(xt,i)

ρst

+ v(xt) + θ̃t(xt)
}

1 +
∑

xt 6=0,k exp
{
v(xt) + θ̃t(xt)

}

≥ min
xt 6=k,0

θ̃ts(xt, i)

ρst
,

and hence

φt→s(~v; k, i) ≤
1

2ρst
max

xt 6=k,0

{
θ̃ts(k, i)− θ̃ts(xt, i)

}
. (29)

In the other direction, we have βt→s(~v; i, k)− αt→s(~v; i; k) ≥ −maxxt 6=k,0
eθts(xt,i)

ρst

, and hence

φt→s(~v; i, k) ≥ −
1

2ρst
max

xt 6=k,0

{
θ̃ts(xt, i)− θ̃st(i, k)

}
. (30)

Combining equations (29) and (30), we conclude that

max
i,k 6=0

max
~v∈Rm−1

|φt→s(~v; i, k)| ≤
1

2ρst
max
i,k

max
`6=k,0

∣∣∣θ̃ts(`, i)− θ̃ts(k, i)
∣∣∣

=
1

2ρst
max
i6=0

max
`6=k
|θts(`, i)− θts(`, 0)− θts(k, i) + θts(k, 0)|

Therefore, we have proved that Lt→s ≤Wt→s, where Wt→s was defined in the corollary statement.

Consequently, if we define a matrix M(W ) using the weights W , we have M(L) ≤ M(W ) in an

elementwise sense, and therefore, the spectral radius of M(W ) is an upper bound on the spectral

radius of M(L) (see Bertsekas and Tsitsiklis [28]).

If the graphical model has very weak observations (uniform potentials θs), then Theorem 6

provides little benefit over Corollary 7. However, as with the earlier results on binary models

(see Figure 3), the benefits are substantial when the model has stronger observations, as would be

common in applications. We provide the proof of Theorem 6 in the appendix.

5 Experimental Results

In this section, we present the results of experimental simulations to illustrate and support our

theoretical findings.

5.1 Dependence on Signal-to-Noise Ratio

We begin by describing the experimental set-up used to generate the plots in Figure 3, which

illustrate the effect of increased signal-to-noise ratio (SNR) on convergence bounds. In these sim-
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Figure 4. Convergence rates of the reweighted sum-product algorithm as compared to the rate
predicted by reweighted norm condition 19. (a) Binary state spaces (m = 2). (b) Higher-order
spaces (m = 25).

ulations, the random vector X ∈ {−1,+1}n is posited to have a prior distribution p(x; θ) of the

form (4), with the edge parameters θst set uniformly to some fixed number θed, and symmetric

node potentials θs = 0. Now suppose that the we make a noisy observation of the random vector

X, say of the form

Ys = Xs +Ws, where Ws ∼ N(0, σ2), (31)

so that we have a conditional distribution of the form p(ys |xs) ∝ exp(− 1
2σ2 (ys − xs)

2). We then

examined the convergence behavior of both ordinary and reweighted sum-product algorithms for

the posterior distribution p(x | y) ∝ p(x; θ)
∏n

s=1 p(ys | xs).

The results in Figure 3 were obtained from a grid with n = 100 nodes, and by varying the

observation noise σ2 from σ2 = +∞ corresponding to SNR = 0, down to σ2 = 0.5. For any fixed

setting of σ2, each curve plots the average of the spectral radius bound from Theorem 2 over 20 trials

versus the edge strength parameter θed. Note how the convergence guarantees are substantially

strengthened, relative to the SNR = 0 case, as the benefits of observations are incorporated.

5.2 Convergence rates

We now turn to a comparison of the empirical convergence rates of the reweighted sum-product

algorithm to the theoretical upper bounds provided by the inductive norm (19) in Corollary 7. We

have performed a large number of simulations for different values of number of nodes, edge weights

ρ, node potentials, edge potentials, and message space size. Figure 4 shows a few plots that are

representative of our findings, for binary state spaces (panel (a)) and higher order state spaces

(panel (b)). The numbers parameterizing the node potentials, θs, and the edge potentials, θst, are

shown on the corresponding plots. As shown in these plots, the convergence rates predicted by
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Figure 5. Empirical rates of convergence of the reweighted sum-product algorithm as compared to
the rate predicted by the symmetric and asymmetric bounds from Theorem 2.

Corollary 7 are consistent with the empirical performance, but tend to be overly conservative.

Figure 5 compares the convergence rates predicted by Theorem 2 to the empirical rates in both

the symmetric and asymmetric settings. The symmetric case corresponds to computing the weights

Lt→s while ignoring the observation potentials, so that the overall matrix M is symmetric in the

edges (i.e., Lt→s = Ls→t). The asymmetric case explicitly incorporates the observation potentials,

and leads to bounds that are as good or better than the symmetric case. Figure 5 illustrates the

benefits of including observations in the convergence analysis. Perhaps most strikingly, panel (d)

both shows a case where the symmetric bound predicts divergence of the algorithm, whereas the

asymmetric bound predicts convergence.
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6 Discussion

Many applications of graphical models require efficient methods for computing (approximate)

marginal probabilities over subsets of nodes in the graph. For general graphs, the problem of

marginalization becomes intractable due to the existence of cycles in the graph. This motivates the

use of approximate message-passing algorithms, including the sum-product algorithm and its vari-

ants. In this paper, we studied the convergence and stability properties of the family of reweighted

sum-product algorithms. For homogeneous models, we provided a complete characterization of

the potential settings and message weightings that guarantee uniqueness of fixed points, and con-

vergence of the updates. For more general inhomogeneous models, we derived a set of sufficient

conditions that ensure convergence, and provide estimates of rates. We provided simulation results

to complement the theoretical results presented.

Even though we have shown the benefits for convergence bounds of including observation poten-

tials, as with past work, all of the conditions provided are still somewhat conservative. The reason

is that the condition requires that the message updates be contractive at every node and every up-

date of the graph, as opposed to requiring that they be attractive in some suitably averaged sense.

An interesting direction would be to derive sharper “average-case” conditions for message-passing

convergence.
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A Proof of Lemma 4

Setting ∆ts =
∑

u∈N(t)\s ρutzu→t + (1− ρst)zs→t, we compute via chain rule

∂Ft→s

∂zu→t
(z) =




ρut

∂Ft→s

∂∆ts

for u ∈ N(t)\s,

ρut
∂Ft→s

∂∆ts

for u = s,
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so that it suffices to upper bound |∂Ft→s

∂∆ts

|. Computing this partial derivative from the message

update (12) yields

∂Ft→s

∂∆ts
=

exp
[

2θst

ρst

+ 2θt + ∆ts

]

1 + exp
[

2θst

ρst

+ 2θt + ∆ts

] − exp [2θt + ∆ts]

exp [2θt + ∆ts] + exp
[

2θst

ρst

]

= G

(
2θt + ∆ts;

2θst

ρst

)
,

where the function G was previously defined (5). Since the message vector zn must belong to the

box (13) of admissible messages, the vector ∆ts must satisfy the bound

|∆ts| ≤
∑

u∈N(t)\s

2ρut|θut|+ 2(1− ρst)
|θst|

ρst
| : = Ust

For any fixed φ, the function |G(u;φ)| achieves its maximal value |G(0;φ)| = G(0; |φ|) at u∗ = 0.

Noting that by its definition (8), we have Dt→s(θ; ρ) = 2|θt| − Uts, we conclude that

|
∂Ft→s

∂∆ts
| ≤ max

|∆ts|≤Uts

∣∣∣∣G
(

2θt + ∆ts;
2θst

ρst

)∣∣∣∣

=




|G(0; 2|θst|

ρst

)| if Dt→s(θ; ρ) ≤ 0

G
(
Dt→s(θ; ρ); 2 |θst|

ρst

)
otherwise.

,

B Proof of Theorem 6

We begin by parameterizing the reweighted sum-product messages in terms of the log ratios zst(i) :=

log Mst(i)
Mst(0)

. For each i ∈ {1, . . . ,m− 1}, the message updates (2) can be re-written, following some

straightforward algebra, in terms of these log messages and the modified potentials θ̃ as

Ft→s(z) = log
1 +

∑
xt 6=0 exp

{
eθts(i,xt)

ρst

+ θ̃t(xt) + ∆ts(xt)
}

1 +
∑

xt 6=0 exp
{
θ̃t(xt) + ∆ts(xt)

} , (32)

where ∆ts(xt) := (1 − ρst) zst(xt) +
∑

v∈N(t)\s ρvtzvt(xt). Analogously to the proof of Lemma 3,

we have |zts(i)| ≤ maxxt
|

eθts(i,xt)
ρst

|. Consequently, each vector ∆ts(xt) must belong the admissible

box (27).

As in our earlier proof, we now seek to bound the partial derivatives of the message update

zts ← Ft→s(z). By chain rule, we have

∂zts
∂zvt

=




ρvt

∂zts

∂∆ts
if v ∈ N(t)\s

(1− ρst)
∂zts

∂∆ts
if v = s.
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so that it suffices to bound ∂zts

∂∆ts
. Computing the partial derivative of component xs = i with

respect to message index xt = k yields

∂zts(i)

∂∆st(k)
=

exp
{

eθts(i,k)
ρst

+ θ̃t(xt) + ∆ts(k)
}

1 +
∑

xt 6=0 exp
{

eθts(i,xt)
ρst

+ θ̃t(xt) + ∆ts(xt)
} −

exp
{
θ̃t(xt) + ∆ts(k)

}

1 +
∑

xt 6=0 exp
{
θ̃t(xt) + ∆ts(xt)

}

Isolating the term involving xt = k, we have

∂zst(i)

∂∆st(k)
=

exp
{

eθts(i,k)
ρst

+ θ̃t(k) + ∆ts(k)
}

1 +
∑

xt 6=0,k exp
{

eθts(i,xt)
ρst

+ θ̃t(xt) + ∆ts(xt)
}

+ exp
{

eθts(i,k)
ρst

+ θ̃t(k) + ∆ts(k)
}

−
exp

{
θ̃t(k) + ∆ts(k)

}

1 +
∑

xt 6=0,k exp
{
θ̃t(xt) + ∆ts(xt)

}
+ exp

{
θ̃t(k) + ∆ts(k)

} .

Further simplifying

∂zst(i)

∂∆st(k)
=

exp
{

eθts(i,k)
ρst

− αt→s(i, k) + θ̃t(k) + ∆ts(k)
}

1 + exp
{

eθts(i,k)
ρst

− αt→s(i, k) + θ̃t(k) + ∆ts(k)
} −

exp
{
−βt→s(i, k) + θ̃t(k) + ∆ts(k)

}

1 + exp
{
−βt→s(i, k) + θ̃t(k) + ∆ts(k)

}(33)

where αt→s(∆; i, k) and βt→s(∆; i, k) were previously defined.

Setting v = −βt→s(i, k) + θ̃t(k) + ∆ts(k) and ϕ =
eθts(i,k)

ρst

− αt→s(i, k) + βt→s(i, k), we have

∂zst(i)

∂∆st(k)
=

exp(ϕ+ v)

1 + exp(ϕ+ v)
−

exp(v)

1 + exp(v)

=
exp(ϕ+ v)

1 + exp(ϕ+ v)
−

exp(v + ϕ
2 )

exp(ϕ
2 ) + exp(v + ϕ

2 )
= G(v +

ϕ

2
;
ϕ

2
),

where G was previously defined (5). Using the monotonicity properties of G, we have

∣∣∣∣
∂zst(i)

∂∆st(k)

∣∣∣∣ ≤ G
(∣∣∣v +

ϕ

2

∣∣∣ ;
∣∣∣
ϕ

2

∣∣∣
)
. (34)

The claim follows by noting that as defined, we have

ψt→s(~v; k, i) =
∣∣∣v +

ϕ

2

∣∣∣ =
1

2

∣∣∣∣∣−βt→s(~v; i, k)− αt→s(~v; i, k) + v(k) + θ̃t(k) +
θ̃t(k, i)

ρst

∣∣∣∣∣ , and

φt→s(~v; k, i) =
∣∣∣
ϕ

2

∣∣∣ =
1

2

∣∣∣∣∣βt→s(~v; k, i)− αt→s(~v; k, i) +
θ̃t→s(k, i)

ρst

∣∣∣∣∣ .
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