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SPECTRAL CLUSTERING AND THE
HIGH-DIMENSIONAL STOCHASTIC BLOCKMODEL

By Karl Rohe, Sourav Chatterjee and Bin Yu

University of California Berkeley

Networks or graphs can easily represent a diverse set of data
sources that are characterized by interacting units or actors. Social
networks, representing people who communicate with each other, are
one example. Communities or clusters of highly connected actors form
an essential feature in the structure of several empirical networks.
Spectral clustering is a popular and computationally feasible method
to discover these communities.

The Stochastic Blockmodel (Holland, Laskey and Leinhardt, 1983)
is a social network model with well defined communities; each node
is a member of one community. For a network generated from the
Stochastic Blockmodel, we bound the number of nodes “misclus-
tered” by spectral clustering. The asymptotic results in this paper
are the first clustering results that allow the number of clusters in
the model to grow with the number of nodes, hence the name high-
dimensional.

In order to study spectral clustering under the Stochastic Block-
model, we first show that under the more general latent space model,
the eigenvectors of the normalized graph Laplacian asymptotically
converge to the eigenvectors of a “population” normalized graph
Laplacian. Aside from the implication for spectral clustering, this
provides insight into a graph visualization technique. Our method of
studying the eigenvectors of random matrices is original.

1. Introduction. Researchers in many fields and businesses in several
industries have exploited the recent advances in information technology to
produce an explosion of data on complex systems. Several of the complex
systems have interacting units or actors that networks or graphs can easily
represent, providing a range of disciplines with a suite of potential ques-
tions on how to produce knowledge from network data. Understanding the
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system of relationships between people can aid both epidemiologists and so-
ciologists. In biology, the predator-prey pursuits in a natural environment
can be represented by a food web, helping researchers better understand
an ecosystem. The chemical reactions between metabolites and enzymes
in an organism can be portrayed in a metabolic network, providing bio-
chemists with a tool to study metabolism. Networks or graphs conveniently
describe these relationships, necessitating the development of statistically
sound methodologies for exploring, modeling, and interpreting networks.

Communities or clusters of highly connected actors form an essential fea-
ture in the structure of several empirical networks. The identification of these
clusters helps answer vital questions in a variety of fields. In the communica-
tion network of terrorists, a cluster could be a terrorist cell; web pages that
provide hyperlinks to each other form a community that might host discus-
sions of a similar topic; and a community or cluster in a social network likely
shares a similar interest.

Searching for clusters is algorithmically difficult because it is computation-
ally intractable to search over all possible clusterings. Even on a relatively
small graph, one with 100 nodes, the number of different partitions exceeds
some estimates of the number of atoms in the universe by twenty orders of
magnitude (Champion, 1998). For several different applications, physicists,
computer scientists, and statisticians have produced numerous algorithms
to overcome these computational challenges. Often these algorithms aim to
discover clusters which are approximately the “best” clusters as measured
by some empirical objective function (see Fortunato (2009) or Fjällström
(1998) for comprehensive reviews of these algorithms from the physics or
the engineering perspective respectively).

Clustering algorithms generally come from two sources: from fitting proce-
dures for various statistical models that have well defined communities and,
more commonly, from heuristics or insights on what network communities
should look like. This division is analogous to the difference in multivari-
ate data analysis between parametric clustering algorithms, such as an EM
algorithm fitting a mixture of gaussians model, and nonparametric cluster-
ing algorithms such as k-means, which are instead motivated by optimizing
an objective function. Snijders and Nowicki (1997); Nowicki and Snijders
(2001); Handcock, Raftery and Tantrum (2007) and Airoldi et al. (2008) all
attempt to cluster the nodes of a network by fitting various network mod-
els that have well defined communities. In contrast, the Girvan-Newman
algorithm (Girvan and Newman, 2002) and spectral clustering are two al-
gorithms in a large class of algorithms motivated by insights and heuristics
on communities in networks.
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Newman and Girvan (2004) motivate their algorithm by observing, “If
two communities are joined by only a few inter-community edges, then all
paths through the network from vertices in one community to vertices in the
other must pass along one of those few edges.” The Girvan–Newman algo-
rithm searches for these few edges and removes them, resulting in a graph
with multiple connected components (connected components are clusters of
nodes such that there are no connections between the clusters). The Girvan–
Newman algorithm then returns these connected components as the clusters.
Like the Girvan–Newman algorithm, spectral clustering is a “nonparamet-
ric” algorithm motivated by the following insights and heuristics: spectral
clustering is a convex relaxation of the Normalized Cut optimization prob-
lem (Shi and Malik, 2000), it can identify the connected components in a
graph (if there are any) (Donath and Hoffman, 1973; Fiedler, 1973), and it
has an intimate connection with electrical network theory and random walks
on graphs (Klein and Randić, 1993; Meilă and Shi, 2001).

1.1. Spectral clustering. Spectral clustering is both popular and compu-
tationally feasible (von Luxburg, 2007). The algorithm has been rediscovered
and reapplied in numerous different fields since the initial work of Donath
and Hoffman (1973) and Fiedler (1973). Computer scientists have found
many applications for variations of spectral clustering, such as load balanc-
ing and parallel computations (Van Driessche and Roose, 1995; Hendrick-
son and Leland, 1995), partitioning circuits for very-large-scale integration
design (Hagen and Kahng, 1992) and sparse matrix partitioning (Pothen,
Simon and Liou, 1990). Detailed histories of spectral clustering can be found
in Spielman and Teng (2007) and von Luxburg, Belkin and Bousquet (2008).

The algorithm is defined in terms of a graph G, represented by a vertex
set and an edge set. The vertex set {v1, . . . , vn} contains vertices or nodes.
These are the actors in the systems discussed above. We will refer to node
vi as node i. We will only consider unweighted and undirected edges. So, the
edge set contains a pair (i, j) if there is an edge, or relationship, between
nodes i and j. The edge set can be represented by the adjacency matrix
W ∈ {0, 1}n×n:

(1.1) Wji = Wij =

{
1 if (i, j) is in the edge set
0 otherwise.

Define L and diagonal matrix D both elements of Rn×n in the following
way,

(1.2)
Dii =

∑
kWik

L = D−1/2WD−1/2.
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Some readers may be more familiar defining L as I − D−1/2WD−1/2. For
spectral clustering, the difference is immaterial because both definitions have
the same eigenvectors.

The spectral clustering algorithm addressed in this paper is defined as
follows:

Spectral clustering for k many clusters
Input: Adjacency matrix W ∈ {0, 1}n×n.

1. Find the eigenvectors X1, . . . , Xk ∈ Rn

corresponding to the k eigenvalues of L that
are largest in absolute value. L is symmetric,
so choose these eigenvectors to be orthogonal.
Form the matrix X = [X1, . . . , Xk] ∈ Rn×k by putting
the eigenvectors into the columns.

2. Treating each of the n rows in X as a point
in Rk, run k-means with k clusters. This creates
k non-overlapping sets A1, . . . , Ak whose union is
1, . . . , n.

Output: A1, . . . , Ak. This means that node i is
assigned to cluster g if the ith row of X is
assigned to Ag in step 2.

Traditionally, spectral clustering takes the eigenvectors of L correspond-
ing to the largest k eigenvalues. The algorithm above takes the largest k
eigenvalues by absolute value. The reason for this is explained in Section 3.

Recently, spectral clustering has also been applied in cases where the
graph G and its adjacency matrix W are not given, but instead inferred from
a measure of pairwise similarity k(·, ·) between data points X1, . . . , Xn in a
metric space. The similarity matrix K ∈ Rn×n, whose i, jth element is Kij =
k(Xi, Xj), takes the place of the adjacency matrix W in the above definition
of L,D, and the spectral clustering algorithm. For image segmentation, Shi
and Malik (2000) suggested spectral clustering on an inferred network where
the nodes are the pixels and the edges are determined by some measure of
pixel similarity. In this way, spectral clustering has many similarities with
the nonlinear dimension reduction or manifold learning techniques such as
Diffusion maps and Laplacian eigenmaps (Coifman et al., 2005; Belkin and
Niyogi, 2003).

The normalized graph Laplacian L is an essential part of spectral cluster-
ing, Diffusion maps, and Laplacian eigenmaps. As such, its properties have
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been well studied under the model that the data points are randomly sam-
pled from a probability distribution, whose support may be a manifold, and
the Laplacian is built from the inferred graph based on some measure of sim-
ilarity between data points. Belkin (2003); Lafon (2004); Bousquet, Chapelle
and Hein (2004); Hein, Audibert and von Luxburg (2005); Hein (2006); Giné
and Koltchinskii (2006); Belkin and Niyogi (2008); von Luxburg, Belkin and
Bousquet (2008) have all shown various forms of asymptotic convergence for
this graph Laplacian. Although all of their results are encouraging, their re-
sults do not apply to the random network models we study in this paper.

1.2. Statistical estimation. Stochastic models are useful because they
force us to think clearly about the randomness in the data in a precise
and possibly familiar way. Many random network models have been pro-
posed (Erdös and Rényi, 1959; Holland and Leinhardt, 1981; Holland, Laskey
and Leinhardt, 1983; Frank and Strauss, 1986; Watts and Strogatz, 1998;
Barabási and Albert, 1999; Hoff, Raftery and Handcock, 2002; Van Duijn,
Snijders and Zijlstra, 2004; Goldenberg et al., 2009). Some of these mod-
els, such as the Stochastic Blockmodel, have well defined communities. The
Stochastic Blockmodel is characterized by the fact that each node belongs
to one of multiple blocks and the probability of a relationship between two
nodes depends only on the block memberships of the two nodes. If the prob-
ability of an edge between two nodes in the same block is larger than the
probability of an edge between two nodes in different blocks, then the blocks
produce communities in the random networks generated from the model.

Just as statisticians have studied when least-squares regression can esti-
mate the “true” regression model, it is natural and important for us to study
the ability of clustering algorithms to estimate the true clusters in a net-
work model. Understanding when and why a clustering algorithm correctly
estimates the “true” communities would provide a rigorous understanding
of the behavior of these algorithms, suggest which algorithm to choose in
practice, and aid the corroboration of algorithmic output.

This paper studies the performance of spectral clustering, a nonparamet-
ric method, on a parametric task of estimating the blocks in the Stochas-
tic Blockmodel. It connects the first strain of clustering research based on
stochastic models to the second strain based on heuristics and insights on
network clusters. The Stochastic Block Model allows for some first steps
in understanding the behavior of spectral clustering and provides a bench-
mark to measure its performance. However, because this model does not
really account for the complexities observed in several empirical networks,
good performance on the Stochastic Blockmodel should only be considered
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a necessary requirement for a good clustering algorithm.
Researchers have explored the performance of other clustering algorithms

under the Stochastic Blockmodel. Snijders and Nowicki (1997) showed the
consistency under the two block Stochastic Blockmodel of a clustering rou-
tine that clusters the nodes based on their degree distributions. Although
this clustering is very easy to compute it is not clear that the estimators
would behave well for larger graphs given the extensive literature on the
long tail of the degree distribution (Albert and Barabási, 2002). Later, Con-
don and Karp (1999) provided an algorithm and proved that it is consistent
under the Stochastic Blockmodel, or what they call the planted `-partition
model. Their algorithm runs in linear time. However, it always estimates
clusters that contain an equal number of nodes. More recently, Bickel and
Chen (2009) proved that under the Stochastic Blockmodel, the maximizers
of the Newman–Girvan modularity (Newman and Girvan, 2004) and what
they call the likelihood modularity are asymptotically consistent estimators
of block partitions. These modularities are objective functions that have
no clear relationship to the Girvan–Newman algorithm. Finding the maxi-
mum of the modularities is NP hard (Brandes et al., 2007). It is important
to note that all aforementioned clustering results involving the Stochastic
Blockmodel are asymptotic in the number of nodes, with a fixed number of
blocks.

The work of Leskovec et al. (2008) shows that in a diverse set of large
empirical networks (tens of thousands to millions of nodes), the size of the
“best” clusters is not very large, around 100 nodes. Modern applications of
clustering require an asymptotic regime that allows these sorts of clusters.
Under the asymptotic regime cited in the previous paragraph, the size of
the clusters grows linearly with the number of nodes. It would be more
appropriate to allow the number of communities to grow with the number
of nodes. This restricts the blocks from becoming too large, following the
empirical observations of Leskovec et al. (2008).

This paper provides the first asymptotic clustering results that allow the
number of blocks in the Stochastic Blockmodel to grow with the number of
nodes. Similar to the asymptotic results on regression techniques that allow
the number of predictors to grow with the number of nodes, allowing the
number of blocks to grow makes the problem one of high-dimensional learn-
ing. Following our initial technical report, Choi, Wolfe and Airoldi (2010)
also studied community detection under the Stochastic Blockmodel with a
growing number of blocks. They used a likelihood-based approach, which is
computationally difficult to implement. However, they are able to greatly
weaken the assumptions of this paper.
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The Stochastic Blockmodel is an example of the more general latent space
model (Hoff, Raftery and Handcock, 2002) of a random network. Under the
latent space model, there are latent i.i.d. vectors z1, . . . , zn; one for each
node. The probability that an edge appears between any two nodes i and
j depends only on zi and zj and is independent of all other edges and un-
observed vectors. The results of Aldous and Hoover show that this model
characterizes the distribution of all infinite random graphs with exchange-
able nodes (Kallenberg, 2005). The graphs with n nodes generated from a
latent space model can be viewed as a subgraph of an infinite graph. In order
to study spectral clustering under the Stochastic Blockmodel, we first show
that under the more general latent space model, as the number of nodes
grows, the eigenvectors of L, the normalized graph Laplacian, converge to
eigenvectors of the “population” normalized graph Laplacian that is con-
structed with a similarity matrix E(W |z1, . . . , zn) (whose i, jth element is
the probability of an edge between node i and j) taking the place of the
adjacency matrix W in Equation (1.2). In many ways, E(W |z1, . . . , zn) is
similar to the similarity matrix K discussed above, only this time the vec-
tors (z1, . . . , zn) and their similarity matrix E(W |z1, . . . , zn) are unobserved.

The convergence of the eigenvectors has implications beyond spectral clus-
tering. Graph visualization is an important tool for social network analysts
looking for structure in networks and the eigenvectors of the graph Lapla-
cian are an essential piece of one visualization technique (Koren, 2005).
Exploratory graph visualization allows researchers to find structure in the
network; this structure could be communities or something more compli-
cated (Liotta, 2004; Freeman, 2000; Wasserman and Faust, 1994). In terms
of the latent space model, if z1, . . . , zn form clusters or have some other
structure in the latent space, then we might recover this structure from the
observed graph using graph visualization. Although there are several visual-
ization techniques, there is very little theoretical understanding of how these
techniques perform under stochastic models of structured networks. Because
the eigenvectors of the normalized graph Laplacian converge to “population”
eigenvectors, this provides support for a visualization technique similar to
the one proposed in Koren (2005).

The rest of the paper is organized as follows. The next subsection of the
introduction give some preliminary definitions. Following the introduction,
there are four main sections; Section 2 studies the latent space model, Sec-
tion 3 studies the Stochastic Blockmodel as a special case, Section 4 presents
some simulation results, and Section 5 investigates the plausibility of a key
assumption in five empirical social networks. Section 2 covers the eigenvec-
tors of L under the latent space model. The main technical result is Theorem
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2.1 in Section 2.2, which shows that, as the number of nodes grows, the nor-
malized graph Laplacian multiplied by itself converges in Frobenius norm
to a symmetric version of the population graph Laplacian multiplied by it-
self. The Davis-Kahan Theorem then implies that the eigenvectors of these
matrices are close in an appropriate sense. Lemma 2.1 specifies how the
eigenvectors of a matrix multiplied by itself are closely related to the eigen-
vectors of the original matrix. Theorem 2.2 combines Theorem 2.1 with the
Davis-Kahan Theorem and Lemma 2.1 to show that the eigenvectors of the
normalized graph Laplacian converge to the population eigenvectors. Sec-
tion 3 applies these results to the high-dimensional Stochastic Blockmodel.
Lemma 3.1 shows that the population version of spectral clustering can cor-
rectly identify the blocks in the Stochastic Blockmodel. Theorem 3.1 extends
this result to the sample version of spectral clustering. It uses Theorem 2.2
to bound the number of nodes that spectral clustering “misclusters.” This
section concludes with two examples. Section 4 presents three simulations
that investigate how the asymptotic results apply to finite samples. These
simulations suggest an area for future research. The main theorems in this
paper require a strong assumption on the degree distribution. Section 5 in-
vestigates the plausibility of this assumption with five empirical online social
networks. The discussion in Section 6 concludes the paper.

1.3. Preliminaries. The latent space model proposed by Hoff, Raftery
and Handcock (2002) is a class of a probabilistic model for W .

Definition 1. For i.i.d. random vectors z1, . . . , zn ∈ Rk and random
adjacency matrix W ∈ {0, 1}n×n, let P(Wij |zi, zj) be the probability mass
function of Wij conditioned on zi and zj. If a probability distribution on W
has the conditional independence relationships

P(W |z1, . . . , zn) =
∏
i<j

P(Wij |zi, zj)

and P(Wii = 0) = 1 for all i, then it is called an undirected latent space
model.

This model is often simplified to assume P(Wij |zi, zj) = P (Wij |dist(zi, zj))
where dist(·, ·) is some distance function. This allows the “homophily by at-
tributes” interpretation that edges are more likely to appear between nodes
whose latent vectors are closer in the latent space.

Define Z ∈ Rn×k such that its ith row is zi for all i ∈ V . Throughout
this paper we assume Z is fixed and unknown. Because P(Wij =
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1|Z) = E(Wij |Z), the model is then completely parametrized by the matrix

W = E(W |Z) ∈ Rn×n,

where W depends on Z, but this is dropped for notational convenience.
The Stochastic Blockmodel, introduced by Holland, Laskey and Leinhardt

(1983), is a specific latent space model with well defined communities. We
use the following definition of the undirected Stochastic Blockmodel:

Definition 2. The Stochastic Blockmodel is a latent space model
with

W = ZBZT ,

where Z ∈ {0, 1}n×k has exactly one 1 in each row and at least one 1 in each
column and B ∈ [0, 1]k×k is full rank and symmetric.

We refer to W , the matrix which completely parametrizes the latent space
model, as the population version of W . Define population versions of L and
D both in Rn×n as

(1.3)
Dii =

∑
k Wik

L = D−1/2W D−1/2

where D is a diagonal matrix, similar to before.
The results in this paper are asymptotic in the number of nodes n. When it

is appropriate, the matrices above are given a superscript of n to emphasize
this dependence. Other times, this superscript is discarded for notational
convenience.

2. Consistency under the Latent Space Model. We will show that
the empirical eigenvectors of L(n) converge in the appropriate sense to the
population eigenvectors of L (n). If L(n) converged to L (n) in Frobenius
norm, then the Davis-Kahan Theorem would give the desired result. How-
ever, these matrices do not converge. This is illustrated in an example be-
low. Instead, we give a novel result showing that under certain conditions
L(n)L(n) converges to L (n)L (n) in Frobenius norm. This implies that the
eigenvectors of L(n)L(n) converge to the eigenvectors of L (n)L (n). The fol-
lowing lemma shows that these eigenvectors can be chosen to imply the
eigenvectors of L(n) converge to the eigenvectors of L (n).

Lemma 2.1. When M ∈ Rn×n is a symmetric real matrix,

1. λ2 is an eigenvalue of MM if and only if λ or −λ is an eigenvalue of
M .
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2. If Mv = λv, then MMv = λ2v.
3. Conversely, if MMv = λ2v, then v can be written as a linear combi-

nation of eigenvectors of M whose eigenvalues are λ or −λ.

A proof of Lemma 2.1 can be found in Appendix A.

Example : To see how squaring a matrix helps convergence, let the ma-
trix W ∈ Rn×n have i.i.d. Bernoulli(1/2) entries. Because the diagonal ele-
ments in D grow like n, the matrix W/n behaves similarly to D−1/2WD−1/2.
Without squaring the matrix, the Frobenius distance from the matrix to its
expectation is

‖W/n− E(W )/n‖F =
1
n

√∑
i,j

(Wij − E(Wij))2 = 1/2.

Notice that, for i 6= j,

[WW ]ij =
∑
k

WikWkj ∼ Binomial(n, 1/4)

and [WW ]ii ∼ Binomial(n, 1/2). So, for any i, j, [WW ]ij − E[WW ]ij =
o(n1/2 log n). Thus, the Frobenius distance from the squared matrix to its
expectation is

‖WW/n2 − E(WW )/n2‖F =
1
n2

√∑
i,j

([WW ]ij − E[WW ]ij)
2 = o

(
log n
n1/2

)
.

When the elements of W are i.i.d. Bernoulli(1/2), (W/n)2 converges in
Frobenius norm and W/n does not. The next theorem addresses the conver-
gence of L(n)L(n).

Define

(2.1) τn = min
i=1,...,n

D
(n)
ii /n.

Recall that D
(n)
ii is the expected degree for node i. So, τn is the minimum

expected degree, divided by the maximum possible degree. It measures how
quickly the number of edges accumulates.

Theorem 2.1. Define the sequence of random matrices W (n) ∈ {0, 1}n×n
to be from a sequence of latent space models with population matrices W (n) ∈
[0, 1]n×n. With W (n), define the observed graph Laplacian L(n) as in (1.2).
Let L (n) be the population version of L(n) as defined in Equation (1.3).
Define τn as in Equation (2.1).
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If there exists N > 0, such that τ2
n log n > 2 for all n > N , then

‖L(n)L(n) −L (n)L (n)‖F = o

(
log n
τ2
n n

1/2

)
a.s.

Appendix A contains a non-asymptotic bound on ‖L(n)L(n)−L (n)L (n)‖F
as well as the proof of Theorem 2.1. The main condition in this theorem is
the lower bound on τn. This sufficient condition is used to produce Gaussian
tail bounds for each of the Dii and other similar quantities.

For any symmetric matrix M , define λ(M) to be the eigenvalues of M
and for any interval S ⊂ R, define

λS(M) = {λ(M) ∩ S}.

Further, define λ̄(n)
1 ≥ · · · ≥ λ̄

(n)
n to be the elements of λ(L (n)L (n)) and

λ
(n)
1 ≥ · · · ≥ λ

(n)
n to be the elements of λ(L(n)L(n)). The eigenvalues of

L(n)L(n) converge in the following sense,

max
i
|λ(n)
i − λ̄

(n)
i | ≤ ‖L(n)L(n) −L (n)L (n)‖F

= o

(
log n
τ2
n n

1/2

)
a.s.(2.2)

This follows from Theorem 2.1, Weyl’s inequality (Bhatia, 1987), and the
fact that the Frobenius norm is an upper bound of the spectral norm.

This shows that under certain conditions on τn, the eigenvalues of L(n)L(n)

converge to the eigenvalues of L (n)L (n). In order to study spectral cluster-
ing, it is now necessary to show that the eigenvectors also converge. The
Davis-Kahan Theorem provides a bound for this.

Proposition 2.1. (Davis-Kahan) Let S ⊂ R be an interval. Denote
X as an orthonormal matrix whose column space is equal to the eigenspace
of L L corresponding to the eigenvalues in λS(L L ) (more formally, the
column space of X is the image of the spectral projection of L L induced by
λS(L L )). Denote by X the analogous quantity for LL. Define the distance
between S and the spectrum of L L outside of S as

δ = min{|`− s|; ` eigenvalue of L L , ` 6∈ S, s ∈ S}.

If X and X are of the same dimension, then there is an orthonormal matrix
O, that depends on X and X, such that

1
2
‖X −XO‖2F ≤

‖LL−L L ‖2F
δ2
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The original Davis-Kahan Theorem bounds the “canonical angle,” also
known as the “principal angle,” between the column spaces of X and X.
Appendix B explains how this can be converted into the bound stated above.
To understand why the orthonormal matrix O is included, imagine the sit-
uation that L = L . In this case X is not necessarily equal to X . At a
minimum, the columns of X could be a permuted version of those in X . If
there are any eigenvalues with multiplicity greater than one, these problems
could be slightly more involved. The matrix O removes these inconveniences
and related inconveniences.

The bound in the Davis-Kahan Theorem is sensitive to the value δ. This
reflects that when there are eigenvalues of L L close to S, but not inside
of S, then a small perturbation can move these eigenvalues inside of S and
drastically alter the eigenvectors. The next theorem combines the previous
results to show that the eigenvectors of L(n) converge to the eigenvectors of
L (n). Because it is asymptotic in the number of nodes, it is important to
allow S and δ to depend on n. For a sequence of open intervals Sn ⊂ R,
define

δn = inf{|`− s|; ` ∈ λ(L (n)L (n)), ` 6∈ Sn, s ∈ Sn}(2.3)
δ′n = inf{|`− s|; ` ∈ λSn(L (n)L (n)), s 6∈ Sn}(2.4)
S′n = {`; `2 ∈ Sn}.(2.5)

The quantity δ′n is added to measure how well Sn insulates the eigenvalues
of interest. If δ′n is too small, then some important empirical eigenvalues
might fall outside of Sn. By restricting the rate at which δn and δ′n converge
to zero, the next theorem ensures the dimensions of X and X agree for a
large enough n. This is required in order to use the Davis-Kahan Theorem.

Theorem 2.2. Define W (n) ∈ {0, 1}n×n to be a sequence of growing ran-
dom adjacency matrices from the latent space model with population matrices
W (n). With W (n), define the observed graph Laplacian L(n) as in (1.2). Let
L (n) be the population version of L(n) as defined in Equation (1.3). Define
τn as in Equation (2.1). With a sequence of open intervals Sn ⊂ R, define
δn, δ′n, and S′n as in Equations (2.3), (2.4), and (2.5).

Let kn = |λS′n(L(n))|, the size of the set λS′n(L(n)). Define the matrix Xn ∈
Rn×kn such that its orthonormal columns are the eigenvectors of symmetric
matrix L(n) corresponding to all the eigenvalues contained in λS′n(L(n)). For
Kn = |λS′n(L (n))|, define Xn ∈ Rn×Kn to be the analogous matrix for
symmetric matrix L (n) with eigenvalues in λS′n(L (n)).

Assume that n−1/2(log n)2 = O(min{δn, δ′n}). Also assume that there ex-
ists positive integer N such that for all n > N , it follows that τ2

n > 2/ log n.
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Eventually, kn = Kn. Afterwards, for some sequence of orthonormal ro-
tations On,

‖Xn −XnOn‖F = o

(
log n

δnτ2
n n

1/2

)
a.s.

A proof of Theorem 2.2 is in Appendix C. There are two key assumptions
in Theorem 2.2:

(1) n−1/2(log n)2 = O(min{δn, δ′n})
(2) τ2

n > 2/ log n.

The first assumption ensures that the “eigengap,” the gap between the eigen-
values of interest and the rest of the eigenvalues, does not converge to zero
too quickly. The theorem is most interesting when S includes only the lead-
ing eigenvalues. This is because the eigenvectors with the largest eigenvalues
have the potential to reveal clusters or other structures in the network. When
these leading eigenvalues are well separated from the smaller eigenvalues, the
eigengap is large. The second assumption ensures that the expected degree
of each node grows sufficiently fast. If τn is constant, then the expected de-
gree of each node grows linearly. The assumption τ2

n > 2/ log n is almost as
restrictive.

The usefulness of Theorem 2.2 depends on how well the eigenvectors of
L (n) represent the characteristics of interest in the network. For example,
under the Stochastic Blockmodel with B full rank, if Sn is chosen so that
S′n contains all nonzero eigenvalues of L (n), then the block structure can be
determined from the columns of Xn. It can be shown that nodes i and j are
in the same block if and only if the ith row of Xn equals the jth row. The
next section examines how spectral clustering exploits this structure, using
Xn to estimate the block structure in the Stochastic Blockmodel.

3. The Stochastic Blockmodel. The work of Leskovec et al. (2008)
shows that the sizes of the best clusters are not very large in a diverse set of
empirical networks, suggesting that the appropriate asymptotic framework
should allow for the number of communities to grow with the number of
nodes. This section shows that, under suitable conditions, spectral clustering
can correctly partition most of the nodes in the Stochastic Blockmodel, even
when the number of blocks grows with the number of nodes.

The Stochastic Blockmodel, introduced by Holland, Laskey and Leinhardt
(1983), is a specific latent space model. Because it has well defined commu-
nities in the model, community detection can be framed as a problem of
statistical estimation. The important assumption of this model is that of
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stochastic equivalence within the blocks; if two nodes i and j are in the
same block, rows i and j of W are equal.

Recall in the definition of the undirected Stochastic Blockmodel,

W = ZBZT ,

where Z ∈ {0, 1}n×k is fixed and has exactly one 1 in each row and at
least one 1 in each column and B ∈ [0, 1]k×k is full rank and symmetric.
In this definition there are k blocks and n nodes. If the i, gth element of Z
equals one (Zig = 1) then node i is in block g. As before, zi for i = 1, . . . , n
denotes the ith row of Z. The matrix B ∈ [0, 1]k×k contains the probability
of edges within and between blocks. Some researchers have allowed for Z
to be random, we have decided to focus instead on the randomness of W
conditioned on Z. The aim of a clustering algorithm is to estimate Z (up to
a permutation of the columns) from W .

This section bounds the number of “misclustered” nodes. Because a per-
mutation of the columns of Z is unidentifiable in the Stochastic Blockmodel,
it is not obvious what a “misclustered” node is. Before giving our definition
of “misclustered,” some preliminaries are needed to explain why it is a rea-
sonable definition. The next paragraphs examine the behavior of spectral
clustering applied to the population graph Laplacian L . Then, this is com-
pared to spectral clustering applied to the observed graph Laplacian L. This
motivates our definition of “misclustered.”

Recall that the spectral clustering algorithm applied to L,

(1) finds the eigenvectors, X ∈ Rn×k,
(2) treats each row of the matrix X as a point in Rk, and
(3) runs k-means on these points.

k-means is an objective function. Applied to the points {x1, . . . , xn} ⊂ Rk

it is (Steinhaus, 1956),

(3.1) min
{m1,...,mk}⊂Rk

∑
i

min
g
‖xi −mg‖22.

The analysis in this paper addresses the true optimum of (3.1). (In prac-
tice, this optimization problem can suffer from local optima.) The vectors
m∗1, . . . ,m

∗
k that optimize the k-means function are referred to as the cen-

troids of the k clusters.
This next lemma shows that spectral clustering applied to the population

Laplacian, L , can discover the block structure in the matrix Z. This lemma
is essential to defining “misclustered.”
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Lemma 3.1. Under the Stochastic Blockmodel with k blocks,

W = ZBZT ∈ Rn×n for B ∈ Rk×k and Z ∈ {0, 1}n×k,

define L as in (1.3). There exists a matrix µ ∈ Rk×k such that the columns
of Zµ are the eigenvectors of L corresponding to the nonzero eigenvalues
values. Further,

(3.2) ziµ = zjµ ⇔ zi = zj ,

where zi is the ith row of Z.

A proof of Lemma 3.1 is in Appendix D.
Equivalence statement (3.2) implies that under the k block Stochastic

Blockmodel there are k unique rows in the eigenvectors Zµ of L . This has
important consequences for the spectral clustering algorithm. The spectral
clustering algorithm applied to L will run k-means on the rows of Zµ.
Because there are only k unique points, each of these points will be a centroid
of one of the resulting clusters. Further, if ziµ = zjµ, then i and j will be
assigned to the same cluster. With equivalence statement (3.2), this implies
that spectral clustering applied to the matrix L can perfectly identify the
block memberships in Z. Obviously, L is not observed. In practice, spectral
clustering is applied to L. Let X ∈ Rn×k be a matrix whose orthonormal
columns are the eigenvectors corresponding to the largest k eigenvalues (in
absolute value) of L.

Definition 3. Spectral clustering applies the k-means algorithm to the
rows of X, i.e. each row is a point in Rk. Each row is assigned to one cluster
and each of these clusters has a centroid. Define c1, . . . , cn ∈ Rk such that
ci is the the centroid corresponding to the ith row of X.

Recall that ziµ is the centroid corresponding to node i from the popula-
tion analysis. If the observed centroid ci is closer to the population centroid
ziµ than it is to any other population centroid zjµ for zj 6= zi, then it ap-
pears that node i is correctly clustered. This definition is appealing because
it removes some of the cluster identifiability problem. However, the eigen-
vectors add one additional source of undentifiability. Let O ∈ Rk×k be the
orthonormal rotation from Theorem 2.2. Consider node i to be correctly
clustered if, ci is closer to ziµO than it is to any other (rotated) population
centroid zjµO for zj 6= zi. The slight complication with O stems from the
fact that the vectors c1, . . . , cn are constructed from the eigenvectors in X
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and Theorem 2.2 shows these eigenvectors converge to the rotated popula-
tion eigenvectors: X O = ZµO.

Define P to be the population of the largest block in Z.

(3.3) P = max
j=1,...,k

(ZTZ)jj

The following provides a sufficient condition for a node to be correctly clus-
tered.

Lemma 3.2. For the orthonormal matrix O ∈ Rk×k from Theorem 2.2,

(3.4) ‖ci − ziµO‖2 < 1/
√

2P =⇒

(3.5) ‖ci − ziµO‖2 < ‖ci − zjµO‖2 for any zj 6= zi.

A proof of Lemma 3.2 is in Appendix D.
Line (3.5) is the previously motivated definition of correctly clustered.

Thus, Lemma 3.2 shows that the inequality in line (3.4) is a sufficient con-
dition for node i to be correctly clustered.

Definition 4. Define the set of misclustered nodes as the nodes that do
not satisfy the sufficient condition (3.4),

(3.6) M =
{
i : ‖ci − ziµO‖2 ≥ 1/

√
2P
}
.

The next theorem bounds the size of the set M

Theorem 3.1. Suppose W ∈ Rn×n is an adjacency matrix from the
Stochastic Blockmodel with kn blocks. Define the population graph Laplacian,
L , as in (1.3). Define |λ̄1| ≥ |λ̄2| ≥ · · · ≥ |λ̄kn | > 0 as the absolute values of
the kn nonzero eigenvalues of L . Define M , the set of misclustered nodes,
as in (3.6). Define τn as in (2.1) and assume there exists N such that for
all n > N , τ2

n > 2/ log n. Define Pn as in (3.3). If n−1/2(log n)2 = O(λ2
kn

),
then the number of misclustered nodes is bounded

|M | = o

(
Pn(log n)2

λ4
kn
τ4
n n

)
.

A proof of Theorem 3.1 is in Appendix D. The two main assumptions of
Theorem 3.1 are

(1) n−1/2(log n)2 = O(λ2
kn

)
(2) eventually, τ2

n log n > 2.
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They imply the conditions needed to apply Theorem 2.2. The first assump-
tion requires that the smallest nonzero eigenvalue of L is not too small.
Combined with an appropriate choice of Sn, this assumption implies the
eigengap assumption in Theorem 2.2. The second assumption is exactly the
same as the second assumption in Theorem 2.2. Section 4 investigates the
sensitivity of spectral clustering to these two assumptions. Section 5 exam-
ines the plausibility of assumption (2) on five empirical online social net-
works.

In all previous spectral clustering algorithms, it has been suggested that
the eigenvectors corresponding to the largest eigenvalues reveal the clus-
ters of interest. The above theorem suggests that before finding the largest
eigenvalues, you should first order them by absolute value. This allows for
large and negative eigenvalues. In fact, eigenvectors of L corresponding to
eigenvalues close to negative one (all eigenvalues of L are in [−1, 1]) discover
“heterophilic” structure in the network that can be useful for clustering.
For example, in the network of dating relationships in a high school, two
people of opposite sex are more likely to date than people of the same sex.
This pattern creates the two male and female “clusters” that have many
fewer edges within than between clusters. In this case, L would likely have
an eigenvalue close to negative one. The corresponding eigenvector would
reveal these “heterophilic” clusters.

Example: To examine the ability of spectral clustering to discover het-
erophilic clusters, imagine a Stochastic Blockmodel with two blocks and two
nodes in each block. Define

B =

(
0 1
1 0

)
.

In this case, there are no connections within blocks and every member is
connected to the two members of the opposite block. There is no variability
in the matrix W . The rows and columns of L can be reordered so that it is a
block matrix. The two block matrices down the diagonal are 2×2 matrices of
zeros and all the elements in the off diagonal blocks are equal to 1/2. There
are two nonzero eigenvalues of L. Any constant vector is an eigenvector of
L with eigenvalue equal to one. The remaining eigenvalue belongs to any
eigenvector that is a constant multiple of (1, 1,−1,−1). In this case, with
perfect “heterophilic” structure, the eigenvector that is useful for finding the
clusters has eigenvalue negative one.

Heuristically, the reason spectral clustering can discover these heterophilic
blocks is related to our method of proof. The i, jth element of WW is the
number neighbors that nodes i and j have in common. In both heterophilic
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and homophilic cases, if nodes i and j are in the same block, then they should
have several neighbors in common. Thus [WW ]ij is large. Similarly, [LL]ij
is large. This shows that the number of common neighbors is a measure
of similarity that is robust to the choice of hetero- or homophilic clusters.
Because spectral clustering uses a related measure of similarity, it is able to
detect both types of clusters.

In order to clarify the bound on |M | in Theorem 3.1, a simple example
illustrates how λkn , τn, and P might depend on n.

Definition 5. The four parameter Stochastic Blockmodel
is parametrized by k, s, r, and p. There are k blocks each containing s nodes.
The probability of a connection between two nodes in two separate blocks is
r ∈ [0, 1] and the probability of a connection between two nodes in the same
block is p+ r ∈ [0, 1].

Example: In the four parameter Stochastic Blockmodel, there are n =
ks nodes. Notice that Pn = s and τn > r. Appendix D shows that the
smallest nonzero eigenvalue of the population graph Laplacian is equal to

λk =
1

k(r/p) + 1
.

Using Theorem 3.1, if p 6= 0 and k = O(n1/4/ log n), then

(3.7) |M | = o(k3(log n)2) a.s.

Further, the proportion of nodes that are misclustered converges to zero,

|M |
n

= o(n−1/4) a.s.

This example is particularly surprising after noticing that if k = nα for
α ∈ (0, 1/4), then the vast majority of edges connect nodes in different
blocks. To see this, look at a sequence of models such that k = nα. Note that
s = n1−α. So, for each node, the expected number of connections to nodes
in the same block is (p+ r)n1−α and the expected number of connections to
nodes in different blocks is r(n− n1−α).

Expected number of in block connections
Expected number of out of block connections

=
(p+ r)n1−α

r(n− n1−α)
= O(n−α)

These are not the tight communities that many imagine when considering
networks. Instead, a dwindling fraction of each node’s edges actually connect
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to nodes in the same block. The vast majority of edges connect nodes in
different blocks.

A more refined result would allow r to decay with n. However, when r
decays, so does the minimum expected degree and the tail bounds used in
proving Theorem 2.1 requires the minimum expected degree to grow nearly
as fast as n. Allowing r to decay with n is an area for future research.

4. Simulations. Three simulations in this section illustrate how the
asymptotic bounds in this paper can be a guide for finite sample results.
These simulations emphasize the importance of the eigengap in Theorem
2.2 and suggest that the asymptotic bounds in this paper hold for relatively
small networks. The simulations also suggest two shortcomings of the theo-
retical results in this paper. First, Simulation 1 shows that spectral clustering
appears to be consistent in some situations. Unfortunately, the theoretical
results in Theorem 3.1 are not sharp enough to prove consistency. Second,
Simulation 3 suggests that spectral clustering is still consistent even when
the minimum expected node degree grows more slowly than the number of
nodes. However, the theorems above require a stronger condition, that the
minimum expected degree grows almost linearly with the number of nodes.

All data are simulated from the four parameter Stochastic Blockmodel
(Definition 5). In the first simulation, the number of nodes in each block s
grows while the number of blocks k and the probabilities p and r remain
fixed. In the second simulation, k grows while s, p, and r remain fixed. In
the final simulation, s and k remain fixed while r and p shrink such that p/r
remains fixed. Because kr/p is fixed, the eigengap is also fixed.

There is one important detail to recreate our simulation results below. The
spectral clustering result stated in Theorem 3.1, requires the true optimum
of the k-means objective function. This is very difficult to ensure. However,
only one step in the proof of Theorem 3.1 requires the true optimum. The
optimum of k-means satisfies inequality D.4 in the appendix. In simulations,
this inequality can be verified directly. For the simulations below, the k-
means algorithm is run several times, all with random initializations, until
the bound D.4 is met.

Simulation 1: In this simulation, k = 5, p = .2, r = .1 and the number
of members in each group grows from 8 to 215. This implies that n grows
from 40 to 1075. Equation (3.7) suggests that the number of misclustered
nodes should grow more slowly than (log n)2. In fact, Figure 1 shows that
once there are enough nodes, the number of misclustered nodes converges to
zero. The top plot displays the number of misclustered nodes plotted against
log n, which initially increases. Then, it falls precipitously.
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The lower plot in Figure 1 displays why the number of misclustered
nodes falls so precipitously. It plots log ‖LL − L L ‖F (dashed bold line)
and log ‖X −X O‖F (solid bold line) on the vertical axis against log n on
the horizontal axis. Also displayed in this plot is a line with slope -1/2 (solid
thin line). Note that the solid bold line starts to run parallel to the solid
thin line once log n > 4.5. After this point, the eigenvectors converge, and
spectral clustering begins to correctly cluster all of the nodes. The proof of
the convergence of the eigenvectors for Theorem 2.2, requires an eigengap
condition,

n−1/2 log n = O(min{δn, δ′n}).

Similarly to the example in the previous section, Sn can be chosen in this four
parameter model so that min{δn, δ′n} = (k(r/p) + 1)−2. In this simulation,
the eigenvectors begin to converge, and the number of miclustered nodes
drops just after the bound n−1/2 < (k(r/p) + 1)−2 is met. Ignoring the log n
factor, this suggests that the eigengap condition in Theorem 2.2 is necessary.

This simulation demonstrates the importance of the relationship between
the sample size and the eigengap. In this simulation, there needs to be
roughly 50 nodes in each block to separate the informative eigenvectors
from the uninformative eigenvectors. Once there are enough nodes, the em-
pirical eigenvectors are close to the population eigenvectors. Then, spectral
clustering can estimate the block structure.

The lower plot in Figure 1 also suggests that, ignoring log n factors, the
rates of convergence given in Theorem 2.1 and Theorem 2.2 are sharp. Both
LL and the eigenvectors X converge at a rate O(n−1/2). This is because
the the dashed bold line and the solid bold line (for large enough n) are
approximately parallel to the solid thin line.

Simulation 2: In this simulation from the four parameter Stochastic
Blockmodel, each block contains 35 nodes, p = .3, and r = .05. The number
of blocks k grows from 2 to 110. Equation (3.7) suggests that under this
asymptotic regime, the number of misclustered nodes should grow more
slowly than k3(log n)2. Figure 2 shows how this theoretical quantity can be
an appropriate guide.

Figure 2 plots the log of the number of misclustered nodes (bold line)
against log k. For comparison, a line with slope 3 is also plotted (thin line).
Because the bold line has a slope approximately equal to the thin line, the
number of misclustered nodes is approximate to k3.

This simulation demonstrates that as the number of blocks grows, the
number of misclustered nodes also grows. Although ‖LL−L L ‖F converges
under this asymptotic regime, ‖X −X O‖F does not because the eigengap
shrinks more quickly than the number of nodes can tolerate.
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Fig 1. The top panel in this figure displays the number of misclustered nodes plotted
against logn. The bottom panel displays both log ‖LL − L L ‖F and log ‖X − X O‖F
plotted against logn. Each dot represents one simulation of the model. In addition, the
bottom panel has a line with slope -1/2. This figure illustrates two things. First, after a
certain threshold (around logn = 4.7), the eigenvectors of the graph Laplacian begin to
converge and after this point, the number of misclustered nodes converges to zero. Second,
the lines representing log ‖LL −L L ‖F and log ‖X −X O‖F are approximately parallel
to the line with slope -1/2. This suggests that they converge around rate O(n−1/2), similar
to the theoretical results in Lemma 2.1 and Theorem 2.2.

Simulation 3: The theorems in this paper assume that the smallest
expected degree grows close to linearly with the number of nodes in the
graph. This simulation examines the sensitivity of spectral clustering to this
assumption. Recall that the smallest expected degree is equal to nτ .

In this simulation, there are three different designs all from the four pa-
rameter Stochastic Blockmodel. Each design has three blocks (k = 3). One
design contains 50 nodes in each block, another contains 150 in each block,
and the last design contains 250 nodes in each block. To investigate how
sensitive spectral clustering is to the value of τ = p/k + r, the probabilities
p and r must change. However, to isolate the effect of τ from the effect of
the eigengap (k(r/p) + 1)−2, it is necessary to keep the ratio p/r constant.
Fixing p/r = 2 ensures that the eigengap is fixed at 4/25.

The results for Simulation 3 are displayed in Figure 3. The value τ is on
the horizontal axis, and the number of misclustered nodes is on the vertical
axis. There are three lines. The thickest line represents the design with 50
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Fig 2. This figure plots the number of miclustered nodes (thicker line) against log k. Each
dot represents one simulation from the model. Additionally, there is a line with slope 3
(thinner line). Equation 3.7 says that the number of misclustered nodes is o(k3 log k).
Because the thicker line has a slope that is similar to the thinner line, this result appears
to be a good approximation.

nodes in each block. The line of medium thickness represents the design with
150 nodes in each block. The thinnest line represents the design with 250
nodes in each block. All three lines increase as τ approaches zero (reading the
figure from right to left). The thickest line starts to increase at τ = .20. The
thinnest line starts to increase at τ = .07. The line with medium thickness
increases in between these two lines.

Because the thinner lines start to increase at a smaller value of τ , this
suggests that as n increase, τ can decrease. As such, spectral clustering
should be able to correctly cluster the nodes in a Stochastic Blockmodel
graph when the minimum expected degree does not grow linearly with the
number of nodes in the graph.

Lemma 2.1, Theorem 2.2, and Theorem 3.1 all require the minimum ex-
pected degree to grow at the same rate as n (ignoring log n terms). Although
the strict assumption is inappropriate for large networks, this simulation
demonstrates (1) that spectral clustering works for smaller networks and
(2) that the asymptotic theory presented earlier in the paper can be a guide
to smaller networks. In these networks, it is not as unreasonable that each
node would be connected to a significant proportion of the other nodes.
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Fig 3. This figure displays the number of misclustered nodes from three different models
plotted against τ = mini E(Dii)/n. The first model has 50 nodes in each block (thickest
line), the second model has 150 nodes in each block (line with medium thickness), the third
model has 250 nodes in each block (thinnest line). Each dot represents the average of ten
simulations from the model. In each of these models, p and r decrease such that p/r is
always equal to 2. This ensures that τ goes to zero, while the eigengap remains constant.
Each of the three models is sensitive to small values of τ . However, the larger models can
tolerate a smaller value of τ . This suggests that as n increases, τ should be allowed to
decrease. The theorems in this paper do not allow for that possibility.

5. Empirical edge density. In several networks there is a natural or
canonical notion of what an edge represents. In an online social network,
friendship is the canonical notion of an edge. With this canonical notion,
the edges in most empirical networks are not dense enough to suggest the
asymptotic framework assumed in Lemma 2.1, Theorem 2.2, and Theorem
3.1.

Although it is an area of future research to weaken the strong assumption
on the expected node degrees, there are potentially other notions of similar-
ity that can replace the canonical notion. Define the canonical edge set Ec
to contain (i, j) if nodes i and j are connected with a canonical edge. One
possible extension of Ec is

(5.1) Eff = {(i, j) : if (i, k) ∈ Ec and (k, j) ∈ Ec for some k}

In words, (i, j) ∈ Eff if i and j are friends of friends.
Table 5 investigates the edge density of five empirical network defined us-
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ing both Ec and Eff . These five networks come from the Facebook networks
of five universities: California Institute of Technology (Caltech), Princeton
University, Georgetown University, University of Oklahoma, University of
North Carolina at Chapel Hill (UNC). Traud et al. (2008) made these data
sets publicly available and investigated the community structure in them.

LetW c denote the adjacency matrix constructed from Ec. LetW ff denote
the adjacency matrix constructed from Eff . Let degc ∈ Rn and degff ∈ Rn
denote the degree sequences of the nodes with respect to the two edge sets
Ec and Eff . That is, degffi =

∑
jW

ff
ij . Similarly for degc. Define

deg
c =

1
n

∑
i

degci(5.2)

deg
ff =

1
n

∑
i

degffi(5.3)

Tc =
100%
n

∑
i

1{degci > n/10}(5.4)

Tff =
100%
n

∑
i

1{degffi > n/10}.(5.5)

The first two quantities are equal to the average node degrees. The last two
quantities are the percent of nodes connected to more that 10% of the nodes
in the network.

Table 5 demonstrates how the edge density increases after replacing Ec
with Eff . The statistics Tc and Tff , in the last two lines of the table, can be
used to gauge the suitability of the assumption τ2 > 2/ log n in the theorems
above. Recall that τ is the minimum expected degree divided by n. So, for
example, if Tff = 1, then it is reasonable to expect that τ > 1/10. Because
there are some nodes that have a very small degree, Tc and Tff look at the
proportion of nodes that are well connected.

It is an empirical observation that graphs have sparse degrees. This sug-
gests that the assumption τ2 > 2/ log n in Lemma 2.1, Theorem 2.2, and
Theorem 3.1 is not satisfied in practice. Table 5 demonstrates that by using
an alternative notion of adjacency or connected, the network can become
much more connected.

6. Discussion. The goal of this paper is to bring statistical rigor to the
study of community detection by assessing how well spectral clustering can
estimate the clusters in the Stochastic Blockmodel. The Stochastic Block-
model is easily amenable to the analysis of clustering algorithms because of
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Table 1
This table describes five basic characteristics of the Facebook social network within five

universities. In the table below, deg
c

is the average node degree using the canonical edges

of friendship and deg
ff

is the average node degree using the “friends-of-friends” edges as
defined with Equation 5.1. The statistics Tc and Tff (defined in Equations 5.4 and 5.5)

are equal to the percent of nodes that are connected to more than 10% of the nodes in the
graph. The table below shows that the network is much more connected when using edges

defined by “friends-of-friends.” All numbers are rounded to the nearest integer.

School Caltech Princeton Georgetown Oklahoma UNC

n 769 6596 9414 17425 18163

deg
c

43 89 90 102 84

deg
ff

487 2663 3320 5420 5242
Tc 16 0 0 0 0
Tff 94 88 87 81 79

its simplicity and well defined communities. The fact that spectral cluster-
ing performs well on the Stochastic Blockmodel is encouraging. However,
because the Stochastic Blockmodel fails to represent fundamental features
that most empirical networks display, this result should only be considered
a first step.

This paper has two main results. The first main result, Theorem 2.2,
proves that under the latent space model, the eigenvectors of the empirical
normalized graph Laplacian converge to the eigenvectors of the population
normalized graph Laplacian–so long as (1) the minimum expected degree
grows fast enough and (2) the eigengap that separates the leading eigenvalues
from the smaller eigenvalues does not shrink too quickly. This theorem has
consequences in addition to those related to spectral clustering.

Visualization is an important tool for social networks analysts (Liotta,
2004; Freeman, 2000; Wasserman and Faust, 1994). However, there is little
statistical understanding of these techniques under stochastic models. Two
visualization techniques, factor analysis and multidimensional scaling, have
variations that utilize the eigenvectors of the graph Laplacian. Similar ap-
proaches were suggested for social networks as far back as the 1950’s (Bock
and Husain, 1952; Breiger, Boorman and Arabie, 1975). Koren (2005) sug-
gests visualizing the graph using the eigenvectors of the unnormalized graph
Laplacian. The analogous method for the normalized graph Laplacian would
use the ith row of X as the coordinates for the ith node. Theorem 2.2 shows
that, under the latent space model, this visualization is not much different
than visualizing the graph by instead replacing X with X . If there is struc-
ture in the latent space of a latent space model (for example, the z1, . . . , zn
form clusters) and this structure is represented in the eigenvectors of the
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population normalized graph Laplacian, then plotting the eigenvectors will
potentially reveal this structure.

The Stochastic Blockmodel is a specific latent space model that satisfies
these conditions. It has well defined clusters or blocks and Lemma 3.1 shows
that, under weak assumptions, the eigenvectors of the population normalized
graph Laplacian perfectly identify the block structure. Theorem 2.2 suggests
that you could discover this clustering structure by using the visualization
technique proposed by Koren (2005). The second main result, Theorem 3.1,
goes further to suggest just how many nodes you might miscluster by running
k-means on those points (this is spectral clustering). Theorem 3.1 proves
that if (1) the minimum expected degree grows fast enough and (2) the
smallest nonzero eigenvalue of the population normalized graph Laplacian
shrinks slowly enough, then the proportion of nodes that are misclustered
by spectral clustering vanishes in the asymptote.

The asymptotic framework applied in Theorem 3.1 allows the number
of blocks to grow with the number of nodes; this is the first such high-
dimensional clustering result. Allowing the number of clusters to grow is
reasonable because as Leskovec et al. (2008) noted, large networks do not
necessarily have large communities. In fact, in a wide range of empirical
networks, the tightest communities have a roughly constant size. Allowing
the number of blocks to grow with the number of nodes ensures the clusters
do not become too large.

There are two main limitations of our results that are highlighted in the
simulations in Section 4. First, Theorem 3.1 does not show that spectral
clustering is consistent under the Stochastic Blockmodel; it only gives a
bound on the number of misclassified nodes. Improving this bound is an area
for future research. The second shortcoming is that Lemma 2.1, Theorem
2.2, and Theorem 3.1 all require the minimum expected degree to grow at
the same rate as n (ignoring log n terms). In large empirical networks, the
canonical edges are not dense enough to suggest this type of asymptotic
framework. Section 5 suggests alternative definitions of edges that might
increase the edge density. That said, studying spectral clustering under more
realistic degree distributions is an area for future research.

APPENDIX A: PROOF OF THEOREM 2.1

First a proof of Lemma 2.1,

Proof. By eigendecomposition, M =
∑n
i=1 λiuiu

T
i where u1, . . . , un are
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orthonormal and eigenvectors of M . So,

MM =

(
n∑
i=1

λiuiu
T
i

)(
n∑
i=1

λiuiu
T
i

)
=

n∑
i=1

λ2
iuiu

T
i .

Right multiplying by any ui yields MMui = λ2ui. This proves one direction
of part one in the lemma, if λ is an eigenvalue of M , then λ2 is an eigenvalue
of MM . It also proves part two of the lemma, all eigenvectors of M are also
eigenvectors of MM .

To see that if λ2 is an eigenvalue of MM , then λ or −λ is an eigenvalue
of M , notice that both M and MM have exactly n eigenvalues (counting
multiplicities) because both matrices are real and symmetric. So, the previ-
ous paragraph specifies n eigenvalues of MM by squaring the eigenvalues of
M . Because MM has exactly n eigenvalues, there are no other eigenvalues.

The rest of the proof is devoted to part three of the lemma. Let MMv =
λ2v. By eigenvalue decomposition, M =

∑
i λiuiu

T
i and because u1, . . . , un

are orthonormal (M is real and symmetric) there exists α1, . . . , αn such that
v =

∑
i αiui.

λ2
∑
i

αiui = λ2v = MMv = M

(∑
i

λiuiu
T
i v

)
= M

(∑
i

λiαiui

)
=

∑
i

λiαiMui =
∑
i

λ2
iαiui

By the orthogonality of the ui’s, it follows that λ2αi = λ2
iαi for all i. So, if

λ2
i 6= λ2, then αi = 0.

For i = 1, . . . , n, define ci = Dii/n and τ = mini=1,...,n ci.

Lemma A.1. If n1/2/ log n > 2,

P
(
‖LL−L L ‖F ≥

32
√

2 log n
τ2 n1/2

)
≤ 4n2−2τ2 logn.

The main complication of the proof of Lemma A.1 is controlling the de-
pendencies between the elements of LL. We do this with an intermediate
step that uses the matrix

L̃ = D−1/2WD−1/2

and two sets Γ and Λ. Γ constrains the matrix D, while Λ constrains the ma-
trix WD−1W . These sets will be defined in the proof. To ease the notation,
define

PΓΛ(B) = P(B ∩ Γ ∩ Λ)
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where B is some event.

Proof. This proof shows that under the sets Γ and Λ the probability of
the norm exceeding 32

√
2 log(n) τ−2 n−1/2 is exactly zero for large enough

n and that the probability of Γ or Λ not happening is exponentially small.
To ease notation, define a = 32

√
2 log(n) τ−2 n−1/2.

The diagonal terms behave differently than the off diagonal terms. So,
break them appart.

P(‖LL−L L ‖F ≥ a) ≤ PΓΛ(‖LL−L L ‖F ≥ a) + P ((Γ ∩ Λ)c)

= PΓΛ

∑
i,j

[LL−L L ]2ij ≥ a2

+ P ((Γ ∩ Λ)c)

≤ PΓΛ

∑
i 6=j

[LL−L L ]2ij ≥ a2/2


+ PΓΛ

(∑
i

[LL−L L ]2ii ≥ a2/2

)
+P ((Γ ∩ Λ)c)

First, address the sum over the off diagonal terms.

PΓΛ

∑
i 6=j

[LL−L L ]2ij ≥ a2/2


≤ PΓΛ

(
∪i 6=j{[LL−L L ]2ij ≥

a2

2n2
}
)

(A.1)

≤
∑
i 6=j

PΓΛ

(
|LL−L L |ij ≥

a√
2n

)

≤
∑
i 6=j

PΓΛ

(
|LL− L̃L̃|ij + |L̃L̃−L L |ij ≥

a√
2n

)

≤
∑
i 6=j

[
PΓΛ

(
|LL− L̃L̃|ij ≥

a√
8n

)

+ PΓΛ

(
|L̃L̃−L L |ij ≥

a√
8n

)]
(A.2)
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The sum over the diagonal terms is similar,

PΓΛ

(∑
i

[LL−L L ]2ii ≥ a2/2

)
≤

∑
i

[
PΓΛ

(
|LL− L̃L̃|ii ≥

a√
8n

)
+ PΓΛ

(
|L̃L̃−L L |ii ≥

a√
8n

)]
,

with one key difference. In equation (A.1), the union bound address nearly
n2 terms. This yields the 1/n2 term in line (A.1). After taking the square
root, each term has a lower bound with a factor of 1/n. However, because
there are only n terms on the diagonal, after taking the square root in the
last equation above, the lower bound has a factor of 1/

√
n.

To constrain the terms |L̃L̃−L L |ij for i = j and i 6= j, define

Λ =
⋂
i,j

{∣∣∣∑
k

(WikWjk − pijk)/ck
∣∣∣ < n1/2 log n

}
,

where

pijk =

{
pikpjk if i 6= j
pik if i = j

for pij = Wij . We now show that for large enough n, and any i 6= j,

PΛ

(
|L̃L̃−L L |ij ≥

a√
8n

)
= 0(A.3)

PΛ

(
|L̃L̃−L L |ii ≥

a√
8n

)
= 0.(A.4)

To see Equation (A.3), expand the left hand side of the inequality for i 6= j,

|L̃L̃−L L |ij =
1

(DiiDjj)1/2

∣∣∣∣∣∑
k

(WikWjk − pikpjk)/Dkk

∣∣∣∣∣
=

1
n2√cicj

∣∣∣∣∣∑
k

(WikWjk − pikpjk)/ck

∣∣∣∣∣
This is bounded on Λ, yielding

|L̃L̃−L L |ij <
log n
τn3/2

≤ 32
√

2 log n√
8τ2 n3/2

=
a√
8n
.

So, Equation (A.3) holds for i 6= j. Equation (A.4) is different because
W 2
ik = Wik. As a result, the diagonal of L̃L̃ is a biased estimator of the



30 ROHE ET AL.

diagonal of L L .

|L̃L̃−L L |ii =
∣∣∑
k

W 2
ik − p2

ik

DiiDkk

∣∣
=

∣∣∑
k

Wik − p2
ik

DiiDkk

∣∣
≤

∣∣∑
k

Wik − pik
DiiDkk

∣∣+ ∣∣∑
k

pik − p2
ik

DiiDkk

∣∣
=

1
cin2

(∣∣∑
k

(Wik − pik)/ck
∣∣+ ∣∣∑

k

(pik − p2
ik)/ck

∣∣)(A.5)

Similarly to the i 6= j case, the first term is bounded by log(n)τ−1n−3/2 on
Λ. The second term is bounded by τ−2n−1:

1
cin2

∣∣∣∣∣∑
k

(pik − p2
ik)/ck

∣∣∣∣∣ ≤ 1
cin2

∣∣∣∣∣∑
k

1/τ

∣∣∣∣∣
≤ 1

τ2n
.

Substituting the value of a in reveals that on the set Λ, both terms in (A.5)
are bounded by a(2

√
8n)−1. So, their their sum is bounded by a(

√
8n)−1,

satisfying Equation (A.4).
This next part addresses the difference between LL and L̃L̃, showing that

for large enough n, any i 6= j, and some set Γ,

PΓΛ(|LL− L̃L̃|ij ≥
a√
8n

) = 0

PΓΛ(|LL− L̃L̃|ii ≥
a√
8n

) = 0

It is enough to show that for any i and j,

(A.6) PΓΛ(|LL− L̃L̃|ij ≥
a√
8n

) = 0.

For b(n) = log(n)n−1/2, define u(n) = 1 + b(n), l(n) = 1 − b(n). With
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these define the following sets,

Γ =
⋂
i

{Dii ∈ Dii[l(n), u(n)]}

Γ(1) =
⋂
i

{
1
Dii
∈ 1

Dii

[
u(n)−1, l(n)−1

]}

Γ(2) =
⋂
i,j

{
1

(DiiDjj)1/2
∈ 1

(DiiDjj)1/2

[
u(n)−1, l(n)−1

]}

Γ(3) =
⋂
i,j,k

{
1

Dkk(DiiDjj)1/2
∈
[
u(n)−2, l(n)−2

]
Dkk(DiiDjj)1/2

}

Notice that Γ ⊆ Γ(1) ⊆ Γ(2) and Γ ⊆ Γ(3). Define another set,

Γ(4) =
⋂
i,j,k

{
1

Dkk(DiiDjj)1/2
∈ [1− 16b(n), 1 + 16b(n)]

Dkk(DiiDjj)1/2

}
.

The next steps show that this set contains Γ. It is sufficient to show Γ(3) ⊂
Γ(4). This is true because

1
u(n)2

=
1

(1 + b(n))2
=

b(n)−2

(b(n)−1 + 1)2
>

b(n)−2 − 1
(b(n)−1 + 1)2

=
b(n)−1 − 1
b(n)−1 + 1

= 1− 2
b(n)−1 + 1

> 1− 16 b(n).

The 16 in the last bound is larger than it needs to be so that the upper and
lower bounds in Γ(4) are symmetric. For the other direction,

1
l(n)2

=
1

(1− b(n))2
=

b(n)−2

(b(n)−1 − 1)2
=
(

1 +
1

b(n)−1 − 1

)2

= 1 +
2

b(n)−1 − 1
+

1
(b(n)−1 − 1)2

.

We now need to bound the last two elements here. We are assuming,√
n/ log n > 2. Equivalently, 1 − b(n) > 1/2 . So, we have both of the

following:

1
(b(n)−1 − 1)2

<
2

b(n)−1 − 1
and

2
b(n)−1 − 1

=
2b(n)

1− b(n)
< 8b(n).

Putting these together,

1
l(n)2

< 1 + 16 b(n).
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This shows that Γ ⊂ Γ(4). Now, under the set Γ, and thus Γ(4),

|LL− L̃L̃|ij =
∣∣∣∑
k

(
WikWjk

Dkk(DiiDjj)1/2
− WikWjk

Dkk(DiiDjj)1/2

) ∣∣∣
≤

∑
k

∣∣∣ 1
Dkk(DiiDjj)1/2

− 1
Dkk(DiiDjj)1/2

∣∣∣
≤

∑
k

∣∣∣ 16 b(n)
Dkk(DiiDjj)1/2

∣∣∣
≤

∑
k

16 b(n)
τ2n2

≤ 16 b(n)
τ2n

.

This is equal to a(
√

8n)−1, showing Equation (A.4) holds for all i and j.
The remaining step is to bound P((Γ ∩ Λ)c). Using the union bound this

is less than or equal to P(Γc) + P(Λc).

P(Γc) = P
(⋃

i

{Dii 6∈ Dii[1− b(n), 1 + b(n)]}
)

≤
∑
i

P ({Dii 6∈ Dii[1− b(n), 1 + b(n)]})

<
∑
i

2 exp

(
−2
(

Dii log n√
n

)2 1
n

)
≤ 2n exp(−2τ2(log n)2)

= 2n1−2τ2 logn

Where the second to last inequality is by Hoeffding’s inequality. The next
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inequality is Hoeffding’s.

P(Λc) = P

⋃
i,j

{∣∣∣∑
k

(WikWjk − pijk)/ck
∣∣∣ > n1/2 log n

}
=

∑
i,j

P
(∣∣∣∑

k

(WikWjk − pijk/ck
∣∣∣ > n1/2 log n

)

<
∑
i,j

2 exp

(
−2n(log n)2/

∑
k

1/c2
k

)

≤
∑
i,j

2 exp
(
−2(log n)2τ2

)
≤ 2n2 exp

(
−2(log n)2τ2

)
≤ 2n2−2τ2 logn.

Because W is symmetric, the independence of the WikWjk across k is not
obvious. However, because Wii = Wjj = 0, they are independent across k.

Putting the pieces together,

P
(
‖LL−L L ‖F ≥

32
√

2 log n
τ2 n1/2

)

≤ PΓΛ(‖LL−L L ‖F ≥
32
√

2 log n
τ2 n1/2

) + P ((Γ ∩ Λ)c)

< 0 + 2n1−2τ2 logn + 2n2−2τ2 logn.

≤ 4n2−2τ2 logn.

The following proves Theorem 2.1.

Proof. Adding the n super- and subscripts to Lemma A.1, it states that
if n1/2/ log n > 2, then

P
(
‖LL−L L ‖F ≥

c log n
τ2 n1/2

)
< 4n2−2τ2 logn.

for c = 32
√

2. By assumption, for all n > N , τ2
n log n > 2. This implies that

2− 2τ2
n log n < −2 for all n > N . Rearranging and summing over n, for any
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fixed ε > 0,

∞∑
n=1

P
(
‖L(n)L(n) −L (n)L (n)‖F
cτ−2
n log(n)n−1/2/ε

≥ ε
)
≤ N + 4

∞∑
n=N+1

n2−2τ2
n logn

≤ N + 4
∞∑

n=N+1

n−2,

which is a summable sequence. By the Borel-Cantelli Theorem,

‖L(n)L(n) −L (n)L (n)‖F = o(τ−2
n log(n) n−1/2) a.s.

APPENDIX B: DAVIS-KAHAN THEOREM

The statement of the theorem below and the preceding explanation come
largely from von Luxburg (2007). For a more detailed account of the Davis-
Kahan Theorem see Stewart and Sun (1990).

To avoid the issues associated with multiple eigenvalues, this theorem’s
original statement is instead about the subspace formed by the eigenvec-
tors. For a distance between subspaces, the theorem uses “canonical angles,”
which are also known as “principal angles.” Given two matrices M1 and M2

both in Rn×p with orthonormal columns, the singular values (σ1, . . . , σp) of
M ′1M2 are the cosines of the principal angles (cos Θ1, . . . , cos Θp) between
the column space of M1 and the column space of M2. Define sin Θ(M1,M2)
to be a diagonal matrix containing the sine of the principal angles of M ′1M2

and define

(B.1) d(M1,M2) = ‖ sin Θ(M1,M2)‖F ,

which can be expressed as (p −
∑p
j=1 σ

2
j )

1/2 by using the identity sin2 θ =
1− cos2 θ.

Proposition B.1. (Davis-Kahan) Let S ⊂ R be an interval. Denote
X as an orthonormal matrix whose column space is equal to the eigenspace
of L L corresponding to the eigenvalues in λS(L L ) (more formally, the
column space of X is the image of the spectral projection of L L induced by
λS(L L )). Denote by X the analogous quantity for LL. Define the distance
between S and the spectrum of L L outside of S as

δ = min{|λ− s|;λ eigenvalue of L L , λ 6∈ S, s ∈ S}.
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Then the distance d(X , X) = ‖ sin Θ(X , X)‖F between the column spaces of
X and X is bounded by

d(X,X ) ≤ ‖LL−L L ‖F
δ

.

In the theorem L L and LL can be replaced by any two symmetric
matrices. The rest of this section converts the bound on d(X,X ) to a bound
on ‖X−XO‖F , where O is some orthonormal rotation. For this, we will make
an additional assumption that X and X have the same dimension. Assume
there exists S ⊂ R containing k eigenvalues of L L and k eigenvalues of LL,
but containing no other eigenvalues of either matrix. Because LL and L L
are symmetric, its eigenvectors can be defined to be orthonormal. Let the
columns of X ∈ Rn×k be k orthonormal eigenvectors of L L corresponding
to the k eigenvalues contained in S. Let the columns of X ∈ Rn×k be k
orthonormal eigenvectors of LL corresponding to the k eigenvalues contained
in S. By singular value decomposition, there exist orthonormal matrices
U, V and diagonal matrix Σ such that X TX = UΣV T . The singular values,
σ1, . . . , σk, down the diagonal of Σ are the cosines of the principal angles
between the columns space of X and the column space of X .

Although the Davis-Kahan Theorem is a statement regarding the princi-
pal angles, a few lines of algebra shows that it can be extended to a bound on
the Frobenius norm between the matrix X and X UV T , where the matrix
UV T is an orthonormal rotation.

1
2
‖X −X UV T ‖2F =

1
2
trace((X −X UV T )T (X −X UV T ))

=
1
2
trace(V UTX TX UV T +XTX − 2V UTX TX)

=
1
2

(
k + k − 2trace(V UTX TX)

)
≤ ‖LL−L L ‖2F

δ2
,

where the last inequality is explained below. It follows from a property of
the trace, the fact that the singular values are in [0, 1], the trigonometric
identity cos2 θ = 1− sin2 θ and the Davis-Kahan Theorem:

trace(V UTX TX) =
k∑
i=1

σi ≥
k∑
i=1

(cos Θi)2 =
k∑
i=1

1− (sin Θi)2

= k − (d(X,X ))2 ≥ k − ‖LL−L L ‖2F
δ2

.
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This shows that the Davis-Kahan Theorem can instead be thought of as a
bounding ‖X UV T −X‖2F instead of d(X , X). The matrix O in Theorem
2.1 is equal to UV T . In this way, it is dependent on X and X .

APPENDIX C: PROOF OF THEOREM 2.3

Proof. By Lemma 2.1, the column vectors of Xn are eigenvectors of
L(n)L(n) corresponding to all the eigenvalues in λSn(L(n)L(n)). For the appli-
cation of the Davis-Kahan Theorem, this means that the column space of Xn

is the image of the spectral projection of L(n)L(n) induced by λSn(L(n)L(n)).
Similarly, for the column vectors of Xn, the matrix L (n)L (n), and the set
λSn(L (n)L (n)).

Recall that λ̄(n)
1 ≥ · · · ≥ λ̄(n)

n are defined to be the eigenvalues of symmet-
ric matrix L (n)L (n) and λ(n)

1 ≥ · · · ≥ λ(n)
n are defined to be the eigenvalues

of symmetric matrix L(n)L(n). From Equation (2.2),

max
i
|λ(n)
i − λ̄

(n)
i | = o

(
log n
τ2
nn

1/2

)
.

By assumption, τ2
n > 2/ log n. So,

log n
τ2
nn

1/2
<

(log n)2

2n1/2
= O(min{δn, δ′n}),

where the last step follows by assumption. Thus,

max
i
|λ(n)
i − λ̄

(n)
i | = o(min{δn, δ′n}).

This means that, eventually, λ(n)
i ∈ Sn if and only if λ̄(n)

i ∈ Sn. Thus the
number of elements in λSn(L (n)L (n)) is eventually equal to the number of
elements in λSn(L(n)L(n)) implying that Xn and Xn will eventually have
the same number of columns, kn = Kn.

Once Xn and Xn have the same number of columns, define matrices Un
and Vn with singular value decomposition: X T

n Xn = UnΣnV
T
n . Define On =

UnV
T
n . The result follows from the Davis-Kahan Theorem and Theorem 2.1:

‖Xn −XnOn‖F ≤
2‖L(n)L(n) −L (n)L (n)‖F

δn
= o

(
log n

δnτ2
n n

1/2

)
a.s.



CLUSTERING FOR THE STOCHASTIC BLOCKMODEL 37

APPENDIX D: STOCHASTIC BLOCKMODEL

Below is a proof of Lemma 3.1

Proof. First, construct the matrix BL ∈ Rk×k such that L = ZBLZ
T .

define DB = diag(BZT1n) ∈ Rk×k where 1n is a vector of ones in Rn. For
any i, j

Lij =
Wij√
DiiDjj

= ziD
−1/2
B BD

−1/2
B (zj)T

Define BL = D
−1/2
B BD

−1/2
B . It follows that Lij = (ZBLZT )ij and thus

L = ZBLZ
T .

Because B is symmetric, so is BL and so is (ZTZ)1/2BL(ZTZ)1/2. Notice
that

det((ZTZ)1/2BL(ZTZ)1/2) = det((ZTZ)1/2)det(BL)det((ZTZ)1/2) > 0.

By eigenvector decomposition, define V ∈ Rk×k and diagonal matrix Λ ∈
Rk×k such that

(D.1) (ZTZ)1/2BL(ZTZ)1/2 = V ΛV T .

Because the determinant of the left hand side of Equation (D.1) is greater
than zero, none of the eigenvalues in Λ are equal to zero. Left multiply
Equation (D.1) by Z(ZTZ)−1/2 and right multiply by (ZTZ)−1/2ZT . This
shows

(D.2) ZBLZ
T = ZµΛ(Zµ)T ,

where µ = (ZTZ)−1/2V . Notice that (Zµ)T (Zµ) = Ik, the k×k identity ma-
trix. So, right multiplying Equation (D.2) by Zµ shows that the columns of
Zµ are eigenvectors of ZBLZT = L with the eigenvalues down the diagonal
of Λ. Equation (D.2) shows that these are the only nonzero eigenvalues.

It remains to prove equivalence statement (3.2). Notice

det(µ) = det((ZTZ)−1/2)det(V ) > 0.

So, µ−1 exists and statement (3.2) follows.

The following is a proof of Lemma 3.2.

Proof. The following statement is the essential ingredient to prove Lemma
3.2.

(D.3) zi 6= zj , then ‖ziµ− zjµ‖2 ≥
√

2/P
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The proof of statement (D.3) requires the following definition,

‖µ‖2m = min
x:‖x‖2=1

‖xµ‖22.

Notice that

‖µ‖2m = min
x:‖x‖2=1

xµµTxT = min
x:‖x‖2=1

x(ZTZ)−1xT = 1/P.

So,
‖ziµ− zjµ‖2 = ‖(zi − zj)µ‖2 ≥

√
2‖µ‖m =

√
2/P ,

Proving statement (D.3). The proof of Lemma 3.2 follows,

‖ciO − zjµ‖2 ≥ ‖ziµ− zjµ‖2 − ‖ciO − ziµ‖2 ≥
√

2
P
− 1

2

√
2
P

=
1√
2P

The following is a proof of Theorem 3.1.

Proof. Define X ∈ Rn×k to contain the eigenvectors of L corresponding
to the largest k eigenvalues and define

C = argminM∈R(n,k)‖X −M‖2F

where R(n, k) is defined as follows,

R(n, k) = {M ∈ Rn×k : M has no more than k unique rows}.

Notice that

min
M∈R(n,k)

‖X −M‖2F = min
{m1,...,mk}⊂Rk

∑
i

min
g
‖xi −mg‖22.

This shows that the ith row of C is equal to ci as defined in Definition 3.
Because ZµO ∈ R(n, k), notice that

(D.4) ‖X − C‖2 ≤ ‖X − ZµO‖2.

By the triangle inequality and inequality D.4,

‖C − ZµO‖2 ≤ ‖C −X‖2 + ‖X − ZµO‖2 ≤ 2‖X − ZµO‖2.
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In the notation of Theorem 2.2, define Sn = [λ2
kn
/2, 2]. Then, δ = δ′ =

λ2
kn
/2. By assumption, n−1/2(log n)2 = O(λ2

kn
) = O(min{δ, δ′}). This im-

plies that the results from Theorem 2.2 hold. Putting the pieces together,

|M | ≤
∑
i∈M

1 ≤ 2Pn
∑
i∈M

‖ci − ziµO‖22

≤ 2Pn‖C − ZµO‖2F
≤ 8Pn‖X − ZµO‖2F

= o

(
Pn(log n)2

nλ4
kn
τ4
n

)
a.s.

In Example 2 in Section 3, it was claimed that

λk =
1

k(r/p) + 1
.

The following is a proof of that statement.
Define B ∈ Rk×k such that

B = pIk + r1k1Tk

where Ik ∈ Rk×k is the identity matrix, 1k ∈ Rk is a vector of ones, r ∈ (0, 1)
and p ∈ (0, 1 − r). Assume that p and r are fixed and k can grow with n.
Let Z ∈ {0, 1}n×k be such that ZT1n = s1k. This guarantees that all k
groups have equal size s. The Stochastic Blockmodel in Example 2 has the
population adjacency matrix, W = ZBZT .

Define
BL =

1
nr + sp

(
pIk + r1k1Tk

)
.

From the argument in the proof of Lemma 3.1, L has the same nonzero
eigenvalues as (ZTZ)1/2BL(ZTZ)1/2 ∈ Rk×k. Let λ1, . . . , λk be the eigen-
values of (ZTZ)1/2BL(ZTZ)1/2 = (s1/2Ik)BL(s1/2Ik) = sBL. Notice that 1k
is an eigenvector with eigenvalue 1.

sBL1k =
s

nr + sp

(
pIk + r1k1Tk

)
1k =

s(p+ kr)
nr + sp

1k = 1k

Let λ1 = 1. Define

U = {u : ‖u‖2 = 1, uT1 = 0}.
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Notice that for all u ∈ U ,

(D.5) sBLu =
s

nr + sp

(
pIk + r1k1Tk

)
u =

sp

nr + sp
u.

Equation (D.5) implies that for i > 1,

λi =
sp

nr + sp
.

This is also true for i = k.

λk =
sp

nr + sp
=

sp

nr + sp
=

1
k(r/p) + 1

This is the smallest nonzero eigenvalue of L .
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