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Abstract. A well-known result of Arratia shows that one can make rigorous

the notion of starting an independent Brownian motion at every point of an
arbitrary closed subset of the real line and then building a set-valued process by

requiring particles to coalesce when they collide. Arratia noted that the value

of this process will be almost surely a locally finite set at all positive times,
and a finite set almost surely if the initial value is compact: the key to both

of these facts is the observation that, because of the topology of the real line

and the continuity of Brownian sample paths, at the time when two particles
collide one or the other of them must have already collided with each particle

that was initially between them. We investigate whether such instantaneous

coalescence still occurs for coalescing systems of particles where either the state
space of the individual particles is not locally homeomorphic to an interval or

the sample paths of the individual particles are discontinuous. We give a quite
general criterion for a coalescing system of particles on a compact state space

to coalesce to a finite set at all positive times almost surely and show that there

is almost sure instantaneous coalescence to a locally finite set for systems of
Brownian motions on the Sierpinski gasket and stable processes on the real

line with stable index greater than one.

1. Introduction

A construction due to Richard Arratia [Arr79, Arr81] shows that it is possible
to make rigorous sense of the informal notion of starting an independent Brownian
motion at each point of the real line and letting particles coalesce when they collide.

Arratia proved that the set of particles remaining at any positive time is locally
finite almost surely. Arratia’s argument is based on the simple observation that
at the time two particles collide, one or the other must have already collided with
each particle that was initially between them. The same argument shows that if
we start an independent circular Brownian motion at each point of the circle and
let particles coalesce when they collide, then, almost surely, there are only finitely
many particles remaining at any positive time.

Arratia established something even stronger: it is possible to construct a flow
of random maps (Fs,t)s<t from the real line to itself in such a way that for each
fixed s the process (Fs,s+u)u≥0 is given by the above particle system. Arratia’s flow
has since been studied by several authors such as [TW98, STW00, SW02, LJR04,
Tsi04, FINR04, HW09] for purposes as diverse as giving a rigorous definition of
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a one-dimensional self-repelling Brownian motion to providing examples of noises
that are, in some sense, completely “orthogonal” to those produced by Poisson
processes or Brownian motions.

Coalescing systems of more general Markov processes have been investigated
because of their appearance as the duals of models in genetics of the stepping
stone type, see, for example, [Kle96, EF96, Eva97, DEF+00, Zho03, XZ05, HT05,
MRTZ06, Zho08].

We show in Section 2 that if E is a locally compact, second-countable, Hausdorff
(and hence metrizable) space and X is a Feller process on E, then it is possible
to define a process ζ taking values in EN with the property that the coordinate
processes evolve as independent copies of X until two such processes collide, after
which those two coordinate processes evolve as a common copy of X. Write Ξt for
the closure of the random countable set {ζi(t) : i ∈ N}. We demonstrate that if x′

and x′′ are two elements of EN with the same closure, then the distribution of Ξ
when ζ starts from x′ is the same as that when ζ starts from x′′, and it follows that
Ξ is a strong Markov process. Taking the entries in the sequence ζ0 ∈ EN to be a
countable dense subset of E gives Ξ0 = E and corresponds to the intuitive idea of
constructing a coalescing particle system with an initial condition consisting of a
particle at each point of E.

Arratia’s “topological” argument for the instantaneous coalescence of such a
system to a locally finite set fails when one considers Markov processes on the line
or circle with discontinuous sample paths or Markov processes with state spaces that
are not locally like the real line. We show, however, that analogous conclusions holds
for coalescing Brownian motions on the “finite” and “infinite” (that is, compact
and non-compact) Sierpinski gaskets and stable processes on the circle and line –
provided, of course, that the stable index is greater than 1, so that an independent
pair of such motions collides with positive probability.

In order to motivate some of the estimates that we develop for each of these
cases, we first give a brief sketch of how our general approach applies to the case
where the underlying Markov motion X is an appropriate process on a compact
state space. Suppose, then, that the space E is compact with its topology metrized
by a metric r. Consider a strong Markov process X with state space E. Let X ′ and
X ′′ be independent copies of X started from x′ and x′′. Assume there are constants
β, α, p > 0 (not depending on x′, x′′) such that for all ε > 0

(1.1) r(x′, x′′) ≤ ε −→ P{∃0 ≤ s ≤ βεα : X ′s = X ′′s } ≥ p

(for example, such a bound holds when X is a stable process on the circle with
stable index α > 1). Suppose further that there are constants C, κ > 0 such that
for all subsets A ⊆ E

(1.2) #A > n −→ r(x′, x′′) ≤ Cn−κ for some x′, x′′ ∈ A, x′ 6= x′′,

(for example, κ = 1 for the circle).
If we start with n + 1 particles in some configuration on E, then there are at

least two particles within distance at most Cn−κ, and, with probability at least p,
these two particles in isolation collide with each other by time βC−αn−κα. Hence,
in the coalescing system the probability that there is at least one collision between
some pair of particles within the time interval [0, βC−αn−κα] is certainly at least
p (either the two distinguished particles collide with each other and no others
or some other particle(s) collides with one or both of the distinguished particles).
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Moreover, if there is no collision between any pair of particles after time βC−αn−κα,
then we can again find at time βC−αn−κα a possibly different pair of particles that
are within distance Cn−κ from each other, and the probability that this pair of
particles will collide within the time interval [βC−αn−κα, 2βC−αn−κα] is again at
least p. By repeating this argument and using the Markov property, we see that if
we let τn+1

n be the first time there are n or fewer surviving particles starting from
(n+ 1) particles, then, regardless of the particular initial configuration of the n+ 1
particles,

P
{
τn+1
n ≥ kβC−αn−κα

}
≤ (1− p)k.

In particular, the expected time needed to reduce the number of particles from n+1
to n or fewer is bounded above by cn−κα for a suitable constant c.

Suppose now that κα > 1. If we start with N particles somewhere on E, then
the probability that after some positive time t the number of particles remaining is
greater than m is, by Markov’s inequality, bounded above by

1
t

N−1∑
n=m

E
[
τn+1
n

]
≤ c

t

N−1∑
n=m

n−κα ≤ c′

t
m1−κα

for some constant c′. The probability in question therefore converges to zero as
N →∞ and then m→∞. It follows that, even if we start with a coalescing particle
at each point of E, by time t there are only finitely many particles almost surely
(see the last part of the proof of Theorem 5.1 for the proof that the convergence to
zero of the given probability implies that an infinite coalescing system coalesces to
finitely many points instantaneously).

The above argument required three ingredients, the collision probability bound
(1.1), the estimate (1.2) that provides quantitative information on the extent to
which E is totally bounded, and the assumption ακ > 1. We show in Section 3 that
(1.1) follows from suitable upper and lower bounds on the transition densities of the
process with respect to some reference probability measure µ, whereas (1.2) follows
from the assumption that the µ mass of any ball of radius ε is bounded below by a
constant multiple of ε1/κ. Informally, both of these conditions hold when the state
space and the process have suitable approximate local self-similarity properties.

The compactness, and hence total boundedness, of the state space was crucial
for the “pigeonhole principle” reasoning that we used above. The same method
cannot be applied as it stands to deal with, say, coalescing stable processes on the
real line to show a result of the Arratia type that the set of particles remaining
at some positive time is locally finite. The primary difficulty is that the proof
bounds the time to coalesce from some number of particles to a smaller number
by considering a particular sequence of coalescent events, and while waiting for
one of these events to occur the particles might spread out to such an extent that
the pigeonhole argument can no longer be used. We overcome this problem by
developing a more sophisticated pigeonhole argument that assigns the bulk of the
particles to a collection of suitable disjoint pairs (rather than just selecting a single
suitable pair) and then employing a simple large deviation bound to ensure that
with high probability at least a certain fixed proportion of the pairs will have
collided over an appropriate time interval.

We are able to carry this general approach through for stable processes with
index α > 1 and Brownian motions on the infinite (that is, unbounded) Sierpinski
gasket. Elements of our argument seem rather specific to these two special cases
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and differ between the two cases, and we don’t have a general method that applies
to a broad class of processes with non-compact state spaces. It is an interesting
and challenging open problem to develop techniques for non-compact state spaces
that have wider applicability.

We note that, as well as providing an interesting test case of a process with
continuous sample paths on a state space that is not locally one-dimensional but
is such that two independent copies of the process will collide with positive prob-
ability, the Brownian motion on the Sierpinski gasket was introduced as a model
for diffusion in disordered media and it has since attracted a considerable amount
of attention. The reader can get a feeling for this literature by consulting some
of the earlier works such as [BP88, Lin90, Bar98] and more recent papers such as
[HK03, KS05] and the references therein.

2. Countable systems of coalescing Feller processes

In this section we develop some general properties of coalescing systems of
Markov processes that we will apply later to Brownian motions on the Sierpin-
ski gasket and stable processes on the line or circle.

2.1. Vector-valued coalescing process. Fix N ∈ N ∪ {∞}, where, as usual, N
is the set of positive integers. Write [N ] for the set {1, 2, . . . , N} when N is finite
and for the set N when N =∞.

Fix a locally compact, second-countable, Hausdorff space E. Note that E is
metrizable. Let d be a metric giving the topology on E. Denote by D := D(R+, E)
the usual Skorokhod space of E-valued càdlàg paths. Fix a bijection σ : [N ]→ [N ].
We will call σ a ranking of [N ]. Define a mapping Λσ : DN → DN by setting
Λσξ = ζ for ξ = (ξ1, ξ2, . . .) ∈ DN , where ζ is defined inductively as follows. Set
ζσ(1) ≡ ξσ(1). For i > 1, set

τi := inf
{
t ≥ 0 : ξσ(i)(t) ∈ {ζσ(1)(t), ζσ(2)(t), . . . , ζσ(i−1)(t)}

}
,

with the usual convention that inf ∅ =∞. Put

Ji := min
{
j ∈ {1, 2, . . . , i− 1} : ξσ(i)(τi) = ζσ(j)(τi)

}
if τi <∞.

For t ≥ 0, define

ζσ(i)(t) :=

{
ξσ(i)(t), if t < τi,

ζσ(Ji)(t), if t ≥ τi.
We call the map Λσ a collision rule. It produces a vector of “coalescing” paths
from of a vector of “free” paths: after the free paths labeled i and j collide, the
corresponding coalescing paths both subsequently follow either the path labeled i
or the path labeled j, according to whether σ(i) < σ(j) or σ(i) > σ(j). Note for
each n < N that the value of (ζσ(i))1≤i≤n is unaffected by the value of (ξσ(j))j>n.

Suppose from now on that the paths ξ1, ξ2, . . . are realizations of independent
copies of a Feller Markov process X with state space E.

A priori, the distribution of the finite or countable coalescing system ζ = Λσξ
depends on the ranking σ. However, we have the following result, which is a
consequence of the strong Markov property of ξ and the observation that if we are
given a bijection π : [N ]→ [N ] and define a map Σπ : DN → DN by (Σπξ)i = ξπ(i),
i ∈ [N ], then ΣπΛσ = Λσπ−1Σπ.
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Lemma 2.1 ([Arr79, Arr81]). The distribution of ζ = Λσξ is the same for all
bijections σ : [N ]→ [N ].

From now on, we will, unless we explicitly state otherwise, take σ = id, where
id : [N ] → [N ] is the identity bijection. To simplify notation, we will write Λ for
the collision rule Λid.

It is intuitively clear that the coalescing system ζ is Markov. For the sake of
completeness, we establish this formally in the next lemma, the proof of which is
essentially an argument from [Arr79, Arr81].

Define the right-continuous filtration (Ft)t≥0 by

Ft :=
⋂
ε>0

σ{ξi(s) : s ≤ t+ ε, i ≥ 1}.

Lemma 2.2. The stochastic process ζ = Λξ is strong Markov with respect to the
filtration (Ft)t≥0.

Proof. Define maps m : {1, 2, . . . , N} × EN → {1, 2, . . . , N} and Π : EN × EN →
EN by setting m(i,x) := min{j : xj = xi} and Π(x,y)i := ym(i,x). Note that

Π(Λη(t),η(t)) := Λη(t), η ∈ DN , t ≥ 0.

Define a map Π̃ : EN ×DN → DN by

Π̃(x,η)(t) = Π(x,η(t)), x ∈ EN , η ∈ DN , t ≥ 0.

Writing {θs}t≥0 for the usual family of shift operators on DN , that is, (θsη)(t) =
η(s+ t), we have

θsΛη = ΛΠ̃(Λη(s), θsη), η ∈ DN , s ≥ 0.

Fix a bounded measurable function on f : DN → R and set

g(x,y) = Ey
[
f
(

ΛΠ̃(x, ξ)
)]
.

Note that since the components of ξ are independent, if Π(x,y) = x, then g(x,y) =
g(x,x). Thus, for a finite (Ft)t≥0 stopping time S we have from the strong Markov
property of ξ that

Ex
[
f(θSΛξ)

∣∣FS] = Ex
[
f
(

ΛΠ̃(Λξ(S), (θSξ))
) ∣∣FS]

= g(Λξ(S), ξ(S))

= g(Λξ(S),Λξ(S))

= EΛξ(S)[f(Λξ)],

as required. �

2.2. Set-valued coalescing process. Write K = K(E) for the set of nonempty
compact subsets of E equipped with the usual Hausdorff metric dH defined by

dH(K1,K2) := inf{ε > 0 : Kε
1 ⊇ K2 and Kε

2 ⊇ K1},
where Kε := {y ∈ E : ∃x ∈ K, d(y, x) < ε}. The metric space (K, dH) is complete.
It is compact if E is.

If the locally compact space E is not compact, write C = C(E) for the set of
nonempty closed subsets of E. Identify the elements of C with their closures in the
one-point compactification Ē of E. Write dC for the metric on C that arises from
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the Hausdorff metric on the compact subsets of Ē corresponding to some metric on
Ē that induces the topology of Ē.

Let Ξt ⊆ E denote the closure of the set {ζi(t) : i = 1, 2, . . .} in E, where ζ = Λξ.
The following result is an almost immediate consequence of Lemma 2.1.

Lemma 2.3. If x′,x′′ ∈ EN are such that the sets {x′i : i ∈ [N ]} and {x′′i : i ∈ [N ]}
are equal, then the distributions of the process Ξ under Px′ and Px′′ are also equal.

For the remainder of this section, we will make the following assumption.

Assumption 2.4. The Feller process X is such that if X ′ and X ′′ are two inde-
pendent copies of X, then, for all t0 > 0 and x′ ∈ E,

lim
x′′→x′

Px
′,x′′
{
X ′t = X ′′t for some t ∈ [0, t0]

}
= 1.

Proposition 2.5. Let x′,x′′ ∈ EN be such that the sets {x′i : i ∈ [N ]} and {x′′i : i ∈
[N ]} have the same closure. Then, the process Ξ has the same distribution under
Px′ and Px′′ .

Proof. We will consider the case where E is compact. The non-compact case is
essentially the same, and we leave the details to the reader.

We need to show for any finite set of times 0 < t1 < . . . < tk that the distribution
of (Ξt1 , . . . ,Ξtk) is the same under Px′ and Px′′ .

We may suppose without loss of generality that x′1, x
′
2, . . . (resp. x′′1 , x

′′
2 , . . .) are

distinct.
Fix n ∈ [N ] and δ > 0. Given ε > 0 that will be specified later, choose

y′′1 , y
′′
2 , . . . , y

′′
n ∈ {x′′i : i ∈ [N ]} such that d(x′i, y

′′
i ) ≤ ε for 1 ≤ i ≤ n. Let η′

(resp. η′′) be an En-valued process with coordinates that are independent copies
of X started at (x′1, . . . , x

′
n) (resp. (y′′1 , y

′′
2 , . . . , y

′′
n)).

By the Feller property, there is a time 0 < t0 ≤ t1 that depends on x′1, . . . , x
′
n

such that for all ε sufficiently small

P{η′′i (t) = η′′j (t) for some 1 ≤ i 6= j ≤ n and 0 < t ≤ t0} ≤
δ

2
.

By our standing Assumption 2.4, if we take ε sufficiently small, then

P{η′i(t) 6= η′′i (t) for all 0 < t ≤ t0} ≤
δ

2n
, 1 ≤ i ≤ n.

Write Ξ′ (resp. Ξ′′, Ξ̂, Ξ̌) for the set-valued processes constructed from η′ (resp.
η′′, (η′,η′′), (η′′,η′)) in the same manner that Ξ is constructed from ξ. We have

P{Ξ̌t = Ξ′′t for all t ≥ t0} ≥ 1− δ,

Ξ′t ⊆ Ξ̂t, for all t ≥ 0,

and, by Lemma 2.3,

Ξ̂ d= Ξ̌.

For each z ∈ E, define a continuous function φz : K → R+ by

φz(K) := inf{d(z, w) : w ∈ K}.
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Note that K ′ ⊆ K ′′ implies that φz(K ′) ≥ φz(K ′′) for any z ∈ E. It follows that
for points z`p ∈ E, 1 ≤ p ≤ q`, 1 ≤ ` ≤ k,

E

[
k∏
`=1

q∏̀
p=1

φz`p(Ξ′t`)

]
≥ E

[
k∏
`=1

q∏̀
p=1

φz`p(Ξ̂t`)

]

= E

[
k∏
`=1

q∏̀
p=1

φz`p(Ξ̌t`)

]

≥ E

[
k∏
`=1

q∏̀
p=1

φz`p(Ξ′′t`)

]
− δ (sup{d(z, w) : z, w ∈ E})

∑
` q`

Observe that

Ex′

[
k∏
`=1

q∏̀
p=1

φz`p(Ξt`)

]
= lim
n→∞

Ex′

[
k∏
`=1

q∏̀
p=1

φz`p(Ξ′t`)

]
and

E

[
k∏
`=1

q∏̀
p=1

φz`p(Ξ′′t`)

]
≥ Ex′′

[
k∏
`=1

q∏̀
p=1

φz`p(Ξt`)

]
.

Since δ is arbitrary,

Ex′

[
k∏
`=1

q∏̀
p=1

φz`p(Ξt`)

]
≥ Ex′′

[
k∏
`=1

q∏̀
p=1

φz`p(Ξt`)

]
.

Moreover, we see from interchanging the roles of x′ and x′′ that the last inequality
is actually an equality.

It remains to observe from the Stone-Weierstrass theorem that the algebra of
continuous functions generated by the constants and the set {φz : z ∈ E} is uni-
formly dense in the space of continuous functions on E. �

With Proposition 2.5 in hand, it makes sense to talk about the distribution of
the process Ξ for a given initial state Ξ0. The following result follows immediately
from Dynkin’s criterion for a function of Markov process to be also Markov.

Corollary 2.6. The process (Ξt)t≥0 is strong Markov with respect to the filtration
(Ft)t≥0.

2.3. Coalescing marked particles. Starting with the Feller Markov process X
on E, we can take another locally compact, second-countable, Hausdorff mark space
M and build a Feller Markov process X̂ with state space Ê = E×M by taking the
distribution of (X̂t)t≥0 when X̂0 = (x,m) to be that of ((Xt,m))t≥0 when X0 = m.
That is, the E-valued component of X̂ evolves in the same manner as X, while the
M -valued component stays at its initial value.

Given a ranking σ of [N ], we can define a collision rule Λ̂σ for Ê-valued paths in
the same way that we defined the collision rule Λσ for E-valued paths. Note that if
ξ = (ξ1, ξ2, . . .) is a vector of E-valued paths and we define a vector ξ̂ = (ξ̂1, ξ̂2, . . .)
of Ê-valued paths by ξ̂i(t) = (ξi(t),mi) for m1,m2, . . . ∈ M , then it is not the
case that vector of E-valued components of ζ̂ := Λ̂σξ̂ is always equal to ζ := Λσξ:
in order for the E-valued components of two particles to coalesce from some time
onwards, the corresponding unchanging M -valued marks have to agree.



8 STEVEN N. EVANS, BEN MORRIS, AND ARNAB SEN

Because particles can coalesce in the ζ system that are unable to coalesce in the
ζ̂ system, it might seem at first glance that for N = n we have

{ζi(t) : 1 ≤ i ≤ n} ⊆ {zi : ζ̂i(t) = (zi,mi), 1 ≤ i ≤ n}
for all t ≥ 0. However, it is not too difficult to construct examples where preventing
particles from coalescing at an early stage of the evolution leaves several particles
around at a later stage in the correct locations and with the correct marks to lead to
an excess of coalescences over what occurs in the unmarked system. Nonetheless,
an ordering of this sort holds in the sense of stochastic domination rather than
pointwise. More precisely, the following claim holds.

Claim. Given ξ = (ξi)ni=1 and marks (mi)ni=1, we can construct ζ̃ = (ζ̃i)ni=1 that
has the same distribution as ζ̂ and is such that, almost surely,

{ζi(t) : 1 ≤ i ≤ n} ⊆ {zi : ζ̃i(t) = (zi,mi), 1 ≤ i ≤ n}
for all t ≥ 0.

Before we present the formal construction of ζ̃, we give the following verbal
description which may help the reader. We have hitherto defined a ranking for
an n-particle system to be a bijection from [n] to [n], but it will be convenient to
modify this definition and now take a ranking of n particles to be an injection from
[n] to N (the previous definition can be thought of as the special case of this one
where the image of the injection is [n]).

(i) Imagine that at any given time each particle can be one of three types:
active, injured, or dead.
(a) All particles are initially active.
(b) An active particle can remain active or become either injured or dead.
(c) An injured particle can remain injured or become dead.
(d) A dead particle remains dead.

(ii) Suppose that an active particle collides with another active particle.
(a) The particle with smaller rank (at the time of the collision) remains

active.
(b) If the two colliding particles have same mark, then the particle with

the higher rank becomes dead and follows the path of the other particle
thereafter. There is no change in the rankings of any particle.

(c) If the colliding particles have different marks, then the particle with
the higher rank becomes injured. The higher rank particle continues
to follow its own path. Its ranking and the rankings of all the particles
that have already coalesced with it are increased by n. The rankings
of all other particles remain unchanged.

(iii) Suppose that an injured particle collides with an active particle with the
same mark. Then, the injured particle becomes dead and follows the path of
the active particle thereafter. The rankings of all particles are unchanged.

(iv) Suppose that two injured particles sharing the same mark collide. Then,
the particle with the higher rank becomes dead and follows the path of
the particle with lower rank thereafter. The rankings of all particles are
unchanged.

(v) If there is a collision between any pair of particles not described above, then
both of the colliding particles continue to follow their own paths and there
is no change in the ranking.
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We now give a more formal description of the above construction. Let υ0 = 0 <
υ1 < υ2 < · · · be the successive collision times for the process ζ = Λσξ, that is,

(2.1) υi+1 := inf{t > υi : ζj(t) = ζk(t), ζj(υi) 6= ζk(υi)}.

To build our coalescing system, we first define an (Ft)t≥0-adapted ranking-valued
process (σt)t≥0 which starts from σ0 at time t = 0 and is constant on each interval
[υi, υi+1). For i ≥ 1 and k ∈ [n], set

συi(k) :=


συi−(k) + n, if ∃j ∈ [n], such that ζj(t) = ζk(t),

ζj(υi−1) 6= ζk(υi−1), mj 6= mk, σ(j) < σ(k),
συi−(k), otherwise.

For υi ≤ t < υi+1, set

ζ̃(t) := Λ̂συi
(
θ̂υi−υi−1 ◦ Λ̂συi−1

. . .
(
θ̂υ2−υ1 ◦ Λ̂συ1 (θ̂υ1−υ0 ◦ Λ̂συ0 ξ̂)

))
(t− υi),

where the collision operators Λ̂σ are defined as before (the definition continues to
make sense with our more general notion of ranking) and (θ̂t)t≥0 is the family of
shift operators on the space of Ê-valued paths.

The following observations prove the claim.

(1) The rank of an injured particle is always higher than that of an active
particle.

(2) During the evolution of the process, the relative ranking of the active par-
ticles is unchanged. Thus, the set of E-valued components of the locations
of the active particles present at time t evolves as the set-valued coalescing
process corresponding to ζ = Λσ0ξ.

(3) The vector-valued process ζ̃ has the same distribution as the coalescing
process ζ̂. Indeed, if we define the successive collision times υ̂i, i ≥ 0, for
the process ζ̂ by analogy with (2.1), then it follows by induction and the
strong Markov property of the process ξ̂ with respect to filtration (Ft)t≥0

that the distribution of the process (υ̂i ∧ t, ζ̂υ̂i∧t)t≥0 does not depend on
the ranking process (συ̂i∧t)t≥0 when (σt)t≥0 is (Ft)t≥0-adapted.

3. Processes on compact spaces

The conditions of the following theorem are shown in [CK03] to hold for sym-
metric processes with suitable Dirichlet forms on d-sets in Rn, 0 < d ≤ n. They
certainly hold for the symmetric stable processes on the circle, with d = 1 and
1 < α < 2 the stable index. The latter processes are, in any case, instances of the
processes considered in [CK03], where other examples such as stable subordinations
of suitable diffusions on fractals are also discussed.

Theorem 3.1 (Instantaneous Coalescence). Suppose that (E, r) is a compact met-
ric space equipped with a Borel probability measure µ such that

C1ε
d ≤ µ(B(x, ε)) ≤ C2ε

d, x ∈ E, 0 < ε ≤ 1,

for constants 0 < C1 < C2, where B(x, ε) is the open ball of radius ε centered
at x. Consider a Feller Markov process X with state space E that has jointly
continuous transition densities (t, x, y) 7→ p(t, x, y) with respect to µ. Assume that
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X is symmetric with respect to µ, so that p(t, x, y) = p(t, y, x). Assume further that
for some α > d we have bounds of the form

c1

{
t−d/α ∧ t

r(x, y)d+α

}
≤ p(t, x, y) ≤ c2

{
t−d/α ∧ t

r(x, y)d+α

}
, 0 < t ≤ 1,

for suitable constants 0 < c1 < c2. Let Ξ be the corresponding set-valued coalescing
system. Then, almost surely, Ξt is a finite set for all t > 0.

Proof. We will verify the bounds (1.1) and (1.2), so that we can apply the argument
in the Introduction.

Let X ′ and X ′′ be two independent copies of X started from x′ and x′′, respec-
tively. We want a lower bound on the probability

P{∃0 ≤ s ≤ t : X ′s = X ′′s }.

To this end, set Wε :=
∫ t

0
1{r(X ′s, X ′′s ) ≤ ε} ds and note by the Cauchy–Schwarz

inequality that

P{∃0 ≤ s ≤ t : X ′s = X ′′s } = lim
ε↓0

P{Wε > 0} ≥ lim inf
ε↓0

E[Wε]2

E[W 2
ε ]

=

[∫ t
0

∫
E
p(s, x′, y)p(s, x′′, y)µ(dy) ds

]2
2
∫ t

0

∫ t
s

∫
E

∫
E
p(s, x′, y)p(s, x′′, y)p(u− s, y, z)p(u− s, y, z)µ(dy)µ(dz) du ds

=

[∫ t
0
p(2s, x′, x′′) ds

]2
2
∫ t

0

∫ t
s

∫
E
p(s, x′, y)p(s, x′′, y)p(2(u− s), y, y)µ(dy) du ds

.

(3.1)

For t = 1
2r(x

′, x′′)α, the numerator in (3.1) is bounded below by[
c1

1
2

∫ r(x′,x′′)α

0

v−d/α ∧ v

r(x′, x′′)d+α
dv

]2

=
c21
4

[∫ r(x′,x′′)α

0

v

r(x′, x′′)d+α
dv

]2

≥ c3r(x′, x′′)2(α−d)

for a suitable constant c3. For the same value of t, the denominator is bounded
above by

2c2
∫ r(x′,x′′)α/2

0

∫ r(x′,x′′)α/2

s

∫
E

p(s, x′, y)p(s, x′′, y)(2(u− s))−d/α µ(dy) du ds

= c4

∫ r(x′,x′′)α/2

0

p(2s, x′, x′′)(r(x′, x′′)α/2− s)1−d/α ds

≤ c5

[∫ r(x′,x′′)α

0

v

r(x′, x′′)d+α
(r(x′, x′′)α/2− v/2)1−d/α dv

]
≤ c6r(x′, x′′)2(α−d)



COALESCING PARTICLE SYSTEMS 11

for suitable constants c4, c5, c6. Thus,

P
{
∃0 ≤ s ≤ 1

2
r(x′, x′′)α : X ′s = X ′′s

}
≥ p :=

c3
c6
> 0

and (1.1) holds.
Turning to (1.2), note that if n points of E are such that each point is distance

at least ε from any other, then nC1( ε2 )d ≤ µ(E) = 1. Hence, in any set with more
than n points there must be at least two points at distance at most 2C−1/d

1 n−1/d

apart.
We can therefore apply the argument in the Introduction with κ = 1

d , because
ακ = α

d > 1 by assumption. However, there is one small technical point that needs
to be taken care of. The construction of the set-valued coalescing process Ξ was
carried out under the assumption that Assumption 2.4 holds, and we need to verify
that this is the case. It follows from the continuity of the transition densities and
the Markov property that P{∃δ ≤ s ≤ t : X ′s = X ′′s } is jointly continuous in the
starting points x′ and x′′ for 0 < δ ≤ t. By the Blumenthal zero-one law it therefore
suffices to show for x′ = x′′ = x that

(3.2) 0 < inf
t>0

P{∃0 < s ≤ t : X ′s = X ′′s } = inf
t>0

lim
δ↓0

P{∃δ ≤ s ≤ t : X ′s = X ′′s }.

The argument that led to (3.1) shows the limit in rightmost term of (3.2) is bounded
below by [∫ t

0

∫
E
p(s, x, y)p(s, x, y)µ(dy) ds

]2
2
∫ t

0

∫ t
s

∫
E

∫
E
p(s, x, y)p(s, x, y)p(u− s, y, z)p(u− s, y, z)µ(dy)µ(dz) du ds

=

[∫ t
0
p(2s, x, x) ds

]2
2
∫ t

0

∫ t
s

∫
E
p(s, x, y)p(s, x, y)p(2(u− s), y, y)µ(dy) du ds

.

For small t > 0, the numerator is bounded below by[
c12d/α

∫ t

0

s−d/α ds

]2

= c7t
2(1−d/α)

for a suitable (positive) constant c7. Similarly, the denominator is bounded above
by

c8

∫ t

0

∫ t

s

s−d/α(u− s)−d/α du ds = c8
4d/α−1

√
πΓ(1− d/α)t2(1−d/α)

(1− d/α)Γ
(

3
2 − d/α

)
= c9t

2(1−d/α)

for suitable (finite) constants c8 and c9. Therefore, the rightmost term of (3.2) is
bounded below by c7/c9 > 0, as required. �

4. Brownian motion on the Sierpinski gasket

4.1. Definition and properties of the gasket. Let

G0 := {(0, 0), (1, 0), (1/2,
√

3/2)}
be the vertices of the unit triangle in R2 and denote by H0 the closed convex hull of
G0. The Sierpinski gasket, which we also call the finite gasket, is a fractal subset of
the plane that can be constructed via the following Cantor-like cut-out procedure.
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Let {b0, b1, b2} be the midpoints of three sides of H0 and let A be the interior of
the triangle with vertices {b0, b1, b2}. Define H1 := H0 \A so that H1 is the union
of 3 closed upward facing triangles of side length 2−1. Now repeat this operation
on each of the smaller triangles to obtain a set H2, consisting of 9 upward facing
closed triangles, each of side 2−2. Continuing this fashion, we have a decreasing
sequence of closed non-empty sets {Hn}∞n=0 and we define the Sierpinski gasket as

G :=
∞⋂
n=0

Hn.

We call each of the 3n triangles of side 2−n that make up Hn an n-triangle of G.
Denote by Tn the collection of all n-triangles of G. Let Vn be the set of vertices of
the n-triangles.

We call the unbounded set

G̃ :=
∞⋃
n=0

2nG

the infinite gasket (where, as usual, we write cB := {cx : x ∈ B} for c ∈ R and
B ⊆ R2) . The concept of n-triangle, where n may now be a negative integer,
extends in the obvious way to the infinite gasket. Denote the set of all n-triangles
of G̃ by T̃n. Let Ṽn be the vertices of T̃n.

Given a pathwise connected subset A ∈ R2, let ρA be the shortest-path metric
on A given by

ρA(x, y) := inf{|γ| : γ is a path between x and y and γ ⊆ A},
where |γ| denote the length (that is, the 1-dimensional Hausdorff measure) of γ.
For the finite gasket G, ρG is comparable to the usual Euclidean metric | · | (see,
for example, [Bar98, Lemma 2.12]) with the relation,

|x− y| ≤ ρG(x, y) ≤ c|x− y|, ∀x, y ∈ G,
for a suitable constant 1 < c < ∞. It is obvious that the same is also true for the
metric ρG̃ on the infinite gasket.

Let µ denote the df -dimensional Hausdorff measure on G̃ where df := log 3/ log 2
is the fractal or mass dimension of the gasket. For the finite gasket G we have
0 < µ(G) < ∞ and, with a slight abuse of notation, we will also use the notation
µ to denote the restriction of this measure to G. Moreover, we have the following
estimate on the volume growth of µ

(4.1) C ′rdf ≤ µ(B(x, r)) ≤ Crdf for x ∈ G̃, 0 < r < 1,

where B(x, r) ⊆ G̃ is the open ball with center x and radius r in the Euclidean
metric and C,C ′ are suitable constants (see [BP88]).

4.2. Brownian motions. We construct a graph Gn (respectively, G̃n) embedded
in the plane with vertices Vn (resp. Ṽn) by adding edges between pairs of vertices
that are distance 2−n apart from each other. Let Xn (resp. X̃n) be the natural
random walk on Gn (resp. G̃n); that is, the discrete time Markov chain that at each
step chooses uniformly at random from one of the neighbors of the current state.
It is known (see [BP88, Bar98]) that the sequence (Xn

b5ntc)t≥0 (resp. (X̃n
b5ntc)t≥0)

converges in distribution as n → ∞ to a limiting process (Xt)t≥0 (resp. (X̃t)t≥0)
that is a G-valued (resp. G̃-valued) strong Markov process (indeed, a Feller process)
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with continuous sample paths. The processes X and X̃ are called, for obvious
reasons, the Brownian motion on the finite and infinite gaskets, respectively. The
Brownian motion on the infinite gasket has the following scaling property:

(4.2) (2X̃t)t≥0 under Px has same law as (X̃5t)t≥0 under P2x.

The process X̃ has a family p̃(t, x, y), x, y ∈ G̃, t > 0, of transition densities with
respect to the measure µ that is jointly continuous on (0,∞) × G̃ × G̃. Moreover,
p̃(t, x, y) = p̃(t, y, x) for all x, y ∈ G̃ and t > 0, so that the process X̃ is symmetric
with respect to µ.

Let dw := log 5/ log 2 denote the walk dimension of the gasket. The following
crucial “heat kernel bound” is established in [BP88]

c′1t
−df/dw exp

(
−c′2

(
|x− y|dw

t

)1/(dw−1)
)

≤ p̃(t, x, y)

≤ c1t−df/dw exp

(
−c2

(
|x− y|dw

t

)1/(dw−1)
)
, ∀x, y ∈ G̃, t > 0.

(4.3)

Because the infinite gasket G̃ and the associated Brownian motion X̃ both have
re-scaling invariances that G and X do not, it will be convenient to work with X̃
and then use the following observation to transfer our results to X.

Lemma 4.1 (Folding lemma). There exists a continuous mapping ψ : G̃→ G such
that ψ restricted to G is the identity, ψ restricted to any 0-triangle is an isometry,
and |ψ(x)−ψ(y)| ≤ |x−y| for arbitrary x, y ∈ G̃. Moreover, if the G̃-valued process
X̃ is started at an arbitrary x ∈ G̃, then the G-valued process ψ ◦ X̃ has the same
distribution the process X started at ψ(x).

Proof. Let L be the subset of the plane formed by the set of points of the form
n1(1, 0) + n2(1/2,

√
3/2), where n1, n2 are non-negative integers, and the line seg-

ments that join such points that are distance 1 apart. It is easy to see that there is
a unique labeling of the vertices of L by {1, ω, ω2} that has the following properties.

• Label (0, 0) with 1.
• If vertex v is labeled a ∈ {1, ω, ω2}, then the vertex v + (1, 0) are labeled

with aω.
• If we think of the labels as referring to elements of the cyclic group of order

3, then if vertex v is labeled a ∈ {1, ω, ω2}, then vertex v + (1/2,
√

3/2) is
labeled with aω2.

Indeed, the label of the vertex n1(1, 0) + n2(1/2,
√

3/2) is ωn1+2n2 .
Given a vertex v ∈ L, let ι(v) be the unique vertex in {(0, 0), (1, 0), (1/2,

√
3/2)}

that has the same label as v. If the vertices v1, v2, v3 ∈ L are the vertices of a
triangle with side length 1, then ι(v1), ι(v2), ι(v3) are all distinct.

With the above preparation, let us now define the map ψ. Given x ∈ G̃, let
∆ ∈ T̃0 be a triangle with vertices v1, v2, v3 that contains x (if x belongs to Ṽn,
then there may be more than one such triangle, but the choice will not matter).
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We may write x as a unique convex combination of the vertices v1, v2, v3,

x = λ1v1 + λ2v2 + λ3v3,

3∑
i=1

λi = 1, λi ≥ 0.

The triple (λ1, λ2, λ3) is the vector of barycentric coordinates of x. We define ψ(x)
by

ψ(x) := λ1ι(v1) + λ2ι(v2) + λ3ι(v3).

It is clear that ψ : G̃→ G is well-defined and has the stated properties.
Recall that X̃(n) be the natural random walk on G̃n. It can be verified easily

that the projected process ψ ◦ X̃(n) is the natural random walk on Gn. The result
follows by taking the limit as n→∞ and using the continuity of ψ. �

Lemma 4.2 (Maximal inequality). (a) Let X̃i, 1 ≤ i ≤ n, be n independent
Brownian motions on the infinite gasket G̃ starting from the initial states xi, 1 ≤
i ≤ n. For any t > 0,

P
{

sup
0≤s≤t

|X̃i
s − xi| > r, for some 1 ≤ i ≤ n

}
≤ 2nc1 exp

(
− c2(rdw/t)1/(dw−1)

)
,

where c1, c2 > 0 are constants and dw = log 5/ log 2 is the walk dimension of the
gasket.
(b) The same estimate holds for the case of n independent Brownian motions Xi,
1 ≤ i ≤ n, on the finite gasket G starting from the initial states xi, 1 ≤ i ≤ n.

Proof. (a) Let X̃ = (X̃t)t≥0 be a Brownian motion on G̃. Then for x ∈ G̃, t > 0,
and r > 0,

Px
{

sup
0≤s≤t

|X̃s − x| > r

}
≤ Px{|X̃t − x| > r/2}

+ Px
{
|X̃t − x| ≤ r/2, sup

0≤s≤t
|X̃s − x| > r

}
.

Writing S := inf{s > 0 : |X̃s − x| > r}, the second term above equals

Ex
[
1{S<t}PX̃S{|X̃t−S − x| ≤ r/2}

]
≤ sup
y∈∂B(x,r)

sup
s≤t

Py{|X̃t−s − y| > r/2},

where ∂B(x, r) is the boundary of B(x, r) so that

Px
{

sup
0≤s≤t

|X̃s − x| > r

}
≤ 2 sup

y∈G̃
sup
s≤t

Py{|X̃s − y| > r/2}

≤ 2c1 exp
(
− c2(rdw/t)1/(dw−1)

)
,

where the last estimate is taken from [Bar98, Theorem 2.23(e)]. The lemma now
follows by a union bound.

(b) This is immediate from part (a) and Lemma 4.1. �
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4.3. Collision time estimates. We first show that two independent copies of X̃
collide with positive probability.

Proposition 4.3. Let X̃ ′ and X̃ ′′ be two independent copies of X̃. Then,

P(x′,x′′){∃t > 0 : X̃ ′t = X̃ ′′t } > 0

for all (x′, x′′) ∈ G̃× G̃.

Proof. Note that X̃ = (X̃ ′, X̃ ′′) is a Feller process on the locally compact separable
metric space G̃ × G̃ that is symmetric with respect to the Radon measure µ ⊗ µ
and has transition densities p̃(t, x′, y′)× p̃(t, x′′, y′′). The corresponding α-potential
density is

uα(x,y) :=
∫ ∞

0

e−αtp̃(t, x1, y1)× p̃(t, x2, y2) dt for α > 0,

where x = (x1, x2) and y = (y1, y2). A standard potential theoretic result says that
a compact set B ⊆ G̃ × G̃ is non-polar if there exists a non-zero finite measure ν
that is supported on B and has finite energy, that is,∫ ∫

uα(x,y) ν(dx) ν(dy) <∞.

Take B = {(x′, x′′) ∈ G×G : x′ = x′′} and ν to be the ‘lifting’ of the Hausdorff
measure µ on the finite gasket onto B. We want to show that∫

G

∫
G

∫ ∞
0

e−αtp̃2(t, x, y) dt µ(dx)µ(dy) <∞.

It will be enough to show that∫
G

∫
G

∫ ∞
0

p̃2(t, x, y) dt µ(dx)µ(dy) <∞.

It follows from the transition density estimate (4.3) and a straightforward inte-
gration that ∫ ∞

0

p̃2(t, x, y) dt ≤ C|x− y|−γ

for some constant C, where γ := 2df − dw. Thus,∫
G

∫
G

∫ ∞
0

p̃2(t, x, y) dt µ(dx)µ(dy)

≤ C
∫
G

∫
G

|x− y|−γ µ(dx)µ(dy)

≤ C
∫
G

∫ ∞
0

µ{x ∈ G : |x− y|−γ > s} ds µ(dy)

≤ C
∫
G

∫ ∞
0

µ{x ∈ G : |x− y| < s−1/γ} ds µ(dy)

≤ C + C

∫
G

∫ ∞
1

µ{x ∈ G : |x− y| < s−1/γ} ds µ(dy)

≤ C + C1

∫
G

∫ ∞
1

s−df/γ ds µ(dy) [ By (4.1)]

≤ C + C2

∫ ∞
1

s−df/γ ds.



16 STEVEN N. EVANS, BEN MORRIS, AND ARNAB SEN

It remains to note that γ − df = (2 log 3/ log 2 − log 5/ log 2) − (log 3/ log 2) =
(log 3− log 5)/ log 2 < 0, and so df/γ < 1.

This shows that P(x′,x′′){X̃ hits the diagonal} > 0 for some (x′, x′′) ∈ G̃ ×
G̃. Because p̃2(t, x, y) > 0 for all x, y ∈ G̃ and t > 0, we even have
P(x′,x′′){X̃ hits the diagonal} > 0 for all (x′, x′′) ∈ G̃× G̃. �

We next establish a uniform lower bound on the collision probability of a pair
of independent Brownian motions on the infinite gasket as long as the distance
between their starting points remains bounded.

Theorem 4.4. There exist constants β > 0 and p > 0 such that if X̃ ′ and X̃ ′′ are
two independent Brownian motions on G̃ starting from any two points x, y belonging
to the same n-triangle of G̃, then

P(x,y){X̃ ′t = X̃ ′′t for some t ∈ (0, β5−n)} ≥ p.

This result will require a certain amount of work, so we first note that it leads
easily to an analogous result for the finite gasket.

Corollary 4.5. If X ′ and X ′′ are two independent Brownian motions on G starting
from any two points x, y belonging to the same n-triangle of G, then

P(x,y){X ′t = X ′′t for some t ∈ (0, β5−n)} ≥ p,

where β > 0 and p > 0 are the constants given in Theorem 4.4.

Proof. The proof follows immediately from Lemma 4.1, because if X̃ ′t = X̃ ′′t for
some t, then it is certainly the case that ψ ◦ X̃ ′t = ψ ◦ X̃ ′′t . �

Definition 4.6 (Extended triangles for the infinite gasket). Recall that T̃n is the
set of all n-triangles of G̃. Given ∆ ∈ T̃0 such that ∆ does not have the origin as one
its vertices, we define the corresponding extended triangle ∆e ⊂ G̃ as the interior
of the union of the original 0-triangle ∆ with the three neighboring 1-triangles in
G̃ which share one vertex with ∆ and are not contained in ∆. Note that for the
(unique) triangle ∆ in T̃n having the origin as one of its vertices, there are two
neighboring 1-triangles in G̃ that share one vertex with it which are not contained
in ∆. In this case, by ∆e, we mean the interior of the union of ∆ and these two
triangles.

Fix some ∆ ∈ T̃0. Let Z̃ be the Brownian motion on ∆e killed when it exits
∆e. It follows from arguments similar to those on [Doo01, page 590], that Z̃ has
transition densities p̃K(t, x, y), t > 0, x, y ∈ ∆e, with respect to the restriction of µ
to ∆e, and these densities have the following properties:

• p̃K(t, x, y) = p̃K(t, y, x) for all t > 0, x, y ∈ ∆e.
• p̃K(t, x, y) ≤ p̃(t, x, y), for all t > 0, x, y ∈ ∆e.
• y 7→ p̃K(t, x, y) is continuous for all t > 0, x ∈ ∆e, and x 7→ p̃K(t, x, y) is

continuous for all t > 0, y ∈ ∆e.

It follows that the process Z̃ is Feller and symmetric with respect to the measure
µ.
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Lemma 4.7. Let Z̃ ′, Z̃ ′′ be two independent copies of the killed Brownian motion
Z̃. Given any ε > 0, there exists 0 < δ < ε such that the set of (x, y) ∈ ∆e ×∆e

for which
P(x,y){Z̃ ′t = Z̃ ′′t for some t ∈ (δ, ε)} > 0

has positive µ⊗ µ mass.

Proof. An argument similar to that in the proof of Proposition 4.3 shows that

P(x0,y0){Z̃ ′t = Z̃ ′′t for some t > 0} > 0

for some (x0, y0) ∈ ∆e ×∆e.
Thus, for any ε > 0, we can partition the interval (0,∞) into the subintervals

(0, ε), [iε, (i+ 1)ε), i ≥ 0 and use the Markov property to deduce that there exists
a point (x1, y1) ∈ ∆e ×∆e such that

(4.4) P(x1,y1){Z̃ ′t = Z̃ ′′t for some t ∈ (0, ε)} > 0.

By continuity of probability, we can find 0 < η < ε <∞ such that

P(x1,y1){Z̃ ′t = Z̃ ′′t for some t ∈ (η, ε)} > 0.

By the Markov property,

0 < P(x1,y1){Z̃ ′t = Z̃ ′′t for some t ∈ (η, ε)}

=
∫

∆e

∫
∆e

p̃K(η/2, x1, x)p̃K(η/2, y1, y)

× P(x,y){Z̃ ′t = Z̃ ′′t , for some t ∈ (η/2, ε− η/2)}µ(dx)µ(dy).

Therefore, the initial points (x, y) ∈ ∆e ×∆e for which the probability

P(x,y){Z̃ ′t = Z̃ ′′t for some t ∈ (η/2, ε− η/2)}

is positive form a set with positive µ⊗µ measure. The proof now follows by taking
δ = η/2. �

We record the following result for the reader’s ease of reference.

Lemma 4.8 (Lemma 3.35 of [Bar98]). There exists a constant c1 > 1 such that if
x, y ∈ ∆e, r = |x− y|, then

Px{X̃t = y for some t ∈ (0, rdw) and |X̃t − x| ≤ c1r for all t ≤ rdw} > 0.

Lemma 4.9. There exists a constant c > 0 such that for each point x ∈ ∆e, each
open subset U ⊂ ∆e, and each time 0 < t ≤ c

Px{Z̃t ∈ U} > 0.

In particular, p̃K(t, x, y) > 0 for all x, y ∈ ∆e and 0 < t ≤ c.

Proof. The following three steps combined with the strong Markov property estab-
lish the lemma.
Step 1. There exists a constant c > 0 such that starting from x ∈ ∆e, the unkilled
Brownian motion on the infinite gasket X̃ will stay within ∆e up to time c with
positive probability.
Step 2. Fix y ∈ U . For all sufficiently small η > 0,

Py{X̃ does not exit U before time η} > 0.
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Step 3. For any δ > 0, z, y ∈ ∆e

Pz{Z̃ hits y before δ} > 0.

Consider Step 1. Note that if x ∈ G̃, then (see [Bar98, Equation 3.11]) there
exists a constant c > 0 such that for the unkilled process X̃, we have,

Px{|X̃t − x| ≤ 1/4 for t ∈ [0, c]} > 0.

But if x ∈ ∆e, then

Px{X̃t ∈ ∆e for t ∈ [0, c]} ≥ Px{|X̃t − x| ≤ 1/4 for t ∈ [0, c]},
and the claim follows.

Step 2 is obvious from the right continuity of the paths of the killed Brownian
motion Z̃ at time 0.

Consider Step 3. Fix z, y ∈ ∆e and 0 < δ ≤ |z − y|. Let Sn be the n-th
approximating graph of G̃ with the set of vertices Vn. Choose n large enough so
that we can find points z0 and y0 in Vn close to z and y respectively so that

|z − z0| ≤
δ

3
, |y − y0| ≤

δ

3
and

B(z, c1|z − z0|) ⊆ ∆e, B(y0, c1|y − y0|) ⊆ ∆e

where c1 is as in Lemma 4.8 and the notation B(u, r) denotes the intersection with
the infinite gasket G̃ of the closed ball in the plane of radius r around the point u.

The length of a shortest path γ lying Sn between z0 and y0 is the same as their
distance in the original metric ρG̃(z0, y0). Moreover, for any two points p and p′ on
γ, the length of the segment of γ between p and p′ is the same as their distance in
the original metric ρG̃(p, p′).

Thus, we can choose m + 1 equally spaced points z0, z1, . . . , zm = y0 on γ such
that

ρG̃(zi+1, zi) =
1
m
ρG̃(z0, y0) for each i.

Since γ is compact, dist(γ, ∂∆e) > 0. Thus we can choose m large so that

B(zi, c1|zi+1 − zi|) ⊆ ∆e for each i.

By repeated application of Lemma 4.8 and the strong Markov property, we
conclude that the probability that Z̃ hits y starting from z before the time

Tm := |z − z0|dw + |y − y0|dw +
m−1∑
i=0

|zi+1 − zi|dw

is strictly positive. Step 3 follows immediately since

Tm ≤
(
δ

3

)dw
+
(
δ

3

)dw
+ constant×m× 1

mdw
|z0 − y0|dw ≤ δ

for m sufficiently large, because dw > 1. �

Lemma 4.10. Let Z̃ ′ and Z̃ ′′ be two independent copies of the killed Brownian
motion Z̃. For any 0 < δ < β, the map

(x, y) 7→ P(x,y){Z̃ ′t = Z̃ ′′t for some t ∈ (δ, β)}
is continuous on ∆e ×∆e.
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Proof. We have

P(x,y){Z̃ ′t = Z̃ ′′t for some t ∈ (δ, β)}

=
∫

∆e

∫
∆e

p̃K(δ, x, x′) p̃K(δ, y, y′)

× P(x′,y′){Z̃ ′t = Z̃ ′′t for some t ∈ (0, β − δ)}µ(dx′)µ(dy′),

and the result follows from the continuity of z 7→ p̃K(δ, z, z′) for each z′ ∈ ∆e. �

Proof of Theorem 4.4. For any x, y ∈ ∆,

P(x,y){Z̃ ′t = Z̃ ′′t for some t ∈ (δ, β)}

=
∫

∆e

∫
∆e

p̃K(δ/2, x, x′)p̃K(δ/2, y, y′)

× P(x′,y′){Z̃ ′t = Z̃ ′′t for some t ∈ (δ/2, β − δ/2)}µ(dx′)µ(dy′) > 0,

(4.5)

by Lemmas 4.7, 4.9 and 4.10.
Applying Lemma 4.10 and equation (4.5) and the fact that a continuous function

achieves its minimum on a compact set, we have for any ∆ ∈ T̃0 that

q(∆) := inf
x,y∈∆

P(x,y){Z̃ ′t = Z̃ ′′t for some t ∈ (0, β)} > 0.

Note that for any two ∆1,∆2 ∈ T̃0 which do not contain the origin, there exists
a local isometry between the corresponding extended triangles ∆e

1,∆
e
2. Since the

unkilled Brownian motion X̃ in G̃ is invariant with respect to local isometries,

q(∆1) = q(∆2).

Given two independent copies X̃ ′ and X̃ ′′ of X̃, set

p := inf
∆∈T̃0

inf
x,y∈∆

P(x,y){X̃ ′t = X̃ ′′t for some t ∈ (0, β)}.

The above observations enable us to conclude that p > 0.
For the infinite gasket, if ∆ ∈ T̃n, then 2n∆ ∈ T̃0 and the scaling property of

Brownian motion on the infinite gasket gives us that for any ∆ ∈ T̃n
inf

x,y∈∆
P(x,y){X̃ ′t = X̃ ′′t for some t ∈ (0, 5−nβ)}

= inf
x,y∈2n∆

P(x,y){X̃ ′t = X̃ ′′t for some t ∈ (0, β)}.

Therefore, for any ∆ ∈ T̃n and any x, y ∈ ∆,

(4.6) P(x,y){X̃ ′t = X̃ ′′t for some t ∈ (0, 5−nβ)} ≥ p.
�

Corollary 4.11. The Brownian motions X̃ and X on the infinite and finite gaskets
both satisfy Assumption 2.4.

Proof. By Theorem 4.4 and the Blumenthal zero-one law, we have for two indepen-
dent Brownian motions X̃ ′ and X̃ ′′ on G̃ and any point (x, x) ∈ G̃× G̃ that

P(x,x){for all ε > 0, ∃ 0 < t < ε such that X̃ ′t = X̃ ′′t } = 1.

Lemma 4.10 then gives the claim for X̃. The proof for X is similar. �
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5. Instantaneous coalescence on the gasket

We will establish the following three results in this section after obtaining some
preliminary estimates.

Theorem 5.1 (Instantaneous Coalescence). (a) Let Ξ be the set-valued coalescing
Brownian motion process on G̃ with Ξ0 compact. Almost surely, Ξt is a finite set
for all t > 0.
(b) The conclusion of part (a) also holds for the set-valued coalescing Brownian
motion process on G

Theorem 5.2 (Continuity at time zero). (a) Let Ξ be the set-valued coalescing
Brownian motion process on G̃ with Ξ0 compact. Almost surely, Ξt converges to
Ξ0 as t ↓ 0.
(b) The conclusion of part (a) also holds for the set-valued coalescing Brownian
motion process on G.

Theorem 5.3 (Instantaneous local finiteness). Let Ξ be the set-valued coalescing
Brownian motion process on G̃ with Ξ0 a possibly unbounded closed set. Almost
surely, Ξt is a locally finite set for all t > 0.

Lemma 5.4 (Pigeon hole principle). Place M balls in m boxes and allow any two
balls to be paired off together if they belong to the same box. Then, the maximum
number of disjoint pairs of balls possible is at least (M −m)/2.

Proof. Note that in an optimal pairing there can be at most one unpaired ball per
box. It follows that the number of paired balls is at least M −m and hence the
number of pairs is at least (M −m)/2. �

Define the ε-fattening of a set A ⊆ G̃ to be the set Aε := {y ∈ G̃ : ∃x ∈
A, |y − x| < ε}. Define the ε-fattening of a set A ⊆ G in G similarly. Recall the
constants p and β from Theorem 4.4. Set γ := 1/(1 − p/5) > 1. Given a finite
subset A of G̃ or G and a time-interval I ⊆ R+, define the random variable R(A; I)
to be the range of the set-valued coalescing process Ξ in the finite or the infinite
gasket during time I with initial state A; that is,

R(A; I) :=
⋃
s∈I

Ξs.

Define a stopping time for the same process Ξ by τAm := inf{t : #Ξt ≤ m}.

Lemma 5.5. (a) Let Ξ be the set-valued coalescing Brownian motion process in the
infinite gasket with Ξ0 = A, where A ⊂ G̃ of cardinality n such that Aε for some
ε > 0 is contained in an extended triangle ∆e of G̃. Then, there exist constants C1

and C2 which may depend on ε but are independent of A such that

P
{
τAdnγ−1e > 25βn− log3 5or R(A, [0, τdnγ−1e]) 6⊆ Aεn

−(1/6) log3 5
}

≤ C1 exp(−C2n
1/3).

(5.1)

(b) The same inequality holds for the set-valued coalescing coalescing Brownian
motion process in the finite gasket.
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Proof. (a) For any integer b ≥ 1, the set A can be covered by at most 2 × 3b

b-triangles. Put
bn := max{b : 2× 3b ≤ n/2},

or, equivalently,
bn = blog3(n/4)c.

By Lemma 5.4, at time t = 0 it is possible to form at least n/2 − n/4 = n/4
disjoint pairs of particles, where two particles are deemed eligible to form a pair if
they belong to the same bn-triangle. Fix such an (incomplete) pairing of particles.
Define a new “partial” coalescing system involving n particles, where a particle is
only allowed to coalesce with the one it has been paired up with and after such a
coalescence occurs the two partners in the pair both follow the path of the particle
having the lower rank among the two. Evidently this new system is same as the
coalescing system in the marked space where two particles have the same mark if
and only if they have been paired up. From the discussion in Subsection 2.3 the
number of surviving distinct particles in this partial coalescing system stochastically
dominates the number of surviving particles in the original coalescing system.

By Theorem 4.4, the probability that a pair in the partial coalescing system coa-
lesces before time tn := β5−bn is at least p, independently of the other pairs. Thus,
the number of coalescence by time tn in the partial coalescing system stochastically
dominates a random variable that is distributed as the number of successes in n/4
independent Bernoulli trials with common success probability p. By Hoeffding’s
inequality, the probability that a random variable with the latter distribution takes
a value np/5 or greater is at least 1− e−C′1n for some constant C ′1 > 0. Thus, the
probability that the number of surviving particles in the original coalescing system
drops below d(1− p/5)ne = dnγ−1e by time tn ≤ 25βn− log3 5 is at least 1− e−C′1n.

From Corollary 4.2(a) and the fact that during a fixed time interval the maxi-
mum displacement of particles in the coalescing system is always bounded by the
maximum displacement of independent particles starting from the same initial con-
figuration, the probability that over a time interval of length 25βn− log3 5 one of the
coalescing particles has moved more than a distance εn−(1/6) log3 5 from its original
position is bounded by

2nc1 exp
(
− c2((εn−(1/6) log3 5)dw(25βn− log3 5)−1)1/(dw−1)

)
≤ 2 exp

(
log n− C ′2(n(1/2) log3 5)1/(dw−1)

)
≤ C1 exp(−C2n

(1/4) log3 5)

≤ C1 exp(−C2n
1/3).

(b) The proof is identical to part (a). It uses Corollary 4.5 in place of Theorem 4.4
and Lemma 4.2(b) in place of Lemma 4.2(a). �

Lemma 5.6. (a) Let Ξ be the set-valued coalescing Brownian motion process in
the infinite gasket with Ξ0 = A. Fix ε > 0. Set νi := εγ−(1/6) log3 5×i and ηi =
25βγ−i log3 5 for i ≥ 1. There are positive constants C1 = C1(ε) and C2 = C2(ε)
such that

P

{
τAdγke >

m∑
i=k+1

ηi or R(A; [0, τAdγke]) 6⊆ (A)
∑m
i=k+1 νi

}
≤

m∑
i=k+1

C1 exp(−C2γ
i/3),
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uniformly for all sets A of cardinality dγme such that the fattening A
∑m
i=k+1 νi is

contained in some extended triangle ∆e of G̃.
(b) The analogous inequality holds for the set-valued coalescing Brownian motion
process in the finite gasket.

Proof. Fix an extended triangle ∆e of the infinite gasket and a set A such that
#A = dγme and A

∑m
i=k+1 νi ⊆ ∆e. We will prove the bound by induction on

m. By the strong Markov property and Lemma 5.5, we have, using the notation
Aτ,m−1 := ΞτA

dγm−1e
,

P
{
τAdγke >

m∑
i=k+1

ηi or R(A; [0, τAdγke]) 6⊆ (A)
∑m
i=k+1 νi

}
≤ P

{
τAdγm−1e > ηm or R(A; [0, τAdγm−1e]) 6⊆ A

νm
}

+ E
[
1
{
Aτ,m−1 ⊆ Aνm

}
× P

{
τ
Aτ,m−1

dγke >

m−1∑
i=k+1

ηi or R(Aτ,m−1; [0, τAτ,m−1

dγke ]) 6⊆ A
∑m−1
i=k+1 νi

}]
≤ C1 exp(−C2γ

m/3)

+ sup
A1:|A1|=bγm−1c,

A1⊆Aνm

P

{
τA1
dγke >

m−1∑
i=k+1

ηi or R(A1; [0, τA1
dγke]) 6⊆ A

∑m−1
i=k+1 νi

1

}
.

Since (Aνm)νm−1 ⊆ Aνm+νm−1 ⊆ ∆e, the second term on the last expression can be
bounded similarly as

sup
A1:|A1|=bγm−1c,

A1⊆Aνm

P

{
τA1
dγke >

m−1∑
i=k+1

ηi or R(A1; [0, τA1
dγke]) 6⊆ A

∑m−1
i=k+1 νi

1

}

≤ C1 exp(−C2γ
(m−1)/3)

+ sup
A2:|A2|=bγm−2c,
A2⊆Aνm+νm−1

P

{
τA2
dγke >

m−2∑
i=k+1

ηi or R(A2; [0, τA2
dγke]) 6⊆ A

∑m−2
i=k+1 νi

2

}
.

Iterating the above argument, the assertion follows.
(b) Same as part (a). �

Proof of Theorem 5.1. (a) We may assume that Q := Ξ0 is infinite, since otherwise
there is nothing to prove. By scaling, it is enough to prove the theorem when Q
is contained in G. Let Q1 ⊆ Q2 ⊆ . . . ⊆ Q be a sequence of finite sets such that
#Qm = dγme and Q is the closure

⋃∞
m=1Qm. By assigning suitable rankings to

a system of independent particles starting from each point in
⋃∞
m=1Qm, we can

obtain coupled set-valued coalescing processes Ξ1,Ξ2, . . . and Ξ with the property
that Ξm0 = Qm, Ξ0 = Q, and for each t > 0,

Ξ1
t ⊆ Ξ2

t ⊆ . . . ⊆ Ξt

and Ξt is the closure of
⋃∞
m=1 Ξmt .
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Fix ε > 0 so that Qε
∑∞
i=0 γ

−(1/6) log3 5×i
is contained in the extended triangle

corresponding to G. Set νi := εγ−(1/6) log3 5×i and ηi := 25βγ−i log3 5. Fix t > 0.
Choose k0 so that

∑∞
i=k0+1 ηi ≤ t. By Lemma 5.6 and the fact that s 7→ #Ξms is

non-increasing, we have, for each k ≥ k0,

P
{

#Ξmt ≤ dγke
}
≥ 1−

m∑
i=k+1

C1 exp(−C2γ
i/3).

By the coupling, the sequence of events {#Ξmt ≤ dγke} decreases to the event
{#Ξt ≤ dγke}. Consequently, letting m→∞, we have, for each k ≥ k0,

P
{

#Ξt ≤ dγke
}
≥ 1−

∞∑
i=k+1

C1 exp(−C2γ
i/3).

Finally letting k →∞, we conclude that

P {#Ξt <∞} = 1.

(b) Same as part (a). �

Proof of Theorem 5.2. (a) Assume without loss of generality thatQ := Ξ0 is infinite
and contained in the 1-triangle that contains the origin. By Theorem 5.1, Ξt is
almost surely finite and hence it can be considered as a random element in (K, dH).
It is enough to prove that limt↓0 dH(Ξt,Ξ0) = 0 almost surely.

Let Q1 ⊆ Q2 ⊆ · · · be a nested sequence of finite approximating sets of Q chosen
as in the proof of Theorem 5.1, and let Ξm be the corresponding coupled sequence
of set-valued processes.

Fix δ > 0. Choose m sufficiently large that Q ⊆ Q
δ/2
m . By the right-continuity

of the finite coalescing process, we have

lim
t↓0

dH(Ξmt , Qm)→ 0 a.s.

Thus, with probability one, (Ξmt )δ/2 ⊇ Qm when t is sufficiently close to 0. But,
by the choice of Qm, with probability one,

(5.2) (Ξmt )δ ⊇ (Qm)δ/2 ⊇ Q

for t sufficiently close to 0.
Conversely, choose ε > 0 sufficiently small so that

∑∞
i= νi < δ/2 where νi is

defined as in Lemma 5.6. Set sk :=
∑∞
i=k+1 ηi ∼ Cγ−k log3 5. From Lemma 5.6, we

have

P
{
R(Qm; [0, sk]) 6⊆ (Q)δ

}
≤ P

{
τQmdγke >

m∑
i=k+1

ηi or R(Qm; [0, τQmdγke]) 6⊆ (Q)δ/2
}

+ P
{

max displacement of dγke independent particles in [0, sk−1] > δ/2
}

≤
m∑

i=k+1

C1 exp(−C2γ
i/3) + C ′1dγke exp(−C ′2γk)

≤ C3 exp(−C2γ
k/3).(5.3)
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By Theorem 5.1 #Ξs <∞ almost surely, and hence Ξms = Ξs for all m sufficiently
large almost surely. Therefore, by letting m→∞ in (5.3), we obtain

P
{
R(Q; [0, sk]) 6⊆ (Q)δ

}
≤ C3 exp(−C2γ

k/3).

Letting k →∞, we deduce that, with probability one,

Ξt ⊆ Qδ

for t sufficiently close to 0. Combined with (5.2), this gives the desired claim. �

Proof of Theorem 5.3. By scaling, it suffices to show that almost surely, the set
Ξt ∩G is finite for all t > 0. Fix any 0 < t1 < t2. We will show that almost surely,
the set Ξt ∩G is finite for all t ∈ [t1, t2].

Set J0,1 := G. Now for r ≥ 1, the set 2rG \ 2r−1G can be covered by exactly
2 × 3r−1 many 0-triangles that we will denote by Jr,` for 1 ≤ ` ≤ 2 × 3r−1. The
collection {Jr,`} forms a covering of the infinite gasket.

Put Q := Ξ0 and let D be a countable dense subset of Q. Associate each point
of D with one of the (at most two) 0-triangles to which it belongs. Denote by Dr,`

the subset of D consisting of particles associated with Jr,`. Construct a partial
coalescing system starting from D such that two particles coalesce if and only if
they collide and both of their initial positions belonged to the same set Dr,`. Let
(Ξr,`t )t≥0 denote the set-valued coalescing process consisting of the (possibly empty)
subset of the particles associated with Jr,`.

Note that (
⋃

(r,`) Ξr,`t )t≥0 is the set-valued coalescing process in the marked space
where two particles have same mark if and only if both of them originate from
the same Dr,`. Approximate the set D by a sequence of increasing finite sets.
By appealing to the same kind of reasoning as in Theorem 5.1, we can find an
increasing sequence of set-valued coalescing processes in the original (resp. marked)
space starting from this sequence of increasing finite sets which ‘approximates’
the process (Ξt)t≥0 ( resp. (

⋃
(r,`) Ξr,`t )t≥0) in the limit. Now using the coupling

involving finitely many particles given in Subsection 2.3 and then passing to the
limit, it follows that

P{#Ξt ∩G <∞ ∀t ∈ [t1, t2]} ≥ P{#
⋃
(r,`)

Ξr,`t ∩G <∞ ∀t ∈ [t1, t2]}.

It thus suffices to prove that almost surely, the set G ∩
⋃

(r,`) Ξr,`t is finite for all
t ∈ [t1, t2].

Fix ∆ = Jr,` ∈ T̃0. Recall the notation of Lemma 5.6. Find ε > 0 such that
∆
∑∞
i=0 νi ⊂ ∆e. Let A1 ⊆ A2 ⊆ . . . be an increasing sequence of sets such that⋃

mAm = Dr,`. Construct coupled set-valued coalescing processes Ξ̃1 ⊆ Ξ̃2 ⊆ . . . ⊆
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Ξr,` such that Ξ̃m0 = Am. Note that by Lemma 5.6

P
{

Ξr,`t ∩G 6= ∅ for some t ∈ [t1, t2]
}

= lim
m→∞

P
{

Ξ̃mt ∩G 6= ∅ for some t ∈ [t1, t2]
}

≤ lim sup
m→∞

P
{
τAmdγre >

∞∑
i=r+1

ηi or Ξm
τAmdγre

6⊆ ∆e or max displacement

of the remaining dγre coalescing particles in [τAmdγre, t2] > (r − 3/2)
}

≤ lim sup
m→∞

P
{
τAmdγre >

∞∑
i=r+1

ηi or Ξm
τAmdγre

6⊆ ∆e
}

+ P
{

max displacement of dγre independent particles in [0, t2] > (r − 3/2)
}

≤ C ′1 exp(−C2γ
r/3) + 2c1dγre exp

(
− c2((r − 3/2)dw/t2)1/(dw−1)

)
≤ C3 exp(−C4γ

r/3)

for some constants C3, C4 > 0 that may depend on t2 but are independent of r and
`. The first of the above inequalities follows from the fact that

inf
x∈Jr,`, y∈G

|x− y| ≥ 2r−1 − 1 ≥ r − 1,

which implies that ∆e is at least at a distance (r − 3/2) away from G.
Now by a union bound,

P
{

Ξr,`t ∩G 6= ∅ for some t ∈ [t1, t2] and for some `
}
≤ 2× 3r−1C3 exp(−C4γ

r/3).

By the Borel-Cantelli lemma, the events Ξr,`t ∩G 6= ∅ for some t ∈ [t1, t2] happen for
only finitely many (r, `) almost surely. This combined with the fact that #Ξr,`t <∞
for all t > 0 almost surely gives that

#
⋃
(r,`)

(G ∩ Ξr,`t ) <∞ for all t ∈ [t1, t2]

almost surely. �

6. Instantaneous coalescence of stable particles

6.1. Stable processes on the real line and unit circle. Let X = (Xt)t≥0 be a
(strictly) stable process with index α > 1 on R. The characteristic function of Xt

can be expressed as exp(−Ψ(λ)t) where Ψ(·) is called the characteristic exponent
and has the form

Ψ(λ) = c|λ|α
(
1− iυsgn(λ) tan(πα/2)

)
, λ ∈ (−∞,∞), i =

√
−1.

where c > 0 and υ ∈ [−1, 1]. The Lévy measure of Π is absolutely continuous with
respect to Lebesgue measure, with density

Π(dx) =
{
c+x−α−1dx if x > 0,
c−|x|−α−1dx if x < 0,
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where c+, c− are two nonnegative real numbers such that υ = (c+− c−)/(c+ + c−).
The process is symmetric if c+ = c− or equivalently υ = 0. The stable process has
the scaling property

X
d= (c−1/αXct)t≥0

for any c > 0. If we put Yt := e2πiXt , then the process (Yt)t≥0 is the stable process
with index α > 1 on the unit circle T.

We define the distance between two points on T as the length of the shortest
path between them and continue to use the same notation | · | as for the Euclidean
metric on the real line.

Theorem 6.1 (Instantaneous Coalescence). (a) Let Ξ be the set-valued coalescing
stable process on R with Ξ0 compact. Almost surely, Ξt is a finite set for all t > 0.
(b) The conclusion of part (a) holds for the set-valued coalescing stable process on
T.

Theorem 6.2 (Continuity at time zero). (a) Let Ξ be the set-valued coalescing
stable process on R with Ξ0 compact. Almost surely, Ξt converges to Ξ0 as t ↓ 0.
(b) The conclusion of part (a) holds for the set-valued coalescing stable process on
T.

Theorem 6.3 (Instantaneous local finiteness). Let Ξ be the set-valued coalescing
stable process on R with Ξ0 a possibly unbounded closed set. Almost surely, Ξt is a
locally finite set for all t ≥ 0.

We now proceed to establish hitting time estimates and maximal inequalities
for stable processes that are analogous to those established for Brownian motions
on the finite and infinite gaskets in Section 4. With these in hand, the proofs of
Theorem 6.1 and Theorem 6.2 follow along similar, but simpler, lines to those in the
proofs of the corresponding results for the gasket (Theorem 5.1 and Theorem 5.2),
and so we omit them. However, the proof of Theorem 6.3 is rather different from
that of its gasket counterpart (Theorem 5.3), and so we provide the details at the
end of this section.

Lemma 6.4. Let Z = X ′ − X ′′ where X ′ and X ′′ are two independent copies of
X, so that Z is a symmetric stable process with index α. For any 0 < δ < β,

Pz{Zt = 0 for some t ∈ (δ, β)} > 0.

Proof. The proof follows from [Ber96, Theorem 16] which says that the single points
are not essentially polar for the process Z, the fact that Z has a continuous symmet-
ric transition density with respect to Lebesgue measure, and the Markov property
of the Z. �

It is well-known that symmetric stable process Z on R with index greater than
one hit points (see, for example, [Ber96, Chapter VIII, Lemma 13]). Thus there
exists a 0 < β <∞ so that

0 < P1{Zt = 0 for some t ∈ (0, β)} =: p (say).

By scaling,
Pε{Zt = 0 for some t ∈ (0, βεα)} = p.
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Lemma 6.5. Suppose that X ′ and X ′′ are two independent stable processes on R
starting at x′ and x′′. For any ε > 0,

inf
|x′−x′′|≤ε

P{X ′t = X ′′t for some t ∈ (0, βεα)} = p.

Since X ′t = X ′′t always implies that exp(2πiX ′t) = exp(2πiX ′′t ) (but converse is
not true), we have the following corollary of the above lemma.

Corollary 6.6. If Y ′ and Y ′′ are two independent stable processes on T starting
at y′ and y′′, then for any ε > 0

inf
|y′−y′′|≤2πε

P{Y ′t = Y ′′t for some t ∈ (0, βεα)} ≥ p.

Lemma 6.7 ([Ber96]). Suppose that X is an α-stable process on the real line.
There exists a constant C > 0 such that

P0

{
sup

0≤s≤1
|Xs| > u

}
≤ Cu−α, u ∈ R+.

Corollary 6.8. (a) Let X1, X2, . . . , Xn be independent stable processes of index
α > 1 on R starting from x1, x2, . . . , xn respectively. Then for each x ∈ R+ and
t > 0,

P
{

sup
0≤s≤t

|Xi
s − xi| > u for some 1 ≤ i ≤ n

}
≤ Cntu−α.

(b) The same bound holds for n independent stable processes on T when u < π.

Again we set γ := 1/(1 − p/5) > 1. Fix (α − 1)/2 < η < α − 1 and define
h := 1− (1 + η)/α > 0. Recall the definitions of τAm and R(A; I).

Lemma 6.9. Fix 0 < ε ≤ 1/2.
(a) There is a constant C1 = C1(ε) such that Ξ be a set-valued coalescing stable
process in R with Ξ0 = A, then

P
{
τAdnγ−1e > β(2`/n)α or R(A, [0, τdnγ−1e]) 6⊆ Aε`n

−h
}
≤ C1n

−η,(6.1)

where n = #A and `/2 is the diameter of A.
(b) Let Ξ be the set-valued coalescing process in T with Ξ0 = A, where A has
cardinality n. Then there exists constant C1 = C1(ε), independent of A, such that

P
{
τAdnγ−1e > β(2/n)α or R(A, [0, τdnγ−1e]) 6⊆ Aεn

−h
}
≤ C1n

−η.

Proof. (a) Note that Aε` ⊆ [a − `/2, a + `/2] for some a ∈ R, and this interval
can be divided into n/2 subintervals of length 2`/n. We follow closely the proof of
Lemma 5.5. By considering a suitable partial coalescing particle system consisting
of at least n/4 pairs of particles where a pair can only coalesce if they have started
from the same subinterval, we have that the number of surviving particles in the
original coalescing system is at most dγ−1ne within time tn := β(2`/n)α with error
probability bounded by exp(−C ′1n).

By Corollary 6.8, the maximum displacement of n independent stable particles
on R within time tn is at most

ε(tn)1/αn(1+η)/α = 2β1/αε`n−1+(1+η)/α = 2β1/αε`n−h

with error probability at most c2n−η.
(b) The proof for part (b) is similar. �
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Using strong Markov property and Lemma 6.9 repetitively as we did in the proof
of Lemma 5.6, we can obtain the following lemma. We omit the details.

Lemma 6.10. Let 0 < ε ≤ 1/2, ` > 0 be given. Let νi := εγ−hi and ηi := β2αγ−αi.
(a) Given a finite set A ⊂ R, let Ξ denote the set-valued coalescing stable process
in R with Ξ0 = A . Then, there exist constants C2 = C2(ε) such that

P
{
τAdγke > `α

m∑
i=k+1

ηi or R(A; [0, τAdγke]) 6⊆ (A)`
∑m
i=k+1 νi

}
≤ C2γ

−ηk,

uniformly over all sets A such that A ⊆ [a − `/4, a + `/4] for some a ∈ R and
#A = dγme.
(b) Given a finite set A ⊂ T, let Ξ denote the set-valued coalescing stable process
in T with Ξ0 = A . Then, there exist constants C2 = C2(ε) such that

P
{
τAdγke >

m∑
i=k+1

ηi or ΞτA
dγke
6⊆ (A)

∑m
i=k+1 νi

}
≤ C2γ

−ηk,

uniformly over all sets A ⊆ T such that #A = dγme.

Proof of Theorem 6.3. By scaling, it is enough to show that for each 0 < t1 < t2 <
∞, almost surely, the set Ξt ∩ [−1, 1] is finite for each t ∈ [t1, t2]. Set d := 2/η. For
r ≥ 1, define

Jr,1 :=
[
−

r∑
j=1

jd,−
r−1∑
j=1

jd
)

and Jr,2 :=
[ r−1∑
j=1

jd,

r∑
j=1

jd
)
.

Then the collection {Jr,i}r≥1,i=1,2 forms a partition of the real line into bounded
sets. Note that infx∈[−1,1],y∈Jr,i |x− y| � rd+1 as r →∞.

Let D be a countable dense subset of Q. Run a partial coalescing system starting
from D such that two particles coalesce if and only if they collide and both belonged
initially to the same Jr,i. Let (Ξr,it )t≥0 denote the set-valued coalescing process
consisting of the (possibly empty) subset of the particles starting from D∩Jr,i. By
arguing similarly as in the proof of Theorem 5.3, it suffices to prove that the set
[−1, 1] ∩ Ξr,it is empty for all t ∈ [t1, t2] for all but finitely many pairs (r, i) almost
surely.

Fix a pair (r, i). Find ε > 0 such that
∑∞
i=0 νi ≤ 1/2 which implies that

(Jr,i)
∑∞
i=0 νi ⊆ (Jr,i)r

d

. Let A1 ⊆ A2 ⊆ . . . be an increasing sequence of finite
sets such that for

⋃
mAm = D ∩ Jr,i. Let Ξ̃m be a coalescing set-valued sta-

ble processes such that Ξ̃m0 = Am and couple these processes together so that
Ξ̃1
t ⊆ Ξ̃2

t ⊆ . . . ⊆ Ξr,it . Set b = b(r) := (2/η)dlogγ re. Note that by Lemma 6.10,
Corollary 6.8, and the fact that there exists c1 > 0 such that for all r sufficiently
large

inf
x∈[−1,1],y∈Jr,i

|x− y| − rd ≥ crd+1,
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we can write

P
{

Ξr,it ∩ [−1, 1] 6= ∅ for some t ∈ [t1, t2]
}

= lim
m→∞

P
{

Ξ̃mt ∩ [−1, 1] 6= ∅ for some t ∈ [t1, t2]
}

≤ lim sup
m→∞

P
{
τAmdγbe >

∞∑
i=b+1

ηi or Ξ̃m
τAm
dγbe
6⊆ (Jr,i)r

d

or max displacement

of the remaining dγbe coalescing particles in [τAmdγbe, t2] > crd+1
}

≤ lim sup
m→∞

P
{
τAmdγbe >

∞∑
i=r+1

ηi or Ξ̃m
τAm
dγbe
6⊆ (Jr,i)r

d
}

+ P
{

max displacement of dγbe independent particles in [0, t2] > crd+1
}

≤ C2γ
−ηb + C3dγbecr−α(d+1) ≤ C ′2r−2 + C ′3r

−α

for suitable constants C ′2, C
′
3 > 0. The proof now follows from the Borel-Cantelli

lemma. �
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