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Abstract

We study the properties of solutions of quadratic programs with linear equality constraints whose
parameters are estimated from data in the high-dimensional setting where p, the number of variables
in the problem, is of the same order of magnitude as n, the number of observations used to estimate
the parameters. The Markowitz problem in Finance is a subcase of our study. Assuming normality
and independence of the observations we relate the efficient frontier computed empirically to the “true”
efficient frontier. Our computations show that there is a separation of the errors induced by estimating
the mean of the observations and estimating the covariance matrix. In particular, the price paid for
estimating the covariance matrix is an underestimation of the variance by a factor roughly equal to
1 — p/n. Therefore the risk of the optimal population solution is underestimated when we estimate it
by solving a similar quadratic program with estimated parameters.

We also characterize the statistical behavior of linear functionals of the empirical optimal vector and
show that they are biased estimators of the corresponding population quantities.

We investigate the robustness of our Gaussian results by extending the study to certain elliptical
models and models where our n observations are correlated (in “time”). We show a lack of robustness of
the Gaussian results, but are still able to get results concerning first order properties of the quantities of
interest, even in the case of relatively heavy-tailed data (we require two moments). Risk underestimation
is still present in the elliptical case and more pronounced that in the Gaussian case.

We discuss properties of the non-parametric and parametric bootstrap in this context. We show
several results, including the interesting fact that standard applications of the bootstrap generally yields
inconsistent estimates of bias.

Finally, we propose some strategies to correct these problems and practically validate them in some
simulations. In all the paper, we will assume that p, n and n — p tend to infinity, and p < n.

1 Introduction

Many statistical estimation problems are now formulated, implicitly or explicitly, as solutions of certain
optimization problems. Naturally, the parameters of these problems tend to be estimated from data
and it is therefore important that we understand the relationship between the solutions of two types of
optimization problems: those which use the population parameters and those which use the estimated
parameters. This question is particularly relevant in high-dimensional inference where one suspects that
the differences between the two solutions might be considerable. The aim of this paper is to contribute
to this understanding by focusing on quadratic programs with linear equality constraints. An important
example of such a program where our questions are very natural is the celebrated Markowitz optimization
problem in Finance which will serve as a supporting example throughout the paper.
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The Markowitz problem (Markowitz (1952)) is a classic portfolio optimization problem in Finance,
where investors choose to invest according to the following framework: one picks assets in such a way that
the portfolio guarantees a certain level of expected returns but minimizes the “risk” associated with them.
In the standard framework, this risk is measured the variance of the portfolio.

Markowitz’s paper was highly influential and much work has followed. It is now part of the standard
textbook literature on these issues (Ruppert (2006), Campbell et al. (1996)). Let us recall the setup of the
Markowitz problem.

e We have the opportunity to invest in p assets, Aq,..., 4,
e In the ideal situation, the mean returns are known and represented by a p-dimensional vector, u.
e Also, the covariance between the returns is known; we denote it by X

e We want to create a portfolio, with guaranteed mean return pp, and minimize its risk, as measured
by variance.

e The question is how should items be weighted in portfolio? What are weights w?

We note that ¥ is positive semi-definite and hence is in particular symmetric. In the ideal (or population)
solution, the covariance and the mean are known. The mathematical formulation is then the following
simple quadratic program. We wish to find the weights w that solve the following problem:

min%w’Zw
!

w'p = pp ,

we=1

Here, e is a p-dimensional vector with 1 in every entry. If ¥ is invertible, the solution is known explicitly
(see Section 2). If we call woptimal the solution of this problem, the curve wgptimalzwoptimah seen as a
function of up is called the efficient frontier.

Of course, in practice, we do not know p and ¥ and we need to estimate them. An interesting question
is therefore to know what happens in the Markowitz problem when we replace population quantities by
corresponding estimators.

Naturally, we can ask a similar question for general quadratic programs with linear equality constraints
(see below or Boyd and Vandenberghe (2004) for a definition), the Markowitz problem being a particular
instance of such a problem. This paper provides an answer to these questions under certain distributional
assumptions on the data.

It has been observed by many that there are problems in practice when replacing population quantities
by standard estimators (see Lai and Xing (2008), section 3.5), and alternatives have been proposed. A
famous one is the Black-Litterman model (Black and Litterman (1990) and e.g Meucci (2008)). Adjust-
ments to the standard estimators have also been proposed: Ledoit and Wolf (2004), partly motivated
by portfolio optimization problems, proposed to “shrink” the sample covariance matrix towards another
positive definite matrix (often the identity matrix properly scaled), while Michaud (1998) proposed to use
the bootstrap and to average bootstrap weights to find better-behaved weights for the portfolio. As noted
in Lai and Xing (2008), there is a dearth of theoretical studies regarding, in particular, the behavior of
bootstrap estimators.

An aspect of the problem that is of particular interest to us is the study of large-dimensional portfolios
(or quadratic programs with linear equality constraints). To make matters clear, we focus on a portfolio
with p = 100 assets. If we use a year of daily data to estimate X, the covariance between the daily
returns of the assets, we have n ~ 250 observations at our disposal. In modern statistical parlance, we
are therefore in a “large n, large p” setting, and we know from random matrix theory that f], the sample
covariance matrix is a poor estimator of X, especially when it comes to spectral properties of >. There is
now a developing statistical literature on properties of sample covariance matrices when n and p are both
large - and it is now understood that, though S is unbiased for >, the eigenvalues and eigenvectors of 5
behave very differently from those of ¥. We refer the interested reader to Johnstone (2001), El Karoui
(2007), El Karoui (2008a), Bickel and Levina (2007a), Rothman et al. (2008), El Karoui (2009) for a partial



introduction to these problems. We wish with this study to make clear that the “large n, large p” character
of the problem has an important impact of the empirical solution of the problem. By contrast, standard
but thorough discussions of these problems (Meucci, 2005) give only a cursory treatment of dimensionality
issues (e.g one page out of a whole book).

Another interesting aspect of this problem is that the high-dimensional setting does not allow, by
contrast to the classical “small p, large n” setting, a perturbative approach to go through. In the “small
p, large n” setting, the paper Jobson and Korkie (1980) is concerned, in the Gaussian case, with issues
similar to the ones we will be investigating.

The “large n, large p” setting is the one with which random matrix theory is concerned - and the
high-dimensional Markowitz problem has therefore been of interest to random matrix theorists for some
time now. We note in particular the paper Laloux et al. (2000), where a random matrix-inspired (shrink-
age) approach to improved estimation of the sample covariance matrix is proposed in the context of the
Markowitz problem. We also note that other random-matrix based approaches to covariance estimation
were later proposed (El Karoui (2008b)), with asymptotic theoretical guarantees on the estimation of the
spectral distribution of the covariance matrix.

Let us now remind the reader of some basic facts of random matrix theory that suggests that serious
problems may arise if one solves naively the high-dimensional Markowitz problem or other quadratic
programs with linear equality constraints. A key result in random matrix theory is the Marcenko-Pastur
equation (Marcenko and Pastur (1967)) which characterizes the limiting distribution of the eigenvalues of
the sample covariance matrix and relates it to the spectral distribution of the population covariance matrix.
We give only in this introduction its simplest form and refer the reader to Marcenko and Pastur (1967), El
Karoui (2008b) and El Karoui (2009) for a more thorough introduction and very recent developments, as
well as potential geometric and statistical limitations of the models usually considered in random matrix
theory.

In the simplest setting, we consider data {X;}? ;, which are p-dimensional. In a financial context,
these vectors would be vectors of (log)-returns of assets, the portfolio consisting of p assets. To simplify
the exposition, let us assume that the X;’s are i.i.d with distribution N (0,1d,). We call X the n x p matrix
whose i-th row is the vector X;. Let us consider the sample covariance matrix

1 _ _

S = (X - X)(X-X),

n—1

where X is a matrix whose rows are all equal to the column mean of X. Now let us call F), the spectral
distribution of i i.e the probability distribution that puts mass 1/p at each of the p eigenvalues of s
A graphical representation of this probability distribution is naturally the histogram of eigenvalues of 5.
A consequence of the main result of the very profound paper Marcenko and Pastur (1967) is that F,
though a random measure, is asymptotically non-random, and its limit, in the sense of weak convergence
of distributions, F' has a density (when p < n) that can be computed. F' depends on p = lim, . p/n in
the following manner: if p < n, the density of F is

1/ (yy —2)(x—y)

2mp T

folz) =

Ly_<e<y,

where y, = (1 + \/,5)2 and y_ = (1 — \/p)®. Figure 1 presents a graphical illustration of this result.

What is striking about this result is that it implies that the largest eigenvalue of 3, A; will be overes-
timated by [; the largest eigenvalue of S Also, the smallest eigenvalue of 3, A, will be underestimated by
the smallest eigenvalue of i\], l,. As a matter of fact, in the model described above, ¥ has all its eigenvalues
equal to 1, so A1 () = Ap(X) = 1, while /; will asymptotically be larger or equal to (1+,/p)? and [, smaller
or equal to (1—,/p)? (in the Gaussian case and several others, [; and [, converge to those limits). We note
that the result of Marcenko and Pastur (1967) is not limited to the case where ¥ is identity, as presented
here, but holds for general covariance ¥ (F), has of course a different limit then).

Perhaps more concretely, let us consider a projection of the data along a vector v, with ||v]|2 = 1,
where |[v]|2 is the Euclidian norm of v. Here it is clear that, if X ~ N(0,1d,), var (v'X) = 1, for all v,

~

since v'X ~ N(0,1). However, if we do not know ¥ and estimate it by X, a naive (and wrong) reasoning
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Figure 1: Illustration of Marcenko-Pastur law, n=500, p=200. The red curve is the density of the Mar¢enko-
Pastur -law for p = 2/5. The simulation was done with i.i.d Gaussian data. The histogram is the histogram
of eigenvalues of X'X/n

suggests that we can find direction of lower variance than 1, namely those corresponding to eigenvectors
of & associated with eigenvalues that are less than 1. In particular, if v, is the eigenvector associated
with [, the smallest eigenvalue of f], by naively estimating, for X independent of {X;}" ;, the variance
in the direction of v, var (vz’)X ), by the empirical version Ul’,ivp, one would commit a severe mistake: the
variance in any direction is 1, but it would be estimated by something roughly equal to (1 — \/1%)2 in
the direction of vp,.

In a portfolio optimization context, this suggests that by using standard estimators, such as the sample
covariance matrix, when solving the high-dimensional Markowitz problem, one might underestimate the
variance of certain portfolios (or “optimal” vectors of weights). As a matter of fact, in the previous toy
example, thinking (wrongly) that there is low variance in the direction v,, one might (numerically) “load”
this direction more than warranted, given that the true variance is the same in all directions.

This simple argument suggests that severe problems might arise in the high-dimensional Markowitz
problem and other quadratic programs with linear equality constraints, and in particular, risk might be
underestimated. While this heuristic argument is probably clear to specialists of random matrix theory,
the problem has not been investigated at a mathematical level of rigor in that literature. It has received
some attention at a physical level of rigor (see e.g Pafka and Kondor (2003), where the authors treat
only the Gaussian case, and neglect the effect of the mean, which as we show below creates problems of
its own - we also provide exact distributional results in the Gaussian case). In this paper, we propose a
theoretical analysis of the problem in a Gaussian and elliptical framework for general quadratic programs
with linear equality constraints, one of them involving the parameter y. Our results and contributions are
several-fold. We relate the empirical efficient frontier to the theoretical efficient frontier that is key to the
Markowitz theory, in a variety of theoretical settings. We show that the empirical frontier generally yields
an underestimation of the risk of the portfolio and that Gaussian analysis gives an over-optimistic view of
this problem. We show that the expected returns of the naive “optimal” portfolio are poorly estimated
by up. We argue that the bootstrap will not solve the problems we are pointing out here. Beside new
formulas, we also provide robust estimators of the various quantities we are interested in.

The paper is divided into four main parts and a conclusion. In Section 2, to make the paper self-



contained, we discuss the solution of quadratic problems with linear equality constraints - the focus of
this paper. In Section 3, we study the impact of parameter estimation on the solution of these problems
when the observed data is i.i.d Gaussian and obtain some exact distributional results for fixed p and n.
In Section 4, we obtain results in the case where the data is elliptically distributed. This allows us also
to understand the impact of correlation between observations in the Gaussian case and to get information
about the behavior of the non-parametric bootstrap. In Section 5, we apply the results of Section 4 to the
quadratic programs at hand and compare the elliptical and the Gaussian cases. We show, among other
things, that the Gaussian results are not robust in the class of elliptical distribution. In particular, two
models may yield the same g and X but can have very different empirical behavior. In Section 5, we
also propose various schemes to correct the problems we highlight (see pp. 40, 41 and 51 for pictures).
The conclusion summarizes our findings and the Appendix contains various facts and proofs that did not
naturally flow in the main text or were better highlighted by being stated separately.

Several times in the paper $—1 and ! will appear. Unless otherwise noted, when taking the inverse of
a population matrix, we implicitly assume that it exists. The question of existence of inverse of sample co-
variance matrices is well-understood in the statistics literature. Because our models will have a component
with a continuous distribution, there are essentially no existence problems (unless we explicitly mention
and treat them) as proofs similar to standard ones found in textbooks (e.g Anderson (2003)) would show.
Hence, we do not belabor this point any further in the rest of the paper as our focus is on another things
than rather well-understood technical details and the paper is already a bit long.

2 Quadratic programs with linear equality constraints

We discuss here the properties of the solution of quadratic programs with linear equality constraints as
they lay the foundations for our analysis of similar problems involving estimated parameters. We included
this section for the convenience of the reader to make the paper as self-contained as possible.

The problem we want to solve is the following:

: 1,7
ming,ere 5w XW i
{wlvizui,lﬁjﬁk‘- (QP-eqe)

Here ¥ is a positive definite matrix of size p x p, v; € RP and u; € R. We have the following theorem:

Theorem 2.1. Let us call V' the p X k matriz whose i-th column is v;, U the k dimensional vector whose
i-th entry is U; and M the k x k matriz
M=V's"v.

We assume that the v;’s are such that M is invertible. The solution of the quadratic program with linear
equality constraints (QP-eqc) is achieved for

Woptimal = X VMU

and we have
/ ! —1
Woptimal ZWoptimal = UM ™"U

Proof. Let us call A a k dimensional vector of Lagrange multipliers. The Lagrangian function is, in matrix

notation,

w'Sw
2

This is clearly a (strictly) convex function in w, since ¥ is positive definite by assumption. We have

L(w,\) = ~NWV'w-0).

— =Yw-V\.
ow v

S0 Woptimal = LV A. Now we know that U = V'wepgimal. So U = V'SV = M. Therefore,

Woptimal = X VMU .



We deduce immediately that
wgptimalzwoptimal = U/M_lU .

O]

We now turn to another result which will prove useful later. It gives a compact representation of linear
combinations of the weights of the optimal solution, and we will rely heavily on it in particular in the case
of Gaussian data.

Lemma 2.1. Let us consider woptimal the solution of the optimization problem (QP-eqc). Let v be a vector
in RP. Let us call M the (k+ 1) x (k + 1) matriz that is written in block form

M= 1740 it VAN VA0 St
- ,ylz—lv ’Y,Z_I'Y .
Assume that M is invertible. Then
1
—— (UO) M (01’“> (1)

/
7Y Woptimal = — 7
Mk+1,k+1

Proof. The proof is a consequence of the results discussed in the appendix concerning inverses of partitioned
matrices (see Subsection A-1 and Equation (A-4) there). Let us write

M Mio
M = ,
( Mo Mao )

where M1 is k x k, Mo is naturally k£ x 1 and My is a scalar. With the same block notation, we have
B Mll M12
M= < M2 22 .

Then, we know (see Equation (A-4)) that M!'? = —M1_11M12M22 , but since M?? is a scalar, equal to
MYk +1,k+ 1), we have
M Mig = = M2 /M2

Now Mil/\/hg = (V'2~'V)"lV's71y, so U’Mil/\/llg = w(/)ptimal’y‘ Hence,

(U 0)M™1 <01’“> .

1
! —
woptima17 - _M22

O]

We note that here (M?2)~! = /S~y — /57 M~-1V'E~1y, as an application of Equation (A-2)
clearly shows.

3 QP with equality constraints: impact of parameter estimation in the
Gaussian case

From now on, we will assume that we are in the high-dimensional setting where p and n go to infinity.
Our study will be divided into two. We will first consider the Gaussian setting (in this Section) and
then study an elliptical distribution setting (in Section 4). (We note that for the Markowitz problem,
the assumption of Gaussianity would be satisfied if we worked under Black-Scholes diffusion assumptions
for our assets and were considering log-returns as our observations.) Interestingly, we will show that the
results are not robust against the assumption of Gaussianity, which is not (so) surprising in light of recent
random matrix results (see El Karoui (2009)). We will also show that understanding the elliptical setting
allows us to understand the impact of correlation between observations and to discuss bootstrap-related



ideas. In particular, we will see that various problems arise with the bootstrap in high-dimension and that
the results change when one deals with observations that are correlated (in time) or not.

Before we proceed, we need to set up some notations: we call e the p-dimensional vector whose entries
are all equal to 1. We call V, as above, the matrix containing all of our constraint vectors, which we may
have to estimate (for instance, if v; = p for a certain 7). We call V' the matrix of estimated constraint
vectors.

The template question for all our investigations will be the following (Markowitz) question: what can
be said of the statistical properties of the solution of

mingere W' SW
W' = pp,
we=1
compared to the solution of the population version
mingege w'Sw
w'p = pp,
we=1
We will solve the problem at a much greater degree of generality, by considering quadratic programs
with linear equality constraints and comparing the solutions of

min,,cre %w’Ew

wv=u;, 1<j<k—-1, (QP-eqc-Emp)
W'l = ug

and
min,,cre %w’Zw
wvi=u;, 1<j<k-1, (QP-eqc-Pop)
w'p = uy,

Here 3 and p will be estimated from the data. We call wemp the vector that yields a solution of Problem
(QP-eqc-Emp) and wipeo the vector that yields a solution of Problem (QP-eqc-Pop).

We call V the p X k matrix containing {vi}i:ll and [z, and V its population counterpart, which contains
{vi fz_ll and p. We assume that {v; fz_ll are deterministic and known (just like the vector e in the Markowitz
problem). In our analysis, k& will be held fixed. (The k-th column of V will contain [ in general or our
estimator of u.)

As should be clear from Theorem 2.1, the properties of the entries of the matrix V'SV as compared
to those of the matrix V'S ™'V will be key to our understanding of this question. In what follows, we
assume that the vectors 0; are either deterministic or equal to fi. The extension to linear combinations
of a deterministic vector and f is straightforward. We also note that in the Gaussian case, we could just
assume that the 9; are (deterministic) functions of 7i (because 7i and ¥ are independent in this case). On
the other hand, the vector U is assumed to be deterministic.

Before we proceed, let us mention that after our study was completed, we learned of similar results
(restricted to the Markowitz case and not dealing with general quadratic programs with linear equality
constraints) by Kan and Smith (2008). We stress the fact that our work was independent of theirs and is
more general which is why it is included in the paper.

3.1 Efficient frontier problems

We first study questions concerning the efficient frontier and then turn to information we can get about
linear functionals of the empirical weights.

Theorem 3.1. Let us assume that we observe data X; u N, %), fori =1,....n. Here X is p X p
and p < n. Suppose we estimate ¥ with the sample covariance matriz ¥, and p with the sample mean Q.
Suppose we wish to solve the problem

{ ming,crr W' Xw (QP-eqe-Pop)

wvj=u;, 1<j<k.

7



where u; are deterministic, v; are deterministic and given for j < k and vy, = p. Assume that we use
as a proxy for the previous problem the empirical version with plugged-in parameters. Let us consider the
solution of the problem:
. /A
min,cre W' 2w p
-eqc-Em
Now ©; = v; for j < k and v, = f(i). Let us call wemp the corresponding “weight” vector. The plug-in
estimate of w'Sw is wempEwemp. Let us call weopacle the optimal solution of the quadratic program obtained
under the assumption that ¥ is given, but u is not and is estimated by f(u). Finally, we assume that
n—1—-p+k>0.
Then we have

2
Xn—1-p+k
YWoracle (2)

empremP woracle n—1 ’

where w’ StWoracle 18 Tandom (because [i is) but is statistically independent of X%—l—pﬂq' Also,

oracle

WoracleZWoracle = U’ (V’Eflﬁ)_l U.

The previous theorem means that the cost of not knowing the covariance matrix and estimating it is

the apparition of the % In the high-dimensional setting when p and n are of the same order of

magnitude and n — p is large, this terms is approximately 1 — (p—k)/(n—1). Hence, the theorem quantifies
the random matrix intuition that having to estimate the high-dimensional covariance matrix at stake here
leads to risk underestimation, by the factor 1 — (p—k)/(n—1). In other words, using plug-in procedures
leads to over-optimistic conclusions in this situation.

We also note that the previous theorem shows that, in the Gaussian setting under study here, the effect
of estimating the mean and the covariance on the solution of the quadratic program are “separable”: the
effect of the mean estimation is in the oracle term, while the effect of estimating the covariance is in the
Xn -1tk /(n—1) term. To show risk underestimation, it will therefore be necessary to relate w’ Y Woracle
t0 W} oo XWiheo- We do it in Proposition 3.1 but first give a proof of Theorem 3.1.

oracle

Proof of Theorem 3.1: The crux of the proof is the following result, which is well-known of statisticians,
concerning (essentially) blocks of the inverse of a Wishart matrix: if S ~ W, (2, m), i.e S is a p x p Wishart
matrix with m degree of freedoms and covariance X, and A is p X k, deterministic matrix, then, when

m>p,
(ASTTA) L~ W (A A Y m —p+ k).

We refer to Eaton (1983), Proposition 8.9 p. 312 for a proof, and to Mardia et al. (1979), pp.70-73 for
related results.
Another important remark is the well-known fact that, in the situation we are considering, n is
N(u,X/n) and independent of S Finally, it is also Well known that if S ~ W,(3,m) and U is a p-
dimensional deterministic vector, then U 'SU =U'SU Xm
Now & ~ W, »(X,n —1)/(n —1). Therefore, since V is a function of Ji, we have, by independence of i
and E,

VEW) Ha~ W (VEV) L —1—p+k)/(n—1).

Therefore,
2
anp71+k
n—1

U'(f/'z—IV)— U

Because the right hand side does not depend on i, we have established the independence of

X?z—p—l—i—k
U/( ry—-1 )—1U n—1 '




Hence, we conclude that

2
U'WV'ETW)IU = U’(V’E*lﬁ)*lUiX""Hl*’“ :
n —
and the two terms are independent. Now the term U’ (YA/’ E_lv)_lU is the estimate we would get for the
solution of Problem (QP-eqc-Pop), if ¥ were known and p were estimated by f(iz). In other words, it is
the “oracle” solution described above. O

3.1.1 Some remarks on the oracle solution

Theorem 3.1 sheds light on the separate effects of mean and covariance estimation on the problem
considered above. To understand further the problem of risk estimation, we need to better understand the
role the estimation of the mean might play. This is what we do now.

Proposition 3.1. Suppose that the last column off/ is . Let us call V_i, the px k—1 dimensional matriz

whose j-th column is v;, which are known deterministic vectors. Suppose that M = V'S~V = 0(1).

Suppose further that A\, (V'S V) > n=Y2, where \p(S) is the smallest eigenvalue of the k x k matriz S.
Further, call M = V'S~V € R¥*F and call e; the canonical basis vectors in RE. Finally, call « = X%/n.
Then, when p/n — p € (0,1), asymptotically,

(Ulelek)2

/
a—" " k)
1+ e} M~y

Woracle

Eworacle = wéheozwtheo - +op (wéheozwtheo) .

Let us discuss a little bit this result before we provide a proof. In the asymptotics we have in mind
and are considering, p/n — p € (0,1) and therefore o ~ p/n 4+ O(n=12). So if 6, = (U'M~'ey)?/(1 +
p/ne, M ~ley), when the above analysis applies, the impact of the estimation of p by ji will be risk under-
estimation, just as is the case for the case of the covariance matrix. Here, we can also quantify the impact

of this estimation of u by p: it leads to risk underestimation by the amount «d,.

Proof. Let us write i = ju + e, where e ~ N'(0,%/n). Clearly, e = n~1/2%1/2Z where Z is N'(0,1d,,). We
have, using block notations,

a1 (el 0 0 0 v/ X lte
VETV =Varl s (0 e’Ele> + (e’Elvk 2u'x e

Replacing e by its value, we have /S~ te ~ N(0, /Y71 u/n). By the same token, we can also get that

1 V! E_lv_k
Vi S le=—V' 527 ~ 0,—— % .
—k € NG —k N{0, n

Our assumption that V'S~V = O(1) implies that ¢S~y = O(1) and V/ X71V_j, = O(1). Therefore,

0 VizTle _ o (L
XV 2uyte) ” TP\ Un)

Hence, since e’Y"te = Z'Z/n =
V'ESTW = V'SV + aegel, + Op(n™/?) .

Our assumptions guarantee that A\x (V'S 71V) > n=1/2 and therefore A\, (V'S™'V + aegel) > n~ /2. In
other respects, let A be a matrix such that \,(A) > n~"/2 and E be a matrix such that F = O(n~"/2).
Recall that for symmetric matrices, A\,(A+E) > X\,(A)+ A, (E) (see e.g Weyl’s Theorem, Horn and Johnson
(1994), p.185). So in this situation, (A+E)~! = o(n'/2). Let us now consider the implications of this remark
on the difference of (A + E)~! and A~!. We claim that (A+ E)~!' = A=! 4+ 0o(A~!). By the first resolvent
identity, (A+E)™! = A~' — (A+ E)~'EA~; our previous remark implies that o1[(A+ E)"'E] = o(1) and



the result follows. Applying the results of this discussion to A = V'SV + aege), and A+ E = Ve,
we have R R
V'STW = (VS 4 aerel) Tt +Hop(VIETIV + aegel) ™) .

We can now use well-known results concerning inverses of rank-1 perturbation of matrices, namely

M epel M1
1 -1 -1 -1 kS
(V’E V + O(ek-egg) = (M —+ Oéek-eé:) = M — QW .
This allows us to conclude that

(U'Mey)?

/A/Zfl”\ gy My -
UV'S V)Y lU = U'MTU T ad 3 1er

+op(U'M™IU) .

This is the result announced in the theorem and the proof is complete. O
We can now combine the results of Theorem 3.1 and Proposition 3.1 to obtain the following corollary.

Corollary 3.1. We assume that the assumptions of Theorem 3.1 and Proposition 3.1 hold and that p/n
has a finite non-zero limit, as n — oo, and n — p tends to infinity. Then we have,

~ p— k P U/M_lek 2 —
wempzwemp = (1 — " — 1> <w{;heozwtheo — nw + op (wgheozwtheo Vn 1/2) , (3)
n -k

where M is the population quantity M = V'S~V .

The corollary shows that the effects of both covariance and mean estimation are to underestimate the
risk, and the empirical frontier is asymptotically deterministic.

3.2 On the optimal weights

Our matrix characterization of the empirical optimal weights (Lemma 2.1) allows us to give a precise
characterization of the statistical properties of linear functionals of these weights. We give here some exact
results, concerning distributions and expectations of those functionals. A longer discussion, including
robustness and more detailed bias issues can be found in Section 5.

Proposition 3.2. Assume that the assumptions of Theorem 5.1 hold and in particular X; are i.i.d
N(u,Xp). Let ~ be a fized n-dimensional vector. Let us call Vo = (V ) the p x (k + 1) matriz whose first
k columns are those of V. Let ]V7 = (17%2*1177)*1 and Wy be a (k+ 1) x (k+ 1) matric with distribution
Wk+1(]v,y, n—p+k) (conditional on 11). Then,

L Y uiWy(ik+1)
 Wak+1,k+1)

7/wemp ’ 1

In particular,

~

Sk wiNL (i k+ 1)
Ny(k+1,k+1)

E (’Y/wemp‘ ﬁ) =

We note, somewhat heuristically, that when pu is estimated by i, since i ~ N(u,¥/n), @/'S7 1 ~
WX+ p/n, when p, n and n — p are all large (we refer again to Section 5 for a more precise statement).
Hence ]Tﬂ, is a not a consistent estimator of N, = (V42*1V7)*1. As we will see in Subsection 5.2 and can
be expected from the previous proposition, this will also implies bias for linear combinations of empirical
optimal weights. We will show in particular that returns are overestimated when using i as an estimator
for pu.

Another interesting aspect of the previous proposition is that it allows us to understand the fluctuation
behavior of ¥'wemp when n — p + k is large: as a matter of fact, the limiting fluctuation behavior of the
entries of a (fixed-dimensional) Wishart matrix with large number of degrees of freedom is well-known
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(see e.g Anderson (2003), Theorem 3.4.4 p. 87) and the §-method can be applied to get the information -
conditional on 1.

For instance, if we assume that, conditional on f, the matrix ]VW converges to a matrix NS, which
possibly depends on 11, we see that calling v the last column ]\ALY7 v is asymptotically normal (all statements
are conditional on 1), if N =n — p+ k goes to infinity when p and n go to infinity. Furthermore we know
the limiting covariance of v, using Theorem 3.4.4 in Anderson (2003). Let us call it I'g and let us call vy
the limit of v - which we assume exists.

If we assume that vo(k + 1) is not 0, Slutsky’s lemma and the J-method give us through simple
computations that

k .
/ Ez’:l U@'I/()(Z) ~ 1 /
- em /7 AN 2R 9 F )
vn p+k<'yw p+ okt 1) ) MZ}VO(k—i—I)QN(OC 0C)

xmaeC:VMk+U(g>—<<gmeemy

We know the distribution of fi, so we could get (limiting) unconditional results for 7'wemp. This is
not hard but a bit tedious if we want explicit expressions, and because our focus is mostly on first-order
properties in this paper, we do not state the result.

Proof of Proposition 3.2: The proof follows from the representation we gave in Lemma 2.1, i.e

1 PN 0
! ! 5—1 -1 k
Y Wemp = ——==—= Uo)y(vV,x V. < ) ,
o (WZ*W%Hk+Lk+D( W
and the fact that, by the same arguments as before, conditional on i,

(VIS ~ Wi (V27" n—p+ k) /(n— 1) .

We conclude that

Ok
U 0)w.
L v'0) 7<1> S wWL (i k+ 1)
Wy(k+1,k+1) Wy(k+1,k+1) °
This shows the fist part of the proposition.

The second part follows from the following observation. Suppose the matrix P is W) (Id,, K). If o and
(0 are n-dimensional, orthogonal vectors, let us consider

/ ~
Y wemp’ H

o' Pp
gP3-

We can of course write P = Zfil Y;Y/, where Y; are i.i.d N(0,1d,). In other respects, Y/a and Y/( are
clearly independent normal random variables, since their covariance is /3 = 0 and they are normal. So

/PB
©(G7pp| 0104 ) =0,

because the quantity whose expectation we are taking is a linear combination of mean 0 independent
normal random variables. Hence, also,
'P
B(2L0) _y.
p'Pp

Now, when « is not orthogonal to 3, we write a = 3(a/8)/||3||3 + &, where § is orthogonal to 3. We
immediately deduce that in general,

B O/Pﬁ) _ o' B E(é’Pﬁ) _ o8 .
(ﬁ’Pﬁ BE " \srs) T 1812
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Furthermore, when P is W,(X, K), because we can write P = $1/2py31/2 where Py ~ Wy(1d,, K), we

finally have
E oPB\  o'%p
p'P3

S pxse
. U = . .
In the case of interest to us, we have o = 0/ B = er+1, and ¥ = N,. Applying the previous formula

gives us the second part of the Proposition. O

We now turn to the question of understanding the robustness properties of the Gaussian results we just
obtained. We will do so by studying the same problems under more general distributional assumptions,
specifically we will now assume that the observations are elliptically distributed.

4 Solutions of quadratic programs when the data is elliptically dis-
tributed

In Section 3, we studied the properties of the “plug-in” solution of Problem (QP-eqc-Pop) under the
assumption that the data was normally distributed. While this allowed us to shed light on the statistical
properties of the solution of Problem (QP-eqc-Emp), it is naturally extremely important to understand
how robust the results are to our normality assumptions.

In this Section, we will consider elliptical models, i.e models such that the data can be expressed as:

X; = p+ NSV

where ); is a random variable and Y; are i.i.d N'(0, Id,) entries. A\; and Y; are assumed to be independent,
and to lift the indeterminacy between 3 and A, we assume that E ()\12) = 1. Under this assumption, we
clearly have cov (X;) = X. We note that this is not the standard definition of elliptical models, which
generally replaces Y; with a vector uniformly distributed on the sphere in RP, but it captures the essence
of the problem. We refer the interested reader to Anderson (2003) and Fang et al. (1990) for extensive
discussions of elliptical distributions.

Our motivation for undertaking this study comes also from the fact that for certain types of data, such
as financial data, it is sometimes argued that elliptical models are more reasonable that Gaussian ones, for
instance because they can capture non-trivial tail dependence (see Frahm and Jaekel (2005), McNeil et al.
(2005)). From a theoretical standpoint, considering elliptical models will also help in several other ways:
the results will yield alternative proofs to some of the results we obtained in the Gaussian case, they will
allow us to deal with some situations where the data X; are not independent, and they will also allow us
to understand the properties of the bootstrap.

We also want to point out that elliptical distributions allow us to not fall into the geometric “trap” of
standard random matrix models highlighted in El Karoui (2009): the fact that data vectors drawn from
standard random matrix models are essentially assumed to be almost orthogonal to one another and that
their norm (after renormalization by 1/,/p) is almost constant. In a sense, studying elliptical models will
allow us to understand what is the impact of the implicit geometric assumptions made about the data
when assuming normality. (We purposely do so not under minimal assumptions but under assumptions
that capture the essence of the problem while allowing us to show in the proofs the key stochastic phe-
nomena at play.) This part of the article can therefore be viewed as a continuation of the investigation we
started in El Karoui (2009) where we showed a lack of robustness of random matrix models (contradicting
widespread claims of “universality”) by thoroughly investigating limiting spectral distribution properties
of high-dimensional covariance matrices when the data is drawn according to elliptical models and gener-
alizations. We show here that the theoretical problems we highlighted in El Karoui (2009) have important
practical consequences.

We now turn to the problem of understanding the solution of Problem (QP-eqc-Emp) in the setting
where the data is elliptically distributed. We will limit ourselves to the case where the matrix V is full
of known and deterministic vectors, except possibly for the sample mean. In this section we restrict
ourselves to convergence in probability results. It is clear from Section 2 that to tackle the problems we
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are considering we need to understand at least three types of quantities: v’ $~1p for a deterministic v with
unit norm, 7S~ and @S

Here is a brief overview of our findings. When we consider elliptical models, our results say that roughly
speaking, under certain assumptions given precisely later,

dG(T)

1 V'S 1y
1+7ps

C 'yl

— s, where s satisfies, if G is the law of \? and p/n — p € (0, 1),

=1-—p.

2. if =0, S — p/(1 - p).
3.ifp=0, @S v — 0.

All these convergence results are to be understood in probability. They naturally allow us - under certain
conditions on the population parameters - to conclude about the convergence in probability of the matrix
V'S~1V. The results mentioned above are stated in all details in Theorems 4.1 and 4.4.

In the situation where A; are i.i.d, the results above hold when \; have a second moment and they do
not put too much mass near 0. This is interesting in practice because it tells us that our results hold for
heavy-tailed data, which are of particular interest in some financial applications.

The bootstrap situation corresponds basically to G being Poisson(1), which we denote by Po(1). Also
in the statement above for 1’ iflﬁ, one should replace p/(1 — p) by s — 1 in the bootstrap case. This is
explained in Theorem 4.5 and Subsubsection 4.4.4. Finally, in the case of Gaussian data with “temporal”
correlation, i.e when the data can be written in matrix form X = e, i/ + AYXY2, where A is not diagonal,
one should replace G by the limiting spectral distribution of A’A. The question of convergence of i/ f]_lﬁ
is then more involved. We refer to Proposition 4.2 for details about this situation.

Though we are taking a fundamentally random matrix theoretic approach, our presentation purposely
avoids borrowing too many techniques from random matrix theory in the hope of making clear(er) the
phenomena that yield the results we will obtain. A more general but considerably more technically compli-
cated (for non-specialists of random matrix theory) approach is being developed in our study of a connected
problem and will appear in another paper.

This section is divided into four subsections. The first two are devoted to the main technical issues
arising in the study of the problem when the data is elliptically distributed. The third discusses the impact
of correlation between observations when the data is Gaussian, as it can be recast as a variant of elliptical
problems. The last subsection discusses questions related to the (non-parametric) bootstrap.

4.1 On quadratic forms of the type V'S 1y

The focus of this subsection is on understanding statistics of the type v’ i_lv, where v is a deterministic
vector. We will prove the following important Theorem.

Theorem 4.1. Suppose we observe n i.i.d observations X;, where X; has the form X; = p+ /\iZl/ng,
with Y; lfﬂd/\/’((),ldp) and {\;}7, is independent of {Yi}?_,. £Y2 is deterministic and E (\?) = 1.

We call py, = p/n and assume that p, — p € (0,1).

We use the notation 7; = )\ZZ and assume that the empirical distribution, G,,, of ; converges weakly in
probability to a deterministic limit G. We also assume that 7; # 0 for all 1.

If 73y is the i-th largest Ty, we assume that we can find a random variable N € N and positive real

numbers ey and Cy such that

P(p/N <1—¢€) — lasn — oo,
P(r(ny > Co) — 1, (Assumption-BB)
Ino > 0 such that P(N/n >ny) — 1 asn — oo .

Under these assumptions, if v is a (sequence of ) deterministic vector,

'Sy

Ty — 5 in probability
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where s satisfies,

/dG(T) 1o, ()

1+prs

A few comments are in order before we turn to the proof. First, the assumption that \; # 0 for all ¢
could be dispensed of, as long as all assumptions stated above hold when n is understood to denote the
number of non-zero \;’s. Second, (Assumption-BB) concerning N and C will generally hold as soon as G
does not put too much mass at 0, the only problem-specific question remaining being how much mass is
put at 0 by G compared to p, the limit of p/n.

In particular, in the case where the 7;’s are i.i.d, if there exists Cy > 0 and zp > 0 such that Pg(X >
Co) = o > 0, and if G,, is the empirical distribution of the 7;’s, if G,, = G, we see, using e.g Lemma 2.2
in van der Vaart (1998), that

Card {r; > Cp} > p

liminf Pg, (X > Cp) = c(X > Ch) =x .

n—o0 n
So picking N = (1 —§)xon will guarantee that we have, if G,, = G in probability, P(T( N) > Cy) — 1 and,
of course, P(N/n > n) — 1. Hence, in checking whether the theorem applies, we just need to see whether
p/N stays bounded away from 1.

In the simpler case when all the |\;| are bounded away from 0, the conditions on N and C apply directly
by taking N = n. Finally, let us say that (Assumption-BB) is needed in the proof to guarantee that the
smallest eigenvalues of ) stay bounded away from 0 with high-probability.

We now briefly compare the Gaussian and elliptical cases. A simple convexity argument (relying on
the fact that 1/(1+ x) is a convex function of = for z > 0 and Jensen’s inequality) shows that, if g is the
mean of G,

In the case of Gaussian data, G = 41, i.e it is a point mass at 1 and we have s = 1/(1—p). In other respects,
for X; to have covariance X, we need E ()\12) = 1. When the \;’s are i.i.d, with )\? having distribution
G, ug = E (/\12) = 1, and we know that G;, = G in probability. Therefore, in the class of elliptical
distributions considered here, risk underestimation, which is essentially measured by 1/s (see Theorem 2.1
and Section 5) will be least severe in the Gaussian case. In other words, the Gaussian results lead to over-
optimistic conclusions (in terms of proximity between sample and population solutions of the quadratic
programs we are considering) within the class of elliptical distributions.

We go back to these questions in more detail in Section 5 and now turn to the proof of Theorem 4.1.
The proof could be carried out in at least two ways. We take one that is not standard but we feel best
explains the phenomenon that is occurring.

Proof of Theorem 4.1: The proof is easier to carry out when we write the problem in matrix form.
Because we focus on EA], we can assume without loss of generality (wlog) that p = 0. Let us consider the
n X p data matrix X whose i-th row is X;. Similarly, we denote by Y the n x p data matrix whose i-th
row is Y;. Let us call A the diagonal matrix with i-th diagonal entry \; and H = Id,, — e€’/n, where e is
an n-dimensional vector whose entries are all equal to 1. Note that H'H = H. With these notations, we
have

X =AYxl/2,

Therefore, X — X = HX, and

1 _ _ 1
(X - X)(X -X)= —121/2Y’AHAY21/2
n — n —

y =

Let us call L the matrix L = AHA. Note that Y/LY is a rank p matrix with probability 1, if we assume
that p < n —1 (recall that all the entries of A are non-zero). Hence, Y/LY is invertible with probability 1.
Therefore,

—1
sty (L iy sz
n—1
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Finally, we have

V'Sl -1
mzu’ <n— YLY> v,
where v = X71/2y/||£=120||5 is a vector of £ norm 1.

We now make all of our statements conditional on A. Because of the independence of Y and A, we can
therefore treat the \;’s as if they were constant and the Y; ;’s as i.i.d M(0, 1) random variables. A is now
assumed to be in the set of matrices L 5, defined as the end of this proof, for which we have control of the
smallest eigenvalue of S = Y'LY/(n — 1). In the steps that follow that are conditional on A, we therefore
consider that we control the smallest eigenvalue of S and we will show formally that it is the case at the
last step, when we get results unconditionally on A. (The arguments are not circular.) We note that if A
is in L¢ s, N is lower bounded. Because [V is a function of the A;’s and hence of A, we write all the results
conditionally on A, but the reader should keep in mind that this conditioning constrains also the possible
values of V.

e Getting results conditionally on A

If O is an orthogonal matrix, O'Y'LY O £y LY, because Y is full of i.i.d A(0,1) random variables
and is therefore invariant (in law) by left and right rotation. Therefore the eigenvalues and eigenvectors of
Y'LY are independent and its matrix of eigenvectors is uniformly (i.e Haar) distributed on the orthogonal
group (see also Chikuse (2003), p. 40, Equation (2.4.4)). Let us write a spectral decomposition of Y'LY:

S =

1 P
1Y’LY = Z%’UW; .

e i=1
We know that a.s «; # 0 for all 7, so
P
1
VS = Z —(V'v)? .
i i
We claim that
11
Sty EZ* ({vitiz, A) — 0

To see this, note that E ((+/v;)?) = ||v||3/p = 1/p, because v; is uniformly distributed on the unit sphere
when T (the matrix containing the v;) is Haar distributed on the orthogonal group. Hence, given the
independence between ~; and vy,

ro—1 n 1 ; 1
E (/S Vl{w}izl»A):;,Zf'

im1 Vi

Now let us call w the vector with w; = (v'v;)?, and g the vector with i-th entry g; = 1/~;. Clearly, since
VST = g'w, var (VS v [{v;}) = ¢'cov (w) g. By symmetry it is clear that cov (w) (i,i) = cov (w) (1, 1)
and cov (w) (i,7) = cov (w) (1,2) if i # j. Further, since the matrix T containing the vectors v; is Haar
distributed on the orthogonal group, we can assume without loss of generality that v = e; for all the
computations at stake. As a matter of fact, if O; is an orthogonal matrix such that Oiv = ey, then
v'v; = €)0qv; = €| 0; where the matrix T =017 is again Haar distributed on the orthogonal group.

So from now on, we assume (without loss of generality) that v = ej, and we therefore simply need
to understand the correlation between (v1(1))? and (v2(1))2. Now, the first row of an orthogonal matrix
uniformly distributed on the orthogonal group is a unit vector uniformly distributed on the unit sphere,
because if O is Haar distributed, so is O’. We now recall the fact that a vector uniformly distributed on
the unit sphere, v can be generated by drawing at random a N (0,1d,) random vector and normalizing it.
In other words, if Z ~ N(0,1d,), v = Z/||Z|2.

So our task has now be considerably simplified, and it consists in understanding the covariance between
2 random variables, 1 and 79 such that, if Z; are i.i.d N(0, 1),

72

1

"= <p =9 -
P 2
z:lZi
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Now, by symmetry, E (ri72) = E (r;r;) for all i # j and p(p — 1)E (r172) = 3=, ; E (rir;). In other words,

2377 VAV
p(p—1DE (riry) = E Zﬁ :E((Zw Z 7] ) .

i#j =1 = i=1

We can therefore conclude that

4
p(P - 1)E (7’17“2) =1-pE ((leZ2)> .

Hence, E (r172) < 1/(p(p — 1)). On the other hand,

. <(”Z422)> =F (( f:ZjZ?V) - (p—3)3(p—5) ’

since Y38 0 Z2 ~ xiy, and E ((x3_)") = 2'T((p — 1)/2+7)/T((p — 1)/2), for 7 > —(p — 1)/2 (see e.g
Mardia et al. (1979), p. 487). Applying these results with » = —2 yields the above result as soon as p > 5,
by using the fact that I'(x 4+ 1) = 2I'(z). We therefore have

3p
l——— (= <pp—1E((rr) <1.
[
Since, for instance by symmetry, E (r1) = 1/p, and 1/(p(p — 1)) — 1/p* = (p*(p — 1)) ™!, we conclude that
1 3p 1

Fo-1) pp-Dp-3)p—5 = )=

We have therefore established the fact that
lcov (r1,7m2)| = O(p~3) .
On the other hand, since E (r) = E (Z}(3°Y_; Z?)~?), we have
3 1
(P=3)p-5 P’

Now using the (standard) fact that, for symmetric matrices M, if o1(M) is the largest singular value of
M,
M) S mf}xz |mi,j y
J

(it can easily be proved using for instance, Theorems 5.6.6 and 5.6.9 in Horn and Johnson (1994), or
Gersgorin’s Theorem (Theorem 6.1.1 in the same reference)) we have

0 < wvar(r;) <

3 1
(p=3)p-5 p
The first term in the previous bound comes from the contribution of the diagonal and the second term
is the sum over the p — 1 off-diagonal elements on a given row of the upper-bound we had on each such
element, i.e Cp~3 for some C.

Let us now return to our initial question which was to show that the conditional variance of interest
to us was going to zero. Recall that g is a vector whose i-th entry is 1/+;. Since

var (V'S_ly [{vi},A) = g'cov(w) g ,

and cov (w) = cov (1), we have, for C' a constant, and if |||A[||2 denotes the operator norm (or largest
singular value) of the matrix A,

mwww»s< )+mp%:0@2»

p
B g 1 1
mwﬁwmmKmewm<ﬂm—ﬁzﬁ-

i=
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Now given the assumptions we made on A, according to the arguments given at the end of this proof and

Lemma B-1, 42 > &, (1 —+/p/(N — 1))?/2, where €, = Co(N —1)/(n— 1), with high ({Y;}"_,)-probability
, so we conclude that all the ;s are bounded away (uniformly for A in £, s) from 0, and

var (V'S |{yi},A) = 0.
Therefore,
11
VST — - Z —{%}’_1,A — 0 in probability .
b=
Let us now show that this implies convergence in probability to 0 (conditional on A only) of Q,, = V'S~ tv—

2
% le % Let us call h,, = CHZQQ. For ¢, to be determined later, we have

P(Qul > ) < P(IQu] > €& hy < GulA) + Pl > CalA)
On the other hand,

P(|Qn] > €&hn < GalA) = B (B (Ligu>elnn<c.| {9:}:4) [4) -
Because h,, is a function of the g;’s and var (Qn|{vi}i_1, A) < Ay,

h
E (10, >clhn<ca| {9i1A) = Ino<c. B (Lig,se| {9}, A) < 1hn§<nj; < % :

But under our assumptions, we have h,|A = Op(1/p), so taking ¢, = n~"/2, we have P(h, > (,|A) — 0
and of course, ¢, /€2 — 0. Hence, for any € > 0,

P(|Qn| > €A) — 0.

Let us now turn to the question of identifying the limit.
e About % L ,yi The Stieltjes transform of the spectral distribution of Y'LY/(n — 1) is

s(z) =13 2

P~z

The quantity %Zle % is therefore s,(0) and we are interested in its limit, if it exists, which would
correspond to s.

Recall the Marcenko-Pastur equation, from Maréenko and Pastur (1967), Wachter (1978) and Silverstein
(1995): if Y is n x p has i.i.d entries with mean 0 and variance 1 and L is positive semidefinite, has limiting
spectral distribution G and is independent of Y, if p/n — p > 0, and if m,, is the Stieltjes transform of the
spectral distribution of Y'LY/p, then m,(z) tends (in probability) to m(z) for all z in C* and m satisfies

1 _Z_l/TdG(T). (5)

m(z) p.) 1+71m(z)

Note that, if p/n = p,, we have
Prsp(pnz) = my(2) -

Therefore, according to Mar¢enko and Pastur (1967), Wachter (1978) and Silverstein (1995), we know
that s,(z) converges for z € C* to a non-random quantity s(z), in probability. Note that s satisfies, in

light of Equation (5)
1 / T7dG(T)
—_—_ 2 - -, <
s(2) 1+ 7ps(2)

Here, because we know using our assumptions (see the end of the proof) that v; are bounded away
from 0 with probability going to 1, we can also conclude that s,(0) — s(0) with probability going to 1,
because of the weak convergence (in probability) of spectral distributions that pointwise convergence of
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Stieltjes transforms implies (as a test function, we can use a function that coincides with 1/x except in
a interval near 0 where we are guaranteed that there are no eigenvalues asymptotically). We also know
that s is continuous (and actually analytic) at 0 in this situation since the s is the Stieltjes transform of a
measure who has support bounded away from 0. So the previous equation holds for z = 0 and we have

L[ e
s(0) /1+7’p8(0)'

Multiplying both sides by —ps(0), we get, after we recall that G is a probability measure,

o= [ = [ (- @) €0 =1 [ o)

Calling s(0) = s, we have the result we announced - conditionally on A. Now, here G is the limiting
spectral distribution of AHA, but because this matrix is a rank one perturbation of A2, these two matrices
have the same limiting spectral distribution. This concludes this part of the proof.

e Getting results unconditionally on A All the statements above were made conditional on A. If
we can show that our probability bounds and our characterization of the limit hold uniformly in A, we will
have an unconditional statement, as we seek.

The fact that the limit does not depend on A is essentially obvious from its description: all that matters
is the limiting spectral distribution, which is the same for all A. Let us consider the question of uniform
probability bounds. All we need to do is show that we control P(h, > (,|A) uniformly in A. At this
point, it is helpful to recall that N can be viewed as a function of A. Recall also the results and the proof
of Lemma B-1: in particular, when A is such that p/N < 1 — ¢, if &€, = C’o% and v, is the smallest
eigenvalue of Y/LY/n — 1, we have, if Py denotes probability conditional on A,

Py <\/7p <VE [(1-VI—€) — t]) < exp (—(N —1)t?) .

Let us call Lcs the set of matrices A such that p/N < 1 — € and Co(N — 1)/(n — 1) > 6. Under
(Assumption-BB), for a ¢ bounded away from 0 (e.g 6 = Cono/2, since we need a bound on liminf CoN/n
that holds with probability going to 1), P(A € L.5) — 1. In other respects, if A € L,

Py (\/’TP <Vs (1-V1—¢) —t]) <exp (—(n— 1)5t2/C) .

Hence, when A € L5, if ¢, = n~2 P(hy > Cu|A) < fn(Cle,d), where f,(C,e,d) tends to 0 as n tends to

infinity. In other words, we have now established that if A € L. 5, and @, = V'S “ly — 15 L for any

p 1=1 E’
t>0,
P(IQul > 11A) < 52+ fu(C60)
Using the fact that P(|Qn| > t) < P(|Qn| > t&{A € Lcs5}) + P(A ¢ Lc5), we conclude that P(|Qy| >
t) — 0 as n tends to infinity for any ¢ > 0 and the proof is complete. O

As a consequence of Theorem 4.1, we have the following practically useful result.

Lemma 4.1. We assume that the assumptions of Theorem 4.1 hold and that G is such that s is not co.
Suppose that v1 and vy are deterministic vectors such that

XLy p XLy
an
(v1 + v2)' X" (v1 + v2) (v1 —v2)'E" vy — v2)

are bounded away from 0. Then under the assumptions of Theorem 4.1,

r3—-1
(DI

s in probability.
v X" 1vy - p y

In other respects, suppose that viX"1vg — 0, while viX " vy and v4X"1vg stay bounded away from oo.
Then, under the assumptions of Theorem 4.1,

vii_lvg — 0 in probability.
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Proof. The proof of the first part of the Lemma is an immediate consequence of Theorem 4.1, after writing
vii_lvg (4 vg)’i_l(vl +w2) (v1 +v2) 7 (w1 + vg)
v vy (v1 4+ v2) S (vr + vo v} X" g

)
(?Jl — ’1)2) E ('U1 — ’1)2) (1)1 — Ug) 1(1)1 — Ug)
(v — )X vy — va) v X"ty

For the proof of the second part, we note that Theorem 4.1 implies that
V'S = s0'S o 4 0p(VE—10) .

Note that since for i = 1,2, v/3~1; is assumed to stay bounded, the same is true of (v1 +eve)' X1 (vy +eve),
where € = £1. Now we write

~

2015wy = (v1 + v2)' S (01 + v2) — (V1 — v2)' S (Vg — va) .
Our previous remark and the assumption of boundedness of ng_lvi implies that

21}/1271112 = 5((1)1 + vg)’E’l(vl + Ug) - (Ul - Ug)lzil(’ul - Ug)) + Op(l) ,
=52v] X g + +op(1) = op(1) .

4.2 On quadratic forms involving p and -1

As is clear from the solutions of Problems (QP-eqc) and (QP-eqc-Emp), when i appears in the matrix
\7, its influence on the solution of our quadratic program will manifest itself in the form of quantities of the
type i iflﬁ and vgiflﬁ. It is therefore important that we get a good understanding of those quantities.

Compared to the Gaussian case, in the elliptical case, [ is not independent of ) anymore, which
generates some complications. They are fully addressed in Theorem 4.4, but as a stepping stone to that
result (the main of this subsection), we need the following theorem, which essentially takes care of the
problem of understanding ﬂ’i_lﬂ for the class of elliptical distributions we consider when the population
mean is 0.

Theorem 4.2. Suppose Y is an n X p matriz whose rows are the vectors Y;, which are i.5.d N'(0,1d,).
Suppose A is a diagonal matriz whose i-th entry is \;, which is possibly random and is independent of
Y. Cdll 7; = )\12. We assume that 7; # 0 for all i and

2 Z N = n2 Z 7, — 0 in probability . (Assumption-BLa)
n
If 75 is the i-th largest T, we assume that we can find a random variable N € N and positive real numbers

eo and Cy such that

P(p/N <1—¢€) — lasn — oo,
P(r(ny > Co) — 1, (Assumption-BB)
Ino > 0 such that P(N/n >ny) — 1 asn — oo .

Let us call p, = p/n and p = lim, .o pn. We assume that p € (0,1). We call
1
Znp=—€AY(Y'A?Y/n)"'Y'Ae .
n

Then we have
Znp — p, in probability.

)

If the n x p data matriz X is written X = AYSY2 ) and if i = 231/2Y’Ae/n is the vector of column means
of X, and if X is the sample covariance matriz computed from X, we have

mE'm— k=

in probability .
I—p
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Some comments on this theorem are in order. First, Z, , is unchanged if we rescale all the A;’s by the
same constant. So it appears we could assume that they are all less than 1 for instance and dispense entirely
with (Assumption-BLa). However, that would potentially violate the conditions of (Assumption-BB)
which appear to guarantee that Z, , has variance going to zero. We also note that because the Y;’s have a
continuous distribution and we know that all the A;’s are different from 0, the existence of Z,, ;, is guaranteed
with probability 1.

Some practical clarifications are also in order concerning the condition

1 1
) Z A= 2 Z 72 — 0 in probability .
i=1 i=1

When the \;’s are i.i.d, this condition is satisfied (almost surely and hence in probability) if for instance
the \;’s have finite second moment according to the Marcinkiewicz-Zygmund law of large numbers (see
Chow and Teicher (1997), p. 125). This is very interesting from a practical standpoint as it basically
means that we only require our random variables X; to have a second moment for the theorem to hold.
We note that if there were no variance, the premises of the problem would be essentially flawed (after all
the quadratic form we are optimizing involves a proxy for the population covariance and in the absence of
a second moment for the \;’s, the population covariance would not exist), and hence we require minimal
conditions from the point of view of the practical problem at stake.

Finally, and remarkably, the limit of Z,, , does not depend on the empirical distribution of the A;’s. In
particular, in the class of elliptical distributions (satisfying the assumptions of Theorem 4.2), the limit of
/S~ is always the same: k= p/(1 — p).

We now turn to proving Theorem 4.2. The proof will be facilitated by the following lemma, which
essentially gives us E (Z,, ).

Lemma 4.2. Let Y be an n X p random matriz, with n > p with for instance independent rows, Y;. Assume

that Y; have symmetric distributions, i.e Y; £ —Y;. Let A be an n xn diagonal matriz with possibly random
entries. Let P = AY (Y'A2Y)"1Y’'A be a random projection matriz. Y is assumed to be independent of A
and Y and A are assumed to be such that P exists with probability 1. Then,

E (¢'PelA) =E (e'Pe) =p.

In particular, the result applies when Y; are normally distributed and A is such that (Assumption-BB)
holds and P is defined with probability one.

Proof of the lemma: Let us note that P = fa(Y1,...,Y,). Now, conditional on A, P £ N(=Y1,Ys,....Y,) =
P. However P(1,j) = —P(1,7), if j # 1. As a matter of fact,

P(1,5) = MNY{ (Y ATYY) Y
=1

Hence, conditional on A, P(1, ) £ —P(1,7). Now P is an orthogonal projection matrix, P = P’, so all its
entries are less than 1, the operator norm of P. In particular, all the entries have an expectation. Since,
if j # 1, P(1,7) has a symmetric distribution (conditional on A), we conclude that

E (P(1,j)[A) =0, if j £1.
Note that the same arguments would apply if 1 were replaced by i, so we really have
E (P(i,j)IA) =0, if j #i.

Therefore,
E (¢'Pe|A) = E (trace (P) |[A) = p,

since P has rank p and is a projection matrix.
The same results hold when we take expectations over A by similar arguments. O
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To prove Theorem 4.2, all we have to do (in light of Lemma 4.2) is to show that we control the variance
of

1
Znp = ge’Pe .

We are going to do this now by using rank 1 perturbation arguments, in connection with the Efron-Stein
inequality.

Proof of Theorem 4.2: As before, we first work conditionally on A. We assume until further notice
that A € L, s,, @ set of matrices who is defined at the end of the proof, will have measure going to 1
asymptotically, and is such that all the technical issues appearing in the proof can be taken care of. (The
arguments are not circular.)

We will use the notation

1 - 2 / 1 2 !
S= EZ)\kYkYk s and S =8 — —\IV;Y/
k=1

Note that S; is symmetric and positive semi-definite. Naturally, in matrix form we can write § =
(Y'A%Y)/n and S; = (Y'A?Y)/n, where A? is the same matrix as A, except that A;(i,i) = 0. Our
aim is to approximate

eAY [Y/A2Y\ ' YAe
vap: < > :f(X17"'aXn)7
n n n
by a random variable involving only (Y1,...,Yi—1,Yit1,...,Ys), i.e not involving Y;. Using classic matrix

perturbation results (see Horn and Johnson (1990), p. 19), we have

-1 2 —ly vy o—1

Y;Y/S;
s <S+)\1YY> =87 - A5 51 :
n 1+ A (Y/S;Yi/n)

Of course, if ¢; is the i-th canonical basis vector in R™,
n
w £ AY = Z )\iei}/;/ = Wl + )\ieiYi/ .
i=1

Let us now call ¢; = Yi’Si_lYl-/n and r; = WiSi_ll/}. We have

oY/ ST e, Y/S1
AYS  —w.el - Zi 1179 4y oyl \3, T % 6
™4 n1+)\12q1+ i€l O, Zqzl‘f')\%qz‘ ()
Similarly,
AYSTVY'A = WS, 1W/—)\—12 it +A.6.T/._A3q.€i7r§
nl+Ng TN T Mg (7)
+ \irie — )\3(1 L + )\an €3 e — )\4nq Leg
A zzl_i_A 161 11_'_)\12%

This is, in some sense, the key expansion in this proof. Now let us call i, = €'W;/n and w; = €'r;/n =
WS 1Y We have

A w? Ai qiw; A2 M2
T =108 0 — 2o ——1 4 927, )\3# AP A i
n,p MO i nl+ )\ZZQi + n n 'l 4 )\2% n ) n1l+ )\ZZQi

Now let us call Z; = fi;S;” 17;. Clearly, Z; does not depend on Y;. Now, it is easily verified that

<2>\,w. + /\2q, _ )‘?%2 . )‘?w? _9 A?ini ) —1_ (1- )\iwi)z
Zl 14 )\?qi 1+ )\?qi 1+ /\?qi 1+ /\%Qi
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We finally conclude that

1 (1 — )\iwi)2
Ipp=2;+—1———"—] . 8
=z (1- 555 0
We now recall the Efron-Stein inequality, as formulated in Theorem 9 of Lugosi (2006): if o« = f(X1,..., Xn),
where the X;’s are independent, and «; is a measurable function of (X1,..., X;—1, Xit1,..., Xn), then

var (a) < Z E ((a— ai)2)

In particular, for us, it means that

var (Zy p|A) <ZE< -7 —f) m)

=1

If we now use Equation (8) and the fact that ¢; > 0, we have

TLZn,p_Zi_E :714_)\@2% <2(1+ ANwy) .
Moreover, conditional on Y(_; = (Y1,...,Yi-1,Yit1,...,Yy) (and A since all our arguments at this point

are made conditional on A), w; is N(0,7.S; *i;) when the Y’s are N(0,1d,), because w; = iiS; 'V;.
Therefore,

B (ufla) = 38 (s 51 1)
Almost by definition, we have i.S; 'fi; < 1, since the vector e/y/n has norm 1 and W;(W/W;)"'W/ is a

7
projection matrix (recall that S; = W/W;/n and pi) = €'W;/n). So we would be done if we had uniform
control on |||S;*|||2. Let us now go around this difficulty.

e Regularization interlude Let us consider, for ¢t > 0, Z(t) = /(S + t1d,)~'fi, where i’ = €'W/n.
Clearly, 0 < Z(t) < Z,), = Z(0), because S + tIld, = S > 0 in the positive-semidefinite ordering. In
other respects, the decomposition in Equation (8) is still valid if we replace Z; by Z;(t) and S; by S;(t)
everywhere. However, ||[(S;(t))~!||2 < 1/t. We therefore have

ST Om _ ST 1

R o _ 1/2~
S0 < (ST ol Ppully < B2 < B B <

So applying the previous analysis and using the fact that 7} (S;(t))2fi; < 1/t, we conclude that

8 A
var (Z(t)|A) < Y (1+352).
n
i=1
So under our assumptions, Z(t) can be approximated, in probability, at least conditionally on A, by
E (Z(t)|A). If we write the singular value decomposition of W/\/n = ZZ 1 03wV}, where o > 09 > ... >
op, we have WS™IW/ /n =30 wul, W(S@))*W'/n=>"F_ 62/(02 + t)u;u}, and therefore

t L2 t1q, t lell3 t
0 < Zn,p - Z(t) = E Z (uze) < - Z(uze) < o2 +t n = o2 +t .

To get the inequality above, we used the fact that the {u;}?_; are orthonormal in R™, and can therefore
be completed to form an orthonormal basis of this vector space. The quantities ue are naturally the
coefficients of e in this basis, and we know that their sum of squares should be the squared norm of e,
which is n.

Let us now call L, s the set of matrices A such that p/N < 1—¢y and Co(IN—1)/(n—1) > 6. Under our
assumptions, for a dp bounded away from 0 (e.g 9 = 1/2Co10), P(A € L¢,5,) — 1. Let us pick such a 6.
If A € L, 5,, according to Lemma B-1 and the proof of Theorem 4.1, if Py denotes probability conditional
on A,

PA (Up S \/% [(1 —V1- 60) — t]) S exXp (—(n — 1)50t2/00) .
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Hence, when A € L, 5,, we can find, for any u > 0, an n(u) > 0,

P(|Znp = Z(n(u)] > ) < faleo, b0, n(u), u) = fu(u) ,

where, f,,(u) = fn(€o, d0,n(u),u) — 0 as n — oo, for fixed wu.
On the other hand, our conditional variance computations have established that, for any n > 0, Z(n) —
E (Z(n)|A) converges in probability (conditional on A) to 0 if n723° A}/n? tends to 0. We note that
0 < Z,p, <1 and that the same is true for v,(u) = E (Z(n(u))|A). Therefore, |Z, , — yn(u)] < 1 and
E ((Znp — yn(u))?|A) goes to zero, since
E ((Z = a(w)?A) < 62P(| Znp — ()] < 6lA) + P(\Znp — ()] > ulA)

< P(Znp — Z(n(u))| > u/20A) + gvar (Zn(u)|A)

In other words, we also have, if A € L 5,, for any u > 0,

5 32 1 o A
var (Znp|A) < u” + fn(u/2) + 32 1+ 377(“)2 .
=1

Hence, if A € L5, and > | A}/n? — 0, var (Z|A) goes to zero as n goes to infinity, and we conclude
that, since E (Z|A) = p/n,

z-P2 0 in probability, conditional on A.
n

e Deconditioning on A

Let us call 'C?o,éo,t the set of matrices such that £20’501t = Ley .5 ﬂ{(# S0 AN <t} Our previous
computations clearly show that we can find a function g,(u), with g,(u) — 0 as n — oo, such that, for
any u > 0, when A € Efo PR 2 L£2(u), var (ZnplA) < 97u? + g, (u), and hence we have the “uniform
bound”, if A € £2(u),

< 97u? + gp(u)

P(‘Zn,p - %‘ > z|A) ;

X

Now under our assumptions, P(A € £2(u)) goes to 1 for any given u, so we conclude, using the fact that
P(Zp — p/nl > ) < P Znp — p/nl > v &h € L2w)] + PIA € £2(w)]

that
Znp — P 0 in probability.
n

This last statement is now understood of course unconditionally on A and this proves the first part of the
theorem.

e Proof of the second part of the theorem

We now focus on the MY ~L7 part of the theorem. Let us call & = X'X /n. Then, ”T_lfl =6 —mm'.

Therefore,
G lmm'e—!

=S e
Hence, S
n?z 17%@_lm 1 ins'ezlm 1 —ZTZ,, ‘
Since Z,;, — p in probability, we have the result announced in the theorem. ]

Now that we have proved Theorem 4.2, we need to turn to results that will allow us to handle the case
of non-zero population mean, as well as questions such as the convergence of i’~~!v, for deterministic v.
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4.2.1 On quantities of the type (u — u)’i_lu

Recall that the key quantity in the solution of Problem (QP-eqc-Emp), the problem of main interest in
this paper, is of the form V'S~V Therefore, it is important for us to understand quantities of the type

C=7

for a fixed vector v. At this point, we focus on the particular case where = E (X;) = 0. To do so, we
will need to study, if S = Y'A’AY/n,

1
(=—-eAYS 1y,
n

for a fixed vector v. As it turns out, this random variable goes to zero in probability when for instance
o]l = 1.

Theorem 4.3. Suppose v is a deterministic vector, with ||v|]ls = 1. Suppose the assumptions stated in
Theorem 4.2 hold and also that

1 n
— Z A} remains bounded with probability going to 1. (Assumption-BLb)
=1
Consider )
¢=—€eAYS v,
n

where S = LY'A?Y. Then
¢ — 0 in probability .

Before giving the proof, we note that if the \;’s are i.i.d and have a second moment, the “extra”
condition on Y 7 ; A\?/n introduced in this Theorem (as compared to Theorem 4.2) is clearly satisfied by
the law of large numbers.

Proof. The proof is quite similar to the proof of Theorem 4.2 above. We start by conditioning on A.
Let us call {(t) the quantity obtained when we replace S by S(t) = S + tId in the definition of (. Note

that since Y is symmetric, ((t) £ —((t), conditionally on A, by arguments similar to those given in the
proof of Lemma 4.2. Now ((t) clearly has an expectation (conditional on A), because |||S7L(¢)|||2 < 1/t,
for t > 0, so E (¢(t)|]A) = 0. Now recall Equation (6): with the notations used there,

)‘22 TiYi/Sz‘_l

g e;Y/S !
2.
n 1+ Naq

AYS ! =w;87t — 4 )
' 1+)\2%

+ AlelYZ’SZ 1

Let us now call ¢;(t) = Y/S;(t)71Yi/n, wi(t) = W;S;(t)"Y;/n = 1;Si(t)"1Y; and 0;(t) = Y/S;(t)~*
Clearly, if (;(¢) is the random variable obtained by excluding Y; from the computation of ((t) (e.g by
replacing \; by 0), we have

Aowi(B)0;(t)  Ni(t)  0:;(t)  NPqi(t)

() = Gi(t) - n1+/\qu()+ non 1+ \2g()

)\191( )( )\sz(t))
= Gi(t) + — .
C()—i_n< 1+ X2¢i(2)
We remark that 0;(t)[(Yi_;,A) ~ N(0,v'S;2(t)v) and recall that wi| (Y—s), A) ~ N(0,72:S;21i;). Using
the fact that ||v]j2 = 1, |||S; 2(t)||]2 < t~2, and the remarks we made in the proof of Theorem 4.2, we get
that E ([GZ(t)]zk‘ (Y, A)) < Cpt™ 2% B ([wz(t)]%’ Yy, A)) < Crt™*, where C; = 1 and Cy = 3. We
also have

i (1)(1 = Agwi (8))]” < 2 [NF07 () + AF67 (1)wi (¢)] -
Hence, simply using the fact that 2(ab)? < (a* + b*), we get
1 1
)

Xifi (£) (1 — XNw; () ) 2 /\2
E(( Lo ) A)
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We conclude by the Efron-Stein inequality that, when A is such that .7 ; A} /n? — 0, for any ¢ > 0,
¢(t) — 0 in probability, conditionally on A.

As before, let us call L, 5 the set of matrices A such that p/N < 1 — €y and Co(N —1)/(n —1) > 6.
Recall that under our assumptions, for ¢y bounded away from 0 (e.g dg = Cono/2), P(A € L¢,5,) — 1.

As we saw before, when A € L, s,, |||S7!|||2 is bounded with high-probability (conditional on A), so
we conclude that, for any 1 > 0, we can find a ¢ such that

I[|S7F = S7L(#)|||2 < n with probability (conditional on A) going to 1 .

2
We also notice that conditionally on A, i ~ N (O, %Idp> and hence, [|7z][3 ~ x2/n(3° A7) /n. We recall
that ||v||2 = 1, and since

¢ = <)l < lalzllls™ = STHB)ll2lvll2
we conclude that with high-probability (conditional on A), for any n > 0, | — ((t)| <7 and finally,

¢ — 0 in probability, conditionally on A .

Now along the same lines as what was done in the proof of Theorem 4.2, we can make all these probability
bounds uniform in A when A is in a set of matrices such as L, 5, and when we also have bounds on
S0 A/n? and 3o, A?/n. Under our assumptions, the set of A for which these conditions hold has
measure going to 1, so we can finally conclude - along the same lines (omitted here) as in the proof of
Theorem 4.2 - that, unconditionally on A,

¢ — 0 in probability .
O

After these preliminaries, we can finally state the theorem of main interest. Recall that under the
assumptions of Theorem 4.1, if v is deterministic,

)

m — 5 in probablhty s

where s is defined in Equation (4).

Theorem 4.4. Suppose that X; = p + NXY2Y;, where Y; are i.i.d N'(0,1d,) and {\}-, are random
variables, independent of {Y;}7,. Let v be a deterministic vector. Suppose that p, = p/n has a finite
non-zero limit, p and that p € (0,1).

We call 7, = \2. We assume that 7; # 0 for all i as well as

1 — 1 <
N\ =0 babilit d=Y N\ ins bounded i bability. A tion-BL
oy ; ; — 0 en probabrlity, an - ; i remains bounded 1n probaodility (Assumption )

If 75 is the i-th largest T, we assume that we can find a random variable N € N and positive real numbers
eo and Cy such that

P(p/N <1—¢) — lasn — oo,
P(r(ny > Co) — 1, (Assumption-BB)
Ino > 0 such that P(N/n >mny) — 1 asn — oo .
We also assume that the empirical distribution of 1;’s converges weakly in probability to a deterministic
limit G.
We call A the n xn diagonal matriz with A(i,i) = \;, Y the n x p matriz whose i-th row is Y;, W = AY
and S = W'W/n = 3" 7_, X2V Y/ /n. Finally, we use the notation @ = W'e/n, fi = S~1/2.
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Then, we have, for s defined as in Equation (4),

sy 'Sy "yl "Ml

K =+ +op(l) =5 =—" 1 op <1\/M> ; (9)
Vo's—lo  Vu's-ly Vu'E—ly Vo'l

the second statement holding if for instance p and v are such that the first set of conditions in Lemma 4.1

are met.

Also,

N - -1 oS 'n
/\/2—1/\ — /2—1 Pn 2”
. H=H M+1—pn+ n 1-o'810

and we recall that &'S™i/|||| = op(1) and &'S™& = p/n + op(1).

+op(1) (10)

To be able to exploit Equation (10) in practice, we make the following remarks. We can consider three
cases, having to do with the size of p/> "1y = |13

1. If /Sy — 0, then, Z/S 1 = ﬁ +op(1).
2. If /S~ — oo, then WS ~ sp/S~ .

3. Finally, if 4/X 'y stays bounded away from 0 and infinity,

1 Pn
— 4 op(1).
e (1)

AS i~ sy/S
A noticeable feature of these results is that the “extra bias” k,, = p,/(1— pn), which comes essentially from
mis-estimation of u, is constant within the class of elliptical distributions considered here. This should be
contrasted with the “scaling”, s, which strongly depends on the empirical distribution of the )\?’s.
We now give a brief proof of Theorem 4.4.

Proof of Theorem 4.4. We first note that £'/2% = m in the notation of Theorem 4.2. Also, i = pu+XY2% =

i+ m. Finally,

RolS o siasel i = w12 (S - oo BY2

n
Proof of Equation (10). By writing 1 = pu + m, we clearly have

AS =S p+ oS+ m/S .

We have already seen in Theorem 4.2 that the third term tends to x = p/(1 — p). On the other hand, half

of the middle term is equal to
Ty(s-ow)a.

n—1
Since (S — @) ' =S+ 8BS /(1 — B'S'D), we have

~ _1/\
NS ~re—1 WSTw —-1/2 1 ~ o—151—1/2
YT =08 14+ —e—= | 2 = —— WS X )
" < * 1—w’8‘1w> -5 10"
and we deduce the result of Equation (10). We now remark that &'S™1@ is equal to the quantity Z,, in
Theorem 4.2. The fact that &'S~'5i/||fi|| = op(1) follows from applying Theorem 4.3 with v = /|| /i]|2-
Proof of Equation (9) The proof of this result follows from a decomposition similar to the one we just
made. Clearly the only question is whether M/~ "1v/v'Y 10 goes to 0. As we just saw,

noose1 1 ~1 o—151—1/2
T s e S e
The results of Theorem 4.3 guarantee that
@,8_12_1/22} ) .
W — 0 in probablhty .

Since @'S™'@ tends to p < 1 and || X720 = v/S£~1/2y, we have shown the result stated in Equation (9).
O
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4.3 On the effect of correlation between observations

It is clear that in financial practice and other applied settings, the assumption that the returns (or
observed data vectors) are independent is often questionable. So for quadratic programs with linear
equality constraints (including the Markowitz problem but also going beyond it), it is natural to ask what
is the impact of correlation in our observations on the empirical solution of the problem. In our notation,
this means that the vectors X; and X; are correlated - we refer to this situation as the correlated case or
as the case of temporal correlation.

Our work on the elliptical case comes in handy here and allows us to also draw conclusions concerning
the correlated case. We consider a particular model, namely we assume that the n x p data matrix X is
given by

X =e,u + AY 2 | where A is a deterministic but not necessarily diagonal matrix,

and Y is a matrix with i.i.d N(0,1) entries. We assume throughout that A is full rank. The model we
consider now is more general than the one we looked at before, since if A = 1d,,, we get the i.i.d Gaussian
case, and if A is diagonal we are back in an “elliptical” case (where the ellipticity parameters are assumed
to be deterministic, which amounts to doing computations conditional on A). But when A is not diagonal,
X; and X; might be correlated. (In all the situations where A is deterministic, the marginal distribution
of X; is N(u, s?%), where s; is the norm of the i-th row of A.)

Because we want to focus here on robustness questions arising when going from independent Gaussian
random variables to correlated ones, we will assume throughout that A is deterministic. (Allowing A to
be random simply requires some minor technical modifications but would make the exposition a bit less
clear.) Our main results in this Subsection can be interpreted as saying that that the Gaussian analysis of
Section 3, carried out in the setting of independent observations, is not robust against this independence
assumptions. The results change quite significantly when the vectors of observations are correlated.

In general, we write the singular value decomposition of the n x n matrix A as A = ADB’ (see Horn
and Johnson (1990), p.414), where A and B are orthogonal and D is diagonal. Therefore, AA" = 1d,,, and

1 1
e a N N tsl/2y 2y vl/2 £ $1/2v 12y v01/2
n mn — = .
1(X e ) (X —epp') X*Y'BD“B'YXY XY DY Y
n n n

So we are almost back in the elliptical case. The key difference now is that what will matter in our analysis
are not the diagonal entries of A’A, but rather its eigenvalues (see Proposition 4.1). Also, we will see (in
Proposition 4.2) that the results change quite significantly when we look at quantities like /X717
4.3.1 On quadratic forms involving $-1

As a counterpart to Theorem 4.1, we have the following Proposition.

Proposition 4.1. Suppose the n x p data matriz X (whose i-th row is the i-th vector of observations can
be written as

X =e, i + AY /2 , where A is a deterministic but not necessarily diagonal matriz,

Suppose that the eigenvalues of N'A satisfy (Assumption-BB) with a deterministic N and that the spectral
distribution of A'A converges weakly to a probability distribution G. Suppose also that p/n — p € (0,1).
Call X the classical sample covariance matrix, i.e

S=-(X - X)(X - X).
Then, if v is a deterministic vector, we have

'Sy
vy

where s satisfies, if G is the limiting spectral distribution A'A
/ dG(t) )
1+ p7s N

27

— § in probability



The proposition shows that Theorem 4.1 essentially applies again, however now what matters - un-
surprisingly - are the singular values of A and not its diagonal entries. The proof of Proposition 4.1, or
rather the adjustments needed to make the proof of Theorem 4.1 go through, are given in the Appendix,
Subsection C-1.

4.3.2 On quadratic forms involving 1 and $-1

This is the situation where the results are most different from that of the uncorrelated case. Once
again, here we will be content to just state the results - a detailed justification of our claims is in the
Appendix, Subsection C-2.

As before, the most complicated aspect of the problem is to understand quantities of the type 11’ iflﬁ,
in the situation where p = 0. In this setting, we have the following result.

Proposition 4.2. Suppose the n X p data matrix X is such that, for' Y an n X p matriz with i.i.d N'(0,1)
entries, and A a deterministic matriz,

X = AYRY?,

We assume that (Assumption-BB) holds for the eigenvalues of A'A, for a deterministic sequence N(n).
We write the singular value decomposition of A as A = ADB'. N
We call S = X'X /n and m = XY2Y'Ne/n, i.e the sample mean of the columns of X. We denote by

d; the diagonal elements of D, and Y =BY £Y. We also call

1t e 1y S
F=-Y &VY/, Fi=F - -dY¥/ ,.P=DY (Y’D2Y> Y'D .
n n

=1

If we callw = A'e, and q; = Y{ F;"'Yi/n, we have, if |w||i/n? and ||d||}/n? — 0,

)

m' S~ m — k(n,p) — 0 in probability

where n
1 9 . . 1
/{,(n’p) = E ZZ;LUZE (P(Z,Z)) (md P(’L,Z) =1- 71 +qld3 .
Further,
mE i — M — 0 in probability .
1 —k(n,p)

Furthermore, under the above assumptions, if the spectral distribution of A'A converges to G and
(>r, wid?)/n remains bounded, a result similar to Theorem 4.4 holds, with s being computed by solv-
ing Equation (4) with the corresponding G and k(n,p) playing the role of pn/(1 — py).

Essentially the previous proposition tells us that when dealing with correlated variables, the new k(n, p)
replaces the old Kk = p/(1 — p). We note that there are no inconsistencies with our previous results as
>~ P(i, i) = trace (P) = p and in the elliptical case, w? = 1, so the previous proposition is consistent with
the results we have obtained in the elliptical case. We also remark that |w| = /n, since A is orthogonal.

Finally, in the case where the d;’s have a limiting spectral distribution and satisfy (Assumption-BB),
further computations show that ¢; — p,s — 0. However, this does not help (in general) in getting a simpler
expression for x(n,p).

4.4 On the bootstrap

An interesting aspect of the analysis of elliptical models is that it also shed lights on the properties of
the bootstrap in this context. As a matter of fact, the non-parametric bootstrap yields covariance matrices
that have a structure similar to those computed from elliptical distributions: if we call D the diagonal
matrix whose i-th diagonal entry is the number of times observation X; appears in our bootstrap sample,
we have, if $* is the bootstrapped covariance matrix,

~ 1
YW=—_X'DX — m
n—1 n—1
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where X is our original data matrix, and * is the sample mean of our bootstrap sample, which can
also be written g* = X'De/n. Unless otherwise noted, we assume in the discussion that follows that
the population mean g is 0. Since the covariance matrix is shift-invariant, we can make this assumption
without loss of generality. We call

1
G*=-X'DX , and §* = £ 2g*n"1/2 .
n

As we will see shortly, understanding the properties of $* boils down to understanding those of §* so we
will focus on this slightly more convenient object in this short discussion.

We note that if X is Gaussian, &* can be thought of as a “covariance matrix” computed from the
elliptical data )~Q = dil/QXi. The same remark applies when X is elliptical - i.e, for us, X; = ;N (0,%):
all we need to do is change the “ellipticity parameter” \; to v/d;\;. The same remark is also applicable
to the case of correlated observations, i.e X = AYXY2, where A is not diagonal anymore. Studying the
bootstrap properties of such a model is the same as studying that of the model where we replace A by
V'DA. We therefore would like to apply directly all the results we have obtained above in our study of
elliptical models to better understand the bootstrap. For quantities of the form v’ (i*)_lv, we will see
that we can essentially do it, but differences will appear when dealing with (z*) (i*)*lﬁ*, which yields
statistics that are not exactly analogous to corresponding statistics appearing in the elliptical case.

Our focus will be on bias properties of bootstrapped replications - so we will aim for convergence
in probability results and not fluctuation behavior. Our overall strategy here is to show convergence in
probability of the quantities we are interested in as functions of both the d;’s and X;’s. We will derive the
convergence properties of our bootstrapped statistics by then conditioning on the data and arguing that
with high probability (over the X;’s), this does not change the results much. We first give some needed
background on the bootstrap in subsubsections 4.4.1 and 4.4.2, then turn to properties of quantities like
v'(£%)" 1w (in 4.4.3) and finally study (7*)'(S*)~17* (in 4.4.4), where we will see (in Proposition 4.5) some
key differences with the elliptical case. We conclude this subsection with a brief discussion of the parametric
bootstrap and the conclusions that can be reached about it through our results.

4.4.1 A remark on needed convergence properties

Making statements about bootstrapped statistics requires us to make statements that are conditional
on the observed data. This is not a trivial matter for the statistics we deal with since they cannot be
easily described in terms of simple formulas involving the original observations. However, we can take a
roundabout way: by showing joint convergence in probability (joint here refers to the “new” data being
the vectors of bootstrapped weights and observations), we can obtain interesting conclusions conditional
on the data. Though this is not difficult to show, we give full arguments here for the sake of completeness.

We will look at our statistics as functions of the number of times an observation appears in the sample
and also, of course, of our observations. In other words, the original statistic, T;, can be written

T,=f(1,...,1,X;5,.... X,)
and, the bootstrapped version T}, is, if observation X; appears w; times in the bootstrap sample,
Tr=f(wl,...,w, X1,..., X,) .
The following simple proposition is used repeatedly in our bootstrap work.

Proposition 4.3. Let us consider a statistic T, = f(wi,...,wp, X1,...,Xy), where w; is the number of
times X; appears in our sample. Suppose that the vector of weights, w is independent of the data matriz
X. Denote by Q,, the joint probability distribution of the w;’s, Py the joint probability distribution of the
X;’s and Ry, = Q, X Py, the probability distribution of (w1, ..., wn, X1,...,Xn).
Suppose we have established that T,, tends in R, -probability to ¢, a deterministic object, as n — oo.
Then we have: with P,,-probability going to 1 as n — oo,

T { X}y — ¢ in Qp-probability.
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In other words, calling X, = {X;}7_,, for all e,n >0, if Qn(€) = Qn(|Th — c| > €|Xy), Pn(Q@n(e) >n) — 0
as n tends to infinity.

In the case where the weights w; are obtained by standard bootstrapping, @, is Multinomial(1/n,...,1/n,n).
Then, T,,|X,, has the distribution of the usual bootstrap quantity 7,". We will focus on this case more
specifically later.

Proof. The proof and the statement are almost obvious but we include them for the sake of completeness.
Let us call 7, = |1}, — ¢| and &,, = {X1,..., X, }. By assumption, 7,, — 0 in R,, probability. Hence,

ERn (17—7L>6) = Epn (EQn [17—7L>5’Xn]) - 0 .

Let us call Qn(e) = On(|T, — ¢| > €|X,). Clearly, 0 < Qn(e) <1 and Ep, (Qn(e)) — 0, so for any n > 0,

Pn(Qn(e) >n) — 0.
]

We now investigate the case of the classical bootstrap, i.e the situation in which 9,, is Multinomial(%, el %, n).

4.4.2 Empirical distribution of bootstrap weights

As we saw in Theorem 4.1, the empirical distribution of the ellipticity parameters affect crucially
statistics of the type v’ iflv, so to understand the effect of bootstrapping, we need to understand the
empirical distribution of the bootstrap weights. This question has surely been investigated but we did not
find a good reference so we provide the result and a simple proof for the convenience of the reader.

Proposition 4.4. Let the vector w be distributed according to a Multz’nomz’al(%, cee %, n) distribution. Call
F,, the empirical distribution of the vector w. Then

F,, = Po(1) in probability ,
where Po(1) is the Poisson distribution with parameter 1.

Proof of the proposition: Let us first start by an elementary remark: suppose mi,..., 7T, are i.i.d with
distribution Po(1). Call I, = >~ | m;. Then
. .1 1
(m1y...,mn) | {II, = n} ~ Multinomial(—, ..., —,n) .
n n
This result is a simple application of Bayes’ rule and the fact that II,, ~ Po(n).
Let us now show that is f is bounded and continuous, and if W ~ Po(1),
1 « . .
Eg, (f)=— Zf(wl) — E (f(W)) in probability .

n
i=1

To do so, we note that w; ~ Binomial(n,1/n) and therefore its marginal distribution is asymptotically
Po(1). Therefore,
E (Er,(f)) = E((W)) .

Now all we need to do is therefore to show that var (Eg, (f)) goes to zero. Clearly, by independence of the

var (i;ﬂm)) — s (7)) =0 1)

because f is bounded. But our first remark implies that
1I,, = n)

var (Ep (f)) = var (:L Zf(m)
=1
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Now,
1 1 ¢

var <n2f(7rz)> =E (Var (an(m)
i=1

> var (:LZJC(M)
i=1

Since II,, has Po(n) distribution, P(Il,, = n) ~ 1/4/2mn. Hence,

Hn>> + var (E (711 Zf(m)

1L, :n> P(Il, =n) .

1 n
E = - i) = = -1/2
var (B, (/)) = var (n > 1) n) (%) 0,
and the result is established. ]

We will also need later to use on the following (coarse) fact:

Fact 4.1. Let the vector w be distributed according to a Multz’nomial(%, cen %,n) distribution. Then

n3/2
P( max w; > (logn)) =0 () .

1=1,....,n (log n)'

In particular, this probability goes to 0 faster than any n=%, a > 0.

The proof of the fact is elementary, and relies on the representation used above for the vector w, a simple
union bound, the fact that P(Po(n) = n) ~ n~%? and the fact that P(Po(1) > M) < (M!)~*M/(M — 1)
which is easy to see by writing explicitly the probability we are trying to compute.

With these preliminaries behind us, we are now ready to tackle the question of understanding the
(first-order) bootstrap properties of the statistics appearing in the study of quadratic programs with linear
equality constraints.

4.4.3 On inverse covariance matrices computed from bootstrapped data

Our aim in this subsubsection and the next is to find analogs to Theorems 4.1 and Theorems 4.4. Our
first result along these lines is an analog of Theorem 4.1.

We present the result in the case of Gaussian data, where we can get a somewhat explicit expression
for the quantity we care about, and discuss possible extensions below.

Theorem 4.5. Suppose we observe n i.i.d observations X;, where X; are i.i.d in RP with distribution
N(p,%p). Call pp, = p/n and assume that p, — p € (0,1 —e1). Call S* the covariance matriz computed
after bootstrapping the X;’s. Call P, the joint distribution of the X;’s.

If v is a (sequence of ) deterministic vector, then conditional on {X;}!' |, with high P, probability,

/ i* -1
U(/E)lv — 5 in probability
v v

where s satisfies, if G is a Po(1) distribution

/dG(T) —1-p. (11)

1—|—p7‘5_

Proof. As before, we call Q,, the law of the bootstrap weights (i.e Multinomial(%, ey %,n)) and R, =
On X Pn. Without loss of generality, we can assume that u© = 0. Let us call D the diagonal matrix
containing the bootstrap weights. We have i* = X'De/n. Also, it is true that
- 1 ~x\/
S e(i")

n—l(Xi n ),D(Xi n




Since €' De = n, we also have

ee'D

(n—1)S* = X'D(Id —
n

)X = X'D1/? (Id — 1D1/2ee’D1/2> DY2x .
n

Because X is of the form X = Y'2'/2 under our assumptions, we see that
v = yl2gryl/2 , Where

S* = LY’DU2 Id — lDl/?ee’Dl/2 DYy .
n—1 n

If we call § = D'/?e, we have |63 = n, because the sum of the bootstrap weights is n. Therefore,
Hs =1d,, — 68’ /n = 0. Also, Hy (like H) is a projection matrix and a rank 1 perturbation of Id,,.

The situation is therefore very similar to the question we studied in Theorem 4.1, except that H =
Id — e€’/n is replaced by Hs = Id,, — §8’ /n. All the arguments given there hold provided we can show that
(Assumption-BB) is satisfied for the bootstrap weights in the situation we have here.

Now let us call N the number of non-zero bootstrap weights. In the notation of Theorem 4.1, \; = v/d;
and 7; = §;. So clearly, 7y > 1. So Cy = 1. Also, N/n — 1 — 1/e in probability, so p/N has a limit in
probability and this limit is bounded away from 1 because of our assumption that p, — p € (0,1 — 1/e).
Finally, we can pick ng =1 — 1/e.

So the proof of Theorem 4.1 applies (it is easy to see here that the assumption that 7; # 0 can be
dispensed of, because we know that the non-zero 7;’s are large enough for our arguments to go through,
and there are enough of them that we do not have problems with -1 not being defined) and we have the
announced result. O

The previous theorems settled the question of understanding the impact of the non-parametric boot-
strap on statistics of the form v’ S~1y in the situation where the original data were Gaussian. A similar
analysis could be carried out in the case of elliptical data, when we assume that the “ellipticity” parameters,
A; are such Assumption-BB is satisfied for the “new weights” 7; = A?w;. The result would then depend on
the limiting distribution of /\fwi (if it exists), where w; is the bootstrap weight given to observation i.

4.4.4 Bootstrap analogs of Theorems 4.3 and 4.4

An important piece of our analysis of quadratic programs with linear equality constraints when the
data are elliptically distributed was the study of quadratic forms of the type i’ E_lﬁ. It is natural to ask
what happens to them when we bootstrap the data. In the elliptical case, we saw that the key statistic
was of the form, when p = 0 and & = XV/2Y/A2Y21/2/n,

1
67 = —eAY(Y'A’Y) 7Y Ae .
n

However, in the bootstrap case, if A is the diagonal matrix containing the bootstrap weights, we have
S* = X12Y'AYXY2/n, but i* = Y'Ae/n, so the key statistic is going to be of the form

1
(@)(&) 7' (i) = —/AY (Y'AY) " 'Y'Ae .
n

This creates complications because the matrix AY(Y’AY)~1Y’A is not a projection matrix, and hence
some of our previous analysis cannot be applied directly. However, this statistic can be rewritten, if we
denote w = A/2e, as

1 1

—w AV2Y (YAY) VY AY 20 = ' Py jsw

n n

where P,1/2 is now a projection matrix. As before its off-diagonal elements have mean 0 (conditional on
A), but now we also need to understand ;" ; w;P;;/n and not only > " | P;;/n. A detailed analysis of
the former quantity is done in Appendix C-3.
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We naturally now assumes that p/n has a finite limit, p in (0,1 —1/e). As explained in Appendix C-3,
S wiP;i/n — (s —1)/s in probability, with P, probability going to 1, where s is computed by solving
Equation (11) (i.e using Po(1) for G in that equation).

Similarly, it is explained there, that with P, probability going to 1, when X; have mean 0,

(ﬁ*)/(i*)_lﬁ* —s5—12> % , in 9, probability.
—-p
Finally, an analog of Theorem 4.3 holds, so we have an analog of Theorem 4.4, where s is as defined

above and p, /1 — p, needs to be replaced by s — 1.
In summary, we have the following proposition.

Proposition 4.5. Call s the quantity defined by Equation (11).

Suppose the data X1, ..., X, is i.i.d N(u, %), and call P, the corresponding probability distribution.
Suppose v is a giwen deterministic sequence of vectors. We have, when bootstrapping the data, with Py,
probability going to 1:

vE)
'Sty
()=t
Vs—To
(@) () = sS4 (s — 1) + og, ( WSy, 1)

— 5 in Q, — probability.

— 0 in Q, — probability, when yu =0,

We note that our techniques could yield generalizations of the previous fact for the case where the data
is elliptically distributed. However, in the case where X; have mean 0, the quantity (7*)"(X*)~i* does
not seem to have a limiting value that is writable in compact form, so we do not dwell on this question
further.

Naturally, the motivation behind the previous proposition is practical and the results are interesting
from that standpoint. They show that the bootstrap yields inconsistent estimators of the population
quantities, something that is not completely unexpected when we understand the random matrix aspects
of these questions. Perhaps even more interesting is that bootstrap estimates of bias are themselves
inconsistent: as a matter of fact, the key quantity that measures bias in the Gaussian case is 1/(1 — p/n);
when bootstrapping it is replaced by s, as defined in Equation (11). These results therefore cast some
doubts on the practical relevance of the bootstrap for the high-dimensional problems we are considering,
at least when it is used in “classical” ways.

4.4.5 On the parametric bootstrap

In the settings considered here, it is also natural to ask how the parametric bootstrap would behave.
For instance, if we assumed Gaussianity of the data, we could just estimate 3 and p (by e.g, naively, 3
and f1) and use a parametric bootstrap to get at the quantities we are interested in.

Naturally, the analysis of such a scheme is similar to the analysis of the Gaussian case carried out in
Section 3, where the population parameters 3 and p need to be replaced by the estimators we use in our
parametric bootstrap. The same would be true if we were to do a parametric bootstrap for elliptical data,
but we would have to use the results of Section 4 instead.

Our computations show that the parametric bootstrap could be used in the problems under study to
estimate the bias of various plug-in estimators: we would for instance recover the correct s by considering
v (Z;‘;arametric)_lv Jv' Sy, We note, however, that our analyses, and the estimation work we carry out in
Section 5 could do this too, at a cheaper numerical cost.

Finally and very interestingly, we see that a naive use the parametric bootstrap to estimate the bias
in the empirical efficient frontier - a reasonable idea at first glance - would yield inconsistent estimates of
bias.
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5 Robustness, bias, and improved estimation

We now go back to our original problem, which was to understand the relationship between the solution
of Problem (QP-eqc-Emp) and the solution of Problem (QP-eqc-Pop) (see page 7 for definitions).

It is naturally important to understand the effect of making the assumption that the data is normally
distributed as compared to, say, an assumption of elliptical distribution for the data. The following
discussion fleshes out some our theoretical results and what their significance is when solving quadratic
programs with linear equality constraints. The discussion is an application of the work done in Sections 2
to 4. It might appear to be mainly heuristic, but precise statements can be easily deduced from the precise
statements of the theorems given in the corresponding technical sections.

We discuss here only the case of i.i.d data. As we have shown above, the bootstrap case and the case
of correlated observations are more complicated to handle, and the formulas are not as explicit in those
cases as they are in the case of i.i.d data. But for certain cases, one could plug-in our earlier results for
those situations to obtain explicit results about efficient frontiers and weight vectors in those cases too.

As a matter of notation, all of our approximation statements hold with high-probability asymptotically,
unless otherwise noted. We will carry out our work under the model put forward in Theorem 4.1, assuming
that the A;’s are i.i.d and the following assumptions:

1. Assumption Al: for alli € {1,...,k}, v/¥"1v; stays bounded away from 0. vy is assumed to be equal
to p.

2. Assumption A2: the smallest eigenvalue of M = V'Y~V stays bounded away from 0 and the
condition number of M remains bounded.

3. Assumption A3: if e = £1, (v; + €v;)' T (v; + ev;) stays bounded away from infinity.
4. Assumption A4: (Assumption-BB) and (Assumption-BL) hold. (See Theorem 4.4 for definitions.)
5. Assumption A5: The operator norm of X, |||X|||2, remains bounded.

These assumptions guarantee that the noise terms involving 1z do not overwhelm the signal terms involving
1, and also that we can safely take inverses of our approximations to get approximations of their inverses.
Also, all the key results we obtained in Sections 3 and 4 are applicable, and our conclusions will of course
heavily rely on them.

We will use the notation p, = p/n. We recall that in the Gaussian case, the quantity s appearing below
is approximately equal to 1/(1 — p,,) and in the elliptical case, it is always greater than 1/(1 — p,,), as we
explained after the proof of Theorem 4.1.

5.1 Relative positions of efficient frontiers: (Gaussian vs. elliptical case

When assumptions (A1-A4) hold, it is clear that
M=VESW~sV's vV + : pnp €rel - (12)
— Fn

G i.e the “s” corresponding to the Gaussian case.

Now recall that in the elliptical case, s > 1/(1—p/n) =s
Calling Mg the empirical estimator of M we get in the elliptical case and Mg its analog in the Gaussian

case, we have, when A1-A4 are satisfied, with high-probability,
]/\ZE‘ = ]/\IG )

at least asymptotically.

We now call fe(nb;z, and fe(g%, the “efficient frontiers” obtained by solving Problem (QP-eqc-Emp) when
the data is respectively elliptical and Gaussian. Recall that under our assumptions, x4 and X are the same
for the two problems, so the population version corresponding to the two problems is the same. We call the
population solution, i.e the efficient frontier computed with the population parameters, fineo. Naturally,
this is the quantity we are fundamentally interested in estimating.

Using the fact that fom, = U'M ~1U, the following important results.
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Theorem 5.1. When Assumptions A1-A/ are satisfied, we have with high-probability and asymptotically,
fe(gg < fég;)) < ftheo .

In other words, risk underestimation in the empirical quadratic program with linear equality constraints is
least severe (within the class of elliptical models) in the Gaussian case.
In other respects, we have, asymptotically, with high-probability, if k = pp/(1 — pn),

1 Kk (e,M™U)?
(B) ~ = R T 7) 1
Jemp = s <fthe° s1+ 5 M~le, | - (13)

Another way of phrasing this result is the fact that the Gaussian analysis gives the most optimistic
view of risk underestimation within the class of elliptical models considered here.

Practically, it means that users of Markowitz-type optimization should be wary of the empirical solution
they get, and even of the correction that Gaussian results suggest. If the data is elliptical, they will
underestimate the risk of their portfolio even more than the Gaussian results suggest.

Let us now give a proof of Theorem 5.1.

Proof. Under the assumptions of the Theorem, we can use the approximation in Equation (12). The first
part of the theorem has been argued before, so we do not need to do anything else to obtain it.
The second part follows directly from a rank one perturbation argument. We have

-1
n 1 -1
&~ <5V’E_1V + 5 f eke;> U= U <M + geke;) U.

emp —
n

Using the classic result (M + vv/)™t = M~ — M~ 'v/M~1/(1 + v M~'v), we conclude that

K -1 _ k(UM tey)?
U’(M — ’) v=UM'v-~—— " |
* 5 Rk s 14 el M—1ley,
We now recall from Section 2 that fineo = U'M~1U, and we have the announced result. ]

Equation (13) naturally suggests better ways of estimating fineo than using femp. We postpone a
discussion of this issue to Subsection 5.4 , because it requires somewhat lengthy preliminaries.

5.2 Issues concerning the weights of the portfolio

Beside problems in the location of the efficient frontiers, our analysis reveals another very interesting
phenomenon: problems with estimating wipeo, the optimal vector of weights. In particular, one can show
that the mean return of the portfolio is poorly estimated and the weight given to each asset is biased.

Theorem 5.2 (Bias in weights). Suppose assumptions A1-Aj hold. We have, asymptotically and with
high-probability,
K
Wemp = Wtheo — C(s);wb ) (14)

where
ej,chlU

_ yv—1 —1
m,wb—z VM CL .
5

((s) =

This approximation is valid when looking at linear combinations of the vector of weights: if v € R™ is
deterministic and assumption A8 extended to include this vector holds,

K
’)’/wemp ~ 7/ (wtheo - C(g)gwb) .

We note that the last assertion of the theorem does not necessarily immediately follow from equation
(14) in high-dimension, but it is true in the setting we consider. A particularly interesting corollary is the
following statement concerning inconsistent estimation of the returns.
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Corollary 5.1 (Poor estimation of returns). Recall that with our notations, wi,  p = u = pp. In practical
terms, up corresponds to the desired expected returns we wish to have for our “portfolio”. Under the same
assumptions as that of Theorem 5.2, we have

W . 1 KD ick uiel, M~ te;
>~ up —_ — .
emp 1+ 2, M~ le, s 14 %ef M~ ley,

The previous corollary is a statement about poor estimation of returns for the following reason:
W' Wemp = pp by construction, so one might naively hope that, for a new observation X,., indepen-
dent of X1,..., X, and with the same distribution as them, B (w/,, Xnt1|X1,..., Xn) = Wl > pp.
However, as the previous corollary shows, this is not satisfied. We note that the factor affecting up is a
shrinkage factor, always smaller than 1 because M is positive semi-definite. The other term could have
either sign, so its effect on return estimation is less interpretable. For large pp, it is nonetheless clear that
the previous corollary shows that the returns are overestimated: the realized returns are (asymptotically
and with high-probability) less than pp.

We now prove these two results. The proof of the corollary is at the end of the proof of the theorem.

Proof of Theorem 5.2: Under the assumptions of the theorem we have

o~

M =~ sM + regey, ,

and our assumptions guarantee that we can take inverses and still have valid approximations. Hence, using
the classic formula for inversion of a rank one perturbation of a matrix (see Horn and Johnson (1990), p.

19), we have
s s1+%eM-tle, )

Now recall that wemp = SWM-IU and Wiheo = L VM ~IU. For a deterministic ~, our work in Section
4 indicates that X'V ~ 57/ 7'V, So we conclude that

1 M—l /M—l
Viomp ~ 57E 71V <M1 - “6"“%> U.

- Kol Ar—1
s 1+ Zep, M~ ey
In other words, we have

kY STWM epe, MU
s 1+ fej M—1ley ’

Y Wemp ~ YE VMU —

or, as announced,

K
’)/wemp ~ ’Ylwtheo - g’ylwb C(S) .

It seems difficult to say more, because w;, and ( are population parameters and their properties and values
may vary from problem to problem.
e Proof of the corollary We now assume that v = . We remark that y = Veg, by construction of V.
Therefore,
pwy, = e, V'ETWM e, = el MM e, = 1.

Further,
k
e;CM_lU = ZuiezM_lei = Z uiegM_lei + ,upe;cM_lek .
i=1 i<k
These two remarks and the result of Theorem 5.2 give the conclusion of the corollary. O
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5.3 Bias correction for the weights

An important question now that we have identified possible problems with the empirical weights is to
try and correct them. We propose such a scheme, suggested by our computations.

Our investigations will rely on the following asymptotic result, discussed in Theorem 5.2: in the nota-
tions of this theorem,

K
’)/wemp ~ ')/wtheo - ;7,wb C(S) :

Our efforts will focus on trying to estimate wy/s and ((s), as k = p, /(1 — py,) is known and computable
from the data.
Recall that we assumed that vy = @ and let us call

M=DM- Kegey, .
Under the assumptions underlying the previous computations, we have

M ~sM .

In practice, we wish M to be a positive semi-definite matrix - something that is guaranteed asymptotically,
but might require checking and potentially corrections in practice.
We propose to use

1. As an estimator of wy,

Wy = gil‘/}ﬁflek
2. As an estimator of ((s)/s,
R e;ﬁM_lU
Z - .
1+ kel M~tey,
For any deterministic 7 (such that the assumptions of Theorem 5.2 hold), v/ ~ v'w, because +/ S~
7SV and MU ~ M~'U/s. Also, e, MU ~ s e} MU, and €| M e, ~ s 'ej M ey, so Z ~
((s)/s. Hence,
PN s
e8]
5
In other words, we have found an asymptotically consistent way of estimating the quantities of interest.
Hence, the estimator we propose to use is

—

Wiheo = (Wemp + KZWp) = SIWWMU| . (15)

Interestingly, this proposal does not require us to estimate s. Furthermore, because we have consistency of
the estimator in the whole class of elliptical distributions, this estimator is fairly robust to distributional
assumptions about the data. Finally, the estimator is consistent in the sense that all (deterministic) linear
combinations of wWine, are consistent for the corresponding linear combinations of wine, (provided these
linear combinations are such that the assumptions of Theorem 5.2 apply to them).

The estimator satisfies the constraints It is nonetheless natural to raise the following question: does
the proposed estimator satisfy the constraints of the problem? If not, our proposal would be problematic,
but it is indeed the case that our estimator satisfies the constraints uﬂ};,vi =w; forallie{1,...,k—1}.
Naturally, the last constraint (i.e w/th\eolu = up = pp) is difficult to satisfy exactly because p is unknown,
o it is also less of a concern.

Let us now briefly justify our claim concerning the satisfaction of the equality constraints. By con-

struction, wemp satisfies the constraints wémpvi =u;, 1 <i< k-1, so all we have to show is that the k x 1

vector V'), is proportional to e;. We recall that M=DM— KeLE);, SO

~

~ -1
Wp =2V (M — Hek€;€> ek -
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Using the standard formula for the inverse of a rank-1 perturbation of a matrix, we therefore get
o a g —~ M- lepe! M1
Wy =S W (M h ey

1 — kel M~1ey

k

PPN PPN e M le
— S M ey, 4 kWM Loy — kT k.
1 — ke, M~tey

1 i
= ——SWM!
1 — kel M~1ey,

Once we recall that M =V’ i_lf}, we immediately get the equality
~ 1

]~

V’UJ{,: flek,
1 — ke, M~ ey,

which shows that vjw, = 0 for 1 <¢ < k — 1, as announced.

Finally, from a practical point of view, one might be worried that the estimator proposed in Equation
(15) “puts too much weight on the theory and not enough on the data”, and that better practical per-
formance might be achieved by tuning more finely our corrections to the data. For instance, one might
propose, we think reasonably, to use, instead of M the matrix M (A1) = M — AiKege),, where A\; would
be picked by some form of cross-validation based on the new estimator Weneo (A1) = Wemp + KZ(A1)Wp(A1).
We do not discuss this issue any further in this paper as we plan to address it in another, more applied,
article. We do however show the performance of our estimator in simulations in Subsection 5.5.

5.4 Improved estimation of the frontier

We now discuss the question of improved estimation of the efficient frontier. This is naturally an
important quantity in the problem, and, as we hope to have shown, a difficult one to estimate by naive
methods. One aspect of its importance is that it gives us a benchmark of performance for optimal portfolios.
We therefore think that in a financial context, it might be of great interest in particular to regulators.

5.4.1 Estimation of s

Though we have seen that we could devise a scheme to improve the estimation of the weights without
having to estimate s, this latter quantity is still an important one to estimate if we want to better understand
the pitfalls we might be facing.

In the elliptical case, where X; = ,u+)\i21/ 2Y;, we wish to estimate )\?, as we have seen that s is “driven”
by this quantity. To do so, we recall the concentration of measure results put forward in El Karoui (2009),
which say that with very high probability, if the largest eigenvalue of ¥ stays bounded,

IS12Y;]13  trace ()
P - p

Now, note that || — 1il|3 ~ %, because under our assumptions Al-A4 and the assumption of inde-

pendence of the A;’s, >0 | )\22 /n — 1 and A5 implies that the previous approximation holds. Hence,

X =} trace (5)
p p
We now propose the following estimator for )\22 :
) X — fill3

A2 = = :
DY Y B el YA
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If we denote p, = p/n, we then propose to estimate s using the positive solution of

9(x) =1—pn,

n

1

1
where g(:z:) = — —_— = -
" =1 1+ 37)\12/)71

We note that this is just the discretized version of the equation characterizing s. (g is clearly a continuous
convex decreasing function of x on [0, 00), so the existence and uniqueness of a solution to g(x) =1 — p,
is clear.)

5.4.2 Estimation of the efficient frontier
We recall an important result from Theorem 5.1: under the assumptions made in this section,

; L (e, M~1U/s)’
>~ —fiheo — KT m T -
emp T g Jhee 1+ e M~tey
Now recall that we have a consistent estimator of e} M ~1/s, that is e%]\? ~1, and we just discussed how to
estimate s.
As an estimator of the efficient frontier we therefore propose

—

ftheo =3 (femp + K

(e M 'U)?
1+ /fekﬁflek .

We also note that M could be replaced by M (A1) described above with a similar cross-validation
scheme.

5.5 Numerical results and practical considerations

This subsection gives some numerical results to assess the quality of the proposed estimators for both
weights and “efficient frontier”.

Our aim was to investigate among other things the improvement in the quality of our approximations as
n and p grew to infinity. Hence, we present the results of two simulation setups: one where n = 250, p = 100
and one where n = 2500,p = 1000. We chose to work with simulations where we picked both ¥ and u
so that we could guarantee - for instance - that the efficient frontier was basically the same for both
simulations.

More specifically, we chose ¥ to be a p x p Toeplitz matrix, with (i, j) = oIl where o = 4. In the
smaller dimensional simulation, i.e p = 100, we picked v; to be the eigenvector associated with the 90th
smallest eigenvalue of 3. Calling (3> the eigenvector associated with the 15th smallest eigenvalue of X, we
picked vy = p to be v .3v1 + /. 732. In the larger dimensional simulation, we used for v; the eigenvector
associated with the 900th smallest eigenvalue of ¥, while 85 was now associated with the 150th smallest
eigenvalue of Y. u = vy was computed in the same fashion in both simulations.

We did simulations both in the Gaussian case and in the case of an elliptical distribution as described
above, i.e X; = u + \XY2Z; where \; was proportional to a t¢-distributed random variables with 6
degrees of freedom and scaled to have variance 1. We picked 6 degrees of freedom to have simulations
with relatively heavy tails and capture visually the corresponding effects. It was also naturally a way to
investigate the practical robustness of our estimators and compare with the Gaussian case. We call below
the set of simulations involving the t-distribution the “tg” case because of its similarity with multivariate
t-distributions.

We repeated 1000 times the simulations in all the cases considered. We chose u; = 1 and ug (the
“target returns” in a financial context) ranging from .1 to 5.

We note that our estimators require taking inverses of matrices - which naturally raises the question
of how well-conditioned those matrices are. This is in particular the case when we deal with M and M:
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if M is poorly conditioned, even though M is a good estimator of sM, it can turn out that M~'isa
relatively poor estimator of M~1s~!. In our simulations, both M and ¥ were well-conditioned but in
practice, one should be aware of potential difficulties that may arise if, for instance, M indicates that M
may be ill-conditioned.

5.5.1 Estimation of portfolio weights

As we have seen earlier, the “naive” weights obtained by plugging-in the sample mean and the sample
covariance matrix in our quadratic program with linear equality constraints are biased, in the sense that
their projection in any given direction will generally be biased.

Here we show the performance of our estimator as measured by its projection on vi = u. It is a natural
direction to consider since, for instance in a financial context and under our modeling assumptions, it gives
us the expected returns of our portfolio (conditional on Xi,...,X,).

As our simulations indicate, our estimator appears to be practically unbiased (even in the “lower-
dimensional” case), which means in a financial context that the corresponding investment strategy will
yield the returns that the investor expected. (We note that from a mean-variance point of view, we do not
claim that our estimator is optimal. Work is under way to find better performing portfolios - but it requires
a new set of theoretical investigations whose results are postponed to another paper. In limited simulations,
it appeared that our “debiased” portfolio performed similarly to the naive one from a mean-variance point
of view, its main advantage being that it delivers the returns that the investor expects.)

We present two pictures on (pp. 40 and 41) to give a sense to the reader of the impact of the size of n
and p on the estimators we proposed (the “larger-dimensional” case gives quite significantly better results,
with narrower confidence bands, though (empirical) near-unbiasedness is present in both cases).

Markowitz: correction of portfolio, view of conditional expected returns Markowitz: correction of portfolio, view of conditional expected returns

n=250, p=100, "t-distribution" with 6 dofs. n=250, p=100, Gaussian case
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Figure 2: Performance of naive and corrected portfolios, for scaled “ts” (left picture) and Gaussian returns.
Here n = 250, p = 100 and the number of simulations is 1000. The dashed lines represent 95% confidence
bands. The z-axis represents the returns an investor expects. The y-axis represents what s/he would
actually get on average (i.e p/@w). The plots show both the bias in the naive solution (blue solid lines) and
the fact that our estimator is nearly unbiased (red solid lines). They also illustrate the robustness of our
corrections. The black line is very close to the red line, showing a very good correction (on average).
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Markowitz: correction of portfolio, view of conditional expected returns Markowitz: correction of portfolio, view of conditional expected returns
n=2500, p=1000, "t-distribution" with 6 dofs. n=2500, p=1000, Gaussian case
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Figure 3: Performance of naive and corrected portfolios, for scaled “tg” (left picture) and Gaussian
returns. Here n = 2500, p = 1000 and the number of simulations is 1000. The dashed lines represent 95%
confidence bands. The z-axis represents the returns an investor expects. The y-axis represents what s/he
would actually get on average (i.e p/w@). The plots show both the bias in the naive solution (blue solid lines)
and the fact that our estimator is nearly unbiased (red solid lines). They also illustrate the robustness of
our corrections. Note the narrower confidence bands as compared to Figure 2. The black line is essentially
hidden under the red line, showing a near perfect correction (on average).

5.5.2 Correction to the frontier

We now turn to the issue of estimating the “efficient frontier”, i.e the curve that represents the minima
of our convex optimization problem (QP-eqc), on p. 5. The pictures we present (see p. 51) were obtained
from the simulations we described above. We chose to plot the variance (i.e minw'Yw) on the x-axis and
the target returns (i.e the uy’s in the notation of Equation (QP-eqc)) on the y-axis as this is the convention
in financial applications.

As the reader can see, our estimator turns out to be essentially unbiased, even in the “lower-dimensional”
case. We note too that the variance can be quite large but that the confidence bands obtained from our
corrections were always to the right of the confidence bands obtained from the naive estimator - meaning, if
one is concerned with risk estimation that in (essentially) the worst case for our estimator, we still obtained
a better performing estimator than in (essentially) the best case for the naive estimator.

Finally, for graphical purposes and to help comparisons, we chose to put all the graphs on the same
scale. Some of the information on our original graphs (for the “lower-dimensional” case) was therefore left
out but can be inferred by “naturally” extrapolating the curves shown on our graphs which are essentially
parabolas.

6 Conclusion

This study of quadratic programs with linear equality constraints whose parameters are estimated from
data has highlighted the difficulties created by the high-dimensionality of the data. In particular, we have
shown that the fact that n (the number of observations used to estimate the parameters) and p both
grew to infinity lead to a systematic underestimation of the minimal “risk” one exposed itself to when
approaching the optimization problem (QP-eqc-Pop) by solving its proxy (QP-eqc-Emp).
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Our study produced exact distributional results in the Gaussian case (Section 3) and convergence results
in probability in the elliptical case (Section 4), which also allowed us to reach conclusions for the bootstrap
and the case of non-independent data (in particular, it covers the case of Gaussian data correlated in
time). As explained in Section 5, the study of the Gaussian case gives an over-optimistic assessment of risk
underestimation in the context we study: in the class of elliptical distributions we consider, risk is minimally
underestimated in the Gaussian case, and the situation is more dire for other elliptical distributions. Our
study also highlights the fact that standard bootstrap estimates of bias will be inconsistent. It also suggests
that in the case of correlated Gaussian observations, risk underestimation is likely to be more severe than
in the i.i.d case.

Another benefit of our analysis is that it sheds light on what is creating those difficulties and allows
us to propose robust corrections to these problems. As shown in the theoretical part of the paper and
illustrated in our simulation work, they are robust in the class of elliptical distributions we consider. They
also appear to work quite well in practice - as our (somewhat limited) simulation work seems to indicate.

Perhaps surprisingly, we did not need to make very strong assumptions about the covariance matrix
at stake or its mean, whereas recent statistical work focused on estimation of covariance matrices (see
El Karoui (2008a) or Bickel and Levina (2007b)) tends to do so. This is in part because our theoretical
analysis clearly showed what functionals of these two parameters one needed to estimate, and hence we
were able to bypass stronger requirements by focusing on those particular functionals.

Beside the interesting statistical and mathematical questions this study raised, we hope that it might
also be helpful to, for instance, financial regulators by perhaps providing them with more realistic bench-
marks for the performance of optimal portfolios and that it sheds light on how the high-dimensionality
of the data affects the proper assessment of risk of large portfolios obtained by solving high-dimensional
optimization problems.

APPENDIX

A Classical results of linear algebra

A-1 On inverses of partitioned matrices

In our study of the Gaussian case, and in particular in connection with properties of Wishart matrices,
we relied several times on properties of the inverse of a partitioned matrix. Here is a detailed statement of
what we needed.

Let A be a generic matrix, and let us decompose it by blocks:

A A12)
A=
<A21 Ag
Let us call A~! the inverse of A. We assume that all inverses we take are well-defined. Let us write
B All A12
ATl = < A21 A22>

Then, it is well known that (see e.g Mardia et al. (1979), pp. 458-459, or Boyd and Vandenberghe (2004),
p. 650)

AT = (Ayy — A Ayt An) T, (A-1)
AP = (A — A AT A) (A-2)
A2 = — AT A AP (A-3)
AP = AP Ag AT (A-4)
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B Random matrix results

B-1 Lower bounds on smallest eigenvalue

In many proofs in the course of the paper we needed to have quantitative bounds on the behavior of
the smallest eigenvalue of a number of matrices and made repeated use of the following lemma.

Lemma B-1. Suppose Y is a n x p matriz, with i...d N'(0,1) entries, with p/n — p, and 0 < p < 1.

Suppose A is an n x n diagonal and deterministic matriz and that we can find N(n), C >0 and € > 0
such that, if 7; is the i-th largest eigenvalue of A'A, T™Nm) > C, for some fived C > 0, while N 1is such
that, for p and n large, p/N <1 —¢€ and N/n stays bounded away from 0. Finally, we assume that all the
diagonal entries of A are different from 0.

Call H =1d — 88’ /n, where ||5]|3 = n. Then X,, the smallest eigenvalue of Y'A'HAY /n — 1, is bounded
away from 0 with high-probability.

In particular, when p/N <1 —¢, if ¢, = CN=L

n—1"’

p(@g V&, [(1-vVI—e) —tD < exp (—(N — 1)) .

The following proof makes clear that the result holds also when some of the diagonal entries of A are
equal to zero if we make the following modification: n should now denote the number of non-zero entries
on the diagonal of A and the corresponding assumptions about p and N should then hold. We also point
out that under our assumptions H is an orthogonal projection matrix.

Proof. Before we start the proof per se, we need some notations: we call A\ the k-th largest eigenvalue of
a symmetric matrix. In other words, the eigenvalues are decreasingly ordered and Ay > Ay > ...
The result is known if A = Id,,, since

1 c 1
—Y'HY = —— 1 -1
n—1 n—le(dp’n )
and therefore (see e.g Bai (1999))
1

n—1

Y'HY — (1—-/p)? as ,

which is bounded away from 0 - this is a weak form of our statement. Using Davidson and Szarek (2001),
Theorem I1.13, we have the following stronger and more quantitative result: the smallest eigenvalue of a
matrix with distribution W(Id,, ng)/no is strongly concentrated around (1 — 1/p/ng)? when p < ng, and

P (V3 < (1= V/p/ng) — t) < exp(—not?)

This gives our result in the case where A = Id,,. Let us now investigate what happens when A is not
1d,,.

The matrix M = A'HA is a rank-1 perturbation of A’A and is positive semi-definite, because H is.
Therefore, for any k > 2, \p_1 (A HA) = M\e—1(M) > M\(A'A), by the interlacing Theorem 4.3.4 in Horn
and Johnson (1990). M has rank n — 1 matrix since, MA~1§ = 0 and rank (M) > rank (A’A) — 1 =n — 1.

We can diagonalize M = ODO’, where D has (n — 1) non-zero coefficients, and because O'Y £ Y, we

have
n—1

Y'MY =Y'NHAY £Y'DY =Y d;vY]
i=1
where d; are the non-zero diagonal entries of D. Because M is positive semi-definite, we have d; > 0 for
all 7. In other respects, because for all k < n — 1, dx > Agr1(A’A) = 7111 by our remark on interlacing
inequalities, we have, if > denotes positive-semidefinite ordering,

n—1 N—-1 N—-1
Y AV =Y diYiY] =1y Y ViV = ryW,(Id,, N 1)
=1 =1 i=1
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Therefore,
1 N-1 1
Y'NHAY = C —_— Id,, N —1
n—1 — T n-1 N—le( P )
As we recalled above, the smallest eigenvalue of W,(Id,, N — 1)/(N — 1) remains bounded away from 0
with high-probability in our setting, because p/N remains bounded away from 1 by assumption. We also

assumed that N/n and C were bounded away from 0. If we call € = liminf, CY=L we have € > 0

n—1"
and, for any n > 0,
1 2
Ap < Y’A’HAY> >¢ (1 - \/p/N) —n

n—1
with high-probability, when n and p are large enough.
More specifically, according to the result of Davidson and Szarek (2001) we have, for A, = X, (ﬁY’ NH AY)
and €, =C(N —1)/(n—1),

P (g V& [(1= Vp/(N=T)) 1] ) <exp (~(N - 1)#2) .

In particular, when p/N is such that p/N <1 —,

p(@g V&, [(1-vVT—¢) _ﬂ) < exp (—(N — 1)) .

Interestingly, this bound is “quite uniform” in A, in the sense that the only characteristics of A that
matter are €, = C% and N. ]

C Generalizations of the proof of Theorem 4.2

This part of the Appendix explains how to appropriately modify the proofs of Theorems 4.1 and
Theorems 4.4 to obtain the results we need in the case of correlated observations (Subsection 4.3) and the
bootstrap.

C-1 On v'3S~'v when the observations are correlated

We explain in this subsection how to modify the proof of Theorem 4.1 in the case where the vec-
tors of observations X; and X; are potentially correlated. The data was assumed to have the following
representation, in matrix form:

X =ep + AYEY?

where A is n X n, deterministic but not necessarily diagonal and Y has i.i.d A(0, 1) entries. We also wrote
the SVD of A as A = ADB’, where A and B are orthogonal.
If we call H =1d,, — e€’/n, we have, of course,

1 1

Y= X'HX = S2Y'NHAYSY?
n—1 n—1
The orthogonality of B implies BY £ Y, and we have
- 1
SE£ — SV2y'DAHADYSY?

n—1
If we now call § = A’e, we see that ||0]|3 = n, because A is orthogonal. It can also easily be seen that

AHA = 1d,, — 60’/n = Hs. Because of the remark we just made on the norm of §, Hs is clearly an
orthogonal projection matrix. So we have to understand

1
7121/2Y’DH5DY21/2 ,

I

5

which is extremely close to the situation of Theorem 4.1, where we had to work with
1
n—1

\g)
[

Y2y’ DH. DY SY? |
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D now plays the role A played in Theorem 4.1 and the main modification is that H = H, is now replaced
by H(g.

An examination of the proof of Theorem 4.1 shows that we never relied on the fact that we used
specifically He (instead of Hs) in that proof. All we used was the fact that our H there was a rank-1
perturbation of Id,, and an orthogonal projection matrix. Similarly, Lemma B-1, on which we relied in the
course of the proof of Theorem 4.1, handles Hs for general § with squared norm n without any problems,
so it is still usable in the course of the current study.

Because we know that the singular values of A satisfy (Assumption-BB), the proof of Theorem 4.1 goes
through without further modifications and Proposition 4.1 holds.

C-2  On quadratic forms involving random projection matrices
A recurrent issue in the questions we addressed was the understanding of statistics of the form

1
~u'Pu
n

where P is a random projection matrix and u a (generally deterministic) vector of dimension n. In
particular, the projection matrices we dealt with were of the form

P =AY (Y'A?Y)"Y'A

for A a (possibly random) n x n diagonal matrix and Y an n x p matrix with i.i.d A'(0, 1) entries. We also
assume that A and u are independent of Y. Finally, we assume that ||ul|2/+/n = 1.

In the course of the text, we carried out successfully computations when u = e, but relied to do so on
properties of trace (P). The case of general u is more involved and is treated here.

Lemma C-1. Assume that A and u (which is deterministic) are such that

1 1 <
4 4
3 ;:1 u; — 0, and 3 ;:1 A — 0

and that (Assumption-BB) holds for A for a certain sequence N(n).
Under the preceding assumptions, we have, if Z(u) = %u’Pu,

1 n
Z(u) — — Z uE (P(i,1)|A) — 0 in probability
" i=1

conditionally on A.

Proof. We simply sketch the modifications to the proof given after the statement of Theorem 4.2. As
noted in Lemma 4.2, the off-diagonal elements of P have mean 0 conditionally on A. Now, using the
same notations as in Theorem 4.2, we have, using Equation (7) there, if Z;(u) is the quantity obtained by
replacing A\; by 0 in Z, r; = WZ-SI-_1Y;, w; = rgu/n, and u; is the i-th coordinate of wu,

1 1

The expression between the parentheses is easily seen to be equal to (1 + )\qu,,)uzz — (Nw; — u;)?. We get

an analog of Equation (8):

ﬁ + l (/\iwi — ul-)Q

n o n 1+Mg

Clearly, from the definition of w;, w;| {¥{_;, A} ~ N(0, u'W;S;2W!u/n?). Since by assumption ||ull2 = v/,
we have

0 < u'W; ST ' Wiu/n? = o' W;(W/W;) ' W/u/n < 1
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because W;(W/W;)~1W/ is an orthogonal projection matrix (hence its eigenvalues are only 0 and 1) and
Ju//alls = 1.

So we are exactly in the situation we were in during the proof of Theorem 4.2, except for a term in
u} that now appears in our bound on the variance. Hence, with our extra assumption on |ul|}/n?, we
conclude similarly (after a regularization step) that Z(u) converges in probability, conditional on A to its
conditional mean which is simply

%ugE (P(i,i)|A) .

7

We remark that to get an analog of Theorem 4.3, where now
1 l -1
(=—uAYS v,
n

one just need to go through the proof and replace the w; appearing there by the “new” w; = v/ WiS;lYi /n.
Exactly the same arguments go through when )" , u2)\2 /n remains bounded. So under this condition, ¢
tends to zero in probability.

With the help of the previous lemma, we can now prove the gist of Proposition 4.2.

Fact C.1. Proposition 4.2 holds

Proof. We note that Proposition 4.2 is essentially an application of the previous Lemma, with appropriate
change of notation. Recall the notations from the proposition. We have X = AYSY 2 and A, which is
n X n, has singular value decomposition ADB’. Also, S = X'X/n, Y = B'Y, F = Y'D?Y /n. Hence, in
the language of the proposition,

1 ~ ~
mS~'m = —e ADYF'Y'DAe = w'Pw |
n

~ fe -1
where P = DY (Y’ D2Y> Y’'D and w = A’e. When the assumptions of the proposition are in force, A is
deterministic, Lemma C-1 applies, from which we conclude

i — = Z w2E — 0 in probability.

This gives us the analog of Theorem 4.2.
To get the analog of Theorem 4.3, we just need Y ;" ; w2d2 /n to remain bounded, which is an assumption
stated in Proposition 4.2. ]

C-3 Bootstrap specific results

Bootstrapping Gaussian data Our analysis of the bootstrap problem requires an analysis similar to
the one we performed in the previous subsection. In particular, there we have u = A/2e, where A contains
the bootstrap weights. Since those add-up to n, the assumption |u|3 = n was clearly satisfied. Also, in
the situation where p/n — p € (0,1 — 1/e), we are guaranteed that

P = Al/Qy(y/Ay)flylAl/Q

is well defined with high-probability. When conditioning on A, we see that we can work only with the
submatrix A* (of size n*) whose diagonal entries are non-zero. This submatrix has its diagonal entries
bounded away from 0 as they are at least equal to 1. Also, using arguments similar to those given in the
proof of Lemma B-1, we see that we can get a uniform (in A) lower bound on the smallest singular value
of AY, which holds with probability exponentially (in (n* — p)) close to 1.

So now we assume that we are dealing with A such that n* — p tends to oo, the empirical distribution
of A goes to Po(1) and > A?/n? — 0. We also assume that (Assumption-BB) are satisfied for this
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A. We call the corresponding set of matrices Gp,. When the diagonal entries of A are drawn from a

Multinomial( %, cee %, n) it is clear that these conditions are satisfied with probability going to 1.

The main question that we still have to address is that of the behavior of
1 - 2 X[ -
ST WER (P
i=1

when u? = );. By definition,

1 1 ¢ B 1
Py =-NY [ =Y \NYY | Yi=1-— :
( ) n 151 (n; 141 7,) 7 1 _l_)\l}/Z/S;l}/;/n

where S; = L 3 ;4 AjY;Y]. Now the concentration arguments given in El Karoui (2009) show that

d

We also know that with overwhelming probability (measured over Y(_; = {Y¥1,...,Y;-1,Yit1,...,Yn}),
op(S;i) is bounded away from 0, conditionally on A, when A is such that (Assumption-BB) holds. Hence,
we conclude that

Y/SY; _ trace (871)

7

p p

>1

5¥_1> = O(exp(—pt*/op(S)))) -

Y/ .Si_lYi trace (Sl-_l)
p p

where s corresponds to the situation where G = Po(1) (i.e it is defined by Equation (11)). Hence,
conditionally on A,

~g,

1
P trace(S{l) ’
n P
with very high-probability, i.e the probability that the difference between the two is greater than ¢ is
O(exp(—C(n* — p)t?)) for a fixed C. In other respects, we note that rank-1 perturbation arguments give,
if S =L1y’AY,

Prii) =1 —
1+ N

Ao YIS
n 1+ NY/SYi/n
In particular, when A is such that (Assumption-BB) holds,

A) — 0.

P | max
i=1,...,n

We also note that trace (S _1) /p — s conditionally on A, if A is such that its empirical distribution goes
to Po(1).

Therefore, since Y " | A = n, we also have by a simple union bound argument, conditional on A, and
assuming that A is such that its empirical distribution goes to Po(1),

trace (S;l) — trace (8_1) =

trace (Si_l) — trace (8_1)
p

> €

1 & 1 — A
N NP 12y

Now when A = Po(1), which we write G,

1 i Ai /TdG(T)
= N )
n 14 Aips 14 71ps

But in light of the Marcéenko-Pastur equation, we have, under these circumstances,

1 & 1 -1
SN NP i) o1 - - = T
n i1 S S
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We finally conclude that conditional on A being in the set described above (whose probability goes to

1)7

/\*/i*—l/\* 5 —5_1> P
(YD) TH = e = 21,

since we know that s > 1/(1 — p) when G is Po(1), since its mean is 1.

Similar arguments as the ones used in the proofs in the main body of the paper show that the same
convergence in probability result holds unconditionally on A - the problem being to get bounds that are
uniform in A, when A € Gp,,.

Hence, an analog of Theorem 4.2 follows (with P, probability going to 1), where the ratio p/(1 — p) is
replaced by s — 1. The analog of Theorem 4.3 follows from the arguments given in Appendix C-2, if we can
show, in the notation used there that >, (u;d;)?/n remains bounded with probability going to 1. Note
that u; = d; = +/\; here, where )\; are the bootstrap weights, so we just need to show that S )\% /n
remains bounded. The mean of this quantity clearly goes to 2, using the marginal distribution of A;. On
the other hand, the arguments we gave in Proposition 4.4 show that its variance goes to 0, so this quantity
goes to 2 in probability and therefore remains bounded with probability going to 1.

We therefore have an analog of Theorem 4.3 and also of Theorem 4.4 when bootstrapping Gaussian
data.

Bootstrapping elliptically distributed data Finally, let us say a few words about what would happen
if we replaced the normality assumption for the X;’s by an elliptical distribution assumption. We focus on
the case where X; = )\izl/ 2Y;, i.e the mean of the X;’s is 0. The previous analyses make clear that the key
questions concern v/ (3*)Lv and (7*)(S*) 1"

The questions concerning v’ (f]*)_lv fall pretty much directly under the study we have made of elliptical
distributions, since we know, according to the proof of Theorem 4.5, that

a 1
£ = —S2YNDY2(1d, — 86 /n) DEAY Y2,
n J—
where D is the diagonal matrix containing the bootstrap weights and § = D/2e. So, as long as D'/2A
satisfies (Assumption-BB), results similar to Theorem 4.5 will hold.
The questions dealing with (7*)(X*)~!'i* are more involved. Analyses similar to the ones performed
above show that the key quantity to understand is now

1 1
—e' DAY (Y'AN'DAY ) 'Y'AN'De = —/Ppuj2) yu
n n ’

where Ppij2y y = DY2AY (Y'N'DAY)~'Y’AD'? and u = D'/?e. The analysis of this quadratic form can
be carried out just like we did above in the Gaussian case, i.e A = Id,,. However, the remarks we made to
get simplified expressions for the limit do not seem to apply anymore: quantities of the type

S
ne— 1+ Ndips
appear, where s is the solution of Equation (4) with G being the limit (if it exists) of the empirical

distribution of the random variables A\?d;. These quantities do not appear to simplify any further to yield
a clearer and more exploitable expression.
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Markowitz: correction of Frontier, n=250, p=100, “t-distribution" with 6 dofs.
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Markowitz: correction of Frontier, n=2500, p=1000, "t-distribution” with 6 dofs.
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Figure 4: Performance of naive and corrected frontiers, for scaled “t¢” (upper pictures, (a) and (c)) and
Gaussian returns ((b) and (d)). Here, in the left column n = 250 and p = 100. In the right column,
n = 2500,p = 1000. The number of simulations is 1000 in all pictures. The dashed lines represent
(empirical) 95% confidence bands. (The confidence bands corresponds are computed for a fixed y.) The
x-axis represents our estimate of variance of the optimal portfolio. The y-axis represents the target returns
for the portfolio. The plots show both the bias in the naive solution (blue solid curves) and the fact that our
estimator is nearly unbiased (red solid curves near, or covering the black curve, the population solution).
They also illustrate the robustness of our corrections. Another striking feature is the lack of robustness
of Gaussian computations, since the “efficient frontiers” computed with “tg” returns are different from
the Gaussian ones. The fact that, as our theoretical work predicts, Gaussian computations underestimate
risk-underestimation in the class of elliptical distributions considered in the paper is illustrated by the fact
that the “tg” curves are to the left of the Gaussian curves. Note the narrower confidence bands in the
larger dimensional simulations ((c) and (d)). The black line is essentially hidden under the red line in (c)
and (d), showing a near perfect correction (on average).
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